1
|
Song Y, Wen H, Zhai X, Jia L, Li L. Functional Bidirectionality of ERV-Derived Long Non-Coding RNAs in Humans. Int J Mol Sci 2024; 25:10481. [PMID: 39408810 PMCID: PMC11476766 DOI: 10.3390/ijms251910481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Human endogenous retroviruses (HERVs) are widely recognized as the result of exogenous retroviruses infecting the ancestral germline, stabilizing integration and vertical transmission during human genetic evolution. To date, endogenous retroviruses (ERVs) appear to have been selected for human physiological functions with the loss of retrotransposable capabilities. ERV elements were previously regarded as junk DNA for a long time. Since then, the aberrant activation and expression of ERVs have been observed in the development of many kinds of human diseases, and their role has been explored in a variety of human disorders such as cancer. The results show that specific ERV elements play respective crucial roles. Among them, long non-coding RNAs (lncRNAs) transcribed from specific long-terminal repeat regions of ERVs are often key factors. lncRNAs are over 200 nucleotides in size and typically bind to DNA, RNA, and proteins to perform biological functions. Dysregulated lncRNAs have been implicated in a variety of diseases. In particular, studies have shown that the aberrant expression of some ERV-derived lncRNAs has a tumor-suppressive or oncogenic effect, displaying significant functional bidirectionality. Therefore, theses lncRNAs have a promising future as novel biomarkers and therapeutic targets to explore the concise relationship between ERVs and cancers. In this review, we first summarize the role of ERV-derived lncRNAs in physiological regulation, mainly including immunomodulation, the maintenance of pluripotency, and erythropoiesis. In addition, pathological regulation examples of their aberrant activation and expression leading to carcinogenesis are highlighted, and specific mechanisms of occurrence are discussed.
Collapse
Affiliation(s)
- Yanmei Song
- Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Key Laboratory for the Prevention and Control of Emerging Infectious Diseases and Biosafety, Jinan 250012, China; (Y.S.); (H.W.)
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100850, China;
| | - Hongling Wen
- Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Key Laboratory for the Prevention and Control of Emerging Infectious Diseases and Biosafety, Jinan 250012, China; (Y.S.); (H.W.)
| | - Xiuli Zhai
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100850, China;
- Department of Microbiology, School of Basic Medicine, Anhui Medical University, Hefei 230000, China
| | - Lei Jia
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100850, China;
| | - Lin Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100850, China;
| |
Collapse
|
2
|
Jia L, Song Y, Chen M, Zhao RY, Li L. Editorial: The evolution, characterization, and role of human endogenous retroviruses in health and diseases. Front Cell Infect Microbiol 2024; 14:1449864. [PMID: 39040603 PMCID: PMC11262060 DOI: 10.3389/fcimb.2024.1449864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 07/01/2024] [Indexed: 07/24/2024] Open
Affiliation(s)
- Lei Jia
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Yanmei Song
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
- Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Key Laboratory for the Prevention and Control of Emerging Infectious Diseases and Biosafety, Jinan, Shandong, China
| | - Mingyue Chen
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering, Hubei University of Technology, Wuhan, China
| | - Richard Y. Zhao
- School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Lin Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Zheng W, Gojobori J, Suh A, Satta Y. Different Host-Endogenous Retrovirus Relationships between Mammals and Birds Reflected in Genome-Wide Evolutionary Interaction Patterns. Genome Biol Evol 2024; 16:evae065. [PMID: 38527852 PMCID: PMC11005779 DOI: 10.1093/gbe/evae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/25/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024] Open
Abstract
Mammals and birds differ largely in their average endogenous retrovirus loads, namely the proportion of endogenous retrovirus in the genome. The host-endogenous retrovirus relationships, including conflict and co-option, have been hypothesized among the causes of this difference. However, there has not been studies about the genomic evolutionary signal of constant host-endogenous retrovirus interactions in a long-term scale and how such interactions could lead to the endogenous retrovirus load difference. Through a phylogeny-controlled correlation analysis on ∼5,000 genes between the dN/dS ratio of each gene and the load of endogenous retrovirus in 12 mammals and 21 birds, separately, we detected genes that may have evolved in association with endogenous retrovirus loads. Birds have a higher proportion of genes with strong correlation between dN/dS and the endogenous retrovirus load than mammals. Strong evidence of association is found between the dN/dS of the coding gene for leucine-rich repeat-containing protein 23 and endogenous retrovirus load in birds. Gene set enrichment analysis shows that gene silencing rather than immunity and DNA recombination may have a larger contribution to the association between dN/dS and the endogenous retrovirus load for both mammals and birds. The above results together showing different evolutionary patterns between bird and mammal genes can partially explain the apparently lower endogenous retrovirus loads of birds, while gene silencing may be a universal mechanism that plays a remarkable role in the evolutionary interaction between the host and endogenous retrovirus. In summary, our study presents signals that the host genes might have driven or responded to endogenous retrovirus load changes in long-term evolution.
Collapse
Affiliation(s)
- Wanjing Zheng
- Department of Evolutionary Studies of Biosystems, School of Advanced Sciences, SOKENDAI (The Graduate University for Advanced Studies), Kanagawa 240-0193, Japan
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jun Gojobori
- Department of Evolutionary Studies of Biosystems, School of Advanced Sciences, SOKENDAI (The Graduate University for Advanced Studies), Kanagawa 240-0193, Japan
- Research Center for Integrative Evolutionary Science, SOKENDAI (The Graduate University for Advanced Studies), Kanagawa 240-0193, Japan
| | - Alexander Suh
- Department of Organismal Biology—Systematic Biology, Evolutionary Biology Centre (EBC), Uppsala University, Uppsala 75236, Sweden
- School of Biological Sciences—Organisms and the Environment, University of East Anglia, Norwich, UK
| | - Yoko Satta
- Department of Evolutionary Studies of Biosystems, School of Advanced Sciences, SOKENDAI (The Graduate University for Advanced Studies), Kanagawa 240-0193, Japan
- Research Center for Integrative Evolutionary Science, SOKENDAI (The Graduate University for Advanced Studies), Kanagawa 240-0193, Japan
| |
Collapse
|
4
|
Katoh H, Honda T. Roles of Human Endogenous Retroviruses and Endogenous Virus-Like Elements in Cancer Development and Innate Immunity. Biomolecules 2023; 13:1706. [PMID: 38136578 PMCID: PMC10741599 DOI: 10.3390/biom13121706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Human endogenous retroviruses (HERVs) are remnants of ancient retroviral infections in the host genome. Although mutations and silencing mechanisms impair their original role in viral replication, HERVs are believed to play roles in various biological processes. Long interspersed nuclear elements (LINEs) are non-LTR retrotransposons that have a lifecycle resembling that of retroviruses. Although LINE expression is typically silenced in somatic cells, it also contributes to various biological processes. The aberrant expression of HERVs and LINEs is closely associated with the development of cancer and/or immunological diseases, suggesting that they are integrated into various pathways related to the diseases. HERVs/LINEs control gene expression depending on the context as promoter/enhancer elements. Some RNAs and proteins derived from HERVs/LINEs have oncogenic potential, whereas others stimulate innate immunity. Non-retroviral endogenous viral elements (nrEVEs) are a novel type of virus-like element in the genome. nrEVEs may also be involved in host immunity. This article provides a current understanding of how these elements impact cellular physiology in cancer development and innate immunity, and provides perspectives for future studies.
Collapse
Affiliation(s)
- Hirokazu Katoh
- Department of Virology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan;
| | - Tomoyuki Honda
- Department of Virology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan;
- Department of Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
5
|
Pumpitakkul V, Chetruengchai W, Srichomthong C, Phokaew C, Pootakham W, Sonthirod C, Nawae W, Tongsima S, Wangkumhang P, Wilantho A, Utara Y, Thongpakdee A, Sanannu S, Maikaew U, Khuntawee S, Changpetch W, Phromwat P, Raschasin K, Sarnkhaeveerakul P, Supapannachart P, Buthasane W, Pukazhenthi BS, Koepfli KP, Suriyaphol P, Tangphatsornruang S, Suriyaphol G, Shotelersuk V. Comparative genomics and genome-wide SNPs of endangered Eld's deer provide breeder selection for inbreeding avoidance. Sci Rep 2023; 13:19806. [PMID: 37957263 PMCID: PMC10643696 DOI: 10.1038/s41598-023-47014-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/08/2023] [Indexed: 11/15/2023] Open
Abstract
Eld's deer, a conserved wildlife species of Thailand, is facing inbreeding depression, particularly in the captive Siamese Eld's deer (SED) subspecies. In this study, we constructed genomes of a male SED and a male Burmese Eld's deer (BED), and used genome-wide single nucleotide polymorphisms to evaluate the genetic purity and the inbreeding status of 35 SED and 49 BED with limited pedigree information. The results show that these subspecies diverged approximately 1.26 million years ago. All SED were found to be purebred. A low proportion of admixed SED genetic material was observed in some BED individuals. Six potential breeders from male SED with no genetic relation to any female SED and three purebred male BED with no relation to more than 10 purebred female BED were identified. This study provides valuable insights about Eld's deer populations and appropriate breeder selection in efforts to repopulate this endangered species while avoiding inbreeding.
Collapse
Affiliation(s)
- Vichayanee Pumpitakkul
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Wanna Chetruengchai
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Chalurmpon Srichomthong
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Chureerat Phokaew
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Wirulda Pootakham
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Chutima Sonthirod
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Wanapinun Nawae
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Sissades Tongsima
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Pongsakorn Wangkumhang
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Alisa Wilantho
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Yongchai Utara
- Zoological Park Organization of Thailand, Animal Conservation and Research Institute, Bangkok, 10800, Thailand
| | - Ampika Thongpakdee
- Zoological Park Organization of Thailand, Animal Conservation and Research Institute, Bangkok, 10800, Thailand
| | - Saowaphang Sanannu
- Zoological Park Organization of Thailand, Animal Conservation and Research Institute, Bangkok, 10800, Thailand
| | - Umaporn Maikaew
- Khao Kheow Open Zoo, Zoological Park Organization of Thailand, Chonburi, 20110, Thailand
| | - Suphattharaphonnaphan Khuntawee
- Ubon Ratchathani Zoo, Zoological Park Organization of Thailand, Ubon Ratchathani District, Ubon Ratchathani, 34000, Thailand
| | - Wirongrong Changpetch
- Nakhon Ratchasima Zoo, Zoological Park Organization of Thailand, Nakhon Ratchasima, 30000, Thailand
| | - Phairot Phromwat
- Huai Kha Khaeng Wildlife Breeding Center, Department of National Parks, Wildlife and Plant Conservation, Uthai Thani, 61160, Thailand
| | - Kacharin Raschasin
- Chulabhorn Wildlife Breeding Center, Department of National Parks, Wildlife and Plant Conservation, Sisaket, 33140, Thailand
| | - Phunyaphat Sarnkhaeveerakul
- Banglamung Wildlife Breeding Center, Department of National Parks, Wildlife and Plant Conservation, Chonburi, 20150, Thailand
| | - Pannawat Supapannachart
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Wannapol Buthasane
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Budhan S Pukazhenthi
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, 22630, USA
| | - Klaus-Peter Koepfli
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, 22630, USA
- Smithsonian-Mason School of Conservation, George Mason University, Front Royal, VA, 22630, USA
| | - Prapat Suriyaphol
- Office for Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Sithichoke Tangphatsornruang
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand.
| | - Gunnaporn Suriyaphol
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330, Thailand
| |
Collapse
|
6
|
Annisaa FLN, Saepuloh U, Iskandriati D, Pamungkas J. Identification and molecular characterization of simian endogenous retrovirus in Macaca fascicularis and Macaca nemestrina from captive breeding facilities in Bogor, Indonesia. Vet World 2022; 15:1827-1834. [PMID: 36185511 PMCID: PMC9394155 DOI: 10.14202/vetworld.2022.1827-1834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim Endogenous retroviruses (ERVs) found in all vertebrates, including non-human primates (NHPs), are known to be genetically inherited. Thus, recent studies have explored ERVs for human immunodeficiency virus vaccine development using human ERV (HERV) due to the hypervariability of exogenous retroviruses which cause conventional vaccines to be ineffective. HERV was also found to be able to induce an immune response in cancer patients. This study aimed to identify and molecularly characterize ERVs from Indonesian NHPs: Macaca fascicularis and Macaca nemestrina. Then, we described the phylogenetic relationship of these isolates with those of the simian ERVs (SERVs) characterized in other species and countries. Materials and Methods First, 5 mL of whole blood samples was taken from 131 long-tailed macaques and 58 pig-tailed macaques in captive breeding facilities at Bogor, Indonesia, for DNA extraction. Next, the DNA samples were screened using the SYBR Green real-time polymerase chain reaction (PCR) technique with specific primers for env (simian retroviruses [SRV]1-5 7585U19 and SRV1-5 7695L21). Positive SERV results were those with cycle threshold (CT) values < 24 (CT < 24) and melting temperature (TM) ranges of 80°C-82°C. Then, whole-genome nucleotide sequences from two pig-tailed macaques samples detected as positive SERV were generated using a nucleic acid sequencing technique which utilized the walking primer method. Subsequently, the sequences were analyzed using bioinformatics programs, such as 4Peaks, Clustal Omega, and BLAST (NCBI). Subsequently, a phylogenetic tree was constructed using the neighbor-joining method in MEGA X. Results SYBR Green real-time PCR amplification results indicated that SERV (Mn B1 and Mn B140910)-positive samples had CT values of 22.37-22.54 and TM of 82°C. Moreover, whole-genome sequences resulted in 7991 nucleotide sequences, comprising long terminal repeat, gag, pro, pol, and env genes identical between the sequenced samples. Furthermore, the phylogenetic tree results indicated that both samples from M. nemestrina had 99%-100% nucleotide identities to the Mn 92227 sample identified at the National Primate Center University of Washington (NaPRC UW) which was imported from Indonesia in 1998, confirmed as a novel SERV strain. The phylogenetic tree results also indicated that although SERV whole-genome nucleotide and env amino acid sequences were clustered with SRV-2 (identity values of 82% and 79%, respectively), they had a 99%-100% nucleotide identity to Mn 92227. Meanwhile, the gag, pro, and pol amino acids were clustered with SRV-1, SRV-3, SRV-4, SRV-5, SRV-8, and SERV/1997, with 82% and 88% identity values. Conclusion Based on the SYBR Green real-time PCR profiles generated, similarities with Mn 92227 were observed. Subsequent phylogenetic analysis confirmed that both samples (Mn B1 and Mn B140919) from pig-tailed macaques in the country of origin were novel SERV strains at NaPRC UW. Therefore, it could be used in biomedical research on ERVs.
Collapse
Affiliation(s)
| | - Uus Saepuloh
- Primate Research Center, IPB University, Bogor 16128, Indonesia
| | | | - Joko Pamungkas
- Primate Research Center, IPB University, Bogor 16128, Indonesia
- Department of Animal Infectious Diseases and Veterinary Public Health, Faculty of Veterinary Medicine, IPB University, Bogor 16680, Indonesia
| |
Collapse
|
7
|
Li W, Pandya D, Pasternack N, Garcia-Montojo M, Henderson L, Kozak CA, Nath A. Retroviral Elements in Pathophysiology and as Therapeutic Targets for Amyotrophic Lateral Sclerosis. Neurotherapeutics 2022; 19:1085-1101. [PMID: 35415778 PMCID: PMC9587200 DOI: 10.1007/s13311-022-01233-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2022] [Indexed: 10/18/2022] Open
Abstract
The study of the role of retroviruses in amyotrophic lateral sclerosis (ALS) dates back to the 1960s shortly after transposable elements themselves were first discovered. It was quickly realized that in wild mice both horizontal and vertical transmissions of retroviral elements were key to the development of an ALS-like syndrome leading to the postulate that endogenous retroviruses (ERVs) contribute significantly to the pathogenicity of this disease. Subsequent studies identified retroviral reverse transcriptase activity in brains of individuals with ALS from Guam. However, except for a single study from the former Soviet Union, ALS could not be transmitted to rhesus macaques. The discovery of an ALS-like syndrome in human immunodeficiency virus (HIV) and human T cell leukemia virus infected individuals led to renewed interest in the field and reverse transcriptase activity was found in the blood and cerebrospinal fluid of individuals with sporadic ALS. However, exogenous retroviruses could not be found in individuals with ALS which further reinforced the possibility of involvement of a human ERV (HERV). The first demonstration of the involvement of a HERV was the discovery of the activation of human endogenous retrovirus-K subtype HML-2 in the brains of individuals with ALS. The envelope protein of HML-2 is neurotoxic and transgenic animals expressing the envelope protein develop an ALS-like syndrome. Activation of HML-2 occurs in the context of generalized transposable element activation and is not specific for ALS. Individuals with HIV-associated ALS show a remarkable response to antiretroviral therapy; however, antiretroviral trials in ALS down-regulate HML-2 without ameliorating the disease. This highlights the need for specific drugs to be developed against HML-2 as a novel therapeutic target for ALS. Other approaches might include antisense oligonucleotides, shRNA targeted against the envelope gene or antibodies that can target the extracellular envelope protein. Future clinical trials in ALS should consider combination therapies to control these ERVs.
Collapse
Affiliation(s)
- Wenxue Li
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Darshan Pandya
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Nicholas Pasternack
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Marta Garcia-Montojo
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Lisa Henderson
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Christine A Kozak
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
| |
Collapse
|
8
|
Chesnokova E, Beletskiy A, Kolosov P. The Role of Transposable Elements of the Human Genome in Neuronal Function and Pathology. Int J Mol Sci 2022; 23:5847. [PMID: 35628657 PMCID: PMC9148063 DOI: 10.3390/ijms23105847] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 12/13/2022] Open
Abstract
Transposable elements (TEs) have been extensively studied for decades. In recent years, the introduction of whole-genome and whole-transcriptome approaches, as well as single-cell resolution techniques, provided a breakthrough that uncovered TE involvement in host gene expression regulation underlying multiple normal and pathological processes. Of particular interest is increased TE activity in neuronal tissue, and specifically in the hippocampus, that was repeatedly demonstrated in multiple experiments. On the other hand, numerous neuropathologies are associated with TE dysregulation. Here, we provide a comprehensive review of literature about the role of TEs in neurons published over the last three decades. The first chapter of the present review describes known mechanisms of TE interaction with host genomes in general, with the focus on mammalian and human TEs; the second chapter provides examples of TE exaptation in normal neuronal tissue, including TE involvement in neuronal differentiation and plasticity; and the last chapter lists TE-related neuropathologies. We sought to provide specific molecular mechanisms of TE involvement in neuron-specific processes whenever possible; however, in many cases, only phenomenological reports were available. This underscores the importance of further studies in this area.
Collapse
Affiliation(s)
- Ekaterina Chesnokova
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, 117485 Moscow, Russia; (A.B.); (P.K.)
| | | | | |
Collapse
|
9
|
Goubert C, Craig RJ, Bilat AF, Peona V, Vogan AA, Protasio AV. A beginner's guide to manual curation of transposable elements. Mob DNA 2022; 13:7. [PMID: 35354491 PMCID: PMC8969392 DOI: 10.1186/s13100-021-00259-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/17/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND In the study of transposable elements (TEs), the generation of a high confidence set of consensus sequences that represent the diversity of TEs found in a given genome is a key step in the path to investigate these fascinating genomic elements. Many algorithms and pipelines are available to automatically identify putative TE families present in a genome. Despite the availability of these valuable resources, producing a library of high-quality full-length TE consensus sequences largely remains a process of manual curation. This know-how is often passed on from mentor-to-mentee within research groups, making it difficult for those outside the field to access this highly specialised skill. RESULTS Our manuscript attempts to fill this gap by providing a set of detailed computer protocols, software recommendations and video tutorials for those aiming to manually curate TEs. Detailed step-by-step protocols, aimed at the complete beginner, are presented in the Supplementary Methods. CONCLUSIONS The proposed set of programs and tools presented here will make the process of manual curation achievable and amenable to all researchers and in special to those new to the field of TEs.
Collapse
Affiliation(s)
- Clement Goubert
- Canadian Center for Computational Genomics, McGill University, Montreal, Québec Canada
- Department of Human Genetics, McGill University, Montreal, Québec Canada
| | - Rory J. Craig
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3FL UK
| | - Agustin F. Bilat
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Valentina Peona
- Department of Organismal Biology, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
| | - Aaron A. Vogan
- Department of Organismal Biology, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
| | - Anna V. Protasio
- Department of Pathology, Tennis Court Road, Cambridge, CB1 2PQ UK
- Christ’s College, St Andrews Street, Cambridge, CB2 3BU UK
| |
Collapse
|
10
|
Detection and Characterisation of an Endogenous Betaretrovirus in Australian Wild Deer. Viruses 2022; 14:v14020252. [PMID: 35215845 PMCID: PMC8877266 DOI: 10.3390/v14020252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023] Open
Abstract
Endogenous retroviruses (ERVs) are the remnants of past retroviral infections that once invaded the host’s germline and were vertically transmitted. ERV sequences have been reported in mammals, but their distribution and diversity in cervids are unclear. Using next-generation sequencing, we identified a nearly complete genome of an endogenous betaretrovirus in fallow deer (Dama dama). Further genomic analysis showed that this provirus, tentatively named cervid endogenous betaretrovirus 1 (CERV β1), has typical betaretroviral genome features (gag-pro-pol-env) and the betaretrovirus-specific dUTPase domain. In addition, CERV β1 pol sequences were detected by PCR in the six non-native deer species with wild populations in Australia. Phylogenetic analyses demonstrated that CERV β1 sequences from subfamily Cervinae clustered as sister taxa to ERV-like sequences in species of subfamily Muntiacinae. These findings, therefore, suggest that CERV β1 endogenisation occurred after the split of these two subfamilies (between 3.3 and 5 million years ago). Our results provide important insights into the evolution of betaretroviruses in cervids.
Collapse
|
11
|
Zheng J, Wei Y, Han GZ. The diversity and evolution of retroviruses: perspectives from viral “fossils”. Virol Sin 2022; 37:11-18. [PMID: 35234634 PMCID: PMC8922424 DOI: 10.1016/j.virs.2022.01.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/12/2021] [Indexed: 01/19/2023] Open
Abstract
Retroviruses exclusively infect vertebrates, causing a variety of diseases. The replication of retroviruses requires reverse transcription and integration into host genomes. When infecting germline cells, retroviruses become inherited vertically, forming endogenous retroviruses (ERVs). ERVs document past viral infections, providing molecular fossils for studying the evolutionary history of retroviruses. In this review, we summarize the recent advances in understanding the diversity and evolution of retroviruses from the perspectives of viral fossils, and discuss the effects of ERVs on the evolution of host biology. Recent advances in understanding the diversity and evolution of retroviruses. Methods to analyze ERVs. The effects of ERVs on the evolution of host biology.
Collapse
Affiliation(s)
- Jialu Zheng
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Yutong Wei
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Guan-Zhu Han
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
12
|
Costello KR, Leung A, Trac C, Lee M, Basam M, Pospisilik JA, Schones DE. Sequence features of retrotransposons allow for epigenetic variability. eLife 2021; 10:71104. [PMID: 34668484 PMCID: PMC8555987 DOI: 10.7554/elife.71104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Transposable elements (TEs) are mobile genetic elements that make up a large fraction of mammalian genomes. While select TEs have been co-opted in host genomes to have function, the majority of these elements are epigenetically silenced by DNA methylation in somatic cells. However, some TEs in mice, including the Intracisternal A-particle (IAP) subfamily of retrotransposons, have been shown to display interindividual variation in DNA methylation. Recent work has revealed that IAP sequence differences and strain-specific KRAB zinc finger proteins (KZFPs) may influence the methylation state of these IAPs. However, the mechanisms underlying the establishment and maintenance of interindividual variability in DNA methylation still remain unclear. Here, we report that sequence content and genomic context influence the likelihood that IAPs become variably methylated. IAPs that differ from consensus IAP sequences have altered KZFP recruitment that can lead to decreased KAP1 recruitment when in proximity of constitutively expressed genes. These variably methylated loci have a high CpG density, similar to CpG islands, and can be bound by ZF-CxxC proteins, providing a potential mechanism to maintain this permissive chromatin environment and protect from DNA methylation. These observations indicate that variably methylated IAPs escape silencing through both attenuation of KZFP binding and recognition by ZF-CxxC proteins to maintain a hypomethylated state.
Collapse
Affiliation(s)
- Kevin R Costello
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, Duarte, United States.,Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, United States
| | - Amy Leung
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, Duarte, United States
| | - Candi Trac
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, Duarte, United States
| | - Michael Lee
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, Duarte, United States.,Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, United States
| | - Mudaser Basam
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, Duarte, United States
| | | | - Dustin E Schones
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, Duarte, United States.,Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, United States
| |
Collapse
|
13
|
Adeno-Associated Vector-Delivered CRISPR/ SaCas9 System Reduces Feline Leukemia Virus Production In Vitro. Viruses 2021; 13:v13081636. [PMID: 34452500 PMCID: PMC8402633 DOI: 10.3390/v13081636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 12/16/2022] Open
Abstract
Feline leukemia virus (FeLV) is a retrovirus of cats worldwide. High viral loads are associated with progressive infection and the death of the host, due to FeLV-associated disease. In contrast, low viral loads, an effective immune response, and a better clinical outcome can be observed in cats with regressive infection. We hypothesize that by lowering viral loads in progressively infected cats, using CRISPR/SaCas9-assisted gene therapy, the cat’s immune system may be permitted to direct the infection towards a regressive outcome. In a step towards this goal, the present study evaluates different adeno-associated vectors (AAVs) for their competence in delivering a gene editing system into feline cells, followed by investigations of the CRISPR/SaCas9 targeting efficiency for different sites within the FeLV provirus. Nine natural AAV serotypes, two AAV hybrid strains, and Anc80L65, an in silico predicted AAV ancestor, were tested for their potential to infect different feline cell lines and feline primary cells. AAV-DJ revealed superior infection efficiency and was thus employed in subsequent transduction experiments. The introduction of double-strand breaks, using the CRISPR/SaCas9 system targeting 12 selected FeLV provirus sites, was confirmed by T7 endonuclease 1 (T7E1), as well as Tracking of Indels by Decomposition (TIDE) analysis. The highest percentage (up to 80%) of nonhomologous end-joining (NHEJ) was found in the highly conserved gag and pol regions. Subsequent transduction experiments, using AAV-DJ, confirmed indel formation and showed a significant reduction in FeLV p27 antigen for some targets. The targeting of the FeLV provirus was efficient when using the CRISPR/SaCas9 approach in vitro. Whether the observed extent of provirus targeting will be sufficient to provide progressively FeLV-infected cats with the means to overcome the infection needs to be further investigated in vivo.
Collapse
|
14
|
Fulton JE, Mason AS, Wolc A, Arango J, Settar P, Lund AR, Burt DW. The impact of endogenous Avian Leukosis Viruses (ALVE) on production traits in elite layer lines. Poult Sci 2021; 100:101121. [PMID: 33975038 PMCID: PMC8131724 DOI: 10.1016/j.psj.2021.101121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/26/2021] [Accepted: 02/26/2021] [Indexed: 11/28/2022] Open
Abstract
Avian Leukosis Virus subgroup E (ALVE) integrations are endogenous retroviral elements found in the chicken genome. The presence of ALVE has been reported to have negative impacts on multiple traits, including egg production and body weight. The recent development of rapid, inexpensive and specific ALVE detection methods has facilitated their characterization in elite commercial egg production lines across multiple generations. The presence of 20 ALVE was examined in 8 elite lines, from 3 different breeds. Seventeen of these ALVE (85%) were informative and found to be segregating in at least one of the lines. To test for an association between specific ALVE inserts and traits, a large genotype by phenotype study was undertaken. Genotypes were obtained for 500 to 1500 males per line, and the phenotypes used were sire-daughter averages. Phenotype data were analyzed by line with a linear model that included the effects of generation, ALVE genotype and their interaction. If genotype effect was significant, the number of ALVE copies was fitted as a regression to estimate additive ALVE gene substitution effect. Significant associations between the presence of specific ALVE inserts and 18 commercially relevant performance and egg quality traits, including egg production, egg weight and albumen height, were observed. When an ALVE was segregating in more than one line, these associations did not always have the same impact (negative, positive or none) in each line. It is hypothesized that the presence of ALVE in the chicken genome may influence production traits by 3 mechanisms: viral protein production may modulate the immune system and impact overall production performance (virus effect); insertional mutagenesis caused by viral integration may cause direct gene alterations or affect gene regulation (gene effect); or the integration site may be within or adjacent to a quantitative trait region which impacts a performance trait (linkage disequilibrium, marker effect).
Collapse
Affiliation(s)
- Janet E Fulton
- Department of Research and Development, Hy-Line International, Dallas Center, IA 50063, USA.
| | - Andrew S Mason
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology and The York Biomedical Research Institute, The University of York, York, YO10 5DD, United Kingdom
| | - Anna Wolc
- Department of Research and Development, Hy-Line International, Dallas Center, IA 50063, USA; Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Jesus Arango
- Department of Research and Development, Hy-Line International, Dallas Center, IA 50063, USA
| | - Petek Settar
- Department of Research and Development, Hy-Line International, Dallas Center, IA 50063, USA
| | - Ashlee R Lund
- Department of Research and Development, Hy-Line International, Dallas Center, IA 50063, USA
| | - David W Burt
- The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
15
|
Endogenization of a Prosimian Retrovirus during Lemur Evolution. Viruses 2021; 13:v13030383. [PMID: 33673677 PMCID: PMC7997422 DOI: 10.3390/v13030383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 02/23/2021] [Indexed: 01/08/2023] Open
Abstract
Studies of viruses that coevolved with lemurs provide an opportunity to understand the basal traits of primate viruses and provide an evolutionary context for host-virus interactions. Germline integration of endogenous retroviruses (ERVs) are fossil evidence of past infections. Hence, characterization of novel ERVs provides insight into the ancient precursors of extant viruses and the evolutionary history of their hosts. Here, we report the discovery of a novel endogenous retrovirus present in the genome of a lemur, Coquerel's sifaka (Propithecus coquereli). Using next-generation sequencing, we identified and characterized the complete genome sequence of a retrovirus, named prosimian retrovirus 1 (PSRV1). Phylogenetic analyses indicate that PSRV1 is a gamma-type betaretrovirus basal to the other primate betaretroviruses and most closely related to simian retroviruses. Molecular clock analysis of PSRV1 long terminal repeat (LTR) sequences estimated the time of endogenization within 4.56 MYA (± 2.4 MYA), placing it after the divergence of Propithecus species. These results indicate that PSRV1 is an important milestone of lemur evolution during the radiation of the Propithecus genus. These findings may have implications for both human and animal health in that the acquisition of a gamma-type env gene within an endogenized betaretrovirus could facilitate a cross-species jump between vertebrate class hosts.
Collapse
|
16
|
Guo L, Gu F, Xu Y, Zhou C. Increased copy number of syncytin-1 in the trophectoderm is associated with implantation of the blastocyst. PeerJ 2020; 8:e10368. [PMID: 33240670 PMCID: PMC7678462 DOI: 10.7717/peerj.10368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/25/2020] [Indexed: 12/19/2022] Open
Abstract
Background A key step in embryo implantation is the adhesion to and invasion of the endometrium by the blastocyst trophectoderm. The envelope proteins of HERV-W and -FRD (human endogenous retrovirus-W and -FRD), syncytin-1 and syncytin-2, are mainly distributed in the placenta, and play important roles in the development of the placenta. The placenta originates from the trophectoderm of the blastocyst. It is unclear whether the envelope proteins of HERV-W and -FRD have an effect on the development of the trophectoderm and whether they have any association with the implantation of the blastocyst. Methods The whole-genome amplification products of the human blastocyst trophectoderm were used to measure the copy number of syncytin-1 and syncytin-2 using real time qPCR. In addition, clinical data associated with the outcome of pregnancies was collected, and included age, body mass index (BMI), basic follicle stimulating hormone(bFSH), rate of primary infertility and oligo-astheno-teratospermia, the thickness of the endometrium on the day of endometrial transformation, the levels of estrogen and progestin on the transfer day, the days and the morphological scores of the blastocysts. The expression of mRNA and the copy numbers of syncytin-1 and syncytin-2 in H1 stem cells, and in differentiated H1 cells, induced by BMP4, were measured using real time qPCR. Results The relative copy number of syncytin-1 in the pregnant group (median: 424%, quartile: 232%-463%, p < 0.05) was significantly higher than in the non-pregnant group (median: 100%, quartile: 81%-163%). There was a correlation (r s = 0.681, p < 0.001) between the copy number of syncytin-1 and blastocyst implantation after embryo transfer. As the stem cells differentiated, the expression of NANOG mRNA decreased, and the expression of caudal type homeobox 2(CDX2) and β-human chorionic gonadotropin (β-hCG) mRNAs increased. Compared to the undifferentiated cells, the relative expression of the syncytin-1 mRNA was 1.63 (quartile: 0.59-6.37, p > 0.05), 3.36 (quartile: 0.85-14.80, p > 0.05), 10.85 (quartile: 3.39-24.46, p < 0.05) and 67.81 (quartile: 54.07-85.48, p < 0.05) on day 1, 3, 5 and 7, respectively, after the differentiation. The relative expression of syncytin-2 was 5.34 (quartile: 4.50-10.30), 7.90 (quartile: 2.46-14.01), 57.44 (quartile: 38.35-103.87) and 344.76 (quartile: 267.72-440.10) on day 1, 3, 5 and 7, respectively, after the differentiation (p < 0.05). The copy number of syncytin-1 increased significantly during differentiation. Conclusion Preceding the transfer of frozen embryos, the increased copy number of syncytin-1 in the blastocyst trophectoderm was associated with good outcomes of pregnancies.
Collapse
Affiliation(s)
- Luyan Guo
- Department of Obstetrics and Gynecology, Sun Yat-Sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Fang Gu
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Sun Yat-Sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Yan Xu
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Sun Yat-Sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Canquan Zhou
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Sun Yat-Sen University First Affiliated Hospital, Guangzhou, Guangdong, China.,Key Laboratory of Reproductive Medicine of Guangdong Province, Guangzhou, Guangdong, China
| |
Collapse
|
17
|
von Witzleben A, Wang C, Laban S, Savelyeva N, Ottensmeier CH. HNSCC: Tumour Antigens and Their Targeting by Immunotherapy. Cells 2020; 9:E2103. [PMID: 32942747 PMCID: PMC7564543 DOI: 10.3390/cells9092103] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/09/2020] [Accepted: 09/13/2020] [Indexed: 12/12/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) are a heterogeneous group of malignant tumours typically caused by alcohol and tobacco consumption, although an increasing number of HNSCC arise due to persistent infection with high-risk human papilloma virus (HPV). The treatment of HNSCC remains challenging, and the first-line setting is focused on surgery and chemoradiotherapy. A substantial proportion of HNSCC patients die from their disease, especially those with recurrent and metastatic disease. Among factors linked with good outcome, immune cell infiltration appears to have a major role. HPV-driven HNSCC are often T-cell rich, reflecting the presence of HPV antigens that are immunogenic. Tumour-associated antigens that are shared between patients or that are unique to an individual person may also induce varying degrees of immune response; studying these is important for the understanding of the interaction between the host immune system and the cancer. The resulting knowledge is critical for the design of better immunotherapies. Key questions are: Which antigens lead to an adaptive immune response in the tumour? Which of these are exploitable for immunotherapy? Here, we review the current thinking regarding tumour antigens in HNSCC and what has been learned from early phase clinical trials.
Collapse
Affiliation(s)
- Adrian von Witzleben
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (A.v.W.); (N.S.)
- Department of Otorhinolaryngology, Head & Neck Surgery, University of Ulm, 89081 Ulm, Germany;
| | - Chuan Wang
- Head and Neck Center, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZX, UK;
| | - Simon Laban
- Department of Otorhinolaryngology, Head & Neck Surgery, University of Ulm, 89081 Ulm, Germany;
| | - Natalia Savelyeva
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (A.v.W.); (N.S.)
| | - Christian H. Ottensmeier
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (A.v.W.); (N.S.)
- Head and Neck Center, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZX, UK;
| |
Collapse
|
18
|
Mason AS, Lund AR, Hocking PM, Fulton JE, Burt DW. Identification and characterisation of endogenous Avian Leukosis Virus subgroup E (ALVE) insertions in chicken whole genome sequencing data. Mob DNA 2020; 11:22. [PMID: 32617122 PMCID: PMC7325683 DOI: 10.1186/s13100-020-00216-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022] Open
Abstract
Background Endogenous retroviruses (ERVs) are the remnants of retroviral infections which can elicit prolonged genomic and immunological stress on their host organism. In chickens, endogenous Avian Leukosis Virus subgroup E (ALVE) expression has been associated with reductions in muscle growth rate and egg production, as well as providing the potential for novel recombinant viruses. However, ALVEs can remain in commercial stock due to their incomplete identification and association with desirable traits, such as ALVE21 and slow feathering. The availability of whole genome sequencing (WGS) data facilitates high-throughput identification and characterisation of these retroviral remnants. Results We have developed obsERVer, a new bioinformatic ERV identification pipeline which can identify ALVEs in WGS data without further sequencing. With this pipeline, 20 ALVEs were identified across eight elite layer lines from Hy-Line International, including four novel integrations and characterisation of a fast feathered phenotypic revertant that still contained ALVE21. These bioinformatically detected sites were subsequently validated using new high-throughput KASP assays, which showed that obsERVer was highly precise and exhibited a 0% false discovery rate. A further fifty-seven diverse chicken WGS datasets were analysed for their ALVE content, identifying a total of 322 integration sites, over 80% of which were novel. Like exogenous ALV, ALVEs show site preference for proximity to protein-coding genes, but also exhibit signs of selection against deleterious integrations within genes. Conclusions obsERVer is a highly precise and broadly applicable pipeline for identifying retroviral integrations in WGS data. ALVE identification in commercial layers has aided development of high-throughput diagnostic assays which will aid ALVE management, with the aim to eventually eradicate ALVEs from high performance lines. Analysis of non-commercial chicken datasets with obsERVer has revealed broad ALVE diversity and facilitates the study of the biological effects of these ERVs in wild and domesticated populations.
Collapse
Affiliation(s)
- Andrew S Mason
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK.,York Biomedical Research Institute, The Department of Biology, The University of York, York, YO10 5DD UK
| | - Ashlee R Lund
- Hy-Line International, 2583 240th Street, Dallas Center, Iowa, 50063 USA
| | - Paul M Hocking
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
| | - Janet E Fulton
- Hy-Line International, 2583 240th Street, Dallas Center, Iowa, 50063 USA
| | - David W Burt
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK.,The University of Queensland, Brisbane, Queensland 4072 Australia
| |
Collapse
|
19
|
Mason AS, Miedzinska K, Kebede A, Bamidele O, Al-Jumaili AS, Dessie T, Hanotte O, Smith J. Diversity of endogenous avian leukosis virus subgroup E (ALVE) insertions in indigenous chickens. Genet Sel Evol 2020; 52:29. [PMID: 32487054 PMCID: PMC7268647 DOI: 10.1186/s12711-020-00548-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 05/26/2020] [Indexed: 12/05/2022] Open
Abstract
Background Avian leukosis virus subgroup E (ALVE) insertions are endogenous retroviruses (ERV) that are restricted to the domestic chicken and its wild progenitor. In commercial chickens, ALVE are known to have a detrimental effect on productivity and provide a source for recombination with exogenous retroviruses. The wider diversity of ALVE in non-commercial chickens and the role of these elements in ERV-derived immunity (EDI) are yet to be investigated. Results In total, 974 different ALVE were identified from 407 chickens sampled from village populations in Ethiopia, Iraq, and Nigeria, using the recently developed obsERVer bioinformatics identification pipeline. Eighty-eight percent of all identified ALVE were novel, bringing the known number of ALVE integrations to more than 1300 across all analysed chickens. ALVE content was highly lineage-specific and populations generally exhibited a large diversity of ALVE at low frequencies, which is typical for ERV involved in EDI. A significantly larger number of ALVE was found within or near coding regions than expected by chance, although a relative depletion of ALVE was observed within coding regions, which likely reflects selection against deleterious integrations. These effects were less pronounced than in previous analyses of chickens from commercial lines. Conclusions Identification of more than 850 novel ALVE has trebled the known diversity of these retroviral elements. This work provides the basis for future studies to fully quantify the role of ALVE in immunity against exogenous ALV, and development of programmes to improve the productivity and welfare of chickens in developing economies.
Collapse
Affiliation(s)
- Andrew S Mason
- The University of York, York, YO10 5DD, UK. .,The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| | - Katarzyna Miedzinska
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Adebabay Kebede
- LiveGene-CTLGH, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia.,Addis Ababa University, Addis Ababa, Ethiopia
| | - Oladeji Bamidele
- African Chicken Genetic Gains, Department of Animal Sciences, Obafemi Awolowo, Ile Ife, Osun, Nigeria
| | - Ahmed S Al-Jumaili
- School of Life Sciences, The University of Nottingham, University Park, Nottingham, NG7 2RD, UK.,University of Anbar, Ramadi, Anbar, Iraq
| | - Tadelle Dessie
- LiveGene-CTLGH, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Olivier Hanotte
- LiveGene-CTLGH, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia.,School of Life Sciences, The University of Nottingham, University Park, Nottingham, NG7 2RD, UK.,University of Anbar, Ramadi, Anbar, Iraq
| | - Jacqueline Smith
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| |
Collapse
|
20
|
Acharya R, Wallis ZK, Keener RJ, Gillock ET. Preliminary PCR-Based Screening Indicates a Higher Incidence of Porcine Endogenous Retrovirus Subtype C (PERV-C) in Feral Versus Domestic Swine. ACTA ACUST UNITED AC 2019. [DOI: 10.1660/062.122.0309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Rashmi Acharya
- 1. Department of Biological Sciences, Fort Hays State University, Hays, Kansas
| | - Zoey K. Wallis
- 1. Department of Biological Sciences, Fort Hays State University, Hays, Kansas
| | - Robert J. Keener
- 2. Department of Agriculture, Fort Hays State University, Hays, Kansas
| | - Eric T. Gillock
- 1. Department of Biological Sciences, Fort Hays State University, Hays, Kansas
| |
Collapse
|
21
|
Berjón-Otero M, Koslová A, Fischer MG. The dual lifestyle of genome-integrating virophages in protists. Ann N Y Acad Sci 2019; 1447:97-109. [PMID: 31162694 DOI: 10.1111/nyas.14118] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/15/2019] [Accepted: 04/21/2019] [Indexed: 01/03/2023]
Abstract
DNA viruses with efficient host genome integration capability were unknown in eukaryotes until recently. The discovery of virophages, satellite-like DNA viruses that depend on lytic giant viruses that infect protists, revealed a genetically diverse group of viruses with high genome mobility. Virophages can act as strong inhibitors of their associated giant viruses, and the resulting beneficial effects on their unicellular hosts resemble a population-based antiviral defense mechanism. By comparing various aspects of genome-integrating virophages, in particular the virophage mavirus, with other mobile genetic elements and parasite-derived defense mechanisms in eukaryotes and prokaryotes, we show that virophages share many features with other host-parasite systems. Yet, the dual lifestyle exhibited by mavirus remains unprecedented among eukaryotic DNA viruses, with potentially far-reaching ecological and evolutionary consequences for the host.
Collapse
Affiliation(s)
- Mónica Berjón-Otero
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Anna Koslová
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Matthias G Fischer
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| |
Collapse
|
22
|
Yang L, Scott L, Wichman HA. Tracing the history of LINE and SINE extinction in sigmodontine rodents. Mob DNA 2019; 10:22. [PMID: 31139266 PMCID: PMC6530004 DOI: 10.1186/s13100-019-0164-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/30/2019] [Indexed: 12/18/2022] Open
Abstract
Background L1 retrotransposons have co-evolved with their mammalian hosts for the entire history of mammals and currently compose ~ 20% of a mammalian genome. B1 retrotransposons are dependent on L1 for retrotransposition and span the evolutionary history of rodents since their radiation. L1s were found to have lost their activity in a group of South American rodents, the Sigmodontinae, and B1 inactivation preceded the extinction of L1 in the same group. Consequently, a basal group of sigmodontines have active L1s but inactive B1s and a derived clade have both inactive L1s and B1s. It has been suggested that B1s became extinct during a long period of L1 quiescence and that L1s subsequently reemerged in the basal group. Results Here we investigate the evolutionary histories of L1 and B1 in the sigmodontine rodents and show that L1 activity continued until after the L1-extinct clade and the basal group diverged. After the split, L1 had a small burst of activity in the former group, followed by extinction. In the basal group, activity was initially low but was followed by a dramatic increase in L1 activity. We found the last wave of B1 retrotransposition was large and probably preceded the split between the two rodent clades. Conclusions Given that L1s had been steadily retrotransposing during the time corresponding to B1 extinction and that the burst of B1 activity preceding B1 extinction was large, we conclude that B1 extinction was not a result of L1 quiescence. Rather, the burst of B1 activity may have contributed to L1 extinction both by competition with L1 and by putting strong selective pressure on the host to control retrotransposition. Electronic supplementary material The online version of this article (10.1186/s13100-019-0164-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lei Yang
- 1Department of Biological Sciences, University of Idaho, Moscow, ID USA.,2Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID USA
| | - LuAnn Scott
- 1Department of Biological Sciences, University of Idaho, Moscow, ID USA.,2Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID USA
| | - Holly A Wichman
- 1Department of Biological Sciences, University of Idaho, Moscow, ID USA.,2Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID USA
| |
Collapse
|
23
|
Whole-Genome Analysis of Domestic Chicken Selection Lines Suggests Segregating Variation in ERV Makeups. Genes (Basel) 2019; 10:genes10020162. [PMID: 30791656 PMCID: PMC6410134 DOI: 10.3390/genes10020162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 01/04/2023] Open
Abstract
Retroviruses have invaded vertebrate hosts for millions of years and left an extensive endogenous retrovirus (ERV) record in the host genomes, which provides a remarkable source for an evolutionary perspective on retrovirus-host associations. Here we identified ERV variation across whole-genomes from two chicken lines, derived from a common founder population subjected to 50 years of bi-directional selection on body weight, and a distantly related domestic chicken line as a comparison outgroup. Candidate ERV loci, where at least one of the chicken lines indicated distinct differences, were analyzed for adjacent host genomic landscapes, selective sweeps, and compared by sequence associations to reference assembly ERVs in phylogenetic analyses. Current data does not support selection acting on specific ERV loci in the domestic chicken lines, as determined by presence inside selective sweeps or composition of adjacent host genes. The varying ERV records among the domestic chicken lines associated broadly across the assembly ERV phylogeny, indicating that the observed insertion differences result from pre-existing and segregating ERV loci in the host populations. Thus, data suggest that the observed differences between the host lineages are best explained by substantial standing ERV variation within host populations, and indicates that even truncated, presumably old, ERVs have not yet become fixed in the host population.
Collapse
|
24
|
Fu B, Ma H, Liu D. Endogenous Retroviruses Function as Gene Expression Regulatory Elements During Mammalian Pre-implantation Embryo Development. Int J Mol Sci 2019; 20:ijms20030790. [PMID: 30759824 PMCID: PMC6387303 DOI: 10.3390/ijms20030790] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/05/2019] [Accepted: 02/05/2019] [Indexed: 01/13/2023] Open
Abstract
Pre-implantation embryo development encompasses several key developmental events, especially the activation of zygotic genome activation (ZGA)-related genes. Endogenous retroviruses (ERVs), which are regarded as “deleterious genomic parasites”, were previously considered to be “junk DNA”. However, it is now known that ERVs, with limited conservatism across species, mediate conserved developmental processes (e.g., ZGA). Transcriptional activation of ERVs occurs during the transition from maternal control to zygotic genome control, signifying ZGA. ERVs are versatile participants in rewiring gene expression networks during epigenetic reprogramming. Particularly, a subtle balance exists between ERV activation and ERV repression in host–virus interplay, which leads to stage-specific ERV expression during pre-implantation embryo development. A large portion of somatic cell nuclear transfer (SCNT) embryos display developmental arrest and ZGA failure during pre-implantation embryo development. Furthermore, because of the close relationship between ERV activation and ZGA, exploring the regulatory mechanism underlying ERV activation may also shed more light on the enigma of SCNT embryo development in model animals.
Collapse
Affiliation(s)
- Bo Fu
- Institute of Animal Husbandry Research, HeiLongJiang Academy of Agricultural Sciences, Harbin 150086, China.
- Key Laboratory of Combine of Planting and Feeding, Ministry of Agriculture of the People's Republic of China, Harbin 150086, China.
| | - Hong Ma
- Institute of Animal Husbandry Research, HeiLongJiang Academy of Agricultural Sciences, Harbin 150086, China.
- Key Laboratory of Combine of Planting and Feeding, Ministry of Agriculture of the People's Republic of China, Harbin 150086, China.
| | - Di Liu
- Institute of Animal Husbandry Research, HeiLongJiang Academy of Agricultural Sciences, Harbin 150086, China.
- Key Laboratory of Combine of Planting and Feeding, Ministry of Agriculture of the People's Republic of China, Harbin 150086, China.
| |
Collapse
|
25
|
Kazachenka A, Bertozzi TM, Sjoberg-Herrera MK, Walker N, Gardner J, Gunning R, Pahita E, Adams S, Adams D, Ferguson-Smith AC. Identification, Characterization, and Heritability of Murine Metastable Epialleles: Implications for Non-genetic Inheritance. Cell 2018; 175:1259-1271.e13. [PMID: 30454646 PMCID: PMC6242299 DOI: 10.1016/j.cell.2018.09.043] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 07/19/2018] [Accepted: 09/19/2018] [Indexed: 01/07/2023]
Abstract
Generally repressed by epigenetic mechanisms, retrotransposons represent around 40% of the murine genome. At the Agouti viable yellow (Avy) locus, an endogenous retrovirus (ERV) of the intracisternal A particle (IAP) class retrotransposed upstream of the agouti coat-color locus, providing an alternative promoter that is variably DNA methylated in genetically identical individuals. This results in variable expressivity of coat color that is inherited transgenerationally. Here, a systematic genome-wide screen identifies multiple C57BL/6J murine IAPs with Avy epigenetic properties. Each exhibits a stable methylation state within an individual but varies between individuals. Only in rare instances do they act as promoters controlling adjacent gene expression. Their methylation state is locus-specific within an individual, and their flanking regions are enriched for CTCF. Variably methylated IAPs are reprogrammed after fertilization and re-established as variable loci in the next generation, indicating reconstruction of metastable epigenetic states and challenging the generalizability of non-genetic inheritance at these regions.
Collapse
Affiliation(s)
| | - Tessa M Bertozzi
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | | | - Nic Walker
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Joseph Gardner
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Richard Gunning
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Elena Pahita
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Sarah Adams
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - David Adams
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | | |
Collapse
|
26
|
Gifford RJ, Blomberg J, Coffin JM, Fan H, Heidmann T, Mayer J, Stoye J, Tristem M, Johnson WE. Nomenclature for endogenous retrovirus (ERV) loci. Retrovirology 2018; 15:59. [PMID: 30153831 PMCID: PMC6114882 DOI: 10.1186/s12977-018-0442-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 08/20/2018] [Indexed: 11/10/2022] Open
Abstract
Retroviral integration into germline DNA can result in the formation of a vertically inherited proviral sequence called an endogenous retrovirus (ERV). Over the course of their evolution, vertebrate genomes have accumulated many thousands of ERV loci. These sequences provide useful retrospective information about ancient retroviruses, and have also played an important role in shaping the evolution of vertebrate genomes. There is an immediate need for a unified system of nomenclature for ERV loci, not only to assist genome annotation, but also to facilitate research on ERVs and their impact on genome biology and evolution. In this review, we examine how ERV nomenclatures have developed, and consider the possibilities for the implementation of a systematic approach for naming ERV loci. We propose that such a nomenclature should not only provide unique identifiers for individual loci, but also denote orthologous relationships between ERVs in different species. In addition, we propose that-where possible-mnemonic links to previous, well-established names for ERV loci and groups should be retained. We show how this approach can be applied and integrated into existing taxonomic and nomenclature schemes for retroviruses, ERVs and transposable elements.
Collapse
Affiliation(s)
- Robert J Gifford
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK.
| | - Jonas Blomberg
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - John M Coffin
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA, USA
| | - Hung Fan
- Department of Molecular Biology and Biochemistry and Cancer Research Institute, University of California, Irvine, CA, 92697, USA
| | - Thierry Heidmann
- Department of Molecular Physiology and Pathology of Infectious and Endogenous Retroviruses, CNRS UMR 9196, Institut Gustave Roussy, 94805, Villejuif, France
| | - Jens Mayer
- Department of Human Genetics, Center of Human and Molecular Biology, Medical Faculty, University of Saarland, Homburg, Germany
| | - Jonathan Stoye
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, UK
| | - Michael Tristem
- Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK
| | - Welkin E Johnson
- Biology Department, Boston College, Chestnut Hill, Massachusetts, 02467, USA.
| |
Collapse
|
27
|
Simmons GS, Habarugira G. The Origins of Gibbon Ape Leukaemia Virus. Primates 2018. [DOI: 10.5772/intechopen.71694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Krönung SK, Beyer U, Chiaramonte ML, Dolfini D, Mantovani R, Dobbelstein M. LTR12 promoter activation in a broad range of human tumor cells by HDAC inhibition. Oncotarget 2018; 7:33484-97. [PMID: 27172897 PMCID: PMC5085097 DOI: 10.18632/oncotarget.9255] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/19/2016] [Indexed: 01/31/2023] Open
Abstract
A considerable proportion of the human genome consists of transposable elements, including the long terminal repeats (LTRs) of endogenous retroviruses. During evolution, such LTRs were occasionally inserted upstream of protein-coding genes, contributing to their regulation. We previously identified the LTR12 from endogenous retrovirus 9 (ERV9) as a regulator of proapoptotic genes such as TP63 or TNFRSF10B. The promoter activity of LTR12 is largely confined to the testes, silenced in testicular carcinoma, but reactivated in testicular cancer cells by broad-range histone deacetylase (HDAC) inhibitors. Here we show that inhibition of HDAC1-3 is sufficient for LTR12 activation. Importantly, HDAC inhibitors induce LTR12 activity not only in testicular cancer cells, but also in cells derived from many additional tumor species. Finally, we characterize the transcription factor NF-Y as a mediator of LTR12 promoter activity and HDAC inhibitor-induced apoptosis, in the context of widespread genomic binding of NF-Y to specific LTR12 sequences. Thus, HDAC inhibitor-driven LTR12 activation represents a generally applicable means to induce proapoptotic genes in human cancer cells.
Collapse
Affiliation(s)
- Sonja K Krönung
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center, University of Göttingen, Göttingen, Germany
| | - Ulrike Beyer
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center, University of Göttingen, Göttingen, Germany.,Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | | | - Diletta Dolfini
- Dipartimento di Bioscienze, UniversitàdegliStudi di Milano, Via Celoria, Milan, Italy
| | - Roberto Mantovani
- Dipartimento di Bioscienze, UniversitàdegliStudi di Milano, Via Celoria, Milan, Italy
| | - Matthias Dobbelstein
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center, University of Göttingen, Göttingen, Germany
| |
Collapse
|
29
|
Jabbar SB, Monaghan S, Chen W, Koduru P, Kumar K. Acute Myeloid Leukemia With a Rare t(7;14)(q21;q32) and Trisomy 4 With Poor Clinical Outcome: A Case Report. Lab Med 2017; 48:376-380. [PMID: 29069512 DOI: 10.1093/labmed/lmx034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Objectives Recurrent cytogenetic abnormalities and/or molecular aberrations play an important role in the diagnosis and prognostification of acute myeloid leukemia (AML). We describe a case of a 40 year old woman diagnosed with de novo AML with a novel t(7;14)(q21,q32) and trisomy 4 with poor clinical outcome. Methods: Morphologic, flow cytometry and cytogenetic results of the patient's peripheral blood and bone marrow samples were analyzed. Results The diagnostic bone marrow was hypercellular for age (>95%) with increased blasts (62%) that by flow cytometry exhibited myeloid differentiation with a few T/NK lineage markers. Cytogenetics showed a t(7;14)(q21,q32) and trisomy 4. The patient had extremely poor response to two rounds of induction chemotherapy with persistent leukemia following therapy. Conclusion To the best of our knowledge, the t(7;14) is a novel cytogenetic abnormality that has not been reported previously in acute myeloid leukemia, and is important to report as it appears to be associated with poor prognosis.
Collapse
Affiliation(s)
- Seema B Jabbar
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sara Monaghan
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Weina Chen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Prasad Koduru
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kirthi Kumar
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
30
|
Grandi N, Cadeddu M, Pisano MP, Esposito F, Blomberg J, Tramontano E. Identification of a novel HERV-K(HML10): comprehensive characterization and comparative analysis in non-human primates provide insights about HML10 proviruses structure and diffusion. Mob DNA 2017; 8:15. [PMID: 29118853 PMCID: PMC5667498 DOI: 10.1186/s13100-017-0099-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/24/2017] [Indexed: 11/23/2022] Open
Abstract
Background About half of the human genome is constituted of transposable elements, including human endogenous retroviruses (HERV). HERV sequences represent the 8% of our genetic material, deriving from exogenous infections occurred millions of years ago in the germ line cells and being inherited by the offspring in a Mendelian fashion. HERV-K elements (classified as HML1–10) are among the most studied HERV groups, especially due to their possible correlation with human diseases. In particular, the HML10 group was reported to be upregulated in persistent HIV-1 infected cells as well as in tumor cells and samples, and proposed to have a role in the control of host genes expression. An individual HERV-K(HML10) member within the major histocompatibility complex C4 gene has even been studied for its possible contribution to type 1 diabetes susceptibility. Following a first characterization of the HML10 group at the genomic level, performed with the innovative software RetroTector, we have characterized in detail the 8 previously identified HML10 sequences present in the human genome, and an additional HML10 partial provirus in chromosome 1p22.2 that is reported here for the first time. Results Using a combined approach based on RetroTector software and a traditional Genome Browser Blat search, we identified a novel HERV-K(HML10) sequence in addition to the eight previously reported in the human genome GRCh37/hg19 assembly. We fully characterized the nine HML10 sequences at the genomic level, including their classification in two types based on both structural and phylogenetic characteristics, a detailed analysis of each HML10 nucleotide sequence, the first description of the presence of an Env Rec domain in the type II HML10, the estimated time of integration of individual members and the comparative map of the HML10 proviruses in non-human primates. Conclusions We performed an unambiguous and exhaustive analysis of the nine HML10 sequences present in GRCh37/hg19 assembly, useful to increase the knowledge of the group’s contribution to the human genome and laying the foundation for a better understanding of the potential physiological effects and the tentative correlation of these sequences with human pathogenesis. Electronic supplementary material The online version of this article (10.1186/s13100-017-0099-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicole Grandi
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Marta Cadeddu
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Maria Paola Pisano
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Francesca Esposito
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Jonas Blomberg
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy.,Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| |
Collapse
|
31
|
Twilprawat P, Kim S, Srikulnath K, Han K. Structural variations generated by simian foamy virus-like (SFV) in Crocodylus siamensis. Genes Genomics 2017. [DOI: 10.1007/s13258-017-0581-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Chicken ( Gallus gallus) endogenous retrovirus generates genomic variations in the chicken genome. Mob DNA 2017; 8:2. [PMID: 28138342 PMCID: PMC5260121 DOI: 10.1186/s13100-016-0085-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 12/27/2016] [Indexed: 01/08/2023] Open
Abstract
Background Transposable elements (TEs) comprise ~10% of the chicken (Gallus gallus) genome. The content of TEs is much lower than that of mammalian genomes, where TEs comprise around half of the genome. Endogenous retroviruses are responsible for ~1.3% of the chicken genome. Among them is Gallus gallus endogenous retrovirus 10 (GGERV10), one of the youngest endogenous retrovirus families, which emerged in the chicken genome around 3 million years ago. Results We identified a total of 593 GGERV10 elements in the chicken reference genome using UCSC genome database and RepeatMasker. While most of the elements were truncated, 49 GGERV10 elements were full-length retaining 5′ and 3′ LTRs. We examined in detail their structural features, chromosomal distribution, genomic environment, and phylogenetic relationships. We compared LTR sequence among five different GGERV10 subfamilies and found sequence variations among the LTRs. Using a traditional PCR assay, we examined a polymorphism rate of the 49 full-length GGERV10 elements in three different chicken populations of the Korean domestic chicken, Leghorn, and Araucana. The result found a breed-specific GGERV10B insertion locus in the Korean domestic chicken, which could be used as a Korean domestic chicken-specific marker. Conclusions GGERV10 family is the youngest ERV family and thus might have contributed to recent genomic variations in different chicken populations. The result of this study showed that one of GGERV10 elements integrated into the chicken genome after the divergence of Korean domestic chicken from other closely related chicken populations, suggesting that GGERV10 could be served as a molecular marker for chicken breed identification. Electronic supplementary material The online version of this article (doi:10.1186/s13100-016-0085-5) contains supplementary material, which is available to authorized users.
Collapse
|
33
|
Are human endogenous retroviruses triggers of autoimmune diseases? Unveiling associations of three diseases and viral loci. Immunol Res 2016; 64:55-63. [PMID: 26091722 PMCID: PMC4726719 DOI: 10.1007/s12026-015-8671-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Autoimmune diseases encompass a plethora of conditions in which the immune system attacks its own tissue, identifying them as foreign. Multiple factors are thought to contribute to the development of immune response to self, including differences in genotypes, hormonal milieu, and environmental factors. Viruses including human endogenous retroviruses have long been linked to the occurrence of autoimmunity, but never proven to be causative factors. Endogenous viruses are retroviral sequences embedded in the host germline DNA and transmitted vertically through successive generations in a Mendelian manner. In this study by means of genetic epidemiology, we have searched for the involvement of endogenous retroviruses in three selected autoimmune diseases: multiple sclerosis, type 1 diabetes mellitus, and rheumatoid arthritis. We found that at least one human endogenous retroviral locus was associated with each of the three diseases. Although there was a significant overlap, most loci only occurred in one of the studied disease. Remarkably, within each disease, there was a statistical interaction (synergy) between two loci. Additional synergy between retroviral loci and human lymphocyte antigens is reported for multiple sclerosis. We speculate the possibility that recombinants or mixed viral particles are formed and that the resulting viruses stimulate the innate immune system, thereby initiating the autoimmune response.
Collapse
|
34
|
Nascimento FF, Rodrigo AG. Computational Evaluation of the Strict Master and Random Template Models of Endogenous Retrovirus Evolution. PLoS One 2016; 11:e0162454. [PMID: 27649303 PMCID: PMC5029938 DOI: 10.1371/journal.pone.0162454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 08/02/2016] [Indexed: 02/05/2023] Open
Abstract
Transposable elements (TEs) are DNA sequences that are able to replicate and move within and between host genomes. Their mechanism of replication is also shared with endogenous retroviruses (ERVs), which are also a type of TE that represent an ancient retroviral infection within animal genomes. Two models have been proposed to explain TE proliferation in host genomes: the strict master model (SMM), and the random template (or transposon) model (TM). In SMM only a single copy of a given TE lineage is able to replicate, and all other genomic copies of TEs are derived from that master copy. In TM, any element of a given family is able to replicate in the host genome. In this paper, we simulated ERV phylogenetic trees under variations of SMM and TM. To test whether current phylogenetic programs can recover the simulated ERV phylogenies, DNA sequence alignments were simulated and maximum likelihood trees were reconstructed and compared to the simulated phylogenies. Results indicate that visual inspection of phylogenetic trees alone can be misleading. However, if a set of statistical summaries is calculated, we are able to distinguish between models with high accuracy by using a data mining algorithm that we introduce here. We also demonstrate the use of our data mining algorithm with empirical data for the porcine endogenous retrovirus (PERV), an ERV that is able to replicate in human and pig cells in vitro.
Collapse
Affiliation(s)
| | - Allen G. Rodrigo
- National Evolutionary Synthesis Center, Durham, NC, United States of America
| |
Collapse
|
35
|
Gerdes P, Richardson SR, Mager DL, Faulkner GJ. Transposable elements in the mammalian embryo: pioneers surviving through stealth and service. Genome Biol 2016; 17:100. [PMID: 27161170 PMCID: PMC4862087 DOI: 10.1186/s13059-016-0965-5] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Transposable elements (TEs) are notable drivers of genetic innovation. Over evolutionary time, TE insertions can supply new promoter, enhancer, and insulator elements to protein-coding genes and establish novel, species-specific gene regulatory networks. Conversely, ongoing TE-driven insertional mutagenesis, nonhomologous recombination, and other potentially deleterious processes can cause sporadic disease by disrupting genome integrity or inducing abrupt gene expression changes. Here, we discuss recent evidence suggesting that TEs may contribute regulatory innovation to mammalian embryonic and pluripotent states as a means to ward off complete repression by their host genome.
Collapse
Affiliation(s)
- Patricia Gerdes
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Sandra R Richardson
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Dixie L Mager
- Department of Medical Genetics, Terry Fox Laboratory, British Columbia Cancer Agency, University of British Columbia, Vancouver, BC, V5Z 1L3, Canada.
| | - Geoffrey J Faulkner
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia. .,School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
36
|
da Fonseca GC, de Oliveira LFV, de Morais GL, Abdelnor RV, Nepomuceno AL, Waterhouse PM, Farinelli L, Margis R. Unusual RNA plant virus integration in the soybean genome leads to the production of small RNAs. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 246:62-69. [PMID: 26993236 DOI: 10.1016/j.plantsci.2016.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/15/2015] [Accepted: 01/29/2016] [Indexed: 05/07/2023]
Abstract
Horizontal gene transfer (HGT) is known to be a major force in genome evolution. The acquisition of genes from viruses by eukaryotic genomes is a well-studied example of HGT, including rare cases of non-retroviral RNA virus integration. The present study describes the integration of cucumber mosaic virus RNA-1 into soybean genome. After an initial metatranscriptomic analysis of small RNAs derived from soybean, the de novo assembly resulted a 3029-nt contig homologous to RNA-1. The integration of this sequence in the soybean genome was confirmed by DNA deep sequencing. The locus where the integration occurred harbors the full RNA-1 sequence followed by the partial sequence of an endogenous mRNA and another sequence of RNA-1 as an inverted repeat and allowing the formation of a hairpin structure. This region recombined into a retrotransposon located inside an exon of a soybean gene. The nucleotide similarity of the integrated sequence compared to other Cucumber mosaic virus sequences indicates that the integration event occurred recently. We described a rare event of non-retroviral RNA virus integration in soybean that leads to the production of a double-stranded RNA in a similar fashion to virus resistance RNAi plants.
Collapse
Affiliation(s)
- Guilherme Cordenonsi da Fonseca
- Centro de Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, RS, Brazil.
| | - Luiz Felipe Valter de Oliveira
- Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, RS, Brazil
| | | | | | | | - Peter M Waterhouse
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, Queensland, Australia
| | | | - Rogerio Margis
- Centro de Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, RS, Brazil; Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, RS, Brazil.
| |
Collapse
|
37
|
Fukumoto H, Hishima T, Hasegawa H, Saeki H, Kuroda M, Katano H. Evaluation of Vero-cell-derived simian endogenous retrovirus infection in humans by detection of viral genome in clinicopathological samples and commercialized vaccines and by serology of Japanese general population. Vaccine 2016; 34:2700-6. [PMID: 27113161 DOI: 10.1016/j.vaccine.2016.04.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 04/08/2016] [Accepted: 04/12/2016] [Indexed: 11/17/2022]
Abstract
BACKGROUND Vero cells are used in laboratories for the isolation of viruses and the production of vaccines. Recently, the sequence of simian endogenous retrovirus (SERV) was identified in Vero cells (SERVagm-Vero), with homology to exogenously transmitted, pathogenic simian retroviruses (SRVs). Although SERVagm-Vero was shown to be noninfectious to human cells in vitro, SERV infection in humans is controversial. In this study, we evaluated the status of SERV infection in humans by detecting the viral genome in clinicopathological samples and commercialized vaccines, and with a serological survey of the Japanese general population. METHODS Real-time polymerase chain reaction (PCR) and reverse transcription-PCR were used to detect the SERVagm-Vero genome. We also examined the seroprevalence of SERV in 1000 individuals in the Japanese population with an enzyme-linked immunoabsorbent assay (ELISA) using mixed SERVagm-Vero gag, pol, and env proteins as antigens. RESULTS Real-time PCR failed to detect SERVagm-Vero genomic fragments in 783 human clinicopathological samples, and all 13 human cell lines tested were negative for the SERVagm-Vero genome. Thirteen commercialized vaccines, including five Vero-based vaccines, were also negative for the SERVagm-Vero genome on real-time PCR and reverse transcription-PCR. Eight (0.8%) were seropositive on ELISA, and western blotting showed that all eight sera contained anti-pol antibodies. All SERV-seropositive individuals were born before 1965, suggesting that SERV infection in Japan might not be associated with vaccine, because more than 90% of Japanese children born from 1964 to 2012 have received live poliovirus vaccines containing virus produced in Vero cells since the 1980s. CONCLUSION We have confirmed that the vaccines we use today are free of SERVagm-Vero. Moreover, SERV infection in humans is very rare and unlikely to be associated with vaccines in the Japanese general population.
Collapse
Affiliation(s)
- Hitomi Fukumoto
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; Department of Dermatology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Tsunekazu Hishima
- Department of Pathology, Tokyo Metropolitan Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo 113-8677, Japan
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Hidehisa Saeki
- Department of Dermatology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Makoto Kuroda
- Pathogen Genomic Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Harutaka Katano
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| |
Collapse
|
38
|
Denner J. Expression and function of endogenous retroviruses in the placenta. APMIS 2016; 124:31-43. [DOI: 10.1111/apm.12474] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/12/2015] [Indexed: 12/26/2022]
|
39
|
Vargiu L, Rodriguez-Tomé P, Sperber GO, Cadeddu M, Grandi N, Blikstad V, Tramontano E, Blomberg J. Classification and characterization of human endogenous retroviruses; mosaic forms are common. Retrovirology 2016; 13:7. [PMID: 26800882 PMCID: PMC4724089 DOI: 10.1186/s12977-015-0232-y] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 12/16/2015] [Indexed: 02/06/2023] Open
Abstract
Background Human endogenous retroviruses (HERVs) represent the inheritance of ancient germ-line cell infections by exogenous retroviruses and the subsequent transmission of the integrated proviruses to the descendants. ERVs have the same internal structure as exogenous retroviruses. While no replication-competent HERVs have been recognized, some retain up to three of four intact ORFs. HERVs have been classified before, with varying scope and depth, notably in the RepBase/RepeatMasker system. However, existing classifications are bewildering. There is a need for a systematic, unifying and simple classification. We strived for a classification which is traceable to previous classifications and which encompasses HERV variation within a limited number of clades. Results The human genome assembly GRCh 37/hg19 was analyzed with RetroTector, which primarily detects relatively complete Class I and II proviruses. A total of 3173 HERV sequences were identified. The structure of and relations between these proviruses was resolved through a multi-step classification procedure that involved a novel type of similarity image analysis (“Simage”) which allowed discrimination of heterogeneous (noncanonical) from homogeneous (canonical) HERVs. Of the 3173 HERVs, 1214 were canonical and segregated into 39 canonical clades (groups), belonging to class I (Gamma- and Epsilon-like), II (Beta-like) and III (Spuma-like). The groups were chosen based on (1) sequence (nucleotide and Pol amino acid), similarity, (2) degree of fit to previously published clades, often from RepBase, and (3) taxonomic markers. The groups fell into 11 supergroups. The 1959 noncanonical HERVs contained 31 additional, less well-defined groups. Simage analysis revealed several types of mosaicism, notably recombination and secondary integration. By comparing flanking sequences, LTRs and completeness of gene structure, we deduced that some noncanonical HERVs proliferated after the recombination event. Groups were further divided into envelope subgroups (altogether 94) based on sequence similarity and characteristic “immunosuppressive domain” motifs. Intra and inter(super)group, as well as intraclass, recombination involving envelope genes (“env snatching”) was a common event. LTR divergence indicated that HERV-K(HML2) and HERVFC had the most recent integrations, HERVL and HUERSP3 the oldest. Conclusions A comprehensive HERV classification and characterization approach was undertaken. It should be applicable for classification of all ERVs. Recombination was common among HERV ancestors. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0232-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laura Vargiu
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy. .,Center for Advanced Studies, Research and Development in Sardinia, CRS4, Pula, Italy. .,Nurideas S.r.l., Cagliari, Italy.
| | - Patricia Rodriguez-Tomé
- Center for Advanced Studies, Research and Development in Sardinia, CRS4, Pula, Italy. .,Nurideas S.r.l., Cagliari, Italy.
| | - Göran O Sperber
- Physiology Unit, Department of Neuroscience, Uppsala University, Uppsala, Sweden.
| | - Marta Cadeddu
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy.
| | - Nicole Grandi
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy.
| | - Vidar Blikstad
- Department of Medical Sciences, Uppsala University Hospital, Dag Hammarskjölds Väg 17, Uppsala, 751 85, Sweden.
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy.
| | - Jonas Blomberg
- Department of Medical Sciences, Uppsala University Hospital, Dag Hammarskjölds Väg 17, Uppsala, 751 85, Sweden.
| |
Collapse
|
40
|
Tsangaras K, Mayer J, Alquezar-Planas DE, Greenwood AD. An Evolutionarily Young Polar Bear (Ursus maritimus) Endogenous Retrovirus Identified from Next Generation Sequence Data. Viruses 2015; 7:6089-107. [PMID: 26610552 PMCID: PMC4664997 DOI: 10.3390/v7112927] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/11/2015] [Accepted: 11/17/2015] [Indexed: 01/13/2023] Open
Abstract
Transcriptome analysis of polar bear (Ursus maritimus) tissues identified sequences with similarity to Porcine Endogenous Retroviruses (PERV). Based on these sequences, four proviral copies and 15 solo long terminal repeats (LTRs) of a newly described endogenous retrovirus were characterized from the polar bear draft genome sequence. Closely related sequences were identified by PCR analysis of brown bear (Ursus arctos) and black bear (Ursus americanus) but were absent in non-Ursinae bear species. The virus was therefore designated UrsusERV. Two distinct groups of LTRs were observed including a recombinant ERV that contained one LTR belonging to each group indicating that genomic invasions by at least two UrsusERV variants have recently occurred. Age estimates based on proviral LTR divergence and conservation of integration sites among ursids suggest the viral group is only a few million years old. The youngest provirus was polar bear specific, had intact open reading frames (ORFs) and could potentially encode functional proteins. Phylogenetic analyses of UrsusERV consensus protein sequences suggest that it is part of a pig, gibbon and koala retrovirus clade. The young age estimates and lineage specificity of the virus suggests UrsusERV is a recent cross species transmission from an unknown reservoir and places the viral group among the youngest of ERVs identified in mammals.
Collapse
Affiliation(s)
- Kyriakos Tsangaras
- Department of Translational Genetics, The Cyprus Institute of Neurology and Genetics, 6 International Airport Ave., 2370 Nicosia, Cyprus.
| | - Jens Mayer
- Department of Human Genetics, Center of Human and Molecular Biology, Medical Faculty, University of Saarland, 66421 Homburg, Germany.
| | - David E Alquezar-Planas
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research Berlin, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany.
| | - Alex D Greenwood
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research Berlin, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany.
- Department of Veterinary Medicine, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany.
| |
Collapse
|
41
|
Contreras-Galindo R, Kaplan MH, Dube D, Gonzalez-Hernandez MJ, Chan S, Meng F, Dai M, Omenn GS, Gitlin SD, Markovitz DM. Human Endogenous Retrovirus Type K (HERV-K) Particles Package and Transmit HERV-K-Related Sequences. J Virol 2015; 89:7187-201. [PMID: 25926654 PMCID: PMC4473553 DOI: 10.1128/jvi.00544-15] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/25/2015] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Human endogenous retroviruses (HERV) make up 8% of the human genome. While the youngest of these retroviruses, HERV-K(HML-2), termed HK2, is able to code for all viral proteins and produce virus-like particles, it is not known if these virus particles package and transmit HK2-related sequences. Here, we analyzed the capacity of HK2 for packaging and transmitting HK2 sequences. We created an HK2 probe, termed Bogota, which can be packaged into HK2 viruses, and transfected it into cells that make HK2 particles. Supernatants of the transfected cells, which contained HK2 viral particles, then were added to target cells, and the transmissibility of the HK2 Bogota reporter was tracked by G418 resistance. Our studies revealed that contemporary HK2 virions produced by some teratocarcinoma and breast cancer cell lines, as well as by peripheral blood lymphocytes from lymphoma patients, can package HK2 Bogota probes, and these viruses transmitted these probes to other cells. After transmission, HK2 Bogota transcripts undergo reverse transcription, a step impaired by antiretroviral agents or by introduction of mutations into the probe sequences required for reverse transcription. HK2 viruses were more efficiently transmitted in the presence of HK2 Rec or HIV-1 Tat and Vif. Transmitted Bogota probes formed episomes but did not integrate into the cellular genome. Resistance to integration might explain the relatively low number of HK2 insertions that were acquired during the last 25 million years of evolution. Whether transient transmission of modern HK2 sequences, which encode two putative oncoproteins, can lead to disease remains to be studied. IMPORTANCE Retroviruses invaded the genome of human ancestors over the course of millions of years, yet these viruses generally have been inactivated during evolution, with only remnants of these infectious sequences remaining in the human genome. One of these viruses, termed HK2, still is capable of producing virus particles, although these particles have been regarded as being noninfectious. Using a genetic probe derived from HK2, we have discovered that HK2 viruses produced in modern humans can package HK2 sequences and transmit them to various other cells. Furthermore, the genetic sequences packaged in HK2 undergo reverse transcription. The transmitted probe circularized in the cell and failed to integrate into the cellular genome. These findings suggest that modern HK2 viruses can package viral RNA and transmit it to other cells. Contrary to previous views, we provide evidence of an extracellular viral phase of modern HK2 viruses. We have no evidence of sustained, spreading infection.
Collapse
Affiliation(s)
| | - Mark H Kaplan
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Derek Dube
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Marta J Gonzalez-Hernandez
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA Programs in Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Susana Chan
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Fan Meng
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, USA Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, USA
| | - Manhong Dai
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Gilbert S Omenn
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Scott D Gitlin
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan, USA Veteran Affairs Health System, Ann Arbor, Michigan, USA
| | - David M Markovitz
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA Programs in Immunology, University of Michigan, Ann Arbor, Michigan, USA Programs in Cancer Biology, University of Michigan, Ann Arbor, Michigan, USA Programs in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
42
|
Macfarlane CM, Badge RM. Genome-wide amplification of proviral sequences reveals new polymorphic HERV-K(HML-2) proviruses in humans and chimpanzees that are absent from genome assemblies. Retrovirology 2015; 12:35. [PMID: 25927962 PMCID: PMC4422153 DOI: 10.1186/s12977-015-0162-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/30/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To date, the human population census of proviruses of the Betaretrovirus-like human endogenous retroviral (HERV-K) (HML-2) family has been compiled from a limited number of complete genomes, making it certain that rare polymorphic loci are under-represented and are yet to be described. RESULTS Here we describe a suppression PCR-based method called genome-wide amplification of proviral sequences (GAPS) that selectively amplifies DNA fragments containing the termini of HERV-K(HML-2) proviral sequences and their flanking genomic sequences. We analysed the HERV-K(HML-2) proviral content of 101 unrelated humans, 4 common chimpanzees and three centre d'etude du polymorphisme humain (CEPH) pedigrees (44 individuals). The technique isolated HERV-K(HML-2) proviruses that had integrated in the genomes of the great apes throughout their divergence and included evolutionarily young elements still unfixed for presence/absence. CONCLUSIONS By examining the HERV-K(HML-2) proviral content of 145 humans we detected a new insertionally polymorphic Type I HERV-K(HML-2) provirus. We also observed provirus versus solo long terminal repeat (LTR) polymorphism within humans at a previously unreported, but ancient, locus. Finally, we report two novel chimpanzee specific proviruses, one of which is dimorphic for a provirus versus solo LTR. Thus GAPS enables the isolation of uncharacterised HERV-K(HML-2) proviral sequences and provides a direct means to assess inter-individual genetic variation associated with HERV-K(HML-2) proviruses.
Collapse
Affiliation(s)
- Catriona M Macfarlane
- Department of Genetics, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| | - Richard M Badge
- Department of Genetics, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| |
Collapse
|
43
|
The effect of life history on retroviral genome invasions. PLoS One 2015; 10:e0117442. [PMID: 25692467 PMCID: PMC4333357 DOI: 10.1371/journal.pone.0117442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 12/23/2014] [Indexed: 11/20/2022] Open
Abstract
Endogenous retroviruses (ERV), or the remnants of past retroviral infections that are no longer active, are found in the genomes of most vertebrates, typically constituting approximately 10% of the genome. In some vertebrates, particularly in shorter-lived species like rodents, it is not unusual to find active endogenous retroviruses. In longer-lived species, including humans where substantial effort has been invested in searching for active ERVs, it is unusual to find them; to date none have been found in humans. Presumably the chance of detecting an active ERV infection is a function of the length of an ERV epidemic. Intuitively, given that ERVs or signatures of past ERV infections are passed from parents to offspring, we might expect to detect more active ERVs in species with longer generation times, as it should take more years for an infection to run its course in longer than in shorter lived species. This means the observation of more active ERV infections in shorter compared to longer-lived species is paradoxical. We explore this paradox using a modeling approach to investigate factors that influence ERV epidemic length. Our simple epidemiological model may explain why we find evidence of active ERV infections in shorter rather than longer-lived species.
Collapse
|
44
|
CMV-promoter driven codon-optimized expression alters the assembly type and morphology of a reconstituted HERV-K(HML-2). Viruses 2014; 6:4332-45. [PMID: 25393897 PMCID: PMC4246225 DOI: 10.3390/v6114332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 09/20/2014] [Accepted: 10/31/2014] [Indexed: 11/16/2022] Open
Abstract
The HERV-K(HML-2) family contains the most recently integrated and best preserved endogenized proviral sequences in the human genome. All known elements have nevertheless been subjected to mutations or deletions that render expressed particles non-infectious. Moreover, these post-insertional mutations hamper the analysis of the general biological properties of this ancient virus family. The expression of consensus sequences and sequences of elements with reverted post-insertional mutations has therefore been very instrumental in overcoming this limitation. We investigated the particle morphology of a recently reconstituted HERV-K113 element termed oriHERV-K113 using thin-section electron microscopy (EM) and could demonstrate that strong overexpression by substitution of the 5'LTR for a CMV promoter and partial codon optimization altered the virus assembly type and morphology. This included a conversion from the regular C-type to an A-type morphology with a mass of cytoplasmic immature cores tethered to the cell membrane and the membranes of vesicles. Overexpression permitted the release and maturation of virions but reduced the envelope content. A weaker boost of virus expression by Staufen-1 was not sufficient to induce these morphological alterations.
Collapse
|
45
|
Mun S, Lee J, Kim YJ, Kim HS, Han K. Chimpanzee-specific endogenous retrovirus generates genomic variations in the chimpanzee genome. PLoS One 2014; 9:e101195. [PMID: 24987855 PMCID: PMC4079660 DOI: 10.1371/journal.pone.0101195] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 06/04/2014] [Indexed: 11/18/2022] Open
Abstract
Endogenous retroviruses (ERVs), eukaryotic transposable elements, exist as proviruses in vertebrates including primates and contribute to genomic changes during the evolution of their host genomes. Many studies about ERVs have focused on the elements residing in the human genome but only a few studies have focused on the elements which exist in non-human primate genomes. In this study, we identified 256 chimpanzee-specific endogenous retrovirus copies (PtERVs: Pan troglodyte endogenous retroviruses) from the chimpanzee reference genome sequence through comparative genomics. Among the chimpanzee-specific ERV copies, 121 were full-length chimpanzee-specific ERV elements while 110 were chimpanzee-specific solitary LTR copies. In addition, we found eight potential retrotransposition-competent full-length chimpanzee-specific ERV copies containing an intact env gene, and two of them were polymorphic in chimpanzee individuals. Through computational analysis and manual inspection, we found that some of the chimpanzee-specific ERVs have propagated via non-classical PtERV insertion (NCPI), and at least one of the PtERVs may have played a role in creating an alternative transcript of a chimpanzee gene. Based on our findings in this study, we state that the chimpanzee-specific ERV element is one of the sources of chimpanzee genomic variations, some of which might be related to the alternative transcripts in the chimpanzee population.
Collapse
Affiliation(s)
- Seyoung Mun
- Department of Nanobiomedical Science, Dankook University, Cheonan, Republic of Korea
- BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
- DKU-Theragen institute for NGS analysis (DTiNa), Cheonan, Republic of Korea
| | - Jungnam Lee
- Department of Nanobiomedical Science, Dankook University, Cheonan, Republic of Korea
- Departments of Periodontology & Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Yun-Ji Kim
- Department of Nanobiomedical Science, Dankook University, Cheonan, Republic of Korea
- BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
- DKU-Theragen institute for NGS analysis (DTiNa), Cheonan, Republic of Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| | - Kyudong Han
- Department of Nanobiomedical Science, Dankook University, Cheonan, Republic of Korea
- BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
- DKU-Theragen institute for NGS analysis (DTiNa), Cheonan, Republic of Korea
- * E-mail:
| |
Collapse
|
46
|
Hybridization capture reveals evolution and conservation across the entire Koala retrovirus genome. PLoS One 2014; 9:e95633. [PMID: 24752422 PMCID: PMC3994108 DOI: 10.1371/journal.pone.0095633] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/28/2014] [Indexed: 11/19/2022] Open
Abstract
The koala retrovirus (KoRV) is the only retrovirus known to be in the midst of invading the germ line of its host species. Hybridization capture and next generation sequencing were used on modern and museum DNA samples of koala (Phascolarctos cinereus) to examine ca. 130 years of evolution across the full KoRV genome. Overall, the entire proviral genome appeared to be conserved across time in sequence, protein structure and transcriptional binding sites. A total of 138 polymorphisms were detected, of which 72 were found in more than one individual. At every polymorphic site in the museum koalas, one of the character states matched that of modern KoRV. Among non-synonymous polymorphisms, radical substitutions involving large physiochemical differences between amino acids were elevated in env, potentially reflecting anti-viral immune pressure or avoidance of receptor interference. Polymorphisms were not detected within two functional regions believed to affect infectivity. Host sequences flanking proviral integration sites were also captured; with few proviral loci shared among koalas. Recently described variants of KoRV, designated KoRV-B and KoRV-J, were not detected in museum samples, suggesting that these variants may be of recent origin.
Collapse
|
47
|
Sistiaga-Poveda M, Jugo BM. Evolutionary dynamics of endogenous Jaagsiekte sheep retroviruses proliferation in the domestic sheep, mouflon and Pyrenean chamois. Heredity (Edinb) 2014; 112:571-8. [PMID: 24690757 DOI: 10.1038/hdy.2013.136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 10/22/2013] [Accepted: 11/13/2013] [Indexed: 11/10/2022] Open
Abstract
The oncogenic exogenous Jaagsiekte sheep retrovirus (JSRV), responsible for ovine pulmonary adenocarcinoma, has several endogenous counterparts termed enJSRVs. Although many of these elements have been inactivated over time by the accumulation of deleterious mutations or internal recombination leading to solo long terminal repeat (LTR) formation, several members of enJSRVs have been identified as nearly intact and probably represent recent integration events. To determine the level of enJSRV polymorphism in the sheep population and related species, we have undertaken a study by characterizing enJSRVs copies and independent integration sites in six domestic sheep and two wild species of the sheep lineage. enJSRVs copies were detected by amplifying the env-LTR region by PCR, and for the detection of the insertion sites, we used two approaches: (1) an in silico approach based on the recently published Sheep Reference Genome Assembly (OARv3.0) and (2) an experimental approach based on PCR suppression and inverse PCR techniques. In total, 103 enJSRV sequences were generated across 10 individuals and enJSRV integrations were found on 11 of the 28 sheep chromosomes. These findings suggest that there are still uncharacterized enJSRVs, and that some of the integration sites are variable among the different species, breeds of the same species, subspecies and geographic locations.
Collapse
Affiliation(s)
- M Sistiaga-Poveda
- Genetics, Physical Anthropology and Animal Physiology Department, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - B M Jugo
- Genetics, Physical Anthropology and Animal Physiology Department, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| |
Collapse
|
48
|
Halytskiy VA, Komisarenko SV. Specific silencing of leukemic oncogenes using RNA-interference approach. UKRAINIAN BIOCHEMICAL JOURNAL 2013. [DOI: 10.15407/ubj85.06.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
49
|
A novel recombinant retrovirus in the genomes of modern birds combines features of avian and mammalian retroviruses. J Virol 2013; 88:2398-405. [PMID: 24352464 DOI: 10.1128/jvi.02863-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Endogenous retroviruses (ERVs) represent ancestral sequences of modern retroviruses or their extinct relatives. The majority of ERVs cluster alongside exogenous retroviruses into two main groups based on phylogenetic analyses of the reverse transcriptase (RT) enzyme. Class I includes gammaretroviruses, and class II includes lentiviruses and alpha-, beta-, and deltaretroviruses. However, analyses of the transmembrane subunit (TM) of the envelope glycoprotein (env) gene result in a different topology for some retroviruses, suggesting recombination events in which heterologous env sequences have been acquired. We previously demonstrated that the TM sequences of five of the six genera of orthoretroviruses can be divided into three types, each of which infects a distinct set of vertebrate classes. Moreover, these classes do not always overlap the host range of the associated RT classes. Thus, recombination resulting in acquisition of a heterologous env gene could in theory facilitate cross-species transmissions across vertebrate classes, for example, from mammals to reptiles. Here we characterized a family of class II avian ERVs, "TgERV-F," that acquired a mammalian gammaretroviral env sequence. Although TgERV-F clusters near a sister clade to alpharetroviruses, its genome also has some features of betaretroviruses. We offer evidence that this unusual recombinant has circulated among several avian orders and may still have infectious members. In addition to documenting the infection of a nongalliform avian species by a mammalian retrovirus, TgERV-F also underscores the importance of env sequences in reconstructing phylogenies and supports a possible role for env swapping in allowing cross-species transmissions across wide taxonomic distances. IMPORTANCE Retroviruses can sometimes acquire an envelope gene (env) from a distantly related retrovirus. Since env is a key determinant of host range, such an event affects the host range of the recombinant virus and can lead to the creation of novel retroviral lineages. Retroviruses insert viral DNA into the host DNA during infection, and therefore vertebrate genomes contain a "fossil record" of endogenous retroviral sequences thought to represent past infections of germ cells. We examined endogenous retroviral sequences in avian genomes for evidence of recombination events involving env. Although cross-species transmissions of retroviruses between vertebrate classes (from mammals to birds, for example) are thought to be rare, we here characterized a group of avian retroviruses that acquired an env sequence from a mammalian retrovirus. We offer evidence that this unusual recombinant circulated among songbirds 2 to 4 million years ago and has remained active into the recent past.
Collapse
|
50
|
Comprehensive analysis of human endogenous retrovirus group HERV-W locus transcription in multiple sclerosis brain lesions by high-throughput amplicon sequencing. J Virol 2013; 87:13837-52. [PMID: 24109235 DOI: 10.1128/jvi.02388-13] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Human endogenous retroviruses (HERVs) of the HERV-W group comprise hundreds of loci in the human genome. Deregulated HERV-W expression and HERV-W locus ERVWE1-encoded Syncytin-1 protein have been implicated in the pathogenesis of multiple sclerosis (MS). However, the actual transcription of HERV-W loci in the MS context has not been comprehensively analyzed. We investigated transcription of HERV-W in MS brain lesions and white matter brain tissue from healthy controls by employing next-generation amplicon sequencing of HERV-W env-specific reverse transcriptase (RT) PCR products, thus revealing transcribed HERV-W loci and the relative transcript levels of those loci. We identified more than 100 HERV-W loci that were transcribed in the human brain, with a limited number of loci being predominantly transcribed. Importantly, relative transcript levels of HERV-W loci were very similar between MS and healthy brain tissue samples, refuting deregulated transcription of HERV-W env in MS brain lesions, including the high-level-transcribed ERVWE1 locus encoding Syncytin-1. Quantitative RT-PCR likewise did not reveal differences in MS regarding HERV-W env general transcript or ERVWE1- and ERVWE2-specific transcript levels. However, we obtained evidence for interindividual differences in HERV-W transcript levels. Reporter gene assays indicated promoter activity of many HERV-W long terminal repeats (LTRs), including structurally incomplete LTRs. Our comprehensive analysis of HERV-W transcription in the human brain thus provides important information on the biology of HERV-W in MS lesions and normal human brain, implications for study design, and mechanisms by which HERV-W may (or may not) be involved in MS.
Collapse
|