1
|
Vanhille-Campos C, Whitley KD, Radler P, Loose M, Holden S, Šarić A. Self-organization of mortal filaments and its role in bacterial division ring formation. NATURE PHYSICS 2024; 20:1670-1678. [PMID: 39416851 PMCID: PMC11473364 DOI: 10.1038/s41567-024-02597-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/27/2024] [Indexed: 10/19/2024]
Abstract
Filaments in the cell commonly treadmill. Driven by energy consumption, they grow on one end while shrinking on the other, causing filaments to appear motile even though individual proteins remain static. This process is characteristic of cytoskeletal filaments and leads to collective filament self-organization. Here we show that treadmilling drives filament nematic ordering by dissolving misaligned filaments. Taking the bacterial FtsZ protein involved in cell division as an example, we show that this mechanism aligns FtsZ filaments in vitro and drives the organization of the division ring in living Bacillus subtilis cells. We find that ordering via local dissolution also allows the system to quickly respond to chemical and geometrical biases in the cell, enabling us to quantitatively explain the ring formation dynamics in vivo. Beyond FtsZ and other cytoskeletal filaments, our study identifies a mechanism for self-organization via constant birth and death of energy-consuming filaments.
Collapse
Affiliation(s)
- Christian Vanhille-Campos
- Institute of Science and Technology Austria, Klosterneuburg, Austria
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, UK
| | - Kevin D. Whitley
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Philipp Radler
- Institute of Science and Technology Austria, Klosterneuburg, Austria
- Archaea Biology and Ecogenomics Unit, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Martin Loose
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Séamus Holden
- School of Life Sciences, The University of Warwick, Coventry, UK
| | - Anđela Šarić
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
2
|
Vermeulen BJ, Böhler A, Gao Q, Neuner A, Župa E, Chu Z, Würtz M, Jäkle U, Gruss OJ, Pfeffer S, Schiebel E. γ-TuRC asymmetry induces local protofilament mismatch at the RanGTP-stimulated microtubule minus end. EMBO J 2024; 43:2062-2085. [PMID: 38600243 PMCID: PMC11099078 DOI: 10.1038/s44318-024-00087-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
The γ-tubulin ring complex (γ-TuRC) is a structural template for de novo microtubule assembly from α/β-tubulin units. The isolated vertebrate γ-TuRC assumes an asymmetric, open structure deviating from microtubule geometry, suggesting that γ-TuRC closure may underlie regulation of microtubule nucleation. Here, we isolate native γ-TuRC-capped microtubules from Xenopus laevis egg extract nucleated through the RanGTP-induced pathway for spindle assembly and determine their cryo-EM structure. Intriguingly, the microtubule minus end-bound γ-TuRC is only partially closed and consequently, the emanating microtubule is locally misaligned with the γ-TuRC and asymmetric. In the partially closed conformation of the γ-TuRC, the actin-containing lumenal bridge is locally destabilised, suggesting lumenal bridge modulation in microtubule nucleation. The microtubule-binding protein CAMSAP2 specifically binds the minus end of γ-TuRC-capped microtubules, indicating that the asymmetric minus end structure may underlie recruitment of microtubule-modulating factors for γ-TuRC release. Collectively, we reveal a surprisingly asymmetric microtubule minus end protofilament organisation diverging from the regular microtubule structure, with direct implications for the kinetics and regulation of nucleation and subsequent modulation of microtubules during spindle assembly.
Collapse
Affiliation(s)
- Bram Ja Vermeulen
- Zentrum für Molekulare Biologie, Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany
| | - Anna Böhler
- Zentrum für Molekulare Biologie, Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany
| | - Qi Gao
- Zentrum für Molekulare Biologie, Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany
| | - Annett Neuner
- Zentrum für Molekulare Biologie, Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany
| | - Erik Župa
- Zentrum für Molekulare Biologie, Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany
| | - Zhenzhen Chu
- Institut für Genetik, Universität Bonn, Bonn, Germany
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Lymphoma Department, Peking University Cancer Hospital & Institute, Beijing, China
| | - Martin Würtz
- Zentrum für Molekulare Biologie, Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany
| | - Ursula Jäkle
- Zentrum für Molekulare Biologie, Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany
| | | | - Stefan Pfeffer
- Zentrum für Molekulare Biologie, Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany.
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie, Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany.
| |
Collapse
|
3
|
Abd El-Razek MH, Eissa IH, Al-Karmalawy AA, Elrashedy AA, El-Desoky AH, Aboelmagd M, Mohamed TA, Hegazy MEF. epi-Magnolin, a tetrahydrofurofuranoid lignan from the oleo-gum resin of Commiphora wightii, as inhibitor of pancreatic cancer cell proliferation, in-vitro and in-silico study. J Biomol Struct Dyn 2024:1-13. [PMID: 38265952 DOI: 10.1080/07391102.2024.2308767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/14/2024] [Indexed: 01/26/2024]
Abstract
Five known furofuran lignans, dia-sesamin (1), 5-methoxysesamin (2), epi-magnolin (3), kobusin (4) and yangambin (5) were isolated for the first-time from the oleo-gum resin of Commiphora wightii. This is the first report on the 13C NMR assignments for epi-magnolin (3). Each of the isolated compounds was evaluated for its ability to inhibit MIA PaCa-2 pancreatic cancer cell line. Among them, epi-magnolin (3) displayed potential activity (IC50 = 29 nM) compared to colchicine (IC50 = 56 nM). 3D-flexible alignment revealed that epi-magnolin (3) has great matching with the tubulin polymerization inhibitor, colchicine. Meanwhile, docking studies exhibited that compounds 1-5 displayed good binding free energies against colchicine binding site (CBS) of tubulin with binding modes that were highly comparable to that of colchicine. Compounds 2, 3, and 5 showed superior binding free energies than colchicine (-24.37 kcal/mol). epi-Magnolin (3) showed the highest binding score against CBS. MD simulation studies confirmed the stability of epi-magnolin (3) in the active site for 200 ns. Furthermore, four online servers (Swiss ADME, pkCSM pharmacokinetics, AdmetSAR, and ProTox-II) were utilized to predict the ADMET parameters. The in-silico pharmacokinetics predictions reveled that epi-magnolin (3) has significant oral bioavailability and drug-like capabilities.
Collapse
Affiliation(s)
- Mohamed H Abd El-Razek
- Chemistry of Natural Compounds Department, Institute of Pharmaceutical and Drug Industries Research, National Research Centre (NRC), Giza, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, Egypt
| | - Ahmed A Elrashedy
- Department of the Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Institute, National Research Centre (NRC), Giza, Egypt
| | - Ahmed H El-Desoky
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), Giza, Egypt
| | - Mohamed Aboelmagd
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), Giza, Egypt
| | - Tarik A Mohamed
- Chemistry of Medicinal Plants Department, Institute of Pharmaceutical and Drug Industries Research, National Research Centre (NRC), Giza, Egypt
| | - Mohamed-Elamir F Hegazy
- Chemistry of Medicinal Plants Department, Institute of Pharmaceutical and Drug Industries Research, National Research Centre (NRC), Giza, Egypt
| |
Collapse
|
4
|
Lawrence EJ, Chatterjee S, Zanic M. More is different: Reconstituting complexity in microtubule regulation. J Biol Chem 2023; 299:105398. [PMID: 37898404 PMCID: PMC10694663 DOI: 10.1016/j.jbc.2023.105398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023] Open
Abstract
Microtubules are dynamic cytoskeletal filaments that undergo stochastic switching between phases of polymerization and depolymerization-a behavior known as dynamic instability. Many important cellular processes, including cell motility, chromosome segregation, and intracellular transport, require complex spatiotemporal regulation of microtubule dynamics. This coordinated regulation is achieved through the interactions of numerous microtubule-associated proteins (MAPs) with microtubule ends and lattices. Here, we review the recent advances in our understanding of microtubule regulation, focusing on results arising from biochemical in vitro reconstitution approaches using purified multiprotein ensembles. We discuss how the combinatory effects of MAPs affect both the dynamics of individual microtubule ends, as well as the stability and turnover of the microtubule lattice. In addition, we highlight new results demonstrating the roles of protein condensates in microtubule regulation. Our overall intent is to showcase how lessons learned from reconstitution approaches help unravel the regulatory mechanisms at play in complex cellular environments.
Collapse
Affiliation(s)
- Elizabeth J Lawrence
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Saptarshi Chatterjee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Marija Zanic
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA; Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
5
|
Lamanna MM, Maurelli AT. What Is Motion? Recent Advances in the Study of Molecular Movement Patterns of the Peptidoglycan Synthesis Machines. J Bacteriol 2022; 204:e0059821. [PMID: 34928180 PMCID: PMC9017339 DOI: 10.1128/jb.00598-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
How proteins move through space and time is a fundamental question in biology. While great strides have been made toward a mechanistic understanding of protein movement, many questions remain. We discuss the biological implications of motion in the context of the peptidoglycan (PG) synthesis machines. We reviewed systems in several bacteria, including Escherichia coli, Bacillus subtilis, and Streptococcus pneumoniae, and present a comprehensive view of our current knowledge regarding movement dynamics. Discrepancies are also addressed because "one size does not fit all". For bacteria to divide, new PG is synthesized and incorporated into the growing cell wall by complex multiprotein nanomachines consisting of PG synthases (transglycosylases [TG] and/or transpeptidases [TP]) as well as a variety of regulators and cytoskeletal factors. Advances in imaging capabilities and labeling methods have revealed that these machines are not static but rather circumferentially transit the cell via directed motion perpendicular to the long axis of model rod-shaped bacteria such as E. coli and B. subtilis. The enzymatic activity of the TG:TPs drives motion in some species while motion is mediated by FtsZ treadmilling in others. In addition, both directed and diffusive motion of the PG synthases have been observed using single-particle tracking technology. Here, we examined the biological role of diffusion regarding transit. Lastly, findings regarding the monofunctional transglycosylases (RodA and FtsW) as well as the Class A PG synthases are discussed. This minireview serves to showcase recent advances, broach mechanistic unknowns, and stimulate future areas of study.
Collapse
Affiliation(s)
- Melissa Mae Lamanna
- Department of Environmental & Global Health and Emerging Pathogens Institute, University of Floridagrid.15276.37, Gainesville, Florida, USA
| | - Anthony T. Maurelli
- Department of Environmental & Global Health and Emerging Pathogens Institute, University of Floridagrid.15276.37, Gainesville, Florida, USA
| |
Collapse
|
6
|
Eli S, Castagna R, Mapelli M, Parisini E. Recent Approaches to the Identification of Novel Microtubule-Targeting Agents. Front Mol Biosci 2022; 9:841777. [PMID: 35425809 PMCID: PMC9002125 DOI: 10.3389/fmolb.2022.841777] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/21/2022] [Indexed: 12/05/2022] Open
Abstract
Microtubules are key components of the eukaryotic cytoskeleton with essential roles in cell division, intercellular transport, cell morphology, motility, and signal transduction. They are composed of protofilaments of heterodimers of α-tubulin and β-tubulin organized as rigid hollow cylinders that can assemble into large and dynamic intracellular structures. Consistent with their involvement in core cellular processes, affecting microtubule assembly results in cytotoxicity and cell death. For these reasons, microtubules are among the most important targets for the therapeutic treatment of several diseases, including cancer. The vast literature related to microtubule stabilizers and destabilizers has been reviewed extensively in recent years. Here we summarize recent experimental and computational approaches for the identification of novel tubulin modulators and delivery strategies. These include orphan small molecules, PROTACs as well as light-sensitive compounds that can be activated with high spatio-temporal accuracy and that represent promising tools for precision-targeted chemotherapy.
Collapse
Affiliation(s)
- Susanna Eli
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Rossella Castagna
- Latvian Institute of Organic Synthesis, Aizkraukles Iela 21, Riga, Latvia
| | - Marina Mapelli
- IEO, European Institute of Oncology IRCCS, Milan, Italy
- *Correspondence: Marina Mapelli, ; Emilio Parisini,
| | - Emilio Parisini
- Latvian Institute of Organic Synthesis, Aizkraukles Iela 21, Riga, Latvia
- *Correspondence: Marina Mapelli, ; Emilio Parisini,
| |
Collapse
|
7
|
Yang M, Su Y, Wang Z, Du D, Wei S, Liao Z, Zhang Q, Zhao L, Zhang X, Han L, Jiang J, Zhan M, Sun L, Yuan S, Zhou Z. C118P, a novel microtubule inhibitor with anti-angiogenic and vascular disrupting activities, exerts anti-tumor effects against hepatocellular carcinoma. Biochem Pharmacol 2021; 190:114641. [PMID: 34077738 DOI: 10.1016/j.bcp.2021.114641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 11/19/2022]
Abstract
Hepatocellular carcinoma (HCC), a hypervascular solid tumor, is the most leading cause of cancer mortality worldwide. Microtubule binding agents targeting tumor vasculature have been investigated and employed clinically. C118P is a newly synthesized analog of CA4 with improved water solubility and extended half-life. The current studies investigated the pharmacological effects of C118P and its active metabolite C118. Here, we first confirmed by in vitro assays that C118 exerts microtubule depolymerization activity and by molecular docking revealed that it fits to the colchicine binding site of tubulin. In addition, we found that C118P and C118 altered microtubule dynamics and cytoskeleton in human umbilical vein endothelial cells. Accordingly, we observed that C118P and C118 inhibited angiogenesis and disrupted established vascular networks using tube formation assays and chick chorioallantoic membrane angiogenesis assays. In addition, our data showed that C118P and C118 exhibited board anti-proliferative effect on various cancer cells, including HCC cell lines, in MTT assays or Sulforhodamine B assays. Moreover, we found that C118P induced G2/M phase cell cycle arrest and apoptosis in HCC cell lines BEL7402 and SMMC7721 using flow cytometry analysis and immunoblotting assays. Finally, we confirmed that C118P suppressed HCC growth via targeting tumor vasculature and inducing apoptosis in the SMMC7721 xenograft mouse model. In conclusion, our studies revealed that C118P, as a potent microtubule destabilizing agent, exerts its multiple pharmacological effects against HCC by inducing cell cycle arrest and apoptosis, as well as targeting tumor vasculature. Thus, C118P might be a promising drug candidate for liver cancer treatment.
Collapse
Affiliation(s)
- Mei Yang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009 China
| | - Yanhong Su
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital affiliated with Jinan University), Zhuhai 519000 China
| | - Zhiqiang Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009 China
| | - Danyu Du
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009 China
| | - Shihui Wei
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009 China
| | - Zhengguang Liao
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009 China
| | - Qian Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009 China
| | - Liwen Zhao
- Nanjing Sanhome Pharmaceutical Co. Ltd., Nanjing 211135 China
| | - Xian Zhang
- Nanjing Sanhome Pharmaceutical Co. Ltd., Nanjing 211135 China
| | - Luwei Han
- Nanjing Sanhome Pharmaceutical Co. Ltd., Nanjing 211135 China
| | - Jingwei Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009 China
| | - Meixiao Zhan
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital affiliated with Jinan University), Zhuhai 519000 China
| | - Li Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009 China.
| | - Shengtao Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009 China.
| | - Zhiling Zhou
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital affiliated with Jinan University), Zhuhai 519000 China.
| |
Collapse
|
8
|
Collective effects of XMAP215, EB1, CLASP2, and MCAK lead to robust microtubule treadmilling. Proc Natl Acad Sci U S A 2020; 117:12847-12855. [PMID: 32457163 PMCID: PMC7293651 DOI: 10.1073/pnas.2003191117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Treadmilling is a complex behavior of active polymers characterized by polymerization at one polymer end and simultaneous depolymerization at the other end. Treadmilling is an essential feature of cytoskeletal filaments driving actin-based cell motility, bacterial cell division and transport, and reorganization of microtubule arrays in plants. Although microtubule treadmilling occurs in many cellular contexts, how cells coordinate growth at microtubule plus ends and shrinkage at microtubule minus ends to achieve treadmilling is not understood. Here, we employ predictive computational modeling and a multiprotein in vitro assay to reconstitute cellular-like microtubule treadmilling. Our work provides a deeper understanding of how active polymer systems can be tuned to give rise to robust yet dynamic cytoskeletal architectures. Microtubule network remodeling is essential for fundamental cellular processes including cell division, differentiation, and motility. Microtubules are active biological polymers whose ends stochastically and independently switch between phases of growth and shrinkage. Microtubule treadmilling, in which the microtubule plus end grows while the minus end shrinks, is observed in cells; however, the underlying mechanisms are not known. Here, we use a combination of computational and in vitro reconstitution approaches to determine the conditions leading to robust microtubule treadmilling. We find that microtubules polymerized from tubulin alone can treadmill, albeit with opposite directionality and order-of-magnitude slower rates than observed in cells. We then employ computational simulations to predict that the combinatory effects of four microtubule-associated proteins (MAPs), namely EB1, XMAP215, CLASP2, and MCAK, can promote fast and sustained plus-end-leading treadmilling. Finally, we experimentally confirm the predictions of our computational model using a multi-MAP, in vitro microtubule dynamics assay to reconstitute robust plus-end-leading treadmilling, consistent with observations in cells. Our results demonstrate how microtubule dynamics can be modulated to achieve a dynamic balance between assembly and disassembly at opposite polymer ends, resulting in treadmilling over long periods of time. Overall, we show how the collective effects of multiple components give rise to complex microtubule behavior that may be used for global network remodeling in cells.
Collapse
|
9
|
Abstract
Directed cell migration is critical for embryogenesis and organ development, wound healing and the immune response. Microtubules are dynamic polymers that control directional migration through a number of coordinated processes: microtubules are the tracks for long-distance intracellular transport, crucial for delivery of new membrane components and signalling molecules to the leading edge of a migrating cell and the recycling of adhesion receptors. Microtubules act as force generators and compressive elements to support sustained cell protrusions. The assembly and disassembly of microtubules is coupled to Rho GTPase signalling, thereby controlling actin polymerisation, myosin-driven contractility and the turnover of cellular adhesions locally. Cross-talk of actin and microtubule dynamics is mediated through a number of common binding proteins and regulators. Furthermore, cortical microtubule capture sites are physically linked to focal adhesions, facilitating the delivery of secretory vesicles and efficient cross-talk. Here we summarise the diverse functions of microtubules during cell migration, aiming to show how they contribute to the spatially and temporally coordinated sequence of events that permit efficient, directional and persistent migration.
Collapse
|
10
|
Logan CM, Menko AS. Microtubules: Evolving roles and critical cellular interactions. Exp Biol Med (Maywood) 2019; 244:1240-1254. [PMID: 31387376 DOI: 10.1177/1535370219867296] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Microtubules are cytoskeletal elements known as drivers of directed cell migration, vesicle and organelle trafficking, and mitosis. In this review, we discuss new research in the lens that has shed light into further roles for stable microtubules in the process of development and morphogenesis. In the lens, as well as other systems, distinct roles for characteristically dynamic microtubules and stabilized populations are coming to light. Understanding the mechanisms of microtubule stabilization and the associated microtubule post-translational modifications is an evolving field of study. Appropriate cellular homeostasis relies on not only one cytoskeletal element, but also rather an interaction between cytoskeletal proteins as well as other cellular regulators. Microtubules are key integrators with actin and intermediate filaments, as well as cell–cell junctional proteins and other cellular regulators including myosin and RhoGTPases to maintain this balance.Impact statementThe role of microtubules in cellular functioning is constantly expanding. In this review, we examine new and exciting fields of discovery for microtubule’s involvement in morphogenesis, highlight our evolving understanding of differential roles for stabilized versus dynamic subpopulations, and further understanding of microtubules as a cellular integrator.
Collapse
Affiliation(s)
- Caitlin M Logan
- Pathology Anatomy and Cell Biology Department, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - A Sue Menko
- Pathology Anatomy and Cell Biology Department, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
11
|
Best RL, LaPointe NE, Liang J, Ruan K, Shade MF, Wilson L, Feinstein SC. Tau isoform-specific stabilization of intermediate states during microtubule assembly and disassembly. J Biol Chem 2019; 294:12265-12280. [PMID: 31266806 DOI: 10.1074/jbc.ra119.009124] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/24/2019] [Indexed: 01/27/2023] Open
Abstract
The microtubule (MT)-associated protein tau regulates the critical growing and shortening behaviors of MTs, and its normal activity is essential for neuronal development and maintenance. Accordingly, aberrant tau action is tightly associated with Alzheimer's disease and is genetically linked to several additional neurodegenerative diseases known as tauopathies. Although tau is known to promote net MT growth and stability, the precise mechanistic details governing its regulation of MT dynamics remain unclear. Here, we have used the slowly-hydrolyzable GTP analog, guanylyl-(α,β)-methylene-diphosphonate (GMPCPP), to examine the structural effects of tau at MT ends that may otherwise be too transient to observe. The addition of both four-repeat (4R) and three-repeat (3R) tau isoforms to pre-formed GMPCPP MTs resulted in the formation of extended, multiprotofilament-wide projections at MT ends. Furthermore, at temperatures too low for assembly of bona fide MTs, both tau isoforms promoted the formation of long spiral ribbons from GMPCPP tubulin heterodimers. In addition, GMPCPP MTs undergoing cold-induced disassembly in the presence of 4R tau (and to a much lesser extent 3R tau) also formed spirals. Finally, three pathological tau mutations known to cause neurodegeneration and dementia were differentially compromised in their abilities to stabilize MT disassembly intermediates. Taken together, we propose that tau promotes the formation/stabilization of intermediate states in MT assembly and disassembly by promoting both longitudinal and lateral tubulin-tubulin contacts. We hypothesize that these activities represent fundamental aspects of tau action that normally occur at the GTP-rich ends of GTP/GDP MTs and that may be compromised in neurodegeneration-causing tau variants.
Collapse
Affiliation(s)
- Rebecca L Best
- Neuroscience Research Institute and Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California 93106
| | - Nichole E LaPointe
- Neuroscience Research Institute and Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California 93106
| | - Jiahao Liang
- Neuroscience Research Institute and Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California 93106
| | - Kevin Ruan
- Neuroscience Research Institute and Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California 93106
| | - Madeleine F Shade
- Neuroscience Research Institute and Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California 93106
| | - Leslie Wilson
- Neuroscience Research Institute and Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California 93106
| | - Stuart C Feinstein
- Neuroscience Research Institute and Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California 93106.
| |
Collapse
|
12
|
Chaikeeratisak V, Khanna K, Nguyen KT, Sugie J, Egan ME, Erb ML, Vavilina A, Nonejuie P, Nieweglowska E, Pogliano K, Agard DA, Villa E, Pogliano J. Viral Capsid Trafficking along Treadmilling Tubulin Filaments in Bacteria. Cell 2019; 177:1771-1780.e12. [PMID: 31199917 PMCID: PMC7301877 DOI: 10.1016/j.cell.2019.05.032] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 01/24/2019] [Accepted: 05/17/2019] [Indexed: 12/13/2022]
Abstract
Cargo trafficking along microtubules is exploited by eukaryotic viruses, but no such examples have been reported in bacteria. Several large Pseudomonas phages assemble a dynamic, tubulin-based (PhuZ) spindle that centers replicating phage DNA sequestered within a nucleus-like structure. Here, we show that capsids assemble on the membrane and then move rapidly along PhuZ filaments toward the phage nucleus for DNA packaging. The spindle rotates the phage nucleus, distributing capsids around its surface. PhuZ filaments treadmill toward the nucleus at a constant rate similar to the rate of capsid movement and the linear velocity of nucleus rotation. Capsids become trapped along mutant static PhuZ filaments that are defective in GTP hydrolysis. Our results suggest a transport and distribution mechanism in which capsids attached to the sides of filaments are trafficked to the nucleus by PhuZ polymerization at the poles, demonstrating that the phage cytoskeleton evolved cargo-trafficking capabilities in bacteria.
Collapse
Affiliation(s)
- Vorrapon Chaikeeratisak
- Division of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA; Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kanika Khanna
- Division of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Katrina T Nguyen
- Division of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Joseph Sugie
- Division of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - MacKennon E Egan
- Division of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Marcella L Erb
- Division of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Anastasia Vavilina
- Division of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Poochit Nonejuie
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Eliza Nieweglowska
- Department of Biochemistry and Biophysics and the Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kit Pogliano
- Division of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - David A Agard
- Department of Biochemistry and Biophysics and the Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Elizabeth Villa
- Division of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA.
| | - Joe Pogliano
- Division of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA.
| |
Collapse
|
13
|
Park CW, Bak Y, Kim MJ, Srinivasrao G, Hwang J, Sung NK, Kim BY, Yu JH, Hong JT, Yoon DY. The Novel Small Molecule STK899704 Promotes Senescence of the Human A549 NSCLC Cells by Inducing DNA Damage Responses and Cell Cycle Arrest. Front Pharmacol 2018; 9:163. [PMID: 29713275 PMCID: PMC5912185 DOI: 10.3389/fphar.2018.00163] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/14/2018] [Indexed: 12/18/2022] Open
Abstract
The novel synthetic compound designated STK899704 (PubChem CID: 5455708) suppresses the proliferation of a broad range of cancer cell types. However, the details of its effect on lung cancer cells are unclear. We investigated the precise anticancer effect of STK899704 on senescence and growth arrest of A549 human non-small cell lung cancer (NSCLC) cells. STK899704 affected NSCLC cell cycle progression and decreased cell viability in a dose-dependent manner. Immunofluorescence staining revealed that STK899704 destabilized microtubules. Cell cycle analysis showed an increase in the population of NSCLC cells in the sub-G1 and G2/M phases, indicating that STK899704 might cause DNA damage via tubulin aggregation. Furthermore, we observed increased mitotic catastrophe in STK899704-treated cells. As STK899704 led to elevated levels of the p53 pathway-associated proteins, it would likely affect the core DNA damage response pathway. Moreover, STK899704 promoted senescence of NSCLC cells by inducing the p53-associated DNA damage response pathways. These findings suggest that the novel anti-proliferative small molecule STK899704 promotes cell death by inducing DNA damage response pathways and senescence after cell cycle arrest, being a potential drug for treating human lung cancers.
Collapse
Affiliation(s)
- Chan-Woo Park
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea
| | - Yesol Bak
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea
| | - Min-Je Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea
| | - Ganipisetti Srinivasrao
- Department of Biomedical Sciences, Protein Metabolism Medical Research Center, College of Medicine, Seoul National University, Seoul, South Korea
| | - Joonsung Hwang
- World Class Institute, Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Nak K Sung
- World Class Institute, Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Bo Yeon Kim
- World Class Institute, Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Jae-Hyuk Yu
- Department of Bacteriology, Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI, United States
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, South Korea
| | - Do-Young Yoon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea
| |
Collapse
|
14
|
Martinelli E, Fattorossi A, Battaglia A, Petrillo M, Raspaglio G, Zannoni GF, Fanelli M, Gallo D, Scambia G. Preoperative Anti-Class III β-Tubulin Antibodies As Relevant Clinical Biomarkers in Ovarian Cancer. Transl Oncol 2018; 11:358-365. [PMID: 29448203 PMCID: PMC5852414 DOI: 10.1016/j.tranon.2018.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/16/2018] [Accepted: 01/16/2018] [Indexed: 01/13/2023] Open
Abstract
Class III β-tubulin (TUBB3) overexpression in ovarian cancer (OC) associates with poor prognosis. We investigated whether TUBB3 overexpression elicited anti-TUBB3 antibody production in OC patients and whether these antibodies may have diagnostic and prognostic impact. The presence of serum anti-TUBB3 antibodies was investigated in 49 untreated OC patients and 44 healthy individuals by an in-house developed ELISA that used recombinant TUBB3 as the antigen. Receiver operating characteristic (ROC) curves were generated to assess the diagnostic accuracy of the assay. Anti-TUBB3 antibodies discriminated OC patients and healthy individuals with excellent sensitivity and specificity (91.8% and 90.9%, respectively). In multivariate analysis, anti-TUBB3 antibody level emerged as an independent prognostic factor for progression free and overall survival. The ELISA was then optimized using a biotin-labeled TUBB3 C-terminal peptide424-450 instead of recombinant TUBB3 as the antigen and streptavidin-coated plates. The diagnostic role of the anti-TUBB3 antibodies was studied in an independent series of 99 OC patients and 80 gynecological benign disease patients. ROC-curve analysis showed a valuable diagnostic potential for serum anti-TUBB3 antibodies to identify OC patients with higher sensitivity and specificity (95.3% and 97.6%, respectively). Overall, our results provide evidence that preoperative anti-TUBB3 antibody level is a promising diagnostic and prognostic biomarker for the management of OC patients.
Collapse
Affiliation(s)
- Enrica Martinelli
- Department of Woman and Child Health, Fondazione Policlinico Universitario A. Gemelli -Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Fattorossi
- Department of Woman and Child Health, Fondazione Policlinico Universitario A. Gemelli -Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessandra Battaglia
- Department of Woman and Child Health, Fondazione Policlinico Universitario A. Gemelli -Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marco Petrillo
- Department of Woman and Child Health, Fondazione Policlinico Universitario A. Gemelli -Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giuseppina Raspaglio
- Department of Woman and Child Health, Fondazione Policlinico Universitario A. Gemelli -Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gian Franco Zannoni
- Department of Woman and Child Health, Fondazione Policlinico Universitario A. Gemelli -Università Cattolica del Sacro Cuore, Rome, Italy
| | - Mara Fanelli
- Laboratory of Molecular Oncology, Fondazione di Ricerca e Cura Giovanni Paolo II, Campobasso, Italy
| | - Daniela Gallo
- Department of Woman and Child Health, Fondazione Policlinico Universitario A. Gemelli -Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Giovanni Scambia
- Department of Woman and Child Health, Fondazione Policlinico Universitario A. Gemelli -Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
15
|
Hillen T, White D, de Vries G, Dawes A. Existence and uniqueness for a coupled PDE model for motor-induced microtubule organization. JOURNAL OF BIOLOGICAL DYNAMICS 2017; 11:294-315. [PMID: 28426333 DOI: 10.1080/17513758.2017.1310939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Microtubules (MTs) are protein filaments that provide structure to the cytoskeleton of cells and a platform for the movement of intracellular substances. The spatial organization of MTs is crucial for a cell's form and function. MTs interact with a class of proteins called motor proteins that can transport and position individual filaments, thus contributing to overall organization. In this paper, we study the mathematical properties of a coupled partial differential equation (PDE) model, introduced by White et al. in 2015, that describes the motor-induced organization of MTs. The model consists of a nonlinear coupling of a hyperbolic PDE for bound motor proteins, a parabolic PDE for unbound motor proteins, and a transport equation for MT dynamics. We locally smooth the motor drift velocity in the equation for bound motor proteins. The mollification is not only critical for the analysis of the model, but also adds biological realism. We then use a Banach Fixed Point argument to show local existence and uniqueness of mild solutions. We highlight the applicability of the model by showing numerical simulations that are consistent with in vitro experiments.
Collapse
Affiliation(s)
- Thomas Hillen
- a Department of Mathematical and Statistical Sciences , Centre for Mathematical Biology, University of Alberta , Edmonton , AB , Canada
| | - Diana White
- b Aix-Marseille University, Institute of Mathematics , Marseille , France
| | - Gerda de Vries
- a Department of Mathematical and Statistical Sciences , Centre for Mathematical Biology, University of Alberta , Edmonton , AB , Canada
| | - Adriana Dawes
- c Department of Mathematics , Ohio State University , Columbus , OH , USA
- d Department of Molecular Genetics , Ohio State University , Columbus , OH , USA
| |
Collapse
|
16
|
Pifferi C, Daskhan GC, Fiore M, Shiao TC, Roy R, Renaudet O. Aminooxylated Carbohydrates: Synthesis and Applications. Chem Rev 2017; 117:9839-9873. [PMID: 28682060 DOI: 10.1021/acs.chemrev.6b00733] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Among other classes of biomolecules, carbohydrates and glycoconjugates are widely involved in numerous biological functions. In addition to addressing the related synthetic challenges, glycochemists have invested intense efforts in providing access to structures that can be used to study, activate, or inhibit these biological processes. Over the past few decades, aminooxylated carbohydrates have been found to be key building blocks for achieving these goals. This review provides the first in-depth overview covering several aspects related to the syntheses and applications of aminooxylated carbohydrates. After a brief introduction to oxime bonds and their relative stabilities compared to related C═N functions, synthetic aspects of oxime ligation and methodologies for introducing the aminooxy functionality onto both glycofuranosyls and glycopyranosyls are described. The subsequent section focuses on biological applications involving aminooxylated carbohydrates as components for the construcion of diverse architectures. Mimetics of natural structures represent useful tools for better understanding the features that drive carbohydrate-receptor interaction, their biological output and they also represent interesting structures with improved stability and tunable properties. In the next section, multivalent structures such as glycoclusters and glycodendrimers obtained through oxime ligation are described in terms of synthetic design and their biological applications such as immunomodulators. The second-to-last section discusses miscellaneous applications of oxime-based glycoconjugates, such as enantioselective catalysis and glycosylated oligonucleotides, and conclusions and perspectives are provided in the last section.
Collapse
Affiliation(s)
- Carlo Pifferi
- Université Grenoble Alpes, CNRS, DCM UMR 5250 , F-38000 Grenoble, France
| | - Gour Chand Daskhan
- Université Grenoble Alpes, CNRS, DCM UMR 5250 , F-38000 Grenoble, France
| | - Michele Fiore
- Université Grenoble Alpes, CNRS, DCM UMR 5250 , F-38000 Grenoble, France
| | - Tze Chieh Shiao
- Pharmaqam, Department of Chemistry, Université du Québec à Montreal , P.O. Box 8888, Succursale Centre-ville, Montréal, Québec H3C 3P8, Canada
| | - René Roy
- Pharmaqam, Department of Chemistry, Université du Québec à Montreal , P.O. Box 8888, Succursale Centre-ville, Montréal, Québec H3C 3P8, Canada
| | - Olivier Renaudet
- Université Grenoble Alpes, CNRS, DCM UMR 5250 , F-38000 Grenoble, France.,Institut Universitaire de France , 103 Boulevard Saint-Michel, 75005 Paris, France
| |
Collapse
|
17
|
Seddigi ZS, Malik MS, Saraswati AP, Ahmed SA, Babalghith AO, Lamfon HA, Kamal A. Recent advances in combretastatin based derivatives and prodrugs as antimitotic agents. MEDCHEMCOMM 2017; 8:1592-1603. [PMID: 30108870 DOI: 10.1039/c7md00227k] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/03/2017] [Indexed: 01/01/2023]
Abstract
The dynamic and crucial role of tubulin in different cellular functions rendered it a promising target in anticancer drug development. Combretastatin A-4 (CA-4), an inhibitor of tubulin polymerization isolated from natural sources, is a lead molecule with significant cytotoxicity against tumour cells. Owing to its non polar nature it exhibits low solubility in natural biological fluids, thereby prompting the development of new CA-4 based derivatives. The modification of this lead molecule was mostly carried out by keeping the crucial cis-orientation of the double bond intact, along with a trimethoxyphenyl aromatic ring, by employing different approaches. The issue of solubility was also addressed by the development of water soluble prodrugs of CA-4. The present review highlights the investigations into the parallel development of both new CA-4 based derivatives and prodrugs in the past few years.
Collapse
Affiliation(s)
- Zaki S Seddigi
- Department of Environmental Health , College of Public Health and Health Informatics , Umm Al-Qura University , 21955 Makkah , Saudi Arabia
| | - M Shaheer Malik
- Science and Technology Unit , Umm Al-Qura University , 21955 Makkah , Saudi Arabia
| | - A Prasanth Saraswati
- Department of Medicinal Chemistry and Pharmacology , CSIR - Indian Institute of Chemical Technology , Hyderabad 500 007 , India . ; ; Tel: +91 40 27193157
| | - Saleh A Ahmed
- Department of Chemistry , Faculty of Applied Sciences , Umm Al-Qura University , 21955 Makkah , Saudi Arabia
| | - Ahmed O Babalghith
- Department of Medical Genetics, Faculty of Medicine , Umm Al-Qura University , 21955 Makkah , Saudi Arabia
| | - Hawazen A Lamfon
- Department of Biology , Faculty of Applied Sciences , Umm Al-Qura University , 21955 Makkah , Saudi Arabia
| | - Ahmed Kamal
- Department of Medicinal Chemistry and Pharmacology , CSIR - Indian Institute of Chemical Technology , Hyderabad 500 007 , India . ; ; Tel: +91 40 27193157
| |
Collapse
|
18
|
Parker AL, Teo WS, McCarroll JA, Kavallaris M. An Emerging Role for Tubulin Isotypes in Modulating Cancer Biology and Chemotherapy Resistance. Int J Mol Sci 2017; 18:ijms18071434. [PMID: 28677634 PMCID: PMC5535925 DOI: 10.3390/ijms18071434] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 06/24/2017] [Accepted: 06/27/2017] [Indexed: 12/19/2022] Open
Abstract
Tubulin proteins, as components of the microtubule cytoskeleton perform critical cellular functions throughout all phases of the cell cycle. Altered tubulin isotype composition of microtubules is emerging as a feature of aggressive and treatment refractory cancers. Emerging evidence highlighting a role for tubulin isotypes in differentially influencing microtubule behaviour and broader functional networks within cells is illuminating a complex role for tubulin isotypes regulating cancer biology and chemotherapy resistance. This review focuses on the role of different tubulin isotypes in microtubule dynamics as well as in oncogenic changes that provide a survival or proliferative advantage to cancer cells within the tumour microenvironment and during metastatic processes. Consideration of the role of tubulin isotypes beyond their structural function will be essential to improving the current clinical use of tubulin-targeted chemotherapy agents and informing the development of more effective cancer therapies.
Collapse
Affiliation(s)
- Amelia L Parker
- Tumour Biology and Targeting, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2031, Australia.
- Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Wee Siang Teo
- Tumour Biology and Targeting, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2031, Australia.
- Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Joshua A McCarroll
- Tumour Biology and Targeting, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2031, Australia.
- Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Maria Kavallaris
- Tumour Biology and Targeting, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2031, Australia.
- Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
19
|
Mohapatra S, Saha A, Mondal P, Jana B, Ghosh S, Biswas A, Ghosh S. Synergistic Anticancer Effect of Peptide-Docetaxel Nanoassembly Targeted to Tubulin: Toward Development of Dual Warhead Containing Nanomedicine. Adv Healthc Mater 2017; 6. [PMID: 27782376 DOI: 10.1002/adhm.201600718] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/12/2016] [Indexed: 01/09/2023]
Abstract
Microtubule dynamics play a crucial role in cancer cell division. Various drugs are developed to target microtubule. Although a few of them show potential in treatment of cancer, but success rate is limited due to their poor bioavailability and lack of specificity. Thus, development of highly bioavailable and target specific anticancer drug is extremely necessary. To address these key issues, here, a combination of approaches such as development of a dodecapeptide-docetaxel nanoassembly targeted to tubulin and MUC1 (mucin 1, cell surface associated glycoprotein) targeting oligonucleotide aptamer conjugated liposome for delivering peptide-docetaxel nanoassembly into the breast cancer cell have been demonstrated. These studies reveal that the peptide forms nanoassembly and entraps docetaxel drug. Further, the liposomal formulation of peptide-docetaxel exerts synergistic anticancer effect, activates key mitotic check point proteins, and inhibits bipolar spindle formation, metastatic cancer cell migration, and growth of tumor mimicking 3D multicellular spheroid.
Collapse
Affiliation(s)
- Saswat Mohapatra
- Organic and Medicinal Chemistry Division; Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB); 4, Raja S. C. Mullick Road, Jadavpur Kolkata 700032 West Bengal India
- Academy of Scientific and Innovative Research (AcSIR); CSIR-Indian Institute of Chemical Biology Campus; 4, Raja S. C. Mullick Road Kolkata 700 032 West Bengal India
| | - Abhijit Saha
- Organic and Medicinal Chemistry Division; Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB); 4, Raja S. C. Mullick Road, Jadavpur Kolkata 700032 West Bengal India
| | - Prasenjit Mondal
- Organic and Medicinal Chemistry Division; Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB); 4, Raja S. C. Mullick Road, Jadavpur Kolkata 700032 West Bengal India
- Academy of Scientific and Innovative Research (AcSIR); CSIR-Indian Institute of Chemical Biology Campus; 4, Raja S. C. Mullick Road Kolkata 700 032 West Bengal India
| | - Batakrishna Jana
- Organic and Medicinal Chemistry Division; Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB); 4, Raja S. C. Mullick Road, Jadavpur Kolkata 700032 West Bengal India
| | - Subhajit Ghosh
- Organic and Medicinal Chemistry Division; Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB); 4, Raja S. C. Mullick Road, Jadavpur Kolkata 700032 West Bengal India
| | - Atanu Biswas
- Organic and Medicinal Chemistry Division; Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB); 4, Raja S. C. Mullick Road, Jadavpur Kolkata 700032 West Bengal India
| | - Surajit Ghosh
- Organic and Medicinal Chemistry Division; Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB); 4, Raja S. C. Mullick Road, Jadavpur Kolkata 700032 West Bengal India
- Academy of Scientific and Innovative Research (AcSIR); CSIR-Indian Institute of Chemical Biology Campus; 4, Raja S. C. Mullick Road Kolkata 700 032 West Bengal India
| |
Collapse
|
20
|
Abstract
SUMMARYAll eukaryotic cells prepare for cell division by forming a "mitotic spindle"-a bipolar machine made from microtubules (MTs) and many associated proteins. This device organizes the already duplicated DNA so one copy of each chromosome attaches to each end of the spindle. Both formation and function of the spindle require controlled MT dynamics, as well as the actions of multiple motor enzymes. Spindle-driven motions separate the duplicated chromosomes into two distinct sets that are then moved toward opposite ends of the cell. The two cells that subsequently form by cytokinesis, therefore, contain all the genes needed to grow and divide again.
Collapse
Affiliation(s)
- J Richard McIntosh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347
| |
Collapse
|
21
|
Braun A, Caesar NM, Dang K, Myers KA. High-resolution Time-lapse Imaging and Automated Analysis of Microtubule Dynamics in Living Human Umbilical Vein Endothelial Cells. J Vis Exp 2016. [PMID: 27584860 PMCID: PMC5091855 DOI: 10.3791/54265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The physiological process by which new vasculature forms from existing vasculature requires specific signaling events that trigger morphological changes within individual endothelial cells (ECs). These processes are critical for homeostatic maintenance such as wound healing, and are also crucial in promoting tumor growth and metastasis. EC morphology is defined by the organization of the cytoskeleton, a tightly regulated system of actin and microtubule (MT) dynamics that is known to control EC branching, polarity and directional migration, essential components of angiogenesis. To study MT dynamics, we used high-resolution fluorescence microscopy coupled with computational image analysis of fluorescently-labeled MT plus-ends to investigate MT growth dynamics and the regulation of EC branching morphology and directional migration. Time-lapse imaging of living Human Umbilical Vein Endothelial Cells (HUVECs) was performed following transfection with fluorescently-labeled MT End Binding protein 3 (EB3) and Mitotic Centromere Associated Kinesin (MCAK)-specific cDNA constructs to evaluate effects on MT dynamics. PlusTipTracker software was used to track EB3-labeled MT plus ends in order to measure MT growth speeds and MT growth lifetimes in time-lapse images. This methodology allows for the study of MT dynamics and the identification of how localized regulation of MT dynamics within sub-cellular regions contributes to the angiogenic processes of EC branching and migration.
Collapse
Affiliation(s)
- Alexander Braun
- Department of Biological Sciences, University of the Sciences in Philadelphia
| | - Nicole M Caesar
- Department of Biological Sciences, University of the Sciences in Philadelphia
| | - Kyvan Dang
- Department of Biological Sciences, University of the Sciences in Philadelphia
| | - Kenneth A Myers
- Department of Biological Sciences, University of the Sciences in Philadelphia;
| |
Collapse
|
22
|
Schwan C, Aktories K. Formation of Nanotube-Like Protrusions, Regulation of Septin Organization and Re-guidance of Vesicle Traffic by Depolymerization of the Actin Cytoskeleton Induced by Binary Bacterial Protein Toxins. Curr Top Microbiol Immunol 2016; 399:35-51. [PMID: 27726005 DOI: 10.1007/82_2016_25] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A large group of bacterial protein toxins, including binary ADP-ribosylating toxins, modify actin at arginine-177, thereby actin polymerization is blocked and the actin cytoskeleton is redistributed. Modulation of actin functions largely affects other components of the cytoskeleton, especially microtubules and septins. Here, recent findings about the functional interconnections of the actin cytoskeleton with microtubules and septins, affected by bacterial toxins, are reviewed.
Collapse
Affiliation(s)
- Carsten Schwan
- Institute for Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs University of Freiburg, Albertstr. 25, 79104, Freiburg, Germany
| | - Klaus Aktories
- Institute for Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs University of Freiburg, Albertstr. 25, 79104, Freiburg, Germany.
| |
Collapse
|
23
|
Collins J, Xiao Z, Müllner M, Connal LA. The emergence of oxime click chemistry and its utility in polymer science. Polym Chem 2016. [DOI: 10.1039/c6py00635c] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The synthesis of new, highly functional and dynamic polymeric materials has risen dramatically since the introduction of click chemistry in 2001.
Collapse
Affiliation(s)
- Joe Collins
- The Department of Chemical and Biomolecular Engineering
- The University of Melbourne
- Australia
| | - Zeyun Xiao
- The Department of Chemical and Biomolecular Engineering
- The University of Melbourne
- Australia
| | - Markus Müllner
- School of Chemistry
- Key Centre for Polymers and Colloids
- The University of Sydney
- Australia
| | - Luke A. Connal
- The Department of Chemical and Biomolecular Engineering
- The University of Melbourne
- Australia
| |
Collapse
|
24
|
Bhunia D, Mohapatra S, Kurkute P, Ghosh S, Jana B, Mondal P, Saha A, Das G, Ghosh S. Novel tubulin-targeted cell penetrating antimitotic octapeptide. Chem Commun (Camb) 2016; 52:12657-12660. [DOI: 10.1039/c6cc05110c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Here, we have discovered an antimitotic cell penetrating octapeptide containing single Arg amino acid.
Collapse
Affiliation(s)
- Debmalya Bhunia
- Organic and Medicinal Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700032
- India
| | - Saswat Mohapatra
- Organic and Medicinal Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700032
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Prashant Kurkute
- Organic and Medicinal Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700032
- India
| | - Subhajit Ghosh
- Organic and Medicinal Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700032
- India
| | - Batakrishna Jana
- Organic and Medicinal Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700032
- India
| | - Prasenjit Mondal
- Organic and Medicinal Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700032
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Abhijit Saha
- Organic and Medicinal Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700032
- India
| | - Gaurav Das
- Organic and Medicinal Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700032
- India
| | - Surajit Ghosh
- Organic and Medicinal Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700032
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
25
|
White D, Vries G, Martin J, Dawes A. Microtubule patterning in the presence of moving motor proteins. J Theor Biol 2015; 382:81-90. [DOI: 10.1016/j.jtbi.2015.06.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 10/31/2014] [Accepted: 06/24/2015] [Indexed: 10/23/2022]
|
26
|
Saeed S, Tremp AZ, Dessens JT. Biogenesis of the crystalloid organelle in Plasmodium involves microtubule-dependent vesicle transport and assembly. Int J Parasitol 2015; 45:537-47. [PMID: 25900212 PMCID: PMC4459735 DOI: 10.1016/j.ijpara.2015.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/27/2015] [Accepted: 03/04/2015] [Indexed: 12/20/2022]
Abstract
Malaria parasites possess unique subcellular structures and organelles. One of these is the crystalloid, a multivesicular organelle that forms during the parasite's development in vector mosquitoes. The formation and function of these organelles remain poorly understood. A family of six conserved and modular proteins named LCCL-lectin adhesive-like proteins (LAPs), which have essential roles in sporozoite transmission, localise to the crystalloids. In this study we analyse crystalloid formation using transgenic Plasmodium berghei parasites expressing GFP-tagged LAP3. We show that deletion of the LCCL domain from LAP3 causes retarded crystalloid development, while knockout of LAP3 prevents formation of the organelle. Our data reveal that the process of crystalloid formation involves active relocation of endoplasmic reticulum-derived vesicles to common assembly points via microtubule-dependent transport. Inhibition of microtubule-dependent cargo transport disrupts this process and replicates the LCCL domain deletion mutant phenotype in wildtype parasites. These findings provide the first clear insight into crystalloid biogenesis, demonstrating a fundamental role for the LAP family in this process, and identifying the crystalloid and its formation as potential targets for malaria transmission control.
Collapse
Affiliation(s)
- Sadia Saeed
- Pathogen Molecular Biology Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Annie Z Tremp
- Pathogen Molecular Biology Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Johannes T Dessens
- Pathogen Molecular Biology Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom.
| |
Collapse
|
27
|
The Effect of Anisotropic Microtubule-Bound Nucleations on Ordering in the Plant Cortical Array. Bull Math Biol 2014; 76:2907-22. [DOI: 10.1007/s11538-014-0039-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 10/13/2014] [Indexed: 11/26/2022]
|
28
|
White D, de Vries G, Dawes A. Microtubule Patterning in the Presence of Stationary Motor Distributions. Bull Math Biol 2014; 76:1917-40. [DOI: 10.1007/s11538-014-9991-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 06/24/2014] [Indexed: 11/24/2022]
|
29
|
Parker AL, Kavallaris M, McCarroll JA. Microtubules and their role in cellular stress in cancer. Front Oncol 2014; 4:153. [PMID: 24995158 PMCID: PMC4061531 DOI: 10.3389/fonc.2014.00153] [Citation(s) in RCA: 289] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/03/2014] [Indexed: 01/08/2023] Open
Abstract
Microtubules are highly dynamic structures, which consist of α- and β-tubulin heterodimers, and are involved in cell movement, intracellular trafficking, and mitosis. In the context of cancer, the tubulin family of proteins is recognized as the target of the tubulin-binding chemotherapeutics, which suppress the dynamics of the mitotic spindle to cause mitotic arrest and cell death. Importantly, changes in microtubule stability and the expression of different tubulin isotypes as well as altered post-translational modifications have been reported for a range of cancers. These changes have been correlated with poor prognosis and chemotherapy resistance in solid and hematological cancers. However, the mechanisms underlying these observations have remained poorly understood. Emerging evidence suggests that tubulins and microtubule-associated proteins may play a role in a range of cellular stress responses, thus conferring survival advantage to cancer cells. This review will focus on the importance of the microtubule-protein network in regulating critical cellular processes in response to stress. Understanding the role of microtubules in this context may offer novel therapeutic approaches for the treatment of cancer.
Collapse
Affiliation(s)
- Amelia L Parker
- Tumour Biology and Targeting Program, Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales , Sydney, NSW , Australia
| | - Maria Kavallaris
- Tumour Biology and Targeting Program, Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales , Sydney, NSW , Australia ; Australian Centre for NanoMedicine, University of New South Wales , Sydney, NSW , Australia
| | - Joshua A McCarroll
- Tumour Biology and Targeting Program, Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales , Sydney, NSW , Australia ; Australian Centre for NanoMedicine, University of New South Wales , Sydney, NSW , Australia
| |
Collapse
|
30
|
Erlenkämper C, Kruse K. Treadmilling and length distributions of active polar filaments. J Chem Phys 2014; 139:164907. [PMID: 24182079 DOI: 10.1063/1.4825248] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The cytoskeleton is a network of filamentous proteins, notably, actin filaments and microtubules. These filaments are active as their assembly is driven by the hydrolysis of nucleotides bound to the constituting protomers. In addition, the assembly kinetics differs at the two respective ends, making them active polar filaments. Experimental evidence suggests, that, in vivo, actin filaments and microtubules can grow at one and shrink at the other end at the same rate, a state that is known as treadmilling. In this work, we use a generic discrete two-state model for active polar filaments to analyze the conditions leading to treadmilling. We find that a single filament can self-organize into the treadmilling state for a broad range of monomer concentrations. In this regime the corresponding length distribution has a pronounced maximum at a finite value. We then extend our description to consider specifically the dynamics of actin filaments. We show that actin treadmilling should be observable in vitro in the presence of appropriate depolymerization promoting factors.
Collapse
Affiliation(s)
- C Erlenkämper
- Theoretische Physik, Universität des Saarlandes, Postfach 151150, 66041 Saarbrücken, Germany
| | | |
Collapse
|
31
|
Mukhtar E, Adhami VM, Mukhtar H. Targeting microtubules by natural agents for cancer therapy. Mol Cancer Ther 2014; 13:275-84. [PMID: 24435445 DOI: 10.1158/1535-7163.mct-13-0791] [Citation(s) in RCA: 384] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Natural compounds that target microtubules and disrupt the normal function of the mitotic spindle have proven to be one of the best classes of cancer chemotherapeutic drugs available in clinics to date. There is increasing evidence showing that even minor alteration of microtubule dynamics can engage the spindle checkpoint, arresting cell-cycle progression at mitosis and subsequently leading to cell death. Our improved understanding of tumor biology and our continued appreciation for what the microtubule targeting agents (MTAs) can do have helped pave the way for a new era in the treatment of cancer. The effectiveness of these agents for cancer therapy has been impaired, however, by various side effects and drug resistance. Several new MTAs have shown potent activity against the proliferation of various cancer cells, including resistance to the existing MTAs. Sustained investigation of the mechanisms of action of MTAs, development and discovery of new drugs, and exploring new treatment strategies that reduce side effects and circumvent drug resistance could provide more effective therapeutic options for patients with cancer. This review focuses on the successful cancer chemotherapy from natural compounds in clinical settings and the challenges that may abort their usefulness.
Collapse
Affiliation(s)
- Eiman Mukhtar
- Corresponding Author: Hasan Mukhtar, Department of Dermatology, University of Wisconsin-Madison, 410 Medical Sciences Center, 1300 University Avenue, Madison, WI 53706.
| | | | | |
Collapse
|
32
|
Jain V, Jain B, Tiwari P, Saini J, Jain UK, Pandey RS, Kumar M, Katare OP, Chandra R, Madan J. Nanosolvated microtubule-modulating chemotherapeutics: a case-to-case study. Anticancer Drugs 2013; 24:327-36. [PMID: 23411683 DOI: 10.1097/cad.0b013e32835ec414] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
About 10% of the drugs in the preclinical stage are poorly soluble, 40% of the drugs in the pipeline have poor solubility, and even 60% of drugs coming directly from synthesis have aqueous solubility below 0.1 mg/ml. Out of the research around, 40% of lipophilic drug candidates fail to reach the market despite having potential pharmacodynamic activities. Microtubule-modulating chemotherapeutics is an important class of cancer chemotherapy. Most chemotherapeutics that belong to this category are plant-derived active constituents, such as vincristine, vinblastine, colchicine, docetaxel, paclitaxel, and noscapinoids. The pKa of a drug considerably affects its solubility in physiological fluids and consequently bioavailability. It usually ranges from 5 to 12 for microtubule-modulating drugs. Hence, the solubility of these drugs in physiological fluids is considerably affected by a change in pH. However, because of unpredictable parameters involved in poor solubility and the low oral bioavailability of these chemotherapeutics during the early phases of drug development, they often have an unusual pharmacokinetic profile. This makes the development process of novel chemotherapeutics slow, inefficient, patient-unfriendly, and very costly, emphasizing a need for more rational approaches on the basis of preclinical concepts. Nanosolvation is a process of increasing the polarity of a hydrophobic molecule either by solvation or cavitization in a hydrophilic macrocycle. The present review therefore focuses on the techniques applied in nanosolvation of microtubule-modulating chemotherapeutics to enhance solubility and bioavailability. The methodologies described will be highly beneficial for anticancer researchers to follow a trend of rational drug development.
Collapse
Affiliation(s)
- Vibhor Jain
- Department of Pharmaceutics, School of Pharmacy, Chouksey Engineering College, Bilaspur, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Bringmann M, Landrein B, Schudoma C, Hamant O, Hauser MT, Persson S. Cracking the elusive alignment hypothesis: the microtubule-cellulose synthase nexus unraveled. TRENDS IN PLANT SCIENCE 2012; 17:666-74. [PMID: 22784824 PMCID: PMC3492759 DOI: 10.1016/j.tplants.2012.06.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/06/2012] [Accepted: 06/08/2012] [Indexed: 05/02/2023]
Abstract
Directed plant cell growth is governed by deposition and alterations of cell wall components under turgor pressure. A key regulatory element of anisotropic growth, and hence cell shape, is the directional deposition of cellulose microfibrils. The microfibrils are synthesized by plasma membrane-located cellulose synthase complexes that co-align with and move along cortical microtubules. That the parallel relation between cortical microtubules and extracellular microfibrils is causal has been named the alignment hypothesis. Three recent studies revealed that the previously identified pom2 mutant codes for a large cellulose synthases interacting (CSI1) protein which also binds cortical microtubules. This review summarizes these findings, provides structure-function models and discusses the inferred mechanisms in the context of plant growth.
Collapse
Affiliation(s)
- Martin Bringmann
- Max-Planck-Institute for Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Benoit Landrein
- Laboratoire de Reproduction et Développement des Plantes, INRA, CNRS, ENS, UCB Lyon 1, 46 Allée d’Italie, 69364 Lyon Cedex 07, France
- Laboratoire Joliot Curie, CNRS, ENS Lyon, UCB Lyon 1, Université de Lyon, 46 Allée, d’Italie, 69364 Lyon Cedex 07, France
| | - Christian Schudoma
- Max-Planck-Institute for Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, INRA, CNRS, ENS, UCB Lyon 1, 46 Allée d’Italie, 69364 Lyon Cedex 07, France
- Laboratoire Joliot Curie, CNRS, ENS Lyon, UCB Lyon 1, Université de Lyon, 46 Allée, d’Italie, 69364 Lyon Cedex 07, France
| | - Marie-Theres Hauser
- Institut of Applied Genetics and Cell Biology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Staffan Persson
- Max-Planck-Institute for Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
34
|
Balzer EM, Tong Z, Paul CD, Hung WC, Stroka KM, Boggs AE, Martin SS, Konstantopoulos K. Physical confinement alters tumor cell adhesion and migration phenotypes. FASEB J 2012; 26:4045-56. [PMID: 22707566 DOI: 10.1096/fj.12-211441] [Citation(s) in RCA: 213] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cell migration on planar surfaces is driven by cycles of actin protrusion, integrin-mediated adhesion, and myosin-mediated contraction; however, this mechanism may not accurately describe movement in 3-dimensional (3D) space. By subjecting cells to restrictive 3D environments, we demonstrate that physical confinement constitutes a biophysical stimulus that alters cell morphology and suppresses mesenchymal motility in human breast carcinoma (MDA-MB-231). Dorsoventral polarity, stress fibers, and focal adhesions are markedly attenuated by confinement. Inhibitors of myosin, Rho/ROCK, or β1-integrins do not impair migration through 3-μm-wide channels (confinement), even though these treatments repress motility in 50-μm-wide channels (unconfined migration) by ≥50%. Strikingly, confined migration persists even when F-actin is disrupted, but depends largely on microtubule (MT) dynamics. Interfering with MT polymerization/depolymerization causes confined cells to undergo frequent directional changes, thereby reducing the average net displacement by ≥80% relative to vehicle controls. Live-cell EB1-GFP imaging reveals that confinement redirects MT polymerization toward the leading edge, where MTs continuously impact during advancement of the cell front. These results demonstrate that physical confinement can induce cytoskeletal alterations that reduce the dependence of migrating cells on adhesion-contraction force coupling. This mechanism may explain why integrins can exhibit reduced or altered function during migration in 3D environments.
Collapse
Affiliation(s)
- Eric M Balzer
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins Physical Sciences-Oncology Center, Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Structure and pathology of tau protein in Alzheimer disease. Int J Alzheimers Dis 2012; 2012:731526. [PMID: 22690349 PMCID: PMC3368361 DOI: 10.1155/2012/731526] [Citation(s) in RCA: 215] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 03/28/2012] [Accepted: 03/29/2012] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia. In connection with the global trend of prolonging human life and the increasing number of elderly in the population, the AD becomes one of the most serious health and socioeconomic problems of the present. Tau protein promotes assembly and stabilizes microtubules, which contributes to the proper function of neuron. Alterations in the amount or the structure of tau protein can affect its role as a stabilizer of microtubules as well as some of the processes in which it is implicated. The molecular mechanisms governing tau aggregation are mainly represented by several posttranslational modifications that alter its structure and conformational state. Hence, abnormal phosphorylation and truncation of tau protein have gained attention as key mechanisms that become tau protein in a pathological entity. Evidences about the clinicopathological significance of phosphorylated and truncated tau have been documented during the progression of AD as well as their capacity to exert cytotoxicity when expressed in cell and animal models. This paper describes the normal structure and function of tau protein and its major alterations during its pathological aggregation in AD.
Collapse
|
36
|
Pieraccini S, Saladino G, Cappelletti G, Cartelli D, Francescato P, Speranza G, Manitto P, Sironi M. In silico design of tubulin-targeted antimitotic peptides. Nat Chem 2009; 1:642-8. [DOI: 10.1038/nchem.401] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 09/08/2009] [Indexed: 11/09/2022]
|
37
|
Araki H, Katoh T. Total Synthesis of Otteliones Possessing Powerful Tubulin Polymerization Inhibitory Activity. J SYN ORG CHEM JPN 2009. [DOI: 10.5059/yukigoseikyokaishi.67.909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Jordan MA, Horwitz SB, Lobert S, Correia JJ. Exploring the mechanisms of action of the novel microtubule inhibitor vinflunine. Semin Oncol 2008; 35:S6-S12. [PMID: 18538179 DOI: 10.1053/j.seminoncol.2008.01.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Microtubules have been identified as a suitable target for anticancer therapy, primarily based on their biological importance in coordinating chromosomal segregation at mitosis. Two main classes of microtubule-targeted agents, the taxanes and vinca alkaloids, suppress the dynamic behavior of spindle microtubules, inducing mitotic arrest and subsequent apoptotic cell death. Clinical activity of taxanes and first-generation vinca alkaloids in the treatment of solid tumors and hematologic malignancies, respectively, has prompted further research for novel analogs with improved clinical efficacy and safety. Such efforts have led to the development of vinflunine, a bifluorinated vinca alkaloid endowed with unique antitumor properties. Highlighted in this review are the key features of vinflunine that lead to effective suppression of microtubule dynamics and induction of cell death in cancer cells.
Collapse
Affiliation(s)
- Mary Ann Jordan
- Department of Molecular, Cellular and Developmental Biology, University of California-Santa Barbara, Santa Barbara, CA 93106, USA.
| | | | | | | |
Collapse
|
39
|
Abstract
A recent study describes a novel role for the centrosomal protein Cep57 in attaching spindle microtubules to both kinetochores and centrosomes, suggesting similar mechanisms may be used for generating these two distinct linkages in mitosis.
Collapse
Affiliation(s)
- Jennifer G DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA.
| |
Collapse
|
40
|
Micromechanical properties of keratin intermediate filament networks. Proc Natl Acad Sci U S A 2008; 105:889-94. [PMID: 18199836 DOI: 10.1073/pnas.0710728105] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Keratin intermediate filaments (KIFs) form cytoskeletal KIF networks that are essential for the structural integrity of epithelial cells. However, the mechanical properties of the in situ network have not been defined. Particle-tracking microrheology (PTM) was used to obtain the micromechanical properties of the KIF network in alveolar epithelial cells (AECs), independent of other cytoskeletal components, such as microtubules and microfilaments. The storage modulus (G') at 1 Hz of the KIF network decreases from the perinuclear region (335 dyn/cm(2)) to the cell periphery (95 dyn/cm(2)), yielding a mean value of 210 dyn/cm(2). These changes in G' are inversely proportional to the mesh size of the network, which increases approximately 10-fold from the perinuclear region (0.02 microm(2)) to the cell periphery (0.3 microm(2)). Shear stress (15 dyn/cm(2) for 4 h) applied across the surface of AECs induces a more uniform distribution of KIF, with the mesh size of the network ranging from 0.02 microm(2) near the nucleus to only 0.04 microm(2) at the cell periphery. This amounts to a 40% increase in the mean G'. The storage modulus of the KIF network in the perinuclear region accurately predicts the shear-induced deflection of the cell nucleus to be 0.87 +/- 0.03 microm. The high storage modulus of the KIF network, coupled with its solid-like rheological behavior, supports the role of KIF as an intracellular structural scaffold that helps epithelial cells to withstand external mechanical forces.
Collapse
|
41
|
Ruff Y, Lehn JM. Glycodynamers: Dynamic analogs of arabinofuranoside oligosaccharides. Biopolymers 2008; 89:486-96. [DOI: 10.1002/bip.20885] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
42
|
Abstract
Large plasmids of some Bacillus species encode a distinct tubulin homolog, TubZ, implicated in maintenance of the host plasmid. A recent study has shown that TubZ polymers exhibit treadmilling behavior in vivo, suggesting that they are involved in mitotic activity.
Collapse
Affiliation(s)
- William Margolin
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, 6431 Fannin Street, Houston, Texas 77030, USA.
| |
Collapse
|
43
|
Schmidt M, Bastians H. Mitotic drug targets and the development of novel anti-mitotic anticancer drugs. Drug Resist Updat 2007; 10:162-81. [PMID: 17669681 DOI: 10.1016/j.drup.2007.06.003] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Accepted: 06/18/2007] [Indexed: 12/22/2022]
Abstract
Drugs that interfere with the normal progression of mitosis belong to the most successful chemotherapeutic compounds currently used for anti-cancer treatment. Classically, these drugs are represented by microtubule binding drugs that inhibit the function of the mitotic spindle in order to halt the cell cycle in mitosis and to induce apoptosis in tumor cells. However, these compounds act not only on proliferating tumor cells, but exhibit significant side effects on non-proliferating cells including neurons that are highly dependent on intracellular transport processes mediated by microtubules. Therefore, there is a particular interest in developing novel anti-mitotic drugs that target non-microtubule structures. In fact, recently several novel drugs that target mitotic kinesins or the Aurora and polo-like kinases have been developed and are currently tested in clinical trials. In addition, approaches of cell cycle checkpoint abrogation during mitosis and at the G2/M transition inducing mitosis-associated tumor cell death are promising new strategies for anti-cancer therapy. It is expected that this "next generation" of anti-mitotic drugs will be as successful as the classical anti-microtubule drugs, while avoiding some of the adverse side effects.
Collapse
Affiliation(s)
- Mathias Schmidt
- Altana Pharma AG, Therapeutic Area Oncology, Byk-Gulden Strasse 2, Konstanz, Germany
| | | |
Collapse
|
44
|
Smurova KM, Alieva IB, Vorobjev IA. Free and centrosome-attached microtubules: Quantitative analysis and modeling of two-component system. ACTA ACUST UNITED AC 2007. [DOI: 10.1134/s1990519x07030042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Maiato H, Sampaio P, Sunkel CE. Microtubule-associated proteins and their essential roles during mitosis. ACTA ACUST UNITED AC 2005; 241:53-153. [PMID: 15548419 DOI: 10.1016/s0074-7696(04)41002-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Microtubules play essential roles during mitosis, including chromosome capture, congression, and segregation. In addition, microtubules are also required for successful cytokinesis. At the heart of these processes is the ability of microtubules to do work, a property that derives from their intrinsic dynamic behavior. However, if microtubule dynamics were not properly regulated, it is certain that microtubules alone could not accomplish any of these tasks. In vivo, the regulation of microtubule dynamics is the responsibility of microtubule-associated proteins. Among these, we can distinguish several classes according to their function: (1) promotion and stabilization of microtubule polymerization, (2) destabilization or severance of microtubules, (3) functioning as linkers between various structures, or (4) motility-related functions. Here we discuss how the various properties of microtubule-associated proteins can be used to assemble an efficient mitotic apparatus capable of ensuring the bona fide transmission of the genetic information in animal cells.
Collapse
Affiliation(s)
- Hélder Maiato
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal
| | | | | |
Collapse
|
46
|
Ren Q, Liu R, Dicker A, Wang Y. CHK1 affects cell sensitivity to microtubule-targeted drugs. J Cell Physiol 2005; 203:273-6. [PMID: 15389625 DOI: 10.1002/jcp.20222] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Microtubules are the target of many anticancer drugs. Understanding the mechanism by which cells respond to different microtubule-targeted drugs is important to resolve the drug resistance and to gain better tumor control. We report here for the first time that CHK1, an essential protein in mammalian cells, affects cell sensitivity to microtubule-targeted drugs. By using a pair of transformed rat fibroblast cell lines, we show that compared with their counterpart B4 cells, A1-5 cells with higher CHK1 expression are more resistant to taxotere, a microtubule stabilizer, but are more sensitive to nocodazole, a microtubule destabilizer. We also show that the altered sensitivities of A1-5 cells to either taxotere or to nocodazole are related to the lesser microtubule-formation in the cells. In addition, we show that the altered drug sensitivities and less microtubules-formation shown in A1-5 cells could be efficiently reversed by Chk1 siRNA. Taken together, these results indicate that CHK1 is one of the factors affecting cell resistance to taxotere and sensitiveness to nocodazole, suggesting that CHK1 is involved in affecting microtubule dynamics and could be inhibited for taxotere sensitization in CHK1 highly expressed tumor cells.
Collapse
Affiliation(s)
- Qing Ren
- Department of Radiation Oncology, Kimmel Cancer Center of Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
47
|
Fanara P, Turner S, Busch R, Killion S, Awada M, Turner H, Mahsut A, Laprade KL, Stark JM, Hellerstein MK. In Vivo Measurement of Microtubule Dynamics Using Stable Isotope Labeling with Heavy Water. J Biol Chem 2004; 279:49940-7. [PMID: 15385549 DOI: 10.1074/jbc.m409660200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microtubules are dynamic polymers with central roles in the mitotic checkpoint, mitotic spindle assembly, and chromosome segregation. Agents that block mitotic progression and cell proliferation by interfering with microtubule dynamics (microtubule-targeted tubulin-polymerizing agents (MTPAs)) are powerful antitumor agents. Effects of MTPAs (e.g. paclitaxel) on microtubule dynamics have not yet been directly demonstrated in intact animals, however. Here we describe a method that measures microtubule dynamics as an exchange of tubulin dimers into microtubules in vivo. The incorporation of deuterium ((2)H(2)) from heavy water ((2)H(2)O) into tubulin dimers and polymers is measured by gas chromatography/mass spectrometry. In cultured human lung and breast cancer cell lines, or in tumors implanted into nude mice, tubulin dimers and polymerized microtubules exhibited nearly identical label incorporation rates, reflecting their rapid exchange. Administration of paclitaxel during 24 h of (2)H(2)O labeling in vivo reduced (2)H labeling in polymers while increasing (2)H in dimers, indicating diminished flux of dimers into polymers (i.e. inhibition of microtubule dynamic equilibrium). In vivo inhibition of microtubule dynamics was dose-dependent and correlated with inhibition of DNA replication, a stable isotopic measure of tumor cell growth. In contrast, microtubule polymers from sciatic nerve of untreated mice were not in dynamic equilibrium with tubulin dimers, and paclitaxel increased label incorporation into polymers. Our results directly demonstrate altered microtubule dynamics as an important action of MTPAs in vivo. This sensitive and quantitative in vivo assay of microtubule dynamics may prove useful for pre-clinical and clinical development of the next generation of MTPAs as anticancer drugs.
Collapse
|
48
|
Affiliation(s)
- Mary Ann Jordan
- University of California Santa Barbara, Santa Barbara, California 93106, USA.
| | | |
Collapse
|
49
|
Affiliation(s)
- Patricia Wadsworth
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
50
|
Leonova EV, Lomax MI. Expression of the mouse Macf2 gene during inner ear development. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 105:67-78. [PMID: 12399109 DOI: 10.1016/s0169-328x(02)00394-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Plakins, a family of linker proteins that connect cytoskeletal elements to cellular junctions and the extracellular matrix, are primarily responsible for the mechanical properties of cells and tissues. They include desmoplakin, envoplakin, plectin, dystonin/BPAG1, and Kakapo. Mutations in plakins cause several skin, muscular and neurological disorders. Macrophins are a recently discovered subfamily of plakins with binding domains for actin, intermediate filaments and microtubules. Characteristic features of macrophins include variable actin binding domains, a central rod domain containing both plectin and spectrin repeats, and a C-terminus containing EF hands and GAS2/GAR22 domain. We have examined expression of mouse Macf2, encoding macrophin-2, in adult tissues and in the developing, neonatal, and mature inner ear by in situ hybridization. Northern blot analysis identified three large tissue-specific Macf2 transcripts: a 16-kb mRNA in skeletal muscle and heart, a 15-kb mRNA in brain, and a 9-kb mRNA in RNA from ovary plus uterus. In situ hybridization of the developing mouse inner ear indicated that Macf2 is expressed in the otocyst at day 12.5, in the sensory epithelium by embryonic day 16.5, and in both inner and outer hair cells by day 16.5. Macf2 is expressed in the bodies of both sensory and motor neurons in the central and peripheral nervous system, including the auditory pathway. The Macf2 protein could be involved in the regulation of cytoskeletal connections to cellular junctions and play an important structural role in organs, such as the inner ear, that are subjected to strong mechanical forces.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Cell Adhesion/genetics
- Central Nervous System/embryology
- Central Nervous System/growth & development
- Central Nervous System/metabolism
- Cytoskeleton/genetics
- Cytoskeleton/metabolism
- Ear, Inner/embryology
- Ear, Inner/growth & development
- Ear, Inner/metabolism
- Female
- Fetus
- Ganglia/embryology
- Ganglia/growth & development
- Ganglia/metabolism
- Gene Expression Regulation, Developmental/genetics
- Hair Cells, Auditory, Inner/embryology
- Hair Cells, Auditory, Inner/growth & development
- Hair Cells, Auditory, Inner/metabolism
- Hair Cells, Auditory, Outer/embryology
- Hair Cells, Auditory, Outer/growth & development
- Hair Cells, Auditory, Outer/metabolism
- Humans
- Intercellular Junctions/genetics
- Intercellular Junctions/metabolism
- Mice
- Mice, Inbred C57BL
- Microfilament Proteins
- Neurons/cytology
- Neurons/metabolism
- Pregnancy
- RNA, Messenger/metabolism
- Spectrin/genetics
Collapse
Affiliation(s)
- Elena V Leonova
- Department of Otolaryngology/Head-Neck Surgery, Kresge Hearing Research Institute, The University of Michigan, 1150 W Medical Center Dr 9301E MSRB III, Box 0648, Ann Arbor, MI 48109-0648, USA
| | | |
Collapse
|