1
|
Heath O, Feichtinger RG, Achleitner MT, Hofbauer P, Mayr D, Merkevicius K, Spenger J, Steinbrücker K, Steindl C, Tiefenthaler E, Mayr JA, Wortmann SB. Mitochondrial disorder diagnosis and management- what the pediatric neurologist wants to know. Eur J Paediatr Neurol 2024; 54:75-88. [PMID: 39793294 DOI: 10.1016/j.ejpn.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/30/2024] [Accepted: 10/21/2024] [Indexed: 01/13/2025]
Abstract
Childhood-onset mitochondrial disorders are rare genetic diseases that often manifest with neurological impairment due to altered mitochondrial structure or function. To date, pathogenic variants in 373 genes across the nuclear and mitochondrial genomes have been linked to mitochondrial disease, but the ensuing genetic and clinical complexity of these disorders poses considerable challenges to their diagnosis and management. Nevertheless, despite the current lack of curative treatment, recent advances in next generation sequencing and -omics technologies have laid the foundation for precision mitochondrial medicine through enhanced diagnostic accuracy and greater insight into pathomechanisms. This holds promise for the development of targeted treatments in this group of patients. Against a backdrop of inherent challenges and recent technological advances in mitochondrial medicine, this review discusses the current diagnostic approach to a child with suspected mitochondrial disease and outlines management considerations of particular relevance to paediatric neurologists. We highlight the importance of mitochondrial expertise centres in providing the laboratory infrastructure needed to supplement uninformative first line genomic testing with focused and/or further unbiased investigations where needed, as well as coordinating an integrated multidisciplinary model of care that is paramount to the management of patients affected by these conditions.
Collapse
Affiliation(s)
- Oliver Heath
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - René G Feichtinger
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Melanie T Achleitner
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Peter Hofbauer
- Department of Production, Landesapotheke Salzburg, Hospital Pharmacy, Salzburg, Austria
| | - Doris Mayr
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Kajus Merkevicius
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria; Clinic of Paediatrics, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania; Institute of Biosciences, Life Sciences Centre, Vilnius University, Vilnius, Lithuania
| | - Johannes Spenger
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Katja Steinbrücker
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Carina Steindl
- Institut für Klinische Psychologie der UK für Psychiatrie, Psychotherapie und Psychosomatik der PMU, Salzburg, Austria
| | - Elke Tiefenthaler
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Johannes A Mayr
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Saskia B Wortmann
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria; Amalia Children's Hospital, Department of Paediatrics, Radboudumc, Nijmegen, the Netherlands.
| |
Collapse
|
2
|
Batten K, Bhattacharya K, Simar D, Broderick C. Exercise testing and prescription in patients with inborn errors of muscle energy metabolism. J Inherit Metab Dis 2023; 46:763-777. [PMID: 37350033 DOI: 10.1002/jimd.12644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/02/2023] [Accepted: 06/21/2023] [Indexed: 06/24/2023]
Abstract
Skeletal muscle is a dynamic organ requiring tight regulation of energy metabolism in order to provide bursts of energy for effective function. Several inborn errors of muscle energy metabolism (IEMEM) affect skeletal muscle function and therefore the ability to initiate and sustain physical activity. Exercise testing can be valuable in supporting diagnosis, however its use remains limited due to the inconsistency in data to inform its application in IEMEM populations. While exercise testing is often used in adults with IEMEM, its use in children is far more limited. Once a physiological limitation has been identified and the aetiology defined, habitual exercise can assist with improving functional capacity, with reports supporting favourable adaptations in adult patients with IEMEM. Despite the potential benefits of structured exercise programs, data in paediatric populations remain limited. This review will focus on the utilisation and limitations of exercise testing and prescription for both adults and children, in the management of McArdle Disease, long chain fatty acid oxidation disorders, and primary mitochondrial myopathies.
Collapse
Affiliation(s)
- Kiera Batten
- School of Health Sciences, University of New South Wales, Sydney, Australia
- The Children's Hospital at Westmead, Sydney, Australia
| | - Kaustuv Bhattacharya
- The Children's Hospital at Westmead, Sydney, Australia
- School of Clinical Medicine, University of New South Wales, Sydney, Australia
| | - David Simar
- School of Health Sciences, University of New South Wales, Sydney, Australia
| | - Carolyn Broderick
- School of Health Sciences, University of New South Wales, Sydney, Australia
- The Children's Hospital at Westmead, Sydney, Australia
| |
Collapse
|
3
|
Kornblum C, Lamperti C, Parikh S. Currently available therapies in mitochondrial disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 194:189-206. [PMID: 36813313 DOI: 10.1016/b978-0-12-821751-1.00007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Mitochondrial diseases are a heterogeneous group of multisystem disorders caused by impaired mitochondrial function. These disorders occur at any age and involve any tissue, typically affecting organs highly dependent on aerobic metabolism. Diagnosis and management are extremely difficult due to various underlying genetic defects and a wide range of clinical symptoms. Preventive care and active surveillance are strategies to try to reduce morbidity and mortality by timely treatment of organ-specific complications. More specific interventional therapies are in early phases of development and no effective treatment or cure currently exists. A variety of dietary supplements have been utilized based on biological logic. For several reasons, few randomized controlled trials have been completed to assess the efficacy of these supplements. The majority of the literature on supplement efficacy represents case reports, retrospective analyses and open-label studies. We briefly review selected supplements that have some degree of clinical research support. In mitochondrial diseases, potential triggers of metabolic decompensation or medications that are potentially toxic to mitochondrial function should be avoided. We shortly summarize current recommendations on safe medication in mitochondrial diseases. Finally, we focus on the frequent and debilitating symptoms of exercise intolerance and fatigue and their management including physical training strategies.
Collapse
Affiliation(s)
- Cornelia Kornblum
- Department of Neurology, Neuromuscular Disease Section, University Hospital Bonn, Bonn, Germany.
| | - Costanza Lamperti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Sumit Parikh
- Center for Pediatric Neurosciences, Mitochondrial Medicine & Neurogenetics, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
4
|
Exercise Testing, Physical Training and Fatigue in Patients with Mitochondrial Myopathy Related to mtDNA Mutations. J Clin Med 2021; 10:jcm10081796. [PMID: 33924201 PMCID: PMC8074604 DOI: 10.3390/jcm10081796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 01/05/2023] Open
Abstract
Mutations in mitochondrial DNA (mtDNA) cause disruption of the oxidative phosphorylation chain and impair energy production in cells throughout the human body. Primary mitochondrial disorders due to mtDNA mutations can present with symptoms from adult-onset mono-organ affection to death in infancy due to multi-organ involvement. The heterogeneous phenotypes that patients with a mutation of mtDNA can present with are thought, at least to some extent, to be a result of differences in mtDNA mutation load among patients and even among tissues in the individual. The most common symptom in patients with mitochondrial myopathy (MM) is exercise intolerance. Since mitochondrial function can be assessed directly in skeletal muscle, exercise studies can be used to elucidate the physiological consequences of defective mitochondria due to mtDNA mutations. Moreover, exercise tests have been developed for diagnostic purposes for mitochondrial myopathy. In this review, we present the rationale for exercise testing of patients with MM due to mutations in mtDNA, evaluate the diagnostic yield of exercise tests for MM and touch upon how exercise tests can be used as tools for follow-up to assess disease course or effects of treatment interventions.
Collapse
|
5
|
Tinker RJ, Lim AZ, Stefanetti RJ, McFarland R. Current and Emerging Clinical Treatment in Mitochondrial Disease. Mol Diagn Ther 2021; 25:181-206. [PMID: 33646563 PMCID: PMC7919238 DOI: 10.1007/s40291-020-00510-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2020] [Indexed: 12/11/2022]
Abstract
Primary mitochondrial disease (PMD) is a group of complex genetic disorders that arise due to pathogenic variants in nuclear or mitochondrial genomes. Although PMD is one of the most prevalent inborn errors of metabolism, it often exhibits marked phenotypic variation and can therefore be difficult to recognise. Current treatment for PMD revolves around supportive and preventive approaches, with few disease-specific therapies available. However, over the last decade there has been considerable progress in our understanding of both the genetics and pathophysiology of PMD. This has resulted in the development of a plethora of new pharmacological and non-pharmacological therapies at varying stages of development. Many of these therapies are currently undergoing clinical trials. This review summarises the latest emerging therapies that may become mainstream treatment in the coming years. It is distinct from other recent reviews in the field by comprehensively addressing both pharmacological non-pharmacological therapy from both a bench and a bedside perspective. We highlight the current and developing therapeutic landscape in novel pharmacological treatment, dietary supplementation, exercise training, device use, mitochondrial donation, tissue replacement gene therapy, hypoxic therapy and mitochondrial base editing.
Collapse
Affiliation(s)
- Rory J Tinker
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Albert Z Lim
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Renae J Stefanetti
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
- Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
- NHS Highly Specialised Service for Rare Mitochondrial Disorders for Adults and Children, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
6
|
Fernández-de la Torre M, Fiuza-Luces C, Valenzuela PL, Laine-Menéndez S, Arenas J, Martín MA, Turnbull DM, Lucia A, Morán M. Exercise Training and Neurodegeneration in Mitochondrial Disorders: Insights From the Harlequin Mouse. Front Physiol 2020; 11:594223. [PMID: 33363476 PMCID: PMC7752860 DOI: 10.3389/fphys.2020.594223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/10/2020] [Indexed: 01/28/2023] Open
Abstract
Aim Cerebellar neurodegeneration is a main phenotypic manifestation of mitochondrial disorders caused by apoptosis-inducing factor (AIF) deficiency. We assessed the effects of an exercise training intervention at the cerebellum and brain level in a mouse model (Harlequin, Hq) of AIF deficiency. Methods Male wild-type (WT) and Hq mice were assigned to an exercise (Ex) or control (sedentary [Sed]) group (n = 10-12/group). The intervention (aerobic and resistance exercises) was initiated upon the first symptoms of ataxia in Hq mice (∼3 months on average) and lasted 8 weeks. Histological and biochemical analyses of the cerebellum were performed at the end of the training program to assess indicators of mitochondrial deficiency, neuronal death, oxidative stress and neuroinflammation. In brain homogenates analysis of enzyme activities and levels of the oxidative phosphorylation system, oxidative stress and neuroinflammation were performed. Results The mean age of the mice at the end of the intervention period did not differ between groups: 5.2 ± 0.2 (WT-Sed), 5.2 ± 0.1 (WT-Ex), 5.3 ± 0.1 (Hq-Sed), and 5.3 ± 0.1 months (Hq-Ex) (p = 0.489). A significant group effect was found for most variables indicating cerebellar dysfunction in Hq mice compared with WT mice irrespective of training status. However, exercise intervention did not counteract the negative effects of the disease at the cerebellum level (i.e., no differences for Hq-Ex vs. Hq-Sed). On the contrary, in brain, the activity of complex V was higher in both Hq mice groups in comparison with WT animals (p < 0.001), and post hoc analysis also revealed differences between sedentary and trained Hq mice. Conclusion A combined training program initiated when neurological symptoms and neuron death are already apparent is unlikely to promote neuroprotection in the cerebellum of Hq model of mitochondrial disorders, but it induces higher complex V activity in the brain.
Collapse
Affiliation(s)
- Miguel Fernández-de la Torre
- Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), Madrid, Spain
| | - Carmen Fiuza-Luces
- Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), Madrid, Spain
| | - Pedro L Valenzuela
- Physiology Unit, Department of Systems Biology, University of Alcalá, Madrid, Spain
| | - Sara Laine-Menéndez
- Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), Madrid, Spain
| | - Joaquín Arenas
- Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), Madrid, Spain.,Spanish Network for Biomedical Research in Rare Diseases (CIBERER), U723, Madrid, Spain
| | - Miguel A Martín
- Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), Madrid, Spain.,Spanish Network for Biomedical Research in Rare Diseases (CIBERER), U723, Madrid, Spain
| | - Doug M Turnbull
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alejandro Lucia
- Faculty of Sport Sciences, European University of Madrid, Madrid, Spain.,Spanish Network for Biomedical Research in Fragility and Healthy Aging (CIBERFES), Madrid, Spain
| | - María Morán
- Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), Madrid, Spain.,Spanish Network for Biomedical Research in Rare Diseases (CIBERER), U723, Madrid, Spain
| |
Collapse
|
7
|
Jeppesen TD. Aerobic Exercise Training in Patients With mtDNA-Related Mitochondrial Myopathy. Front Physiol 2020; 11:349. [PMID: 32508662 PMCID: PMC7253634 DOI: 10.3389/fphys.2020.00349] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/26/2020] [Indexed: 01/15/2023] Open
Abstract
In patients with mitochondrial DNA (mtDNA) mutation, a pathogenic mtDNA mutation is heteroplasmically distributed among tissues. The ratio between wild-type and mutated mtDNA copies determines the mtDNA mutation load of the tissue, which correlates inversively with oxidative capacity of the tissue. In patients with mtDNA mutation, the mutation load is often very high in skeletal muscle compared to other tissues. Additionally, skeletal muscle can increase its oxygen demand up to 100-fold from rest to exercise, which is unmatched by any other tissue. Thus, exercise intolerance is the most common symptom in patients with mtDNA mutation. The impaired oxidative capacity in skeletal muscle in patients with mtDNA mutation results in limitation in physical capacity that interferes with daily activities and impairs quality of life. Additionally, patients with mitochondrial disease due to mtDNA mutation often live a sedentary lifestyle, which further impair oxidative capacity and exercise tolerance. Since aerobic exercise training increase mitochondrial function and volume density in healthy individuals, studies have investigated if aerobic training could be used to counteract the progressive exercise intolerance in patients with mtDNA mutation. Overall studies investigating the effect of aerobic training in patients with mtDNA mutation have shown that aerobic training is an efficient way to improve oxidative capacity in this condition, and aerobic training seems to be safe even for patients with high mtDNA mutation in skeletal muscle.
Collapse
Affiliation(s)
- Tina Dysgaard Jeppesen
- Copenhagen Neuromuscular Clinic, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Voet NBM, van der Kooi EL, van Engelen BGM, Geurts ACH. Strength training and aerobic exercise training for muscle disease. Cochrane Database Syst Rev 2019; 12:CD003907. [PMID: 31808555 PMCID: PMC6953420 DOI: 10.1002/14651858.cd003907.pub5] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Strength training or aerobic exercise programmes, or both, might optimise muscle and cardiorespiratory function and prevent additional disuse atrophy and deconditioning in people with a muscle disease. This is an update of a review first published in 2004 and last updated in 2013. We undertook an update to incorporate new evidence in this active area of research. OBJECTIVES To assess the effects (benefits and harms) of strength training and aerobic exercise training in people with a muscle disease. SEARCH METHODS We searched Cochrane Neuromuscular's Specialised Register, CENTRAL, MEDLINE, Embase, and CINAHL in November 2018 and clinical trials registries in December 2018. SELECTION CRITERIA Randomised controlled trials (RCTs), quasi-RCTs or cross-over RCTs comparing strength or aerobic exercise training, or both lasting at least six weeks, to no training in people with a well-described muscle disease diagnosis. DATA COLLECTION AND ANALYSIS We used standard methodological procedures expected by Cochrane. MAIN RESULTS We included 14 trials of aerobic exercise, strength training, or both, with an exercise duration of eight to 52 weeks, which included 428 participants with facioscapulohumeral muscular dystrophy (FSHD), dermatomyositis, polymyositis, mitochondrial myopathy, Duchenne muscular dystrophy (DMD), or myotonic dystrophy. Risk of bias was variable, as blinding of participants was not possible, some trials did not blind outcome assessors, and some did not use an intention-to-treat analysis. Strength training compared to no training (3 trials) For participants with FSHD (35 participants), there was low-certainty evidence of little or no effect on dynamic strength of elbow flexors (MD 1.2 kgF, 95% CI -0.2 to 2.6), on isometric strength of elbow flexors (MD 0.5 kgF, 95% CI -0.7 to 1.8), and ankle dorsiflexors (MD 0.4 kgF, 95% CI -2.4 to 3.2), and on dynamic strength of ankle dorsiflexors (MD -0.4 kgF, 95% CI -2.3 to 1.4). For participants with myotonic dystrophy type 1 (35 participants), there was very low-certainty evidence of a slight improvement in isometric wrist extensor strength (MD 8.0 N, 95% CI 0.7 to 15.3) and of little or no effect on hand grip force (MD 6.0 N, 95% CI -6.7 to 18.7), pinch grip force (MD 1.0 N, 95% CI -3.3 to 5.3) and isometric wrist flexor force (MD 7.0 N, 95% CI -3.4 to 17.4). Aerobic exercise training compared to no training (5 trials) For participants with DMD there was very low-certainty evidence regarding the number of leg revolutions (MD 14.0, 95% CI -89.0 to 117.0; 23 participants) or arm revolutions (MD 34.8, 95% CI -68.2 to 137.8; 23 participants), during an assisted six-minute cycle test, and very low-certainty evidence regarding muscle strength (MD 1.7, 95% CI -1.9 to 5.3; 15 participants). For participants with FSHD, there was low-certainty evidence of improvement in aerobic capacity (MD 1.1 L/min, 95% CI 0.4 to 1.8, 38 participants) and of little or no effect on knee extension strength (MD 0.1 kg, 95% CI -0.7 to 0.9, 52 participants). For participants with dermatomyositis and polymyositis (14 participants), there was very low-certainty evidence regarding aerobic capacity (MD 14.6, 95% CI -1.0 to 30.2). Combined aerobic exercise and strength training compared to no training (6 trials) For participants with juvenile dermatomyositis (26 participants) there was low-certainty evidence of an improvement in knee extensor strength on the right (MD 36.0 N, 95% CI 25.0 to 47.1) and left (MD 17 N 95% CI 0.5 to 33.5), but low-certainty evidence of little or no effect on maximum force of hip flexors on the right (MD -9.0 N, 95% CI -22.4 to 4.4) or left (MD 6.0 N, 95% CI -6.6 to 18.6). This trial also provided low-certainty evidence of a slight decrease of aerobic capacity (MD -1.2 min, 95% CI -1.6 to 0.9). For participants with dermatomyositis and polymyositis (21 participants), we found very low-certainty evidence for slight increases in muscle strength as measured by dynamic strength of knee extensors on the right (MD 2.5 kg, 95% CI 1.8 to 3.3) and on the left (MD 2.7 kg, 95% CI 2.0 to 3.4) and no clear effect in isometric muscle strength of eight different muscles (MD 1.0, 95% CI -1.1 to 3.1). There was very low-certainty evidence that there may be an increase in aerobic capacity, as measured with time to exhaustion in an incremental cycle test (17.5 min, 95% CI 8.0 to 27.0) and power performed at VO2 max (maximal oxygen uptake) (18 W, 95% CI 15.0 to 21.0). For participants with mitochondrial myopathy (18 participants), we found very low-certainty evidence regarding shoulder muscle (MD -5.0 kg, 95% CI -14.7 to 4.7), pectoralis major muscle (MD 6.4 kg, 95% CI -2.9 to 15.7), and anterior arm muscle strength (MD 7.3 kg, 95% CI -2.9 to 17.5). We found very low-certainty evidence regarding aerobic capacity, as measured with mean time cycled (MD 23.7 min, 95% CI 2.6 to 44.8) and mean distance cycled until exhaustion (MD 9.7 km, 95% CI 1.5 to 17.9). One trial in myotonic dystrophy type 1 (35 participants) did not provide data on muscle strength or aerobic capacity following combined training. In this trial, muscle strength deteriorated in one person and one person had worse daytime sleepiness (very low-certainty evidence). For participants with FSHD (16 participants), we found very low-certainty evidence regarding muscle strength, aerobic capacity and VO2 peak; the results were very imprecise. Most trials reported no adverse events other than muscle soreness or joint complaints (low- to very low-certainty evidence). AUTHORS' CONCLUSIONS The evidence regarding strength training and aerobic exercise interventions remains uncertain. Evidence suggests that strength training alone may have little or no effect, and that aerobic exercise training alone may lead to a possible improvement in aerobic capacity, but only for participants with FSHD. For combined aerobic exercise and strength training, there may be slight increases in muscle strength and aerobic capacity for people with dermatomyositis and polymyositis, and a slight decrease in aerobic capacity and increase in muscle strength for people with juvenile dermatomyositis. More research with robust methodology and greater numbers of participants is still required.
Collapse
Affiliation(s)
- Nicoline BM Voet
- Radboud University Medical CentreDepartment of Rehabilitation, Donders Institute for Brain, Cognition and BehaviourPO Box 9101NijmegenNetherlands6500 HB
- Rehabilitation Centre KlimmendaalArnhemNetherlands
| | | | - Baziel GM van Engelen
- Radboud University Medical CentreDepartment of Neurology, Donders Institute for Brain, Behaviour and CognitionNijmegenNetherlands
| | - Alexander CH Geurts
- Radboud University Medical CentreDepartment of Rehabilitation, Donders Institute for Brain, Cognition and BehaviourPO Box 9101NijmegenNetherlands6500 HB
| | | |
Collapse
|
9
|
Venturelli M, Villa F, Ruzzante F, Tarperi C, Rudi D, Milanese C, Cavedon V, Fonte C, Picelli A, Smania N, Calabria E, Skafidas S, Layec G, Schena F. Neuromuscular and Muscle Metabolic Functions in MELAS Before and After Resistance Training: A Case Study. Front Physiol 2019; 10:503. [PMID: 31105594 PMCID: PMC6498991 DOI: 10.3389/fphys.2019.00503] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/08/2019] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial encephalomyopathy, lactic acidosis, and recurrent stroke-like episodes syndrome (MELAS) is a rare degenerative disease. Recent studies have shown that resistant training (RT) can ameliorate muscular force in mitochondrial diseases. However, the effects of RT in MELAS are unknown. The aim of this case report was to investigate the effects of RT on skeletal muscle and mitochondrial function in a 21-years old patient with MELAS. RT included 12 weeks of RT at 85% of 1 repetition maximum. Body composition (DXA), in vivo mitochondrial respiration capacity (mVO2) utilizing Near-infrared spectroscopy on the right plantar-flexor muscles, maximal voluntary torque (MVC), electrically evoked resting twitch (EET) and maximal voluntary activation (VMA) of the right leg extensors (LE) muscles were measured with the interpolated twitch technique. The participant with MELAS exhibited a marked increase in body mass (1.4 kg) and thigh muscle mass (0.3 kg). After the training period MVC (+5.5 Nm), EET (+2.1 N⋅m) and VMA (+13.1%) were ameliorated. Data of mVO2 revealed negligible changes in the end-exercise mVO2 (0.02 mM min-1), Δ mVO2 (0.09 mM min-1), while there was a marked amelioration in the kinetics of mVO2 (τ mVO2; Δ70.2 s). This is the first report of RT-induced ameliorations on skeletal muscle and mitochondrial function in MELAS. This case study suggests a preserved plasticity in the skeletal muscle of a patient with MELAS. RT appears to be an effective method to increase skeletal muscle function, and this effect is mediated by both neuromuscular and mitochondrial adaptations.
Collapse
Affiliation(s)
- Massimo Venturelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- Department of Internal Medicine, Division of Geriatrics, The University of Utah, Salt Lake City, UT, United States
| | - Federica Villa
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Federico Ruzzante
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Cantor Tarperi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Doriana Rudi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Chiara Milanese
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Valentina Cavedon
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Cristina Fonte
- Neuromotor and Cognitive Rehabilitation Research Centre, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Alessandro Picelli
- Neuromotor and Cognitive Rehabilitation Research Centre, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Nicola Smania
- Neuromotor and Cognitive Rehabilitation Research Centre, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Elisa Calabria
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Spyros Skafidas
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Gwenael Layec
- Department of Kinesiology, University of Massachusetts, Amherst MA, United States
- Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, United States
| | - Federico Schena
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
10
|
FIUZA-LUCES CARMEN, DÍEZ-BERMEJO JORGE, FERNÁNDEZ-DE LA TORRE MIGUEL, RODRÍGUEZ-ROMO GABRIEL, SANZ-AYÁN PAZ, DELMIRO AITOR, MUNGUÍA-IZQUIERDO DIEGO, RODRÍGUEZ-GÓMEZ IRENE, ARA IGNACIO, DOMÍNGUEZ-GONZÁLEZ CRISTINA, ARENAS JOAQUÍN, MARTÍN MIGUELA, LUCIA ALEJANDRO, MORÁN MARÍA. Health Benefits of an Innovative Exercise Program for Mitochondrial Disorders. Med Sci Sports Exerc 2018; 50:1142-1151. [DOI: 10.1249/mss.0000000000001546] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Moss M, Nordon-Craft A, Malone D, Van Pelt D, Frankel SK, Warner ML, Kriekels W, McNulty M, Fairclough DL, Schenkman M. A Randomized Trial of an Intensive Physical Therapy Program for Patients with Acute Respiratory Failure. Am J Respir Crit Care Med 2017; 193:1101-10. [PMID: 26651376 DOI: 10.1164/rccm.201505-1039oc] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
RATIONALE Early physical therapy (PT) interventions may benefit patients with acute respiratory failure by preventing or attenuating neuromuscular weakness. However, the optimal dosage of these interventions is currently unknown. OBJECTIVES To determine whether an intensive PT program significantly improves long-term physical functional performance compared with a standard-of-care PT program. METHODS Patients who required mechanical ventilation for at least 4 days were eligible. Enrolled patients were randomized to receive PT for up to 4 weeks delivered in an intensive or standard-of-care manner. Physical functional performance was assessed at 1, 3, and 6 months in survivors who were not currently in an acute or long-term care facility. The primary outcome was the Continuous Scale Physical Functional Performance Test short form (CS-PFP-10) score at 1 month. MEASUREMENTS AND MAIN RESULTS A total of 120 patients were enrolled from five hospitals. Patients in the intensive PT group received 12.4 ± 6.5 sessions for a total of 408 ± 261 minutes compared with only 6.1 ± 3.8 sessions for 86 ± 63 minutes in the standard-of-care group (P < 0.001 for both analyses). Physical function assessments were available for 86% of patients at 1 month, for 76% at 3 months, and for 60% at 6 months. In both groups, physical function was reduced yet significantly improved over time between 1, 3, and 6 months. When we compared the two interventions, we found no differences in the total CS-PFP-10 scores at all three time points (P = 0.73, 0.29, and 0.43, respectively) or in the total CS-PFP-10 score trajectory (P = 0.71). CONCLUSIONS An intensive PT program did not improve long-term physical functional performance compared with a standard-of-care program. Clinical trial registered with www.clinicaltrials.gov (NCT01058421).
Collapse
Affiliation(s)
- Marc Moss
- 1 Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine
| | | | | | | | - Stephen K Frankel
- 4 Division of Pulmonary Medicine, National Jewish Health, Denver, Colorado
| | - Mary Laird Warner
- 4 Division of Pulmonary Medicine, National Jewish Health, Denver, Colorado
| | | | - Monica McNulty
- 5 Colorado Health Outcomes Group, University of Colorado School of Medicine, Aurora, Colorado
| | - Diane L Fairclough
- 5 Colorado Health Outcomes Group, University of Colorado School of Medicine, Aurora, Colorado
| | | |
Collapse
|
12
|
Abstract
Patients with mitochondrial cytopathies often experience exercise intolerance and may have fixed muscle weakness, leading to impaired functional capacity and lower quality of life. Endurance exercise training increases Vo 2 max, respiratory chain enzyme activity, and improves quality of life. Resistance exercise training increases muscle strength and may lower mutational burden in patients with mitochondrial DNA deletions. Both modes of exercise appear to be well tolerated. Patients with mitochondrial cytopathy should consider alternating both types of exercise to derive the benefits from each (endurance = greater aerobic fitness; resistance = greater strength). Patients should start an exercise program at a low intensity and duration, gradually increasing duration and intensity. They should "listen to their body" and not exercise on days they have fever, superimposed illness, muscle pain, or cramps, and/or if they have fasted for more than 12 hours. Children often respond best to play-based exercise and tend to enjoy intermittent activity.
Collapse
Affiliation(s)
- Mark A Tarnopolsky
- From the Division of Neuromuscular and Neurometabolic Diseases, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
13
|
Voet NBM, van der Kooi EL, Riphagen II, Lindeman E, van Engelen BGM, Geurts ACH. Strength training and aerobic exercise training for muscle disease. Cochrane Database Syst Rev 2013:CD003907. [PMID: 23835682 DOI: 10.1002/14651858.cd003907.pub4] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Strength training or aerobic exercise programmes might optimise muscle and cardiorespiratory function and prevent additional disuse atrophy and deconditioning in people with a muscle disease. This is an update of a review first published in 2004. OBJECTIVES To examine the safety and efficacy of strength training and aerobic exercise training in people with a muscle disease. SEARCH METHODS We searched the Cochrane Neuromuscular Disease Group Specialized Register (July 2012), CENTRAL (2012 Issue 3 of 4), MEDLINE (January 1946 to July 2012), EMBASE (January 1974 to July 2012), EMBASE Classic (1947 to 1973) and CINAHL (January 1982 to July 2012). SELECTION CRITERIA Randomised or quasi-randomised controlled trials comparing strength training or aerobic exercise programmes, or both, to no training, and lasting at least six weeks, in people with a well-described diagnosis of a muscle disease.We did not use the reporting of specific outcomes as a study selection criterion. DATA COLLECTION AND ANALYSIS Two authors independently assessed trial quality and extracted the data obtained from the full text-articles and from the original investigators. We collected adverse event data from included studies. MAIN RESULTS We included five trials (170 participants). The first trial compared the effect of strength training versus no training in 36 people with myotonic dystrophy. The second trial compared aerobic exercise training versus no training in 14 people with polymyositis and dermatomyositis. The third trial compared strength training versus no training in a factorial trial that also compared albuterol with placebo, in 65 people with facioscapulohumeral muscular dystrophy (FSHD). The fourth trial compared combined strength training and aerobic exercise versus no training in 18 people with mitochondrial myopathy. The fifth trial compared combined strength training and aerobic exercise versus no training in 35 people with myotonic dystrophy type 1.In both myotonic dystrophy trials and the dermatomyositis and polymyositis trial there were no significant differences between training and non-training groups for primary and secondary outcome measures. The risk of bias of the strength training trial in myotonic dystrophy and the aerobic exercise trial in polymyositis and dermatomyositis was judged as uncertain, and for the combined strength training and aerobic exercise trial, the risk of bias was judged as adequate. In the FSHD trial, for which the risk of bias was judged as adequate, a +1.17 kg difference (95% confidence interval (CI) 0.18 to 2.16) in dynamic strength of elbow flexors in favour of the training group reached statistical significance. In the mitochondrial myopathy trial, there were no significant differences in dynamic strength measures between training and non-training groups. Exercise duration and distance cycled in a submaximal endurance test increased significantly in the training group compared to the control group. The differences in mean time and mean distance cycled till exhaustion between groups were 23.70 min (95% CI 2.63 to 44.77) and 9.70 km (95% CI 1.51 to 17.89), respectively. The risk of bias was judged as uncertain. In all trials, no adverse events were reported. AUTHORS' CONCLUSIONS Moderate-intensity strength training in myotonic dystrophy and FSHD and aerobic exercise training in dermatomyositis and polymyositis and myotonic dystrophy type I appear to do no harm, but there is insufficient evidence to conclude that they offer benefit. In mitochondrial myopathy, aerobic exercise combined with strength training appears to be safe and may be effective in increasing submaximal endurance capacity. Limitations in the design of studies in other muscle diseases prevent more general conclusions in these disorders.
Collapse
Affiliation(s)
- Nicoline B M Voet
- Department of Rehabilitation, Nijmegen Centre for Evidence Based Practice, Radboud University Medical Centre, Nijmegen, Netherlands.
| | | | | | | | | | | |
Collapse
|
14
|
Abresch RT, Carter GT, Han JJ, McDonald CM. Exercise in neuromuscular diseases. Phys Med Rehabil Clin N Am 2013; 23:653-73. [PMID: 22938880 DOI: 10.1016/j.pmr.2012.06.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This article reviews the current knowledge regarding the benefits and contraindications of exercise on individuals with neuromuscular diseases (NMDs). Specific exercise prescriptions for individuals with NMDs do not exist because the evidence base is limited. Understanding the effect of exercise on individuals with NMDs requires the implementation of a series of multicenter, randomized controlled trials that are sufficiently powered and use reliable and valid outcome measures to assess the effect of exercise interventions-a major effort for each NMD. In addition to traditional measures of exercise efficacy, outcome variables should include measures of functional status and health-related quality of life.
Collapse
Affiliation(s)
- R Ted Abresch
- Department of Rehabilitation Medicine, University of California, Davis, 4860 Y Street Suite, 3850, Sacramento, CA 95817, USA.
| | | | | | | |
Collapse
|
15
|
Abstract
In mitochondrial myopathies with respiratory chain deficiency impairment of energy cell production may lead to in excess reactive oxygen species generation with consequent oxidative stress and cell damage. Aerobic training has been showed to increase muscle performance in patients with mitochondrial myopathies. Aim of this study has been to evaluate, in 7 patients (6F e 1 M, mean age 44.9 ± 12.1 years) affected by mitochondrial disease, concomitantly to lactate exercise curve, the occurrence of oxidative stress, as indicated by circulating levels of lipoperoxides, in rest condition and as effect of exercise, and also, to verify if an aerobic training program is able to modify, in these patients, ox-redox balance efficiency. At rest and before training blood level of lipoperoxides was 382.4 ± 37.8 AU, compared to controls (318.7 ± 63.8; P < 0.05), this corresponding to a moderate oxidative stress degree according to the adopted scale. During incremental exercise blood level of lipoperoxides did not increase, but maintained significantly higher compared to controls. After an aerobic training of 10 weeks the blood level of lipoperoxides decreased by 13.7% at rest (P < 0.01) and 10.4%, 8.6% and 8.5% respectively at the corresponding times during the exercise test (P = 0.06). These data indicate that, in mitochondrial patients, oxidative stress occurs and that an aerobic training is useful in partially reverting this condition.
Collapse
|
16
|
Spencer CT, Byrne BJ, Bryant RM, Margossian R, Maisenbacher M, Breitenger P, Benni PB, Redfearn S, Marcus E, Cade WT. Impaired cardiac reserve and severely diminished skeletal muscle O₂ utilization mediate exercise intolerance in Barth syndrome. Am J Physiol Heart Circ Physiol 2011; 301:H2122-9. [PMID: 21873497 DOI: 10.1152/ajpheart.00479.2010] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Barth syndrome (BTHS) is a mitochondrial myopathy characterized by reports of exercise intolerance. We sought to determine if 1) BTHS leads to abnormalities of skeletal muscle O(2) extraction/utilization and 2) exercise intolerance in BTHS is related to impaired O(2) extraction/utilization, impaired cardiac function, or both. Participants with BTHS (age: 17 ± 5 yr, n = 15) and control participants (age: 13 ± 4 yr, n = 9) underwent graded exercise testing on a cycle ergometer with continuous ECG and metabolic measurements. Echocardiography was performed at rest and at peak exercise. Near-infrared spectroscopy of the vastus lateralis muscle was continuously recorded for measurements of skeletal muscle O(2) extraction. Adjusting for age, peak O(2) consumption (16.5 ± 4.0 vs. 39.5 ± 12.3 ml·kg(-1)·min(-1), P < 0.001) and peak work rate (58 ± 19 vs. 166 ± 60 W, P < 0.001) were significantly lower in BTHS than control participants. The percent increase from rest to peak exercise in ejection fraction (BTHS: 3 ± 10 vs. control: 19 ± 4%, P < 0.01) was blunted in BTHS compared with control participants. The muscle tissue O(2) saturation change from rest to peak exercise was paradoxically opposite (BTHS: 8 ± 16 vs. control: -5 ± 9, P < 0.01), and the deoxyhemoglobin change was blunted (BTHS: 0 ± 12 vs. control: 10 ± 8, P < 0.09) in BTHS compared with control participants, indicating impaired skeletal muscle extraction in BTHS. In conclusion, severe exercise intolerance in BTHS is due to both cardiac and skeletal muscle impairments that are consistent with cardiac and skeletal mitochondrial myopathy. These findings provide further insight to the pathophysiology of BTHS.
Collapse
Affiliation(s)
- Carolyn T Spencer
- Division of Cardiology, Department of Pediatrics, East Carolina University, Greenville, North Carolina, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Voet NB, van der Kooi EL, Riphagen II, Lindeman E, van Engelen BG, Geurts AC. Strength training and aerobic exercise training for muscle disease. Cochrane Database Syst Rev 2010:CD003907. [PMID: 20091552 DOI: 10.1002/14651858.cd003907.pub3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Strength training or aerobic exercise programmes might optimise muscle and cardiorespiratory function and prevent additional disuse atrophy and deconditioning in people with a muscle disease. OBJECTIVES To examine the safety and efficacy of strength training and aerobic exercise training in people with a muscle disease. SEARCH STRATEGY We searched the Cochrane Neuromuscular Disease Group Trials Specialized Register (July 2009), the Cochrane Rehabilitation and Related Therapies Field Register (October 2002, August 2008 and July 2009), The Cochrane Central Register of Controlled Trials (The Cochrane Library Issue 3, 2009) MEDLINE (January 1966 to July 2009), EMBASE (January 1974 to July 2009), EMBASE Classic (1947 to 1973) and CINAHL (January 1982 to July 2009). SELECTION CRITERIA Randomised or quasi-randomised controlled trials comparing strength training or aerobic exercise programmes, or both, to no training, and lasting at least 10 weeks.For strength training Primary outcome: static or dynamic muscle strength. Secondary: muscle endurance or muscle fatigue, functional assessments, quality of life, muscle membrane permeability, pain and experienced fatigue.For aerobic exercise training Primary outcome: aerobic capacity expressed as work capacity. Secondary: aerobic capacity (oxygen consumption, parameters of cardiac or respiratory function), functional assessments, quality of life, muscle membrane permeability, pain and experienced fatigue. DATA COLLECTION AND ANALYSIS Two authors independently assessed trial quality and extracted the data. MAIN RESULTS We included three trials (121 participants). The first compared the effect of strength training versus no training in 36 people with myotonic dystrophy. The second trial compared strength training versus no training, both combined with albuterol or placebo, in 65 people with facioscapulohumeral muscular dystrophy. The third trial compared combined strength training and aerobic exercise versus no training in 18 people with mitochondrial myopathy. In the myotonic dystrophy trial there were no significant differences between training and non-training groups for primary and secondary outcome measures. In the facioscapulohumeral muscular dystrophy trial only a +1.17 kg difference (95% confidence interval 0.18 to 2.16) in dynamic strength of elbow flexors in favour of the training group reached statistical significance. In the mitochondrial myopathy trial there were no significant differences in dynamic strength measures between training and non-training groups. Exercise duration and distance cycled in a submaximal endurance test increased significantly in the training group compared to the control group. AUTHORS' CONCLUSIONS In myotonic dystrophy and facioscapulohumeral muscular dystrophy, moderate-intensity strength training appears not to do harm but there is insufficient evidence to conclude that it offers benefit. In mitochondrial myopathy, aerobic exercise combined with strength training appears to be safe and may be effective in increasing submaximal endurance capacity. Limitations in the design of studies in other muscle diseases prevent more general conclusions in these disorders.
Collapse
Affiliation(s)
- Nicoline Bm Voet
- Department of Rehabilitation, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Evidence Based Practice, Huispost 898, P.O. Box 9101, Nijmegen, Gelderland, Netherlands, 6500 HB
| | | | | | | | | | | |
Collapse
|
18
|
Aboussouan LS. Mechanisms of exercise limitation and pulmonary rehabilitation for patients with neuromuscular disease. Chron Respir Dis 2010; 6:231-49. [PMID: 19858353 DOI: 10.1177/1479972309345927] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Indications for exercise and pulmonary rehabilitation extend to neuromuscular diseases tough these conditions pose particular challenges given the associated skeletal muscle impairment and respiratory muscle dysfunction. These challenges are compounded by the variety of exercise prescriptions (aerobic, muscle strengthening, and respiratory muscle training) and the variety of neuromuscular disorders (muscular, motor neuron, motor nerve root, and neuromuscular transmission disorders). Studies support a level II evidence of effectiveness (i.e., likely to be effective) for a combination of aerobic exercise and strengthening exercises in muscular disorders, and for strengthening exercises in amyotrophic lateral sclerosis. The potential deleterious effects of work overload in the dystrophinopathies have not been confirmed in Becker muscular dystrophy. Adjunctive pharmacologic interventions (e.g., theophylline, steroids, PDE5 inhibitors, creatine), training recommendations (e.g., interval or lower intensity training) and supportive techniques (e.g., noninvasive ventilation, neuromuscular electrical stimulation, and diaphragm pacing) may result in more effective training but require more study before formal recommendations can be made. The exercise prescription should include avoidance of inspiratory muscle training in hypercapnia or low vital capacity, and should match the desired outcome (e.g., extremity training for task-specific performance, exercise training to enhance exercise performance, respiratory muscle training where respiratory muscle involvement contributes to the impairment).
Collapse
Affiliation(s)
- L S Aboussouan
- Cleveland Clinic Foundation, Respiratory Institute, Cleveland, OH 44195, USA.
| |
Collapse
|
19
|
Cup EH, Pieterse AJ, ten Broek-Pastoor JM, Munneke M, van Engelen BG, Hendricks HT, van der Wilt GJ, Oostendorp RA. Exercise Therapy and Other Types of Physical Therapy for Patients With Neuromuscular Diseases: A Systematic Review. Arch Phys Med Rehabil 2007; 88:1452-64. [DOI: 10.1016/j.apmr.2007.07.024] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 07/24/2007] [Accepted: 07/30/2007] [Indexed: 10/22/2022]
|
20
|
Laforêt P, Nicolino M, Eymard B. Nouveautés dans le traitement des myopathies métaboliques. Rev Neurol (Paris) 2007; 163:930-5. [DOI: 10.1016/s0035-3787(07)92636-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Siciliano G, Volpi L, Piazza S, Ricci G, Mancuso M, Murri L. Functional Diagnostics in Mitochondrial Diseases. Biosci Rep 2007; 27:53-67. [PMID: 17492503 DOI: 10.1007/s10540-007-9037-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Mitochondrial diseases (MD) with respiratory chain defects are caused by genetic mutations that determine an impairment of the electron transport chain functioning. Diagnosis often requires a complex approach with measurements of serum lactate, magnetic resonance spectroscopy (MRS), muscle histology and ultrastructure, enzymology, genetic analysis, and exercise testing. The ubiquitous distribution of the mitochondria in the human body explains the multiple organ involvement. Exercise intolerance is a common symptom of MD, due to increased dependence of skeletal muscle on anaerobic metabolism, with an excess lactate generation, phosphocreatine depletion, enhanced free radical production, reduced oxygen extraction and electron flux through the respiratory chain. MD treatment has included antioxidants (vitamin E, alpha lipoic acid), coenzyme Q10, riboflavin, creatine monohydrate, dichloroacetate and exercise training. Exercise is a particularly important tool in diagnosis as well as in the management of these diseases.
Collapse
Affiliation(s)
- Gabriele Siciliano
- Department of Neuroscience, Section of Neurology, University of Pisa, Via Roma 67, 56126, Pisa, Italy.
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
The intriguing concept of exercise training as therapy for mitochondrial disease is currently unsettled: in the unique setting of mitochondrial heteroplasmy, what are the effects of chronic exercise on skeletal muscle containing a mixture of mutated and wild-type mitochondrial DNA (mtDNA)? Furthermore, what are the consequences of habitual physical inactivity on mitochondrial heteroplasmy? In patients with mtDNA defects, deleterious effects of limited physical activity likely magnify the mitochondrial oxidative impairment contributing to varying degrees of exercise intolerance. Normal adaptive responses to endurance training offer the potential to increase levels of functional mitochondria, improving exercise tolerance. The few clinical studies assessing such training effects in patients with mtDNA defects have unequivocally demonstrated physiologic and biochemical adaptations that improve exercise tolerance and quality of life. Uncertain, however, is the training effect on mitochondrial heteroplasmy. To determine therapeutic advisability of endurance training, it remains imperative to establish whether: reported increases in mutant mtDNA levels can be offset by increases in absolute wild-type mtDNA levels; and chronic physical inactivity leads to a selective down-regulation of wild-type mtDNA. Resistance exercise training offers an alternate, innovative therapeutic approach in patients with sporadic mtDNA mutations; exercise-induced transfer of normal mtDNA templates from muscle satellite cells to mature myofibers, thereby lowering mutation load (increasing functional mitochondrial load). Efficacy and safety of this approach needs to be replicated in a larger group of patients. Currently, appropriate recommendation (either in support or against) exercise training in mitochondrial disease is lacking, which is frustrating for physicians and disheartening for patients. Although considerable progress has been made, an immediate urgency exists to resolve the effects of chronic exercise on skeletal muscle in patients with heteroplasmic mtDNA mutations.
Collapse
Affiliation(s)
- Tanja Taivassalo
- Institute for Exercise and Environmental Medicine, Neuromuscular Center, Dallas, TX, USA.
| | | |
Collapse
|
23
|
van der Kooi EL, Lindeman E, Riphagen I. Strength training and aerobic exercise training for muscle disease. Cochrane Database Syst Rev 2005:CD003907. [PMID: 15674918 DOI: 10.1002/14651858.cd003907.pub2] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Strength training or aerobic exercise programmes might maximise muscle and cardiorespiratory function and prevent additional disuse atrophy in patients with muscle disease. However, over-exerting might cause more rapid disease progression. OBJECTIVES To examine the efficacy and safety of strength training and aerobic exercise training in patients with muscle diseases. SEARCH STRATEGY We searched the Cochrane Neuromuscular Disease Group register (October 2002 and May 2004), the Cochrane Collaboration Rehabilitation and Related Therapies Field register (October 2002), MEDLINE (January 1966 to December 2002), EMBASE (January 1973 to October 2002), and CINAHL (January 1982 to August 2002) for randomised trials. We reviewed the bibliographies of trials identified and reviews covering the subject. SELECTION CRITERIA Randomised or quasi-randomised controlled trials comparing strength training and/or aerobic exercise programmes lasting at least 10 weeks. Types of outcome measures: FOR STRENGTH TRAINING. Primary: static or dynamic muscle strength. Secondary: muscle strength (endurance or fatigue), functional assessments, quality of life, muscle membrane permeability, pain, and fatigue. FOR AEROBIC EXERCISE TRAINING. Primary: aerobic capacity expressed as work capacity. Secondary: aerobic capacity (oxygen consumption, parameters of cardiac or respiratory function), functional assessments, quality of life, muscle membrane permeability, pain, and fatigue. DATA COLLECTION AND ANALYSIS Two reviewers independently assessed trial quality and extracted the data. MAIN RESULTS We identified two randomised trials fulfilling all inclusion criteria. The first trial compared the effect of strength training versus no training in 36 patients with myotonic dystrophy. The other trial compared strength training versus no training combined with albuterol or placebo in 65 patients with facioscapulohumeral muscular dystrophy. Methodological quality and training programmes were graded adequate. In the myotonic dystrophy trial there were no significant differences between training and non-training groups for the primary outcome measure. In the facioscapulohumeral muscular dystrophy trial static muscle strength did not show significant differences between training and non-training groups. Only a +1.2 kg difference (95% confidence interval 0.2 to 2.1) in dynamic strength of elbow flexors in favour of the training group, reached statistical significance. For both trials there were no significant differences between groups for most of the secondary outcome measures, including those covering adverse effects. AUTHORS' CONCLUSIONS In myotonic dystrophy and facioscapulohumeral muscular dystrophy moderate-intensity strength training appears not to do harm but there is insufficient evidence to establish that it offers benefit. Limitations in the design of studies in other muscle diseases prevent general conclusions in these disorders.
Collapse
Affiliation(s)
- E L van der Kooi
- Department of Neurology, Neuromuscular Centre Nijmegen, University Medical Centre Nijmegen, PO Box 9101, Nijmegen, Netherlands, 6500 HB.
| | | | | |
Collapse
|
24
|
Cejudo P, Bautista J, Montemayor T, Villagómez R, Jiménez L, Ortega F, Campos Y, Sánchez H, Arenas J. Exercise training in mitochondrial myopathy: A randomized controlled trial. Muscle Nerve 2005; 32:342-50. [PMID: 15962332 DOI: 10.1002/mus.20368] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Patients with mitochondrial myopathies (MM) usually suffer from exercise intolerance due to their impaired oxidative capacity and physical deconditioning. We evaluated the effects of a 12-week supervised randomized rehabilitation program involving endurance training in patients with MM. Twenty MM patients were assigned to a training or control group. For three nonconsecutive days each week, patients combined cycle exercise at 70% of their peak work rate with three upper-body weight-lifting exercises performed at 50% of maximum capacity. Training increased maximal oxygen uptake (28.5%), work output (15.5%), and minute ventilation (40%), endurance performance (62%), walking distance in shuttle walking test (+95 m), and peripheral muscle strength (32%-62%), and improved Nottingham Health Profile scores (21.47%) and clinical symptoms. Control MM patients did not change from baseline. Results show that our exercise program is an adequate training strategy for patients with mitochondrial myopathy.
Collapse
Affiliation(s)
- Pilar Cejudo
- Chest Department, Hospital Universitario Virgen del Rocío, 41013 Seville, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lindholm H, Löfberg M, Somer H, Näveri H, Sovijärvi A. Abnormal blood lactate accumulation after exercise in patients with multiple mitochondrial DNA deletions and minor muscular symptoms. Clin Physiol Funct Imaging 2004; 24:109-15. [PMID: 15056184 DOI: 10.1111/j.1475-097x.2004.00531.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
STUDY OBJECTIVES Muscle is one of the most commonly affected organs in mitochondrial disorders, and the symptoms are often exercise related. The cardiopulmonary exercise test with the determination of lactic acid formation could give supplementary information about the exercise-induced metabolic stress and compensatory mechanisms used in these disorders. The aim of this study was to evaluate the exercise capacity and lactate kinetics related to exercise in subjects with two genetically characterized mitochondrial disorders (multiple mitochondrial DNA deletions with PEO, MELAS) compared with lactate kinetics in subjects with metabolic myopathy (McArdle's disease) and in the healthy controls. DESIGN The subjects were consecutive, co-operative patients of Department of Neurology of Helsinki University Hospital. Molecular genetic analyses were used for group classification of the mitochondrial myopathy. STUDY SUBJECTS The study groups consisted of 11 patients with multiple deletions (PEO) and five patients with a point mutation in the mitochondrial DNA (MELAS), four patients with a muscle phosphorylase enzyme deficiency (McArdle's disease) and 13 healthy controls. The clinical disease of the patients was relatively mild. MEASUREMENTS AND RESULTS A graded exercise test with ventilatory gas analyses and venous blood lactic acid analyses was performed. The main finding was the prolonged accumulation of blood lactate after the exercise in the PEO and MELAS groups compared with the controls. An overcompensation in ventilation was found in the MELAS and PEO group. CONCLUSIONS The blood lactate accumulation after exercise occurs in patients with multiple mitochondrial DNA deletions or MELAS even in patients with only mild exercise intolerance. Cardiopulmonary exercise can be used in the diagnostic process of patients with mitochondrial myopathies.
Collapse
Affiliation(s)
- Harri Lindholm
- Laboratory Department, Division of Clinical Physiology, Helsinki University Hospital, Helsinki, Finland.
| | | | | | | | | |
Collapse
|
26
|
|
27
|
Mahoney DJ, Parise G, Tarnopolsky MA. Nutritional and exercise-based therapies in the treatment of mitochondrial disease. Curr Opin Clin Nutr Metab Care 2002; 5:619-29. [PMID: 12394637 DOI: 10.1097/00075197-200211000-00004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW This review will critically summarize the nutritional and exercise-based interventions that have been used to treat mitochondrial disease, with a focus on the biochemical or molecular rationale for their use as well as recent advances in the field. RECENT FINDINGS Many nutritional-based treatment strategies have been used in an attempt to target energy impairment and its sequelae. Recently, coenzyme Q10, idebenone and triacylglycerol have been shown to bypass defective respiratory enzymes or scavenge free radicals, whereas creatine monohydrate has provided an alternative energy source. Thiamine has been used to decrease lactate levels and increase flux through aerobic metabolism, and riboflavin has been used as a precursor to complexes I and II. Several therapies employing various antioxidants in combination with other supplements have been effective at targeting several of the final common pathways of mitochondrial disease. Miscellaneous supplements, such as L-arginine and uridine, have also had recent success. However, although positive responses have been reported with these agents, many reports have shown no benefit, and there is widespread disparity in the literature. An alternative approach to treatment is exercise training. Both resistance and endurance exercise training have had positive outcomes in patients with mitochondrial disease, although several questions remain to be answered. SUMMARY There is no currently recognized treatment for mitochondrial disease. Future clinical trials are needed, as well as research into the potential for in-vitro screening of various compounds within affected cells from patients. Until this time, an accurate diagnosis will facilitate treatment on a case-by-case basis.
Collapse
Affiliation(s)
- Douglas J Mahoney
- Department of Medical Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
28
|
Vila L, Ferrando A, Voces J, Cabral de Oliveira C, Prieto JG, Alvarez AI. Effect of chronic ethanol ingestion and exercise training on skeletal muscle in rat. Drug Alcohol Depend 2001; 64:27-33. [PMID: 11470338 DOI: 10.1016/s0376-8716(00)00223-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The aim of this study was to investigate the interactive effects of exercise training and chronic ethanol consumption on metabolism, capillarity, and myofibrillar composition in rat limb muscles. Male Wistar rats were treated in separate groups as follows: non exercised-control; ethanol (15%) in animals' drinking water for 12 weeks; exercise training in treadmill and ethanol administration plus exercise for 12 weeks. Ethanol administration decreased capillarity and increased piruvate kinase and lactate dehydrogenase activities in white gastrocnemius; in plantaris muscle, ethanol increased citrate synthase activity and decreased cross-sectional area of type I, IIa, and IIb fibres. Exercise increased capillarity in all four limb muscles and decreased type I fibre area in plantaris. The decreased capillarity effect induced by ethanol in some muscles, was ameliorated when alcohol was combined with exercise. While alcoholic myopathy affects predominantly type IIb fibres, ethanol administration and aerobic exercise in some cases can affect type I and type IIa fibre areas. The exercise can decrease some harmful effects produced by ethanol in the muscle, including the decrease in the fibre area and capillary density.
Collapse
Affiliation(s)
- L Vila
- Department of Physiology, The University of León, 24071 León, Spain
| | | | | | | | | | | |
Collapse
|
29
|
Flaherty KR, Wald J, Weisman IM, Zeballos RJ, Schork MA, Blaivas M, Rubenfire M, Martinez FJ. Unexplained exertional limitation: characterization of patients with a mitochondrial myopathy. Am J Respir Crit Care Med 2001; 164:425-32. [PMID: 11500344 DOI: 10.1164/ajrccm.164.3.2005110] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Exercise intolerance is a common complaint, the cause of which often remains elusive after a comprehensive evaluation. In this report, we describe 28 patients with unexplained dyspnea or exertional limitation secondary to biopsy-proven mitochondrial myopathies. Patients were prospectively identified from a multidisciplinary dyspnea clinic at a tertiary referral center. All patients were without underlying pulmonary, cardiac, or other neuromuscular disorders. Patients underwent history, physical examination, complete pulmonary function testing, respiratory muscle testing, cardiopulmonary exercise testing, and muscle biopsy. Results were compared with a group of normal control subjects. The estimated period prevalence was 8.5% (28 of 331). Spirometry, lung volumes, and gas exchange were normal in patients and control subjects. Compared with control subjects, the patient group demonstrated decreased exercise capacity (maximum achieved V O(2) 67 versus 104% predicted; p < 0.0001) and respiratory muscle weakness (PI(max) 77 versus 115% predicted; p = 0.001). These patients have a characteristic exercise response that was hyperventilatory (peak VE/V CO(2); 55 versus 42) and hypercirculatory (maximum heart rate - baseline heart rate/V O(2)max - baseline V O(2)max; 91 versus 41) compared to control subjects. Patients stopping exercise due to dyspnea (n = 16) (as compared with muscle fatigue, n = 11) displayed weaker respiratory muscles (Pdi(max) 61 versus 115 cm H(2)O; p = 0.01) and were more likely to reach mechanical ventilatory limitation (V Emax/ MVV 0.81 versus 0.58; p = 0.02). The sensation of dyspnea was related to indices of respiratory muscle function including respiratory rate and inspiratory flow. We conclude that mitochondrial myopathies are more prevalent than previously reported. The characteristic physiological profile may be useful in the diagnostic evaluation of mitochondrial myopathy.
Collapse
Affiliation(s)
- K R Flaherty
- Dyspnea and Pulmonary Hypertension Clinics, University of Michigan Health System, Ann Arbor, Michigan, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Common impairments experienced by patients with myopathy include muscle weakness, reduced endurance and cardiovascular fitness. Strength-training programmes, incorporating isometric, isotonic or isokinetic exercise, have been shown to improve muscle strength in the short term, without evidence of increased muscle damage using biochemical markers. However, there is some evidence that eccentric exercise may have adverse effects in patients with myopathy. Aerobic training programmes using cycle ergometers or treadmills have demonstrated an improvement in cardiovascular fitness, muscle strength and endurance, again without evidence of increased muscle damage. Further research is needed to determine the optimum training protocols for patients with various types of myopathy, and in particular to improve the ability of patients to be active and independent in daily life.
Collapse
Affiliation(s)
- B A Phillips
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria, Australia.
| | | |
Collapse
|