1
|
Loyer N, Hogg EKJ, Shaw HG, Pasztor A, Murray DH, Findlay GM, Januschke J. A CDK1 phosphorylation site on Drosophila PAR-3 regulates neuroblast polarisation and sensory organ formation. eLife 2024; 13:e97902. [PMID: 38869055 PMCID: PMC11216751 DOI: 10.7554/elife.97902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/08/2024] [Indexed: 06/14/2024] Open
Abstract
The generation of distinct cell fates during development depends on asymmetric cell division of progenitor cells. In the central and peripheral nervous system of Drosophila, progenitor cells respectively called neuroblasts or sensory organ precursors use PAR polarity during mitosis to control cell fate determination in their daughter cells. How polarity and the cell cycle are coupled, and how the cell cycle machinery regulates PAR protein function and cell fate determination is poorly understood. Here, we generate an analog sensitive allele of CDK1 and reveal that its partial inhibition weakens but does not abolish apical polarity in embryonic and larval neuroblasts and leads to defects in polarisation of fate determinants. We describe a novel in vivo phosphorylation of Bazooka, the Drosophila homolog of PAR-3, on Serine180, a consensus CDK phosphorylation site. In some tissular contexts, phosphorylation of Serine180 occurs in asymmetrically dividing cells but not in their symmetrically dividing neighbours. In neuroblasts, Serine180 phosphomutants disrupt the timing of basal polarisation. Serine180 phosphomutants also affect the specification and binary cell fate determination of sensory organ precursors as well as Baz localisation during their asymmetric cell divisions. Finally, we show that CDK1 phosphorylates Serine-S180 and an equivalent Serine on human PAR-3 in vitro.
Collapse
Affiliation(s)
- Nicolas Loyer
- Molecular, Cell and Developmental Biology, University of DundeeDundeeUnited Kingdom
| | - Elizabeth KJ Hogg
- MRC PPU, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Hayley G Shaw
- Molecular, Cell and Developmental Biology, University of DundeeDundeeUnited Kingdom
| | - Anna Pasztor
- Molecular, Cell and Developmental Biology, University of DundeeDundeeUnited Kingdom
- MRC PPU, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - David H Murray
- Molecular, Cell and Developmental Biology, University of DundeeDundeeUnited Kingdom
| | - Greg M Findlay
- Molecular, Cell and Developmental Biology, University of DundeeDundeeUnited Kingdom
- MRC PPU, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Jens Januschke
- Molecular, Cell and Developmental Biology, University of DundeeDundeeUnited Kingdom
| |
Collapse
|
2
|
Monster JL, Kemp LJ, Busslinger GA, Vliem MJ, Derks LL, Staes AA, Bisseling TM, Clevers H, van der Post RS, Gloerich M. Cell division-dependent dissemination following E-cadherin loss underlies initiation of diffuse-type gastric cancer. J Pathol 2024; 263:226-241. [PMID: 38572612 DOI: 10.1002/path.6277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/04/2024] [Accepted: 02/22/2024] [Indexed: 04/05/2024]
Abstract
Loss of the cell-cell adhesion protein E-cadherin underlies the development of diffuse-type gastric cancer (DGC), which is characterized by the gradual accumulation of tumor cells originating from the gastric epithelium in the surrounding stroma. How E-cadherin deficiency drives DGC formation remains elusive. Therefore, we investigated the consequences of E-cadherin loss on gastric epithelial organization utilizing a human gastric organoid model and histological analyses of early-stage DGC lesions. E-cadherin depletion from gastric organoids recapitulates DGC initiation, with progressive loss of a single-layered architecture and detachment of individual cells. We found that E-cadherin deficiency in gastric epithelia does not lead to a general loss of epithelial cohesion but disrupts the spindle orientation machinery. This leads to a loss of planar cell division orientation and, consequently, daughter cells are positioned outside of the gastric epithelial layer. Although basally delaminated cells fail to detach and instead reintegrate into the epithelium, apically mispositioned daughter cells can trigger the gradual loss of the single-layered epithelial architecture. This impaired architecture hampers reintegration of mispositioned daughter cells and enables basally delaminated cells to disseminate into the surrounding matrix. Taken together, our findings describe how E-cadherin deficiency disrupts gastric epithelial architecture through displacement of dividing cells and provide new insights in the onset of DGC. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Jooske L Monster
- Center for Molecular Medicine, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Lars Js Kemp
- Center for Molecular Medicine, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Georg A Busslinger
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marjolein J Vliem
- Center for Molecular Medicine, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Lucca Lm Derks
- Center for Molecular Medicine, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Annelot Al Staes
- Center for Molecular Medicine, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Tanya M Bisseling
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rachel S van der Post
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martijn Gloerich
- Center for Molecular Medicine, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
3
|
Mallart C, Netter S, Chalvet F, Claret S, Guichet A, Montagne J, Pret AM, Malartre M. JAK-STAT-dependent contact between follicle cells and the oocyte controls Drosophila anterior-posterior polarity and germline development. Nat Commun 2024; 15:1627. [PMID: 38388656 PMCID: PMC10883949 DOI: 10.1038/s41467-024-45963-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
The number of embryonic primordial germ cells in Drosophila is determined by the quantity of germ plasm, whose assembly starts in the posterior region of the oocyte during oogenesis. Here, we report that extending JAK-STAT activity in the posterior somatic follicular epithelium leads to an excess of primordial germ cells in the future embryo. We show that JAK-STAT signaling is necessary for the differentiation of approximately 20 specialized follicle cells maintaining tight contact with the oocyte. These cells define, in the underlying posterior oocyte cortex, the anchoring of the germ cell determinant oskar mRNA. We reveal that the apical surface of these posterior anchoring cells extends long filopodia penetrating the oocyte. We identify two JAK-STAT targets in these cells that are each sufficient to extend the zone of contact with the oocyte, thereby leading to production of extra primordial germ cells. JAK-STAT signaling thus determines a fixed number of posterior anchoring cells required for anterior-posterior oocyte polarity and for the development of the future germline.
Collapse
Affiliation(s)
- Charlotte Mallart
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Sophie Netter
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université de Versailles-Saint-Quentin en Yvelines, Université Paris-Saclay, Gif- sur-Yvette, France
| | - Fabienne Chalvet
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Sandra Claret
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Antoine Guichet
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Jacques Montagne
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Anne-Marie Pret
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université de Versailles-Saint-Quentin en Yvelines, Université Paris-Saclay, Gif- sur-Yvette, France
| | - Marianne Malartre
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France.
| |
Collapse
|
4
|
Ikami K, Shoffner-Beck S, Tyczynska Weh M, Schnell S, Yoshida S, Diaz Miranda EA, Ko S, Lei L. Branched germline cysts and female-specific cyst fragmentation facilitate oocyte determination in mice. Proc Natl Acad Sci U S A 2023; 120:e2219683120. [PMID: 37155904 PMCID: PMC10194012 DOI: 10.1073/pnas.2219683120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/03/2023] [Indexed: 05/10/2023] Open
Abstract
During mouse gametogenesis, germ cells derived from the same progenitor are connected via intercellular bridges forming germline cysts, within which asymmetrical or symmetrical cell fate occurs in female and male germ cells, respectively. Here, we have identified branched cyst structures in mice, and investigated their formation and function in oocyte determination. In fetal female cysts, 16.8% of the germ cells are connected by three or four bridges, namely branching germ cells. These germ cells are preferentially protected from cell death and cyst fragmentation and accumulate cytoplasm and organelles from sister germ cells to become primary oocytes. Changes in cyst structure and differential cell volumes among cyst germ cells suggest that cytoplasmic transport in germline cysts is conducted in a directional manner, in which cellular content is first transported locally between peripheral germ cells and further enriched in branching germ cells, a process causing selective germ cell loss in cysts. Cyst fragmentation occurs extensively in female cysts, but not in male cysts. Male cysts in fetal and adult testes have branched cyst structures, without differential cell fates between germ cells. During fetal cyst formation, E-cadherin (E-cad) junctions between germ cells position intercellular bridges to form branched cysts. Disrupted junction formation in E-cad-depleted cysts led to an altered ratio in branched cysts. Germ cell-specific E-cad knockout resulted in reductions in primary oocyte number and oocyte size. These findings shed light on how oocyte fate is determined within mouse germline cysts.
Collapse
Affiliation(s)
- Kanako Ikami
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI48109
- Buck Institute for Research on Aging, Novato, CA94945
| | - Suzanne Shoffner-Beck
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Malgorzata Tyczynska Weh
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Santiago Schnell
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Shosei Yoshida
- Division of Germ Cell Biology, National Institute for Basic Biology, Okazaki, Aichi444-8585, Japan
- Graduate Institute for Advanced Studies, Sokendai, Okazaki, Aichi444-8585, Japan
| | - Edgar Andres Diaz Miranda
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri School of Medicine, Columbia, MO65211
| | - Sooah Ko
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri School of Medicine, Columbia, MO65211
| | - Lei Lei
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri School of Medicine, Columbia, MO65211
- Division of Biological Sciences, College of Arts and Sciences, University of Missouri, Columbia, MO65211
| |
Collapse
|
5
|
Guevara-Garcia A, Soleilhac M, Minc N, Delacour D. Regulation and functions of cell division in the intestinal tissue. Semin Cell Dev Biol 2023:S1084-9521(23)00004-6. [PMID: 36702722 DOI: 10.1016/j.semcdb.2023.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/16/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023]
Abstract
In multicellular organisms, epithelial cells are key elements of tissue organization. In developing epithelial tissues, cellular proliferation and differentiation are under the tight regulation of morphogenetic programs to ensure correct organ formation and functioning. In these processes, proliferation rates and division orientation regulate the speed, timing and direction of tissue expansion but also its proper patterning. Moreover, tissue homeostasis relies on spatio-temporal modulations of daughter cell behavior and arrangement. These aspects are particularly crucial in the intestine, which is one of the most proliferative tissues in adults, making it a very attractive adult organ system to study the role of cell division on epithelial morphogenesis and organ function. Although epithelial cell division has been the subject of intense research for many years in multiple models, it still remains in its infancy in the context of the intestinal tissue. In this review, we focus on the current knowledge on cell division and regulatory mechanisms at play in the intestinal epithelial tissue, as well as their importance in developmental biology and physiopathology.
Collapse
Affiliation(s)
| | - Matis Soleilhac
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France
| | - Nicolas Minc
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France
| | - Delphine Delacour
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France.
| |
Collapse
|
6
|
Charnley M, Allam AH, Newton LM, Humbert PO, Russell SM. E-cadherin in developing murine T cells controls spindle alignment and progression through β-selection. SCIENCE ADVANCES 2023; 9:eade5348. [PMID: 36652509 DOI: 10.1126/sciadv.ade5348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
A critical stage of T cell development is β-selection; at this stage, the T cell receptor β (TCRβ) chain is generated, and the developing T cell starts to acquire antigenic specificity. Progression through β-selection is assisted by low-affinity interactions between the nascent TCRβ chain and peptide presented on stromal major histocompatibility complex and cues provided by the niche. In this study, we identify a cue within the developing T cell niche that is critical for T cell development. E-cadherin mediates cell-cell interactions and influences cell fate in many developmental systems. In developing T cells, E-cadherin contributed to the formation of an immunological synapse and the alignment of the mitotic spindle with the polarity axis during division, which facilitated subsequent T cell development. Collectively, these data suggest that E-cadherin facilitates interactions with the thymic niche to coordinate the β-selection stage of T cell development.
Collapse
Affiliation(s)
- Mirren Charnley
- Optical Sciences Centre, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Amr H Allam
- Optical Sciences Centre, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Lucas M Newton
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
- Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Patrick O Humbert
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
- Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, Victoria 3086, Australia
- Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Victoria 3010, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Sarah M Russell
- Optical Sciences Centre, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
7
|
Camuglia J, Chanet S, Martin AC. Morphogenetic forces planar polarize LGN/Pins in the embryonic head during Drosophila gastrulation. eLife 2022; 11:e78779. [PMID: 35796436 PMCID: PMC9262390 DOI: 10.7554/elife.78779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/05/2022] [Indexed: 01/03/2023] Open
Abstract
Spindle orientation is often achieved by a complex of Partner of Inscuteable (Pins)/LGN, Mushroom Body Defect (Mud)/Nuclear Mitotic Apparatus (NuMa), Gαi, and Dynein, which interacts with astral microtubules to rotate the spindle. Cortical Pins/LGN recruitment serves as a critical step in this process. Here, we identify Pins-mediated planar cell polarized divisions in several of the mitotic domains of the early Drosophila embryo. We found that neither planar cell polarity pathways nor planar polarized myosin localization determined division orientation; instead, our findings strongly suggest that Pins planar polarity and force generated from mesoderm invagination are important. Disrupting Pins polarity via overexpression of a myristoylated version of Pins caused randomized division angles. We found that disrupting forces through chemical inhibitors, depletion of an adherens junction protein, or blocking mesoderm invagination disrupted Pins planar polarity and spindle orientation. Furthermore, directional ablations that separated mesoderm from mitotic domains disrupted spindle orientation, suggesting that forces transmitted from mesoderm to mitotic domains can polarize Pins and orient division during gastrulation. To our knowledge, this is the first in vivo example where mechanical force has been shown to polarize Pins to mediate division orientation.
Collapse
Affiliation(s)
- Jaclyn Camuglia
- Biology Department, Massachusetts Institute of TechnologyCambridge, MAUnited States
| | - Soline Chanet
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSLParisFrance
| | - Adam C Martin
- Biology Department, Massachusetts Institute of TechnologyCambridge, MAUnited States
| |
Collapse
|
8
|
Diffuse gastric cancer: Emerging mechanisms of tumor initiation and progression. Biochim Biophys Acta Rev Cancer 2022; 1877:188719. [PMID: 35307354 DOI: 10.1016/j.bbcan.2022.188719] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/07/2023]
Abstract
Gastric cancer is globally the fourth leading cause of cancer-related deaths. Patients with diffuse-type gastric cancer (DGC) particularly have a poor prognosis that only marginally improved over the last decades, as conventional chemotherapies are frequently ineffective and specific therapies are unavailable. Early-stage DGC is characterized by intramucosal lesions of discohesive cells, which can be present for many years before the emergence of advanced DGC consisting of highly proliferative and invasive cells. The mechanisms underlying the key steps of DGC development and transition to aggressive tumors are starting to emerge. Novel mouse- and organoid models for DGC, together with multi-omic analyses of DGC tumors, revealed contributions of both tumor cell-intrinsic alterations and gradual changes in the tumor microenvironment to DGC progression. In this review, we will discuss how these recent findings are leading towards an understanding of the cellular and molecular mechanisms responsible for DGC initiation and malignancy, which may provide opportunities for targeted therapies.
Collapse
|
9
|
Salamon I, Rasin MR. Evolution of the Neocortex Through RNA-Binding Proteins and Post-transcriptional Regulation. Front Neurosci 2022; 15:803107. [PMID: 35082597 PMCID: PMC8784817 DOI: 10.3389/fnins.2021.803107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022] Open
Abstract
The human neocortex is undoubtedly considered a supreme accomplishment in mammalian evolution. It features a prenatally established six-layered structure which remains plastic to the myriad of changes throughout an organism’s lifetime. A fundamental feature of neocortical evolution and development is the abundance and diversity of the progenitor cell population and their neuronal and glial progeny. These evolutionary upgrades are partially enabled due to the progenitors’ higher proliferative capacity, compartmentalization of proliferative regions, and specification of neuronal temporal identities. The driving force of these processes may be explained by temporal molecular patterning, by which progenitors have intrinsic capacity to change their competence as neocortical neurogenesis proceeds. Thus, neurogenesis can be conceptualized along two timescales of progenitors’ capacity to (1) self-renew or differentiate into basal progenitors (BPs) or neurons or (2) specify their fate into distinct neuronal and glial subtypes which participate in the formation of six-layers. Neocortical development then proceeds through sequential phases of proliferation, differentiation, neuronal migration, and maturation. Temporal molecular patterning, therefore, relies on the precise regulation of spatiotemporal gene expression. An extensive transcriptional regulatory network is accompanied by post-transcriptional regulation that is frequently mediated by the regulatory interplay between RNA-binding proteins (RBPs). RBPs exhibit important roles in every step of mRNA life cycle in any system, from splicing, polyadenylation, editing, transport, stability, localization, to translation (protein synthesis). Here, we underscore the importance of RBP functions at multiple time-restricted steps of early neurogenesis, starting from the cell fate transition of transcriptionally primed cortical progenitors. A particular emphasis will be placed on RBPs with mostly conserved but also divergent evolutionary functions in neural progenitors across different species. RBPs, when considered in the context of the fascinating process of neocortical development, deserve to be main protagonists in the story of the evolution and development of the neocortex.
Collapse
|
10
|
Houssin E, Pinot M, Bellec K, Le Borgne R. Par3 cooperates with Sanpodo for the assembly of Notch clusters following asymmetric division of Drosophila sensory organ precursor cells. eLife 2021; 10:e66659. [PMID: 34596529 PMCID: PMC8516416 DOI: 10.7554/elife.66659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 09/25/2021] [Indexed: 12/15/2022] Open
Abstract
In multiple cell lineages, Delta-Notch signalling regulates cell fate decisions owing to unidirectional signalling between daughter cells. In Drosophila pupal sensory organ lineage, Notch regulates the intra-lineage pIIa/pIIb fate decision at cytokinesis. Notch and Delta that localise apically and basally at the pIIa-pIIb interface are expressed at low levels and their residence time at the plasma membrane is in the order of minutes. How Delta can effectively interact with Notch to trigger signalling from a large plasma membrane area remains poorly understood. Here, we report that the signalling interface possesses a unique apico-basal polarity with Par3/Bazooka localising in the form of nano-clusters at the apical and basal level. Notch is preferentially targeted to the pIIa-pIIb interface, where it co-clusters with Bazooka and its cofactor Sanpodo. Clusters whose assembly relies on Bazooka and Sanpodo activities are also positive for Neuralized, the E3 ligase required for Delta activity. We propose that the nano-clusters act as snap buttons at the new pIIa-pIIb interface to allow efficient intra-lineage signalling.
Collapse
Affiliation(s)
- Elise Houssin
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F- 35000RennesFrance
- Equipe Labellisée Ligue Nationale contre le cancerGlasgowUnited Kingdom
| | - Mathieu Pinot
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F- 35000RennesFrance
- Equipe Labellisée Ligue Nationale contre le cancerGlasgowUnited Kingdom
| | - Karen Bellec
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F- 35000RennesFrance
- Equipe Labellisée Ligue Nationale contre le cancerGlasgowUnited Kingdom
| | - Roland Le Borgne
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F- 35000RennesFrance
- Equipe Labellisée Ligue Nationale contre le cancerGlasgowUnited Kingdom
| |
Collapse
|
11
|
Liu ZY, Li B, Zhao ZL, Xu GK, Feng XQ, Gao H. Mesoscopic dynamic model of epithelial cell division with cell-cell junction effects. Phys Rev E 2020; 102:012405. [PMID: 32794908 DOI: 10.1103/physreve.102.012405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
Cell division is central for embryonic development, tissue morphogenesis, and tumor growth. Experiments have evidenced that mitotic cell division is manipulated by the intercellular cues such as cell-cell junctions. However, it still remains unclear how these cortical-associated cues mechanically affect the mitotic spindle machinery, which determines the position and orientation of the cell division. In this paper, a mesoscopic dynamic cell division model is established to explore the integrated regulations of cortical polarity, microtubule pulling forces, cell deformability, and internal osmotic pressure. We show that the distributed pulling forces of astral microtubules play a key role in encoding the instructive cortical cues to orient and position the spindle of a dividing cell. The present model can not only predict the spindle orientation and position, but also capture the morphological evolution of cell rounding. The theoretical results agree well with relevant experiments both qualitatively and quantitatively. This work sheds light on the mechanical linkage between cell cortex and mitotic spindle, and holds potential in regulating cell division and sculpting tissue morphology.
Collapse
Affiliation(s)
- Zong-Yuan Liu
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Bo Li
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Zi-Long Zhao
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Guang-Kui Xu
- International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Huajian Gao
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Institute of High Performance Computing, A*STAR, Singapore 138632, Singapore
| |
Collapse
|
12
|
Franco M, Carmena A. Eph signaling in mitotic spindle orientation: what´s your angle here? Cell Cycle 2019; 18:2590-2597. [PMID: 31475621 DOI: 10.1080/15384101.2019.1658479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The orientation of the mitotic spindle is a crucial process during development and adult tissue homeostasis and multiple mechanisms have been shown to intrinsically regulate this process. However, much less is known about the extrinsic cues involved in modulating spindle orientation. We have recently uncovered a novel function of Eph intercellular signaling in regulating spindle alignment by ultimately ensuring the correct cortical distribution of central components within the intrinsic spindle orientation machinery. Here, we comment on these results, novel questions that they open and potential additional research to address in the future.
Collapse
Affiliation(s)
- Maribel Franco
- Developmental Neurobiology Unit, Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández , Alicante , Spain
| | - Ana Carmena
- Developmental Neurobiology Unit, Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández , Alicante , Spain
| |
Collapse
|
13
|
Early Hereditary Diffuse Gastric Cancer (eHDGC) is Characterized by Subtle Genomic Instability and Active DNA Damage Response. Pathol Oncol Res 2018; 25:711-721. [PMID: 30547291 DOI: 10.1007/s12253-018-0547-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 11/16/2018] [Indexed: 12/26/2022]
Abstract
Diffuse gastric cancer (DGC) is one of the two primary types of stomach cancer. Carriers of germline mutations in the gene encoding E-cadherin are predisposed to DGC. The primary aim of the present study was to determine if genomic instability is an early event in DGC and how it may lead to disease progression. Chromosomal aberrations in early intramucosal hereditary diffuse gastric cancer (eHDGC) were assessed using array comparative genomic hybridization (array CGH). Notably, no aneuploidy or other large-scale chromosomal rearrangements were detected. Instead, all aberrations affected small regions (< 4.8 Mb) and were predominantly deletions. Analysis of DNA sequence patterns revealed that essentially all aberrations possessed the characteristics of common fragile sites. These results and the results of subsequent immunohistochemical examinations demonstrated that unlike advanced DGC, eHDGCs is characterized by low levels of genomic instability at fragile sites. Furthermore, they express an active DNA damage response, providing a molecular basis for the observed indolence of eHDGC. This finding is an important step to understanding the pathology underlying natural history of DGC and supports a revision of the current definition of eHDGC as a malignant disease.
Collapse
|
14
|
Martin JL, Sanders EN, Moreno-Roman P, Jaramillo Koyama LA, Balachandra S, Du X, O'Brien LE. Long-term live imaging of the Drosophila adult midgut reveals real-time dynamics of division, differentiation and loss. eLife 2018; 7:36248. [PMID: 30427308 PMCID: PMC6277200 DOI: 10.7554/elife.36248] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 11/12/2018] [Indexed: 12/18/2022] Open
Abstract
Organ renewal is governed by the dynamics of cell division, differentiation and loss. To study these dynamics in real time, we present a platform for extended live imaging of the adult Drosophila midgut, a premier genetic model for stem-cell-based organs. A window cut into a living animal allows the midgut to be imaged while intact and physiologically functioning. This approach prolongs imaging sessions to 12–16 hr and yields movies that document cell and tissue dynamics at vivid spatiotemporal resolution. By applying a pipeline for movie processing and analysis, we uncover new and intriguing cell behaviors: that mitotic stem cells dynamically re-orient, that daughter cells use slow kinetics of Notch activation to reach a fate-specifying threshold, and that enterocytes extrude via ratcheted constriction of a junctional ring. By enabling real-time study of midgut phenomena that were previously inaccessible, our platform opens a new realm for dynamic understanding of adult organ renewal.
Collapse
Affiliation(s)
- Judy Lisette Martin
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Erin Nicole Sanders
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States.,Department of Developmental Biology, Stanford University School of Medicine, Stanford, United States
| | - Paola Moreno-Roman
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States.,Department of Biology, Stanford University, Stanford, United States
| | - Leslie Ann Jaramillo Koyama
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States.,Department of Developmental Biology, Stanford University School of Medicine, Stanford, United States
| | - Shruthi Balachandra
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - XinXin Du
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Lucy Erin O'Brien
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
15
|
Loyer N, Januschke J. The last-born daughter cell contributes to division orientation of Drosophila larval neuroblasts. Nat Commun 2018; 9:3745. [PMID: 30218051 PMCID: PMC6138640 DOI: 10.1038/s41467-018-06276-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 08/17/2018] [Indexed: 01/27/2023] Open
Abstract
Controlling the orientation of cell division is important in the context of cell fate choices and tissue morphogenesis. However, the mechanisms providing the required positional information remain incompletely understood. Here we use stem cells of the Drosophila larval brain that stably maintain their axis of polarity and division between cell cycles to identify cues that orient cell division. Using live cell imaging of cultured brains, laser ablation and genetics, we reveal that division axis maintenance relies on their last-born daughter cell. We propose that, in addition to known intrinsic cues, stem cells in the developing fly brain are polarized by an extrinsic signal. We further find that division axis maintenance allows neuroblasts to maximize their contact area with glial cells known to provide protective and proliferative signals to neuroblasts.
Collapse
Affiliation(s)
- Nicolas Loyer
- Cell & Developmental Biology, School of Life Sciences, University of Dundee, MSI/WTB3 Complex, Dow Street, Dundee, DD1 5EH, UK
| | - Jens Januschke
- Cell & Developmental Biology, School of Life Sciences, University of Dundee, MSI/WTB3 Complex, Dow Street, Dundee, DD1 5EH, UK.
| |
Collapse
|
16
|
Wu M. Mechanisms of Trabecular Formation and Specification During Cardiogenesis. Pediatr Cardiol 2018; 39:1082-1089. [PMID: 29594501 PMCID: PMC6164162 DOI: 10.1007/s00246-018-1868-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/14/2018] [Indexed: 01/08/2023]
Abstract
Trabecular morphogenesis is a key morphologic event during cardiogenesis and contributes to the formation of a competent ventricular wall. Lack of trabeculation results in embryonic lethality. The trabecular morphogenesis is a multistep process that includes, but is not limited to, trabecular initiation, proliferation/growth, specification, and compaction. Although a number of signaling molecules have been implicated in regulating trabeculation, the cellular processes underlying mammalian trabecular formation are not fully understood. Recent works show that the myocardium displays polarity, and oriented cell division (OCD) and directional migration of the cardiomyocytes in the monolayer myocardium are required for trabecular initiation and formation. Furthermore, perpendicular OCD is an extrinsic asymmetric cell division that contributes to trabecular specification, and is a mechanism that causes the trabecular cardiomyocytes to be distinct from the cardiomyocytes in compact zone. Once the coronary vasculature system starts to function in the embryonic heart, the trabeculae will coalesce with the compact zone to thicken the heart wall, and abnormal compaction will lead to left ventricular non-compaction (LVNC) and heart failure. There are many reviews about compaction and LVNC. In this review, we will focus on the roles of myocardial polarity and OCD in trabecular initiation, formation, and specification.
Collapse
Affiliation(s)
- Mingfu Wu
- Department of Molecular and Cellular Physiology, Albany Medical College, 43 New Scotland Ave, Albany, NY, 12208, USA.
| |
Collapse
|
17
|
Lázaro-Diéguez F, Müsch A. Cell-cell adhesion accounts for the different orientation of columnar and hepatocytic cell divisions. J Cell Biol 2017; 216:3847-3859. [PMID: 28887437 PMCID: PMC5674875 DOI: 10.1083/jcb.201608065] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 06/01/2017] [Accepted: 08/08/2017] [Indexed: 02/06/2023] Open
Abstract
Mitotic spindle alignment with the basal or substrate-contacting domain ensures that dividing epithelial cells remain in the plane of the monolayer. Spindle orientation with respect to the substratum is established in metaphase coincident with maximal cell rounding, which enables unobstructed spindle rotation. Misaligned metaphase spindles are believed to result in divisions in which one daughter loses contact with the basal lamina. Here we describe a rescue mechanism that drives substrate-parallel spindle alignment of quasi-diagonal metaphase spindles in anaphase. It requires a Rho- and E-cadherin adhesion-dependent, substrate-parallel contractile actin belt at the apex that governs anaphase cell flattening. In contrast to monolayered Madin-Darby canine kidney cells, hepatocytic epithelial cells, which typically feature tilted metaphase spindles, lack this anaphase flattening mechanism and as a consequence maintain their spindle tilt through cytokinesis. This results in out-of-monolayer divisions, which we propose contribute to the stratified organization of hepatocyte cords in vivo.
Collapse
Affiliation(s)
- Francisco Lázaro-Diéguez
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Anne Müsch
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
18
|
E-cadherin and LGN align epithelial cell divisions with tissue tension independently of cell shape. Proc Natl Acad Sci U S A 2017; 114:E5845-E5853. [PMID: 28674014 DOI: 10.1073/pnas.1701703114] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Tissue morphogenesis requires the coordinated regulation of cellular behavior, which includes the orientation of cell division that defines the position of daughter cells in the tissue. Cell division orientation is instructed by biochemical and mechanical signals from the local tissue environment, but how those signals control mitotic spindle orientation is not fully understood. Here, we tested how mechanical tension across an epithelial monolayer is sensed to orient cell divisions. Tension across Madin-Darby canine kidney cell monolayers was increased by a low level of uniaxial stretch, which oriented cell divisions with the stretch axis irrespective of the orientation of the cell long axis. We demonstrate that stretch-induced division orientation required mechanotransduction through E-cadherin cell-cell adhesions. Increased tension on the E-cadherin complex promoted the junctional recruitment of the protein LGN, a core component of the spindle orientation machinery that binds the cytosolic tail of E-cadherin. Consequently, uniaxial stretch triggered a polarized cortical distribution of LGN. Selective disruption of trans engagement of E-cadherin in an otherwise cohesive cell monolayer, or loss of LGN expression, resulted in randomly oriented cell divisions in the presence of uniaxial stretch. Our findings indicate that E-cadherin plays a key role in sensing polarized tensile forces across the tissue and transducing this information to the spindle orientation machinery to align cell divisions.
Collapse
|
19
|
Cell division orientation is coupled to cell-cell adhesion by the E-cadherin/LGN complex. Nat Commun 2017; 8:13996. [PMID: 28045117 PMCID: PMC5216124 DOI: 10.1038/ncomms13996] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 11/18/2016] [Indexed: 02/07/2023] Open
Abstract
Both cell–cell adhesion and oriented cell division play prominent roles in establishing tissue architecture, but it is unclear how they might be coordinated. Here, we demonstrate that the cell–cell adhesion protein E-cadherin functions as an instructive cue for cell division orientation. This is mediated by the evolutionarily conserved LGN/NuMA complex, which regulates cortical attachments of astral spindle microtubules. We show that LGN, which adopts a three-dimensional structure similar to cadherin-bound catenins, binds directly to the E-cadherin cytosolic tail and thereby localizes at cell–cell adhesions. On mitotic entry, NuMA is released from the nucleus and competes LGN from E-cadherin to locally form the LGN/NuMA complex. This mediates the stabilization of cortical associations of astral microtubules at cell–cell adhesions to orient the mitotic spindle. Our results show how E-cadherin instructs the assembly of the LGN/NuMA complex at cell–cell contacts, and define a mechanism that couples cell division orientation to intercellular adhesion. Cell–cell adhesion and oriented cell division play key roles in tissue architecture, but how they are coordinated is not known. Here, the authors show that E-cadherin interacts with LGN, and thereby provides a cortical cue that serves to stabilize cortical attachment of astral microtubules at cell–cell adhesions, thus orienting the mitotic spindle.
Collapse
|
20
|
Ostrem B, Di Lullo E, Kriegstein A. oRGs and mitotic somal translocation - a role in development and disease. Curr Opin Neurobiol 2016; 42:61-67. [PMID: 27978479 DOI: 10.1016/j.conb.2016.11.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/18/2016] [Accepted: 11/22/2016] [Indexed: 12/30/2022]
Abstract
The evolution of the human brain has been characterized by an increase in the size of the neocortex. Underlying this expansion is a significant increase in the number of neurons produced by neural stem cells during early stages of cortical development. Here we highlight recent advances in our understating of these cell populations, consisting of ventricular radial glia and outer radial glia. We highlight how gene expression studies have identified molecular signatures for radial glial cell populations and outline what has been learned about the mechanisms underlying the characteristic mode of division observed in outer radial glia cells, mitotic somal translocation. Understanding the significance of this behavior may help us explain human cortical expansion and further elucidate neurodevelopmental diseases.
Collapse
Affiliation(s)
- Bridget Ostrem
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
| | - Elizabeth Di Lullo
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
| | - Arnold Kriegstein
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
21
|
The ins(ide) and outs(ide) of asymmetric stem cell division. Curr Opin Cell Biol 2016; 43:1-6. [PMID: 27318429 DOI: 10.1016/j.ceb.2016.06.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 05/26/2016] [Accepted: 06/04/2016] [Indexed: 01/12/2023]
Abstract
Many adult stem cells divide asymmetrically, generating one stem cell (self-renewal) and one differentiating cell. Balancing self-renewal and differentiation is critical for sustaining tissue homeostasis throughout the life of an organism. Failure to execute asymmetric stem cell division can have profound impacts on tissue homeostasis, resulting in tissue degeneration or hyperplasia/tumorigenic overgrowth. Recent studies have expanded our understanding of both the extracellular and intracellular mechanisms that regulate, reinforce and ensure an asymmetric outcome following stem cell division. In this review, we discuss newly discovered aspects of asymmetric stem cell division that, in concert with well-established mechanisms, contribute to balancing self-renewal and differentiation.
Collapse
|
22
|
A restricted period for formation of outer subventricular zone defined by Cdh1 and Trnp1 levels. Nat Commun 2016; 7:11812. [PMID: 27264089 PMCID: PMC4897765 DOI: 10.1038/ncomms11812] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/03/2016] [Indexed: 01/11/2023] Open
Abstract
The outer subventricular zone (OSVZ) is a germinal layer playing key roles in the development of the neocortex, with particular relevance in gyrencephalic species such as human and ferret, where it contains abundant basal radial glia cells (bRGCs) that promote cortical expansion. Here we identify a brief period in ferret embryonic development when apical RGCs generate a burst of bRGCs that become founders of the OSVZ. After this period, bRGCs in the OSVZ proliferate and self-renew exclusively locally, thereby forming a self-sustained lineage independent from the other germinal layers. The time window for the brief period of OSVZ bRGC production is delineated by the coincident downregulation of Cdh1 and Trnp1, and their upregulation reduces bRGC production and prevents OSVZ seeding. This mechanism in cortical development may have key relevance in brain evolution and disease. The outer subventricular zone (OSVZ) contains basal radial glial cells (bRGC) involved in cortical expansion in gyrencephalic mammals. Here the authors identify a developmental time window with marked production of bRGCs required to found the OSVZ that is dependent on coincident downregulation of Cdh1 and Trnp1.
Collapse
|
23
|
Bosveld F, Guirao B, Wang Z, Rivière M, Bonnet I, Graner F, Bellaïche Y. Modulation of junction tension by tumor-suppressors and proto-oncogenes regulates cell-cell contacts. Development 2016; 143:623-34. [DOI: 10.1242/dev.127993] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 01/07/2016] [Indexed: 12/26/2022]
Abstract
Tumor-suppressor and proto-oncogenes play critical roles in tissue proliferation. Furthermore, deregulation of their functions is deleterious to tissue architecture and can result in the sorting of somatic rounded clones minimizing their contact with surrounding wild-type (wt) cells. Defects in somatic clones shape correlate with defects in proliferation, cell affinity, cell-cell adhesion, oriented cell division and cortical elasticity. Combining genetics, live-imaging, laser ablation and computer simulations, we aim to analyze whether distinct or similar mechanisms can account for the common role of tumor-suppressor and proto-oncogenes in cell-cell contact regulation. In Drosophila epithelia, Fat (Ft) and Dachsous (Ds) tumor-suppressors regulate cell proliferation, tissue morphogenesis, planar cell polarity and junction tension. By analyzing the time evolution of ft mutant cells and clones, we show that ft clones reduce their cell-cell contact with surrounding wt tissue in the absence of concomitant cell divisions and over-proliferation. This contact reduction depends on opposite changes of junction tensions in the clone bulk and its boundary with neighboring wt tissue. More generally, either clone bulk or boundary junction tensions is modulated by the activation of Yorkie, Myc and Ras yielding similar contact reductions with wt cells. Together our data highlight mechanical roles for proto-oncogene and tumor-suppressor pathways in cell-cell interactions.
Collapse
Affiliation(s)
- Floris Bosveld
- Polarity, Division and Morphogenesis Team, Institut Curie, CNRS UMR 3215, INSERM U934, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Boris Guirao
- Polarity, Division and Morphogenesis Team, Institut Curie, CNRS UMR 3215, INSERM U934, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Zhimin Wang
- Polarity, Division and Morphogenesis Team, Institut Curie, CNRS UMR 3215, INSERM U934, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Mathieu Rivière
- Polarity, Division and Morphogenesis Team, Institut Curie, CNRS UMR 3215, INSERM U934, 26 rue d'Ulm, 75248 Paris Cedex 05, France
- Present address: Matière et Systèmes Complexes, Université Paris Diderot, CNRS UMR 7057, 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France
| | - Isabelle Bonnet
- Polarity, Division and Morphogenesis Team, Institut Curie, CNRS UMR 3215, INSERM U934, 26 rue d'Ulm, 75248 Paris Cedex 05, France
- Present address: Laboratoire Physico-Chimie Curie, Institut Curie, CNRS UMR 168, Université Pierre et Marie Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - François Graner
- Polarity, Division and Morphogenesis Team, Institut Curie, CNRS UMR 3215, INSERM U934, 26 rue d'Ulm, 75248 Paris Cedex 05, France
- Present address: Matière et Systèmes Complexes, Université Paris Diderot, CNRS UMR 7057, 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France
| | - Yohanns Bellaïche
- Polarity, Division and Morphogenesis Team, Institut Curie, CNRS UMR 3215, INSERM U934, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| |
Collapse
|
24
|
Abstract
The ability to dictate cell fate decisions is critical during animal development. Moreover, faithful execution of this process ensures proper tissue homeostasis throughout adulthood, whereas defects in the molecular machinery involved may contribute to disease. Evolutionarily conserved protein complexes control cell fate decisions across diverse tissues. Maintaining proper daughter cell inheritance patterns of these determinants during mitosis is therefore a fundamental step of the cell fate decision-making process. In this review, we will discuss two key aspects of this fate determinant segregation activity, cortical cell polarity and mitotic spindle orientation, and how they operate together to produce oriented cell divisions that ultimately influence daughter cell fate. Our focus will be directed at the principal underlying molecular mechanisms and the specific cell fate decisions they have been shown to control.
Collapse
Affiliation(s)
| | | | - Christopher A. Johnston
- Author to whom correspondence should be addressed; ; Tel.: +1-505-277-1567; Fax: +1-505-277-0304
| |
Collapse
|
25
|
Shahbazi MN, Perez-Moreno M. Connections between cadherin-catenin proteins, spindle misorientation, and cancer. Tissue Barriers 2015; 3:e1045684. [PMID: 26451345 DOI: 10.1080/21688370.2015.1045684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/18/2015] [Accepted: 04/21/2015] [Indexed: 10/25/2022] Open
Abstract
Cadherin-catenin mediated adhesion is an important determinant of tissue architecture in multicellular organisms. Cancer progression and maintenance is frequently associated with loss of their expression or functional activity, which not only leads to decreased cell-cell adhesion, but also to enhanced tumor cell proliferation and loss of differentiated characteristics. This review is focused on the emerging implications of cadherin-catenin proteins in the regulation of polarized divisions through their connections with the centrosomes, cytoskeleton, tissue tension and signaling pathways; and illustrates how alterations in cadherin-catenin levels or functional activity may render cells susceptible to transformation through the loss of their proliferation-differentiation balance.
Collapse
Affiliation(s)
- Marta N Shahbazi
- Department of Physiology, Development, and Neuroscience; University of Cambridge ; Cambridge, UK
| | - Mirna Perez-Moreno
- Epithelial Cell Biology Group; Cancer Cell Biology Program; Spanish National Cancer Research Centre ; Madrid, Spain
| |
Collapse
|
26
|
Sanchez-Díaz I, Rosales-Bravo F, Reyes-Taboada JL, Covarrubias AA, Narvaez-Padilla V, Reynaud E. The Esg Gene Is Involved in Nicotine Sensitivity in Drosophila melanogaster. PLoS One 2015; 10:e0133956. [PMID: 26222315 PMCID: PMC4519288 DOI: 10.1371/journal.pone.0133956] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 07/03/2015] [Indexed: 12/04/2022] Open
Abstract
In humans, there is a strong correlation between sensitivity to substances of abuse and addiction risk. This differential tolerance to drugs has a strong genetic component. The identification of human genetic factors that alter drug tolerance has been a difficult task. For this reason and taking advantage of the fact that Drosophila responds similarly to humans to many drugs, and that genetically it has a high degree of homology (sharing at least 70% of genes known to be involved in human genetic diseases), we looked for genes in Drosophila that altered their nicotine sensitivity. We developed an instantaneous nicotine vaporization technique that exposed flies in a reproducible way. The amount of nicotine sufficient to "knock out" half of control flies for 30 minutes was determined and this parameter was defined as Half Recovery Time (HRT). Two fly lines, L4 and L70, whose HRT was significantly longer than control´s were identified. The L4 insertion is a loss of function allele of the transcriptional factor escargot (esg), whereas L70 insertion causes miss-expression of the microRNA cluster miR-310-311-312-313 (miR-310c). In this work, we demonstrate that esg loss of function induces nicotine sensitivity possibly by altering development of sensory organs and neurons in the medial section of the thoracoabdominal ganglion. The ectopic expression of the miR-310c also induces nicotine sensitivity by lowering Esg levels thus disrupting sensory organs and possibly to the modulation of other miR-310c targets.
Collapse
Affiliation(s)
- Iván Sanchez-Díaz
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Apartado Postal, 510–3, Cuernavaca 62210, México
| | - Fernando Rosales-Bravo
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos 62209, México
| | - José Luis Reyes-Taboada
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Apartado Postal, 510–3, Cuernavaca 62210, Mexico
| | - Alejandra A Covarrubias
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Apartado Postal, 510–3, Cuernavaca 62210, Mexico
| | - Verónica Narvaez-Padilla
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos 62209, México
| | - Enrique Reynaud
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Apartado Postal, 510–3, Cuernavaca 62210, México
| |
Collapse
|
27
|
Inaba M, Venkei ZG, Yamashita YM. The polarity protein Baz forms a platform for the centrosome orientation during asymmetric stem cell division in the Drosophila male germline. eLife 2015; 4. [PMID: 25793442 PMCID: PMC4391501 DOI: 10.7554/elife.04960] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 03/19/2015] [Indexed: 12/14/2022] Open
Abstract
Many stem cells divide asymmetrically in order to balance self-renewal with differentiation. The essence of asymmetric cell division (ACD) is the polarization of cells and subsequent division, leading to unequal compartmentalization of cellular/extracellular components that confer distinct cell fates to daughter cells. Because precocious cell division before establishing cell polarity would lead to failure in ACD, these two processes must be tightly coupled; however, the underlying mechanism is poorly understood. In Drosophila male germline stem cells, ACD is prepared by stereotypical centrosome positioning. The centrosome orientation checkpoint (COC) further serves to ensure ACD by preventing mitosis upon centrosome misorientation. In this study, we show that Bazooka (Baz) provides a platform for the correct centrosome orientation and that Baz-centrosome association is the key event that is monitored by the COC. Our work provides a foundation for understanding how the correct cell polarity may be recognized by the cell to ensure productive ACD.
Collapse
Affiliation(s)
- Mayu Inaba
- Life Sciences Institute, University of Michigan, Ann Arbor, United States
| | - Zsolt G Venkei
- Life Sciences Institute, University of Michigan, Ann Arbor, United States
| | - Yukiko M Yamashita
- Life Sciences Institute, University of Michigan, Ann Arbor, United States
| |
Collapse
|
28
|
Gold KS, Brand AH. Optix defines a neuroepithelial compartment in the optic lobe of the Drosophila brain. Neural Dev 2014; 9:18. [PMID: 25074684 PMCID: PMC4127074 DOI: 10.1186/1749-8104-9-18] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/25/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND During early brain development, the organisation of neural progenitors into a neuroepithelial sheet maintains tissue integrity during growth. Neuroepithelial cohesion and patterning is essential for orderly proliferation and neural fate specification. Neuroepithelia are regionalised by the expression of transcription factors and signalling molecules, resulting in the formation of distinct developmental, and ultimately functional, domains. RESULTS We have discovered that the Six3/6 family orthologue Optix is an essential regulator of neuroepithelial maintenance and patterning in the Drosophila brain. Six3 and Six6 are required for mammalian eye and forebrain development, and mutations in humans are associated with severe eye and brain malformation. In Drosophila, Optix is expressed in a sharply defined region of the larval optic lobe, and its expression is reciprocal to that of the transcription factor Vsx1. Optix gain- and loss-of-function affects neuroepithelial adhesion, integrity and polarity. We find restricted cell lineage boundaries that correspond to transcription factor expression domains. CONCLUSION We propose that the optic lobe is compartmentalised by expression of Optix and Vsx1. Our findings provide insight into the spatial patterning of a complex region of the brain, and suggest an evolutionarily conserved principle of visual system development.
Collapse
Affiliation(s)
| | - Andrea H Brand
- The Gurdon Institute and Department of Physiology, Development & Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.
| |
Collapse
|
29
|
Dayal JHS, Cole CL, Pourreyron C, Watt SA, Lim YZ, Salas-Alanis JC, Murrell DF, McGrath JA, Stieger B, Jahoda C, Leigh IM, South AP. Type VII collagen regulates expression of OATP1B3, promotes front-to-rear polarity and increases structural organisation in 3D spheroid cultures of RDEB tumour keratinocytes. J Cell Sci 2014; 127:740-51. [PMID: 24357722 PMCID: PMC3924202 DOI: 10.1242/jcs.128454] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 11/12/2013] [Indexed: 12/24/2022] Open
Abstract
Type VII collagen is the main component of anchoring fibrils, structures that are integral to basement membrane homeostasis in skin. Mutations in the gene encoding type VII collagen COL7A1 cause recessive dystrophic epidermolysis bullosa (RDEB) an inherited skin blistering condition complicated by frequent aggressive cutaneous squamous cell carcinoma (cSCC). OATP1B3, which is encoded by the gene SLCO1B3, is a member of the OATP (organic anion transporting polypeptide) superfamily responsible for transporting a wide range of endogenous and xenobiotic compounds. OATP1B3 expression is limited to the liver in healthy tissues, but is frequently detected in multiple cancer types and is reported to be associated with differing clinical outcome. The mechanism and functional significance of tumour-specific expression of OATP1B3 has yet to be determined. Here, we identify SLCO1B3 expression in tumour keratinocytes isolated from RDEB and UV-induced cSCC and demonstrate that SLCO1B3 expression and promoter activity are modulated by type VII collagen. We show that reduction of SLCO1B3 expression upon expression of full-length type VII collagen in RDEB cSCC coincides with acquisition of front-to-rear polarity and increased organisation of 3D spheroid cultures. In addition, we show that type VII collagen positively regulates the abundance of markers implicated in cellular polarity, namely ELMO2, PAR3, E-cadherin, B-catenin, ITGA6 and Ln332.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Antigens, CD
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cadherins/genetics
- Cadherins/metabolism
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Polarity
- Coculture Techniques
- Collagen Type VII/physiology
- Cytoskeletal Proteins/genetics
- Cytoskeletal Proteins/metabolism
- Epidermolysis Bullosa Dystrophica/genetics
- Epidermolysis Bullosa Dystrophica/metabolism
- Epidermolysis Bullosa Dystrophica/pathology
- Gene Expression Regulation, Neoplastic
- Humans
- Integrin alpha6/genetics
- Integrin alpha6/metabolism
- Keratinocytes
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Neoplasm Transplantation
- Organic Anion Transporters, Sodium-Independent/genetics
- Organic Anion Transporters, Sodium-Independent/metabolism
- Promoter Regions, Genetic
- Protein Transport
- Skin Neoplasms/genetics
- Skin Neoplasms/metabolism
- Skin Neoplasms/pathology
- Solute Carrier Organic Anion Transporter Family Member 1B3
- Transcription, Genetic
- Tumor Cells, Cultured
- beta Catenin/genetics
- beta Catenin/metabolism
- Kalinin
Collapse
Affiliation(s)
- Jasbani H. S. Dayal
- Division of Cancer Research, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Clare L. Cole
- Division of Cancer Research, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Celine Pourreyron
- Division of Cancer Research, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Stephen A. Watt
- Division of Cancer Research, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Yok Zuan Lim
- Division of Cancer Research, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | | | - Dedee F. Murrell
- St George Hospital, University of New South Wales, Sydney, 2217 NSW, Australia
| | - John A. McGrath
- King's College School of Medicine, St Thomas' Hospital, Guys Campus, London WC2R 2LS, UK
| | - Bruno Stieger
- Swiss Federal Institute of Technology, 8092 Zurich, Switzerland
| | | | - Irene M. Leigh
- Division of Cancer Research, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Andrew P. South
- Division of Cancer Research, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| |
Collapse
|
30
|
Hartenstein V, Wodarz A. Initial neurogenesis in Drosophila. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2013; 2:701-21. [PMID: 24014455 DOI: 10.1002/wdev.111] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Early neurogenesis comprises the phase of nervous system development during which neural progenitor cells are born. In early development, the embryonic ectoderm is subdivided by a conserved signaling mechanism into two main domains, the epidermal ectoderm and the neurectoderm. Subsequently, cells of the neurectoderm are internalized and form a cell layer of proliferating neural progenitors. In vertebrates, the entire neurectoderm folds into the embryo to give rise to the neural tube. In Drosophila and many other invertebrates, a subset of neurectodermal cells, called neuroblasts (NBs), delaminates and forms the neural primordium inside the embryo where they divide in an asymmetric, stem cell-like mode. The remainder of the neurectodermal cells that stay behind at the surface loose their neurogenic potential and later give rise to the ventral part of the epidermis. The genetic and molecular analysis of the mechanisms controlling specification and proliferation of NBs in the Drosophila embryo, which played a significant part in pioneering the field of modern developmental neurobiology, represents the topic of this review.
Collapse
Affiliation(s)
- Volker Hartenstein
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | | |
Collapse
|
31
|
Guillot C, Lecuit T. Adhesion Disengagement Uncouples Intrinsic and Extrinsic Forces to Drive Cytokinesis in Epithelial Tissues. Dev Cell 2013; 24:227-41. [DOI: 10.1016/j.devcel.2013.01.010] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/30/2012] [Accepted: 01/10/2013] [Indexed: 01/17/2023]
|
32
|
Peng Y, Han C, Axelrod JD. Planar polarized protrusions break the symmetry of EGFR signaling during Drosophila bract cell fate induction. Dev Cell 2012; 23:507-18. [PMID: 22921201 DOI: 10.1016/j.devcel.2012.07.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 04/12/2012] [Accepted: 07/20/2012] [Indexed: 01/06/2023]
Abstract
Secreted signaling molecules typically float in the outer leaflet of the plasma membrane or freely diffuse away from the signaling cell, suggesting that a signal should be sensed equally by all neighboring cells. However, we demonstrate that Spitz (Spi)-mediated epidermal growth factor receptor (EGFR) signaling is spatially biased to selectively determine the induction of a single bract cell on the proximal side of each mechanosensory organ on the Drosophila leg. Dynamic and oriented cellular protrusions emanating from the socket cell, the source of Spi, robustly favor the Spi/EGFR signaling response in a particular cell among equally competent neighbors. We propose that these protrusive structures enhance signaling by increasing contact between the signaling and responding cells. The planar polarized direction of the protrusions determines the direction of the signaling outcome. This asymmetric cell signaling serves as a developmental mechanism to generate spatially patterned cell fates.
Collapse
Affiliation(s)
- Ying Peng
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | |
Collapse
|
33
|
Robertson F, Pinal N, Fichelson P, Pichaud F. Atonal and EGFR signalling orchestrate rok- and Drak-dependent adherens junction remodelling during ommatidia morphogenesis. Development 2012; 139:3432-41. [PMID: 22874916 DOI: 10.1242/dev.080762] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Morphogenesis of epithelial tissues relies on the interplay between cell division, differentiation and regulated changes in cell shape, intercalation and sorting. These processes are often studied individually in relatively simple epithelia that lack the complexity found during organogenesis when these processes might all coexist simultaneously. To address this issue, we are making use of the developing fly retinal neuroepithelium. Retinal morphogenesis relies on a coordinated sequence of interdependent morphogenetic events that includes apical cell constriction, localized alignment of groups of cells and ommatidia morphogenesis coupled to neurogenesis. Here, we use live imaging to document the sequence of adherens junction (AJ) remodelling events required to generate the fly ommatidium. In this context, we demonstrate that the kinases Rok and Drak function redundantly during Myosin II-dependent cell constriction, subsequent multicellular alignment and AJ remodelling. In addition, we show that early multicellular patterning characterized by cell alignment is promoted by the conserved transcription factor Atonal (Ato). Further ommatidium patterning requires the epidermal growth factor receptor (EGFR) signalling pathway, which transcriptionally governs rok- and Drak-dependent AJ remodelling while also promoting neurogenesis. In conclusion, our work reveals an important role for Drak in regulating AJ remodelling during retinal morphogenesis. It also sheds new light on the interplay between Ato, EGFR-dependent transcription and AJ remodelling in a system in which neurogenesis is coupled with cell shape changes and regulated steps of cell intercalation.
Collapse
Affiliation(s)
- Francesca Robertson
- MRC Laboratory for Molecular Cell Biology and Cell Biology Unit, University College London, Gower Street, London, WC1E 6BT, UK
| | | | | | | |
Collapse
|
34
|
Abstract
In the Drosophila embryonic central nervous system, the neural precursor cells called neuroblasts undergo a number of asymmetric divisions along the apical-basal axis to give rise to different daughter cells of distinct fates. This review summarizes recent progress in understanding the mechanisms of these asymmetric cell divisions. We discuss proteins that are localized at distinct domains of cortex in the neuroblasts and their role in generating asymmetry. We also review uniformly cortical localized factors and actin cytoskeleton-associated motor proteins with regard to their potential role to serve as a link between distinct cortical domains in the neuroblasts. In this review, asymmetric divisions of sensory organ precursor and larval neuroblasts are also briefly discussed.
Collapse
Affiliation(s)
- Hongyan Wang
- Temasek Life Sciences Laboratory, 1 Research Link, The National University of Singapore, Singapore 117604
| | | |
Collapse
|
35
|
Harris TJ. Adherens Junction Assembly and Function in the Drosophila Embryo. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 293:45-83. [DOI: 10.1016/b978-0-12-394304-0.00007-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Abstract
The specification, maintenance, division and differentiation of stem cells are integral to the development and homeostasis of many tissues. These stem cells often live in specialized anatomical areas, called niches. While niches can be complex, most involve cell-cell interactions that are mediated by adherens junctions. A diverse array of functions have been attributed to adherens junctions in stem cell biology. These include physical anchoring to the niche, control of proliferation and division orientation, regulation of signaling cascades and of differentiation. In this review, a number of model stem cell systems that highlight various functions of adherens junctions are discussed. In addition, a summary of the current understanding of adherens junction function in mammalian tissues and embryonic and induced pluripotent stem cells is provided. This analysis demonstrates that the roles of adherens junctions are surprisingly varied and integrated with both the anatomy and the physiology of the tissue.
Collapse
|
37
|
Abstract
Drosophila represents a paradigm for the analysis of the cellular, molecular and genetic mechanisms of development and is an ideal model system to study the contribution of Adherens Junctions (AJs) and their major components, cadherins, to morphogenesis. The combination of different techniques and approaches has allowed researchers to identify the requirements of these epithelial junctions in vivo in the context of a whole organism. The functional analysis of mutants for AJ core components, particularly for Drosophila DE-cadherin, has shown that AJs play critical roles in virtually all stages of development. For instance, AJs maintain tissue integrity while allowing the remodelling and homeostasis of many tissues. They control cell shape, contribute to cell polarity, facilitate cell-cell recognition during cell sorting, orient cell divisions, or regulate cell rearrangements, among other activities. Remarkably, these activities require a very fine control of the organisation and turnover of AJs during development. In addition, AJs engage in diverse and complex interactions with the cytoskeleton, signalling networks, intracellular trafficking machinery or polarity cues to perform these functions. Here, by summarising the requirements of AJs and cadherins during Drosophila morphogenesis, we illustrate the capital contribution of this model system to our knowledge of the mechanisms and biology of AJs.
Collapse
Affiliation(s)
- Annalisa Letizia
- Developmental Biology, Institut de Biologia Molecular de Barcelona, CSIC, Parc Científic de Barcelona Baldiri Reixac 10-12, 08028, Barcelona, Spain,
| | | |
Collapse
|
38
|
Abstract
After years of extensive scientific discovery much has been learned about the networks that regulate epithelial homeostasis. Loss of expression or functional activity of cell adhesion and cell polarity proteins (including the PAR, crumbs (CRB) and scribble (SCRIB) complexes) is intricately related to advanced stages of tumour progression and invasiveness. But the key roles of these proteins in crosstalk with the Hippo and liver kinase B1 (LKB1)-AMPK pathways and in epithelial function and proliferation indicate that they may also be associated with the early stages of tumorigenesis. For example, deregulation of adhesion and polarity proteins can cause misoriented cell divisions and increased self-renewal of adult epithelial stem cells. In this Review, we highlight some advances in the understanding of how loss of epithelial cell polarity contributes to tumorigenesis.
Collapse
Affiliation(s)
- Fernando Martin-Belmonte
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Madrid 28049, Spain.
| | | |
Collapse
|
39
|
Oda H, Takeichi M. Evolution: structural and functional diversity of cadherin at the adherens junction. ACTA ACUST UNITED AC 2011; 193:1137-46. [PMID: 21708975 PMCID: PMC3216324 DOI: 10.1083/jcb.201008173] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adhesion between cells is essential to the evolution of multicellularity. Indeed, morphogenesis in animals requires firm but flexible intercellular adhesions that are mediated by subcellular structures like the adherens junction (AJ). A key component of AJs is classical cadherins, a group of transmembrane proteins that maintain dynamic cell-cell associations in many animal species. An evolutionary reconstruction of cadherin structure and function provides a comprehensive framework with which to appreciate the diversity of morphogenetic mechanisms in animals.
Collapse
Affiliation(s)
- Hiroki Oda
- JT Biohistory Research Hall, Takatsuki, Osaka 569-1125, Japan.
| | | |
Collapse
|
40
|
Chang LH, Chen P, Lien MT, Ho YH, Lin CM, Pan YT, Wei SY, Hsu JC. Differential adhesion and actomyosin cable collaborate to drive Echinoid-mediated cell sorting. Development 2011; 138:3803-12. [DOI: 10.1242/dev.062257] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cell sorting involves the segregation of two cell populations into `immiscible' adjacent tissues with smooth borders. Echinoid (Ed), a nectin ortholog, is an adherens junction protein in Drosophila, and cells mutant for ed sort out from the surrounding wild-type cells. However, it remains unknown which factors trigger cell sorting. Here, we dissect the sequence of this process and find that cell sorting occurs when differential expression of Ed triggers the assembly of actomyosin cable. Conversely, Ed-mediated cell sorting can be rescued by recruitment of Ed, via homophilic or heterophilic interactions, to the wild-type cell side of the clonal interface, even when differential Ed expression persists. We found, unexpectedly, that when actomyosin cable was largely absent, differential adhesion was sufficient to cause limited cell segregation but with a jagged tissue border (imperfect sorting). We propose that Ed-mediated cell sorting is driven both by differential Ed adhesion that induces cell segregation with a jagged border and by actomyosin cable assembly at the interface that smoothens this border.
Collapse
Affiliation(s)
- Li-Hsun Chang
- Institute of Molecular Medicine, Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan 30034, Republic of China
| | - Peilong Chen
- Department of Physics, National Central University, Jhongli, Taiwan 32001, Republic of China
| | - Mong-Ting Lien
- Institute of Molecular Medicine, Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan 30034, Republic of China
| | - Yu-Huei Ho
- Institute of Molecular Medicine, Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan 30034, Republic of China
| | - Chiao-Ming Lin
- Institute of Molecular Medicine, Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan 30034, Republic of China
| | - Yi-Ting Pan
- Institute of Molecular Medicine, Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan 30034, Republic of China
| | - Shu-Yi Wei
- Institute of Molecular Medicine, Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan 30034, Republic of China
| | - Jui-Chou Hsu
- Institute of Molecular Medicine, Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan 30034, Republic of China
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan 30034, Republic of China
| |
Collapse
|
41
|
|
42
|
Werts AD, Goldstein B. How signaling between cells can orient a mitotic spindle. Semin Cell Dev Biol 2011; 22:842-9. [PMID: 21807106 DOI: 10.1016/j.semcdb.2011.07.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 07/13/2011] [Accepted: 07/15/2011] [Indexed: 10/25/2022]
Abstract
In multicellular animals, cell communication sometimes serves to orient the direction in which cells divide. Control of division orientation has been proposed to be critical for partitioning developmental determinants and for maintaining epithelial architecture. Surprisingly, there are few cases where we understand the mechanisms by which external cues, transmitted by intercellular signaling, specify the division orientation of animal cells. One would predict that cytosolic molecules or complexes exist that are capable of interpreting extrinsic cues, translating the positions of these cues into forces on microtubules of the mitotic spindle. In recent years, a key intracellular complex has been identified that is required for pulling forces on mitotic spindles in Drosophila, Caenorhabditis elegans and vertebrate systems. One member of this complex, a protein with tetratricopeptide repeat (TPR) and GoLoco (Gα-binding) domains, has been found localized in positions that coincide with the positions of spindle-orienting extracellular cues. Do TPR-GoLoco proteins function as conserved, spatially regulated mediators of spindle orientation by intercellular signaling? Here, we review the relevant evidence among cases from diverse animal systems where this protein complex has been found to localize to specific cell-cell contacts and to be involved in orienting mitotic spindles.
Collapse
Affiliation(s)
- Adam D Werts
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
43
|
Benhra N, Lallet S, Cotton M, Le Bras S, Dussert A, Le Borgne R. AP-1 controls the trafficking of Notch and Sanpodo toward E-cadherin junctions in sensory organ precursors. Curr Biol 2010; 21:87-95. [PMID: 21194948 DOI: 10.1016/j.cub.2010.12.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 11/11/2010] [Accepted: 12/06/2010] [Indexed: 02/01/2023]
Abstract
In Drosophila melanogaster, external sensory organs develop from a single sensory organ precursor (SOP). The SOP divides asymmetrically to generate daughter cells, whose fates are governed by differential Notch activation. Here we show that the clathrin adaptor AP-1 complex, localized at the trans Golgi network and in recycling endosomes, acts as a negative regulator of Notch signaling. Inactivation of AP-1 causes ligand-dependent activation of Notch, leading to a fate transformation within sensory organs. Loss of AP-1 affects neither cell polarity nor the unequal segregation of the cell fate determinants Numb and Neuralized. Instead, it causes apical accumulation of the Notch activator Sanpodo and stabilization of both Sanpodo and Notch at the interface between SOP daughter cells, where DE-cadherin is localized. Endocytosis-recycling assays reveal that AP-1 acts in recycling endosomes to prevent internalized Spdo from recycling toward adherens junctions. Because AP-1 does not prevent endocytosis and recycling of the Notch ligand Delta, our data indicate that the DE-cadherin junctional domain may act as a launching pad through which endocytosed Notch ligand is trafficked for signaling.
Collapse
Affiliation(s)
- Najate Benhra
- CNRS UMR 6061-Institut de Génétique et Développement de Rennes, Université de Rennes 1, 2 avenue du Professeur Bernard, 35000 Rennes, France
| | | | | | | | | | | |
Collapse
|
44
|
Žigman M, Trinh LA, Fraser SE, Moens CB. Zebrafish neural tube morphogenesis requires Scribble-dependent oriented cell divisions. Curr Biol 2010; 21:79-86. [PMID: 21185191 DOI: 10.1016/j.cub.2010.12.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 10/18/2010] [Accepted: 12/02/2010] [Indexed: 11/17/2022]
Abstract
How control of subcellular events in single cells determines morphogenesis on the scale of the tissue is largely unresolved. The stereotyped cross-midline mitoses of progenitors in the zebrafish neural keel provide a unique experimental paradigm for defining the role and control of single-cell orientation for tissue-level morphogenesis in vivo. We show here that the coordinated orientation of individual progenitor cell division in the neural keel is the cellular determinant required for morphogenesis into a neural tube epithelium with a single straight lumen. We find that Scribble is required for oriented cell division and that its function in this process is independent of canonical apicobasal and planar polarity pathways. We identify a role for Scribble in controlling clustering of α-catenin foci in dividing progenitors. Loss of either Scrib or N-cadherin results in abnormally oriented mitoses, reduced cross-midline cell divisions, and similar neural tube defects. We propose that Scribble-dependent nascent cell-cell adhesion clusters between neuroepithelial progenitors contribute to define orientation of their cell division. Finally, our data demonstrate that while oriented mitoses of individual cells determine neural tube architecture, the tissue can in turn feed back on its constituent cells to define their polarization and cell division orientation to ensure robust tissue morphogenesis.
Collapse
Affiliation(s)
- Mihaela Žigman
- Howard Hughes Medical Institute and Division of Basic Science, Fred Hutchinson Cancer Research Center, B2-152, 1100 Fairview Avenue North, Seattle, WA 98109, USA.
| | | | | | | |
Collapse
|
45
|
Inaba M, Yuan H, Salzmann V, Fuller MT, Yamashita YM. E-cadherin is required for centrosome and spindle orientation in Drosophila male germline stem cells. PLoS One 2010; 5:e12473. [PMID: 20824213 PMCID: PMC2930853 DOI: 10.1371/journal.pone.0012473] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 08/06/2010] [Indexed: 12/16/2022] Open
Abstract
Many adult stem cells reside in a special microenvironment known as the niche, where they receive essential signals that specify stem cell identity. Cell-cell adhesion mediated by cadherin and integrin plays a crucial role in maintaining stem cells within the niche. In Drosophila melanogaster, male germline stem cells (GSCs) are attached to niche component cells (i.e., the hub) via adherens junctions. The GSC centrosomes and spindle are oriented toward the hub-GSC junction, where E-cadherin-based adherens junctions are highly concentrated. For this reason, adherens junctions are thought to provide a polarity cue for GSCs to enable proper orientation of centrosomes and spindles, a critical step toward asymmetric stem cell division. However, understanding the role of E-cadherin in GSC polarity has been challenging, since GSCs carrying E-cadherin mutations are not maintained in the niche. Here, we tested whether E-cadherin is required for GSC polarity by expressing a dominant-negative form of E-cadherin. We found that E-cadherin is indeed required for polarizing GSCs toward the hub cells, an effect that may be mediated by Apc2. We also demonstrated that E-cadherin is required for the GSC centrosome orientation checkpoint, which prevents mitosis when centrosomes are not correctly oriented. We propose that E-cadherin orchestrates multiple aspects of stem cell behavior, including polarization of stem cells toward the stem cell-niche interface and adhesion of stem cells to the niche supporting cells.
Collapse
Affiliation(s)
- Mayu Inaba
- Center for Stem Cell Biology, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Cell and Developmental Biology, School of Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Hebao Yuan
- Center for Stem Cell Biology, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Cell and Developmental Biology, School of Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Viktoria Salzmann
- Center for Stem Cell Biology, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Cell and Developmental Biology, School of Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Margaret T. Fuller
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Yukiko M. Yamashita
- Center for Stem Cell Biology, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Cell and Developmental Biology, School of Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
46
|
Wu M, Smith CL, Hall JA, Lee I, Luby-Phelps K, Tallquist MD. Epicardial spindle orientation controls cell entry into the myocardium. Dev Cell 2010; 19:114-25. [PMID: 20643355 DOI: 10.1016/j.devcel.2010.06.011] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 05/12/2010] [Accepted: 05/21/2010] [Indexed: 11/25/2022]
Abstract
During heart morphogenesis, epicardial cells undergo an epithelial-to-mesenchymal transition (EMT) and migrate into the subepicardium. The cellular signals controlling this process are poorly understood. Here, we show that epicardial cells exhibit two distinct mitotic spindle orientations, directed either parallel or perpendicular to the basement membrane. Cells undergoing perpendicular cell division subsequently enter the myocardium. We found that loss of beta-catenin led to a disruption of adherens junctions and a randomization of mitotic spindle orientation. Loss of adherens junctions also disrupted Numb localization within epicardial cells, and disruption of Numb and Numblike expression in the epicardium led to randomized mitotic spindle orientations. Taken together, these data suggest that directed mitotic spindle orientation contributes to epicardial EMT and implicate a junctional complex of beta-catenin and Numb in the regulation of spindle orientation.
Collapse
Affiliation(s)
- Mingfu Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | | | | | | | | | | |
Collapse
|
47
|
Harris TJC, Tepass U. Adherens junctions: from molecules to morphogenesis. Nat Rev Mol Cell Biol 2010; 11:502-14. [PMID: 20571587 DOI: 10.1038/nrm2927] [Citation(s) in RCA: 681] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
How adhesive interactions between cells generate and maintain animal tissue structure remains one of the most challenging and long-standing questions in cell and developmental biology. Adherens junctions (AJs) and the cadherin-catenin complexes at their core are therefore the subjects of intense research. Recent work has greatly advanced our understanding of the molecular organization of AJs and how cadherin-catenin complexes engage actin, microtubules and the endocytic machinery. As a result, we have gained important insights into the molecular mechanisms of tissue morphogenesis.
Collapse
Affiliation(s)
- Tony J C Harris
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario M5S 3G5, Canada.
| | | |
Collapse
|
48
|
Godde NJ, Galea RC, Elsum IA, Humbert PO. Cell polarity in motion: redefining mammary tissue organization through EMT and cell polarity transitions. J Mammary Gland Biol Neoplasia 2010; 15:149-68. [PMID: 20461450 DOI: 10.1007/s10911-010-9180-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 04/27/2010] [Indexed: 02/04/2023] Open
Abstract
Epithelial to mesenchymal transition (EMT) and its reversion via mesenchymal to epithelial transition (MET), represent a stepwise cycle of epithelial plasticity that allows for normal tissue remodelling and diversification during development. In particular, epithelial-mesenchymal plasticity is central to many aspects of mammary development and has been proposed to be a key process in breast cancer progression. Such epithelial-mesenchymal plasticity requires complex cellular reprogramming to orchestrate a change in cell shape to an alternate morphology more conducive to migration. During this process, epithelial characteristics, including apical-basal polarity and specialised cell-cell junctions are lost and mesenchymal properties, such as a front-rear polarity associated with weak cell-cell contacts, increased motility, resistance to apoptosis and invasiveness are gained. The ability of epithelial cells to undergo transitions through cell polarity states is a central feature of epithelial-mesenchymal plasticity. These cell polarity states comprise a set of distinct asymmetric distributions of cellular constituents that are fashioned to allow specialized cellular functions, such as the regulated homeostasis of molecules across epithelial barriers, cell migration or cell diversification via asymmetric cell divisions. Each polarity state is engineered using a molecular toolbox that is highly conserved between organisms and cell types which can direct the initiation, establishment and continued maintenance of each asymmetry. Here we discuss how EMT pathways target cell polarity mediators, and how this EMT-dependent change in polarity states impact on the various stages of breast cancer. Emerging evidence places cell polarity at the interface of proliferation and morphology control and as such the changing dynamics within polarity networks play a critical role in normal mammary gland development and breast cancer progression.
Collapse
Affiliation(s)
- Nathan J Godde
- Cell Cycle and Cancer Genetics Laboratory, Peter MacCallum Cancer Center, East Melbourne, VIC 3002, Australia
| | | | | | | |
Collapse
|
49
|
Guilford P, Humar B, Blair V. Hereditary diffuse gastric cancer: translation of CDH1 germline mutations into clinical practice. Gastric Cancer 2010; 13:1-10. [PMID: 20373070 DOI: 10.1007/s10120-009-0531-x] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 11/13/2009] [Indexed: 02/06/2023]
Abstract
Hereditary diffuse gastric cancer (HDGC) is the only known cancer syndrome that is dominated by gastric adenocarcinoma. HDGC is caused by germline mutation of the CDH1 gene that encodes the cell adhesion protein E-cadherin. Mutation carriers have a more than 70% lifetime risk of developing DGC and an elevated risk of lobular breast cancer. Intestinal-type gastric cancer is not part of the syndrome. Clinical management of HDGC involves predictive genetic testing beginning at or near 16 years of age. It is recommended that mutation carriers undergo prophylactic gastrectomy after about 20 years of age. Anatomical mapping has demonstrated that mutation carriers develop multifocal stage T1a signet ring cell carcinomas, with up to several hundred foci being observed in single stomachs. These foci develop following the somatic inactivation of the second CDH1 allele by mechanisms that include DNA promoter hypermethylation.
Collapse
Affiliation(s)
- Parry Guilford
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
50
|
Haruta T, Warrior R, Yonemura S, Oda H. The proximal half of the Drosophila E-cadherin extracellular region is dispensable for many cadherin-dependent events but required for ventral furrow formation. Genes Cells 2010; 15:193-208. [PMID: 20184661 DOI: 10.1111/j.1365-2443.2010.01389.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The formation of the ventral furrow during Drosophila gastrulation is driven by coordinated apical constriction. Cell-cell adhesion is thought to regulate apical constriction, but the mechanisms are poorly understood. DE-cadherin, an epithelial classic cadherin, has in its membrane-proximal extracellular region a suite of domains absent from vertebrate/urochordate classic cadherins. We constructed DEΔP, a DE-cadherin derivative that lacks the membrane-proximal half of the extracellular region but retains the entire cytoplasmic domain and still exhibits strong cell-cell binding ability. The extracellular region of DEΔP consists of only cadherin repeats, mimicking vertebrate/urochordate classic cadherins. In animals lacking DE-cadherin, DEΔP organized adherens junction assembly and functioned fully in many cadherin-dependent processes, including oogenesis. Embryos in which DE-cadherin was entirely replaced by DEΔP established the blastoderm epithelium but failed to form a ventral furrow. Apical constrictions were initiated relatively normally but subsequently decelerated. These were then followed by catastrophic disruption of the junctional network. Our results suggest that although the membrane-proximal half of the DE-cadherin extracellular region is dispensable for many developmental events, it is essential for efficient and robust apical constriction during ventral furrow formation.
Collapse
Affiliation(s)
- Tomohiro Haruta
- JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125 JapanGraduate School of Science, Department of Biology, Osaka University, Osaka, JapanDepartment of Developmental and Cell Biology and the Developmental Biology Center, University of California Irvine, Irvine, CA 92612, USAElectron Microscope Laboratory, RIKEN, Center for Developmental Biology, Kobe 650-0047, Japan
| | | | | | | |
Collapse
|