1
|
Wang Y, Ruan L, Zhu J, Zhang X, Chang ACC, Tomaszewski A, Li R. Metabolic regulation of misfolded protein import into mitochondria. eLife 2024; 12:RP87518. [PMID: 38900507 PMCID: PMC11189628 DOI: 10.7554/elife.87518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
Mitochondria are the cellular energy hub and central target of metabolic regulation. Mitochondria also facilitate proteostasis through pathways such as the 'mitochondria as guardian in cytosol' (MAGIC) whereby cytosolic misfolded proteins (MPs) are imported into and degraded inside mitochondria. In this study, a genome-wide screen in Saccharomyces cerevisiae uncovered that Snf1, the yeast AMP-activated protein kinase (AMPK), inhibits the import of MPs into mitochondria while promoting mitochondrial biogenesis under glucose starvation. We show that this inhibition requires a downstream transcription factor regulating mitochondrial gene expression and is likely to be conferred through substrate competition and mitochondrial import channel selectivity. We further show that Snf1/AMPK activation protects mitochondrial fitness in yeast and human cells under stress induced by MPs such as those associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Yuhao Wang
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Biochemistry, Cellular and Molecular Biology (BCMB) Graduate Program, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Linhao Ruan
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Jin Zhu
- Mechanobiology Institute and Department of Biological Sciences, National University of SingaporeSingaporeSingapore
| | - Xi Zhang
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Alexander Chih-Chieh Chang
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins UniversityBaltimoreUnited States
| | - Alexis Tomaszewski
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Biochemistry, Cellular and Molecular Biology (BCMB) Graduate Program, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Rong Li
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Mechanobiology Institute and Department of Biological Sciences, National University of SingaporeSingaporeSingapore
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins UniversityBaltimoreUnited States
| |
Collapse
|
2
|
Caligaris M, Nicastro R, Hu Z, Tripodi F, Hummel JE, Pillet B, Deprez MA, Winderickx J, Rospert S, Coccetti P, Dengjel J, De Virgilio C. Snf1/AMPK fine-tunes TORC1 signaling in response to glucose starvation. eLife 2023; 12:84319. [PMID: 36749016 PMCID: PMC9937656 DOI: 10.7554/elife.84319] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/06/2023] [Indexed: 02/08/2023] Open
Abstract
The AMP-activated protein kinase (AMPK) and the target of rapamycin complex 1 (TORC1) are central kinase modules of two opposing signaling pathways that control eukaryotic cell growth and metabolism in response to the availability of energy and nutrients. Accordingly, energy depletion activates AMPK to inhibit growth, while nutrients and high energy levels activate TORC1 to promote growth. Both in mammals and lower eukaryotes such as yeast, the AMPK and TORC1 pathways are wired to each other at different levels, which ensures homeostatic control of growth and metabolism. In this context, a previous study (Hughes Hallett et al., 2015) reported that AMPK in yeast, that is Snf1, prevents the transient TORC1 reactivation during the early phase following acute glucose starvation, but the underlying mechanism has remained elusive. Using a combination of unbiased mass spectrometry (MS)-based phosphoproteomics, genetic, biochemical, and physiological experiments, we show here that Snf1 temporally maintains TORC1 inactive in glucose-starved cells primarily through the TORC1-regulatory protein Pib2. Our data, therefore, extend the function of Pib2 to a hub that integrates both glucose and, as reported earlier, glutamine signals to control TORC1. We further demonstrate that Snf1 phosphorylates the TORC1 effector kinase Sch9 within its N-terminal region and thereby antagonizes the phosphorylation of a C-terminal TORC1-target residue within Sch9 itself that is critical for its activity. The consequences of Snf1-mediated phosphorylation of Pib2 and Sch9 are physiologically additive and sufficient to explain the role of Snf1 in short-term inhibition of TORC1 in acutely glucose-starved cells.
Collapse
Affiliation(s)
- Marco Caligaris
- Department of Biology, University of FribourgFribourgSwitzerland
| | | | - Zehan Hu
- Department of Biology, University of FribourgFribourgSwitzerland
| | - Farida Tripodi
- Department of Biotechnology and Biosciences, University of Milano-BicoccaMilanoItaly
| | - Johannes Erwin Hummel
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Benjamin Pillet
- Department of Biology, University of FribourgFribourgSwitzerland
| | | | | | - Sabine Rospert
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of FreiburgFreiburgGermany,Signalling Research Centres BIOSS and CIBSS, University of FreiburgFreiburgGermany
| | - Paola Coccetti
- Department of Biotechnology and Biosciences, University of Milano-BicoccaMilanoItaly
| | - Jörn Dengjel
- Department of Biology, University of FribourgFribourgSwitzerland
| | | |
Collapse
|
3
|
Mormino M, Lenitz I, Siewers V, Nygård Y. Identification of acetic acid sensitive strains through biosensor-based screening of a Saccharomyces cerevisiae CRISPRi library. Microb Cell Fact 2022; 21:214. [PMID: 36243715 PMCID: PMC9571444 DOI: 10.1186/s12934-022-01938-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/02/2022] [Indexed: 11/10/2022] Open
Abstract
Background Acetic acid tolerance is crucial for the development of robust cell factories for conversion of lignocellulosic hydrolysates that typically contain high levels of acetic acid. Screening mutants for growth in medium with acetic acid is an attractive way to identify sensitive variants and can provide novel insights into the complex mechanisms regulating the acetic acid stress response. Results An acetic acid biosensor based on the Saccharomyces cerevisiae transcription factor Haa1, was used to screen a CRISPRi yeast strain library where dCas9-Mxi was set to individually repress each essential or respiratory growth essential gene. Fluorescence-activated cell sorting led to the enrichment of a population of cells with higher acetic acid retention. These cells with higher biosensor signal were demonstrated to be more sensitive to acetic acid. Biosensor-based screening of the CRISPRi library strains enabled identification of strains with increased acetic acid sensitivity: strains with gRNAs targeting TIF34, MSN5, PAP1, COX10 or TRA1. Conclusions This study demonstrated that biosensors are valuable tools for screening and monitoring acetic acid tolerance in yeast. Fine-tuning the expression of essential genes can lead to altered acetic acid tolerance. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01938-7.
Collapse
Affiliation(s)
- Maurizio Mormino
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ibai Lenitz
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Verena Siewers
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Yvonne Nygård
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
4
|
Faustova I, Örd M, Kiselev V, Fedorenko D, Borovko I, Macs D, Pääbo K, Lõoke M, Loog M. A synthetic biology approach reveals diverse and dynamic CDK response profiles via multisite phosphorylation of NLS-NES modules. SCIENCE ADVANCES 2022; 8:eabp8992. [PMID: 35977012 PMCID: PMC9385143 DOI: 10.1126/sciadv.abp8992] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
The complexity of multisite phosphorylation mechanisms in regulating nuclear localization signals (NLSs) and nuclear export signals (NESs) is not understood, and its potential has not been used in synthetic biology. The nucleocytoplasmic shuttling of many proteins is regulated by cyclin-dependent kinases (CDKs) that rely on multisite phosphorylation patterns and short linear motifs (SLiMs) to dynamically control proteins in the cell cycle. We studied the role of motif patterns in nucleocytoplasmic shuttling using sensors based on the CDK targets Dna2, Psy4, and Mcm2/3 of Saccharomyces cerevisiae. We designed multisite phosphorylation modules by rearranging phosphorylation sites, cyclin-specific SLiMs, phospho-priming, phosphatase specificity, and NLS/NES phospho-regulation and obtained very different substrate localization dynamics. These included ultrasensitive responses with and without a delay, graded responses, and different homeostatic plateaus. Thus, CDK can do much more than trigger sequential switches during the cell cycle as it can drive complex patterns of protein localization and activity by using multisite phosphorylation networks.
Collapse
|
5
|
Laidlaw KME, Paine KM, Bisinski DD, Calder G, Hogg K, Ahmed S, James S, O’Toole PJ, MacDonald C. Endosomal cargo recycling mediated by Gpa1 and phosphatidylinositol 3-kinase is inhibited by glucose starvation. Mol Biol Cell 2022; 33:ar31. [PMID: 35080991 PMCID: PMC9250360 DOI: 10.1091/mbc.e21-04-0163] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 01/29/2023] Open
Abstract
Cell surface protein trafficking is regulated in response to nutrient availability, with multiple pathways directing surface membrane proteins to the lysosome for degradation in response to suboptimal extracellular nutrients. Internalized protein and lipid cargoes recycle back to the surface efficiently in glucose-replete conditions, but this trafficking is attenuated following glucose starvation. We find that cells with either reduced or hyperactive phosphatidylinositol 3-kinase (PI3K) activity are defective for endosome to surface recycling. Furthermore, we find that the yeast Gα subunit Gpa1, an endosomal PI3K effector, is required for surface recycling of cargoes. Following glucose starvation, mRNA and protein levels of a distinct Gα subunit Gpa2 are elevated following nuclear translocation of Mig1, which inhibits recycling of various cargoes. As Gpa1 and Gpa2 interact at the surface where Gpa2 concentrates during glucose starvation, we propose that this disrupts PI3K activity required for recycling, potentially diverting Gpa1 to the surface and interfering with its endosomal role in recycling. In support of this model, glucose starvation and overexpression of Gpa2 alter PI3K endosomal phosphoinositide production. Glucose deprivation therefore triggers a survival mechanism to increase retention of surface cargoes in endosomes and promote their lysosomal degradation.
Collapse
Affiliation(s)
| | | | | | - Grant Calder
- Bioscience Technology Facility, Department of Biology, University of York, YO10 5DD York, UK
| | - Karen Hogg
- Bioscience Technology Facility, Department of Biology, University of York, YO10 5DD York, UK
| | - Sophia Ahmed
- Bioscience Technology Facility, Department of Biology, University of York, YO10 5DD York, UK
| | - Sally James
- Bioscience Technology Facility, Department of Biology, University of York, YO10 5DD York, UK
| | - Peter J. O’Toole
- Bioscience Technology Facility, Department of Biology, University of York, YO10 5DD York, UK
| | - Chris MacDonald
- York Biomedical Research Institute and Department of Biology and
| |
Collapse
|
6
|
Muñoz-Miranda LA, Pereira-Santana A, Gómez-Angulo JH, Gschaedler-Mathis AC, Amaya-Delgado L, Figueroa-Yáñez LJ, Arrizon J. Identification of genes related to hydrolysis and assimilation of Agave fructans in Candida apicola NRRL Y-50540 and Torulaspora delbrueckii NRRL Y-50541 by de
novo transcriptome analysis. FEMS Yeast Res 2022; 22. [DOI: 10.1093/femsyr/foac005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
Abstract
Fructans are the main sugar in agave pine used by yeasts during mezcal fermentation processes, from which Candida apicola NRRL Y-50540 and Torulaspora delbrueckii NRRL Y-50541 were isolated. De novo transcriptome analysis was carried out to identify genes involved in the hydrolysis and assimilation of Agave fructans (AF). We identified a transcript annotated as SUC2, which is related to β-fructofuranosidase activity, and several differential expressed genes involved in the transcriptional regulation of SUC2 such as: MIG1, MTH1, SNF1, SNF5, REG1, SSN6, SIP1, SIP2, SIP5, GPR1, RAS2, and PKA. Some of these genes were specifically expressed in some of the yeasts according to their fructans assimilation metabolism. Different hexose transporters that could be related to the assimilation of fructose and glucose were found in both the transcriptomes. Our findings provide a better understanding of AF assimilation in these yeasts and provide resources for further metabolic engineering and biotechnology applications.
Collapse
Affiliation(s)
- Luis A Muñoz-Miranda
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco. División de Biotecnología Industrial, Zapopan, Jalisco, 45019, México
| | - Alejandro Pereira-Santana
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco. División de Biotecnología Industrial, Zapopan, Jalisco, 45019, México
- Dirección de Cátedras, Consejo Nacional de Ciencia y Tecnología, Ciudad de México, 03940, México
| | - Jorge H Gómez-Angulo
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco. División de Biotecnología Industrial, Zapopan, Jalisco, 45019, México
- Centro Universitario de Ciencias Exactas e Ingenierías (UDG), Departamento de Ingeniería Química, Guadalajara, Jalisco, 44430, México
| | - Anne Christine Gschaedler-Mathis
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco. División de Biotecnología Industrial, Zapopan, Jalisco, 45019, México
| | - Lorena Amaya-Delgado
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco. División de Biotecnología Industrial, Zapopan, Jalisco, 45019, México
| | - Luis J Figueroa-Yáñez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco. División de Biotecnología Industrial, Zapopan, Jalisco, 45019, México
| | - Javier Arrizon
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco. División de Biotecnología Industrial, Zapopan, Jalisco, 45019, México
| |
Collapse
|
7
|
Wollman AJM, Leake MC. Single-Molecule Narrow-Field Microscopy of Protein-DNA Binding Dynamics in Glucose Signal Transduction of Live Yeast Cells. Methods Mol Biol 2022; 2476:5-16. [PMID: 35635693 DOI: 10.1007/978-1-0716-2221-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Single-molecule narrow-field microscopy is a versatile tool to investigate a diverse range of protein dynamics in live cells and has been extensively used in bacteria. Here, we describe how these methods can be extended to larger eukaryotic, yeast cells, which contain subcellular compartments. We describe how to obtain single-molecule microscopy data but also how to analyze these data to track and obtain the stoichiometry of molecular complexes diffusing in the cell. We chose glucose-mediated signal transduction of live yeast cells as the system to demonstrate these single-molecule techniques as transcriptional regulation is fundamentally a single-molecule problem-a single repressor protein binding a single binding site in the genome can dramatically alter behavior at the whole cell and population levels.
Collapse
Affiliation(s)
- Adam J M Wollman
- Newcastle University Biosciences Institute, Newcastle University, Newcastle, UK.
| | - Mark C Leake
- Departments of Physics and Biology, University of York, York, UK
| |
Collapse
|
8
|
Lettow J, Aref R, Schüller HJ. Transcriptional repressor Gal80 recruits corepressor complex Cyc8-Tup1 to structural genes of the Saccharomyces cerevisiae GAL regulon. Curr Genet 2021; 68:115-124. [PMID: 34622331 PMCID: PMC8801411 DOI: 10.1007/s00294-021-01215-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/14/2021] [Accepted: 09/26/2021] [Indexed: 11/30/2022]
Abstract
Under non-inducing conditions (absence of galactose), yeast structural genes of the GAL regulon are repressed by Gal80, preventing interaction of Gal4 bound to UASGAL promoter motifs with general factors of the transcriptional machinery. In this work, we show that Gal80 is also able to interact with histone deacetylase-recruiting corepressor proteins Cyc8 and Tup1, indicating an additional mechanism of gene repression. This is supported by our demonstration that a lexA–Gal80 fusion efficiently mediates repression of a reporter gene with an upstream lexA operator sequence. Corepressor interaction and in vivo gene repression could be mapped to a Gal80 minimal domain of 65 amino acids (aa 81-145). Site-directed mutagenesis of selected residues within this domain showed that a cluster of aromatic-hydrophobic amino acids (YLFV, aa 118-121) is important, although not solely responsible, for gene repression. Using chromatin immunoprecipitation, Cyc8 and Tup1 were shown to be present at the GAL1 promoter in a wild-type strain but not in a gal80 mutant strain under non-inducing (derepressing) growth conditions. Expression of a GAL1–lacZ fusion was elevated in a tup1 mutant (but not in a cyc8 mutant) grown in derepressing medium, indicating that Tup1 may be mainly responsible for this second mechanism of Gal80-dependent gene repression.
Collapse
Affiliation(s)
- Julia Lettow
- Center for Functional Genomics of Microbes, Abteilung Molekulare Genetik und Infektionsbiologie, Felix-Hausdorff-Str. 8, 17487, Greifswald, Germany
| | - Rasha Aref
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Shoubra El-Khaymah, Cairo, 11241, Egypt
| | - Hans-Joachim Schüller
- Center for Functional Genomics of Microbes, Abteilung Molekulare Genetik und Infektionsbiologie, Felix-Hausdorff-Str. 8, 17487, Greifswald, Germany.
| |
Collapse
|
9
|
AMPK Phosphorylation Is Controlled by Glucose Transport Rate in a PKA-Independent Manner. Int J Mol Sci 2021; 22:ijms22179483. [PMID: 34502388 PMCID: PMC8431435 DOI: 10.3390/ijms22179483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 11/18/2022] Open
Abstract
To achieve growth, microbial organisms must cope with stresses and adapt to the environment, exploiting the available nutrients with the highest efficiency. In Saccharomyces cerevisiae, Ras/PKA and Snf1/AMPK pathways regulate cellular metabolism according to the supply of glucose, alternatively supporting fermentation or mitochondrial respiration. Many reports have highlighted crosstalk between these two pathways, even without providing a comprehensive mechanism of regulation. Here, we show that glucose-dependent inactivation of Snf1/AMPK is independent from the Ras/PKA pathway. Decoupling glucose uptake rate from glucose concentration, we highlight a strong coordination between glycolytic metabolism and Snf1/AMPK, with an inverse correlation between Snf1/AMPK phosphorylation state and glucose uptake rate, regardless of glucose concentration in the medium. Despite fructose-1,6-bisphosphate (F1,6BP) being proposed as a glycolytic flux sensor, we demonstrate that glucose-6-phosphate (G6P), and not F1,6BP, is involved in the control of Snf1/AMPK phosphorylation state. Altogether, this study supports a model by which Snf1/AMPK senses glucose flux independently from PKA activity, and thanks to conversion of glucose into G6P.
Collapse
|
10
|
Tanaka M, Gomi K. Induction and Repression of Hydrolase Genes in Aspergillus oryzae. Front Microbiol 2021; 12:677603. [PMID: 34108952 PMCID: PMC8180590 DOI: 10.3389/fmicb.2021.677603] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
The filamentous fungus Aspergillus oryzae, also known as yellow koji mold, produces high levels of hydrolases such as amylolytic and proteolytic enzymes. This property of producing large amounts of hydrolases is one of the reasons why A. oryzae has been used in the production of traditional Japanese fermented foods and beverages. A wide variety of hydrolases produced by A. oryzae have been used in the food industry. The expression of hydrolase genes is induced by the presence of certain substrates, and various transcription factors that regulate such expression have been identified. In contrast, in the presence of glucose, the expression of the glycosyl hydrolase gene is generally repressed by carbon catabolite repression (CCR), which is mediated by the transcription factor CreA and ubiquitination/deubiquitination factors. In this review, we present the current knowledge on the regulation of hydrolase gene expression, including CCR, in A. oryzae.
Collapse
Affiliation(s)
- Mizuki Tanaka
- Biomolecular Engineering Laboratory, School of Food and Nutritional Science, University of Shizuoka, Shizuoka, Japan
| | - Katsuya Gomi
- Laboratory of Fermentation Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
11
|
Oh S, Lee J, Swanson SK, Florens L, Washburn MP, Workman JL. Yeast Nuak1 phosphorylates histone H3 threonine 11 in low glucose stress by the cooperation of AMPK and CK2 signaling. eLife 2020; 9:e64588. [PMID: 33372657 PMCID: PMC7781599 DOI: 10.7554/elife.64588] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/26/2020] [Indexed: 12/26/2022] Open
Abstract
Changes in available nutrients are inevitable events for most living organisms. Upon nutritional stress, several signaling pathways cooperate to change the transcription program through chromatin regulation to rewire cellular metabolism. In budding yeast, histone H3 threonine 11 phosphorylation (H3pT11) acts as a marker of low glucose stress and regulates the transcription of nutritional stress-responsive genes. Understanding how this histone modification 'senses' external glucose changes remains elusive. Here, we show that Tda1, the yeast ortholog of human Nuak1, is a direct kinase for H3pT11 upon low glucose stress. Yeast AMP-activated protein kinase (AMPK) directly phosphorylates Tda1 to govern Tda1 activity, while CK2 regulates Tda1 nuclear localization. Collectively, AMPK and CK2 signaling converge on histone kinase Tda1 to link external low glucose stress to chromatin regulation.
Collapse
Affiliation(s)
- Seunghee Oh
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Jaehyoun Lee
- Stowers Institute for Medical ResearchKansas CityUnited States
| | | | | | - Michael P Washburn
- Stowers Institute for Medical ResearchKansas CityUnited States
- Department of Pathology and Laboratory Medicine, University of Kansas Medical CenterKansas CityUnited States
| | - Jerry L Workman
- Stowers Institute for Medical ResearchKansas CityUnited States
| |
Collapse
|
12
|
Snf1 AMPK positively regulates ER-phagy via expression control of Atg39 autophagy receptor in yeast ER stress response. PLoS Genet 2020; 16:e1009053. [PMID: 32986716 PMCID: PMC7544123 DOI: 10.1371/journal.pgen.1009053] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 10/08/2020] [Accepted: 08/14/2020] [Indexed: 12/13/2022] Open
Abstract
Autophagy is a fundamental process responsible for degradation and recycling of intracellular contents. In the budding yeast, non-selective macroautophagy and microautophagy of the endoplasmic reticulum (ER) are caused by ER stress, the circumstance where aberrant proteins accumulate in the ER. The more recent study showed that protein aggregation in the ER initiates ER-selective macroautophagy, referred to as ER-phagy; however, the mechanisms by which ER stress induces ER-phagy have not been fully elucidated. Here, we show that the expression levels of ATG39, encoding an autophagy receptor specific for ER-phagy, are significantly increased under ER-stressed conditions. ATG39 upregulation in ER stress response is mediated by activation of its promoter, which is positively regulated by Snf1 AMP-activated protein kinase (AMPK) and negatively by Mig1 and Mig2 transcriptional repressors. In response to ER stress, Snf1 promotes nuclear export of Mig1 and Mig2. Our results suggest that during ER stress response, Snf1 mediates activation of the ATG39 promoter and consequently facilitates ER-phagy by negatively regulating Mig1 and Mig2.
Collapse
|
13
|
Schmidt GW, Welkenhuysen N, Ye T, Cvijovic M, Hohmann S. Mig1 localization exhibits biphasic behavior which is controlled by both metabolic and regulatory roles of the sugar kinases. Mol Genet Genomics 2020; 295:1489-1500. [PMID: 32948893 PMCID: PMC7524853 DOI: 10.1007/s00438-020-01715-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/20/2020] [Indexed: 12/01/2022]
Abstract
Glucose, fructose and mannose are the preferred carbon/energy sources for the yeast Saccharomyces cerevisiae. Absence of preferred energy sources activates glucose derepression, which is regulated by the kinase Snf1. Snf1 phosphorylates the transcriptional repressor Mig1, which results in its exit from the nucleus and subsequent derepression of genes. In contrast, Snf1 is inactive when preferred carbon sources are available, which leads to dephosphorylation of Mig1 and its translocation to the nucleus where Mig1 acts as a transcription repressor. Here we revisit the role of the three hexose kinases, Hxk1, Hxk2 and Glk1, in glucose de/repression. We demonstrate that all three sugar kinases initially affect Mig1 nuclear localization upon addition of glucose, fructose and mannose. This initial import of Mig1 into the nucleus was temporary; for continuous nucleocytoplasmic shuttling of Mig1, Hxk2 is required in the presence of glucose and mannose and in the presence of fructose Hxk2 or Hxk1 is required. Our data suggest that Mig1 import following exposure to preferred energy sources is controlled via two different pathways, where (1) the initial import is regulated by signals derived from metabolism and (2) continuous shuttling is regulated by the Hxk2 and Hxk1 proteins. Mig1 nucleocytoplasmic shuttling appears to be important for the maintenance of the repressed state in which Hxk1/2 seems to play an essential role.
Collapse
Affiliation(s)
- Gregor W Schmidt
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Niek Welkenhuysen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden.,Department of Mathematical Sciences, University of Gothenburg and Chalmers University of Technology, Göteborg, Sweden
| | - Tian Ye
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Marija Cvijovic
- Department of Mathematical Sciences, University of Gothenburg and Chalmers University of Technology, Göteborg, Sweden
| | - Stefan Hohmann
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden. .,Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden.
| |
Collapse
|
14
|
González A, Hall MN, Lin SC, Hardie DG. AMPK and TOR: The Yin and Yang of Cellular Nutrient Sensing and Growth Control. Cell Metab 2020; 31:472-492. [PMID: 32130880 DOI: 10.1016/j.cmet.2020.01.015] [Citation(s) in RCA: 418] [Impact Index Per Article: 104.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The AMPK (AMP-activated protein kinase) and TOR (target-of-rapamycin) pathways are interlinked, opposing signaling pathways involved in sensing availability of nutrients and energy and regulation of cell growth. AMPK (Yin, or the "dark side") is switched on by lack of energy or nutrients and inhibits cell growth, while TOR (Yang, or the "bright side") is switched on by nutrient availability and promotes cell growth. Genes encoding the AMPK and TOR complexes are found in almost all eukaryotes, suggesting that these pathways arose very early during eukaryotic evolution. During the development of multicellularity, an additional tier of cell-extrinsic growth control arose that is mediated by growth factors, but these often act by modulating nutrient uptake so that AMPK and TOR remain the underlying regulators of cellular growth control. In this review, we discuss the evolution, structure, and regulation of the AMPK and TOR pathways and the complex mechanisms by which they interact.
Collapse
Affiliation(s)
- Asier González
- Biozentrum, University of Basel, CH4056 Basel, Switzerland
| | - Michael N Hall
- Biozentrum, University of Basel, CH4056 Basel, Switzerland
| | - Sheng-Cai Lin
- School of Life Sciences, Xiamen University, Xiamen, 361102 Fujian, China
| | - D Grahame Hardie
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK.
| |
Collapse
|
15
|
Quilis I, Taberner FJ, Martínez-Garay CA, Alepuz P, Igual JC. Karyopherin Msn5 is involved in a novel mechanism controlling the cellular level of cell cycle regulators Cln2 and Swi5. Cell Cycle 2019; 18:580-595. [PMID: 30739521 PMCID: PMC6464581 DOI: 10.1080/15384101.2019.1578148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The yeast β-karyopherin Msn5 controls the SBF cell-cycle transcription factor, responsible for the periodic expression of CLN2 cyclin gene at G1/S, and the nuclear export of Cln2 protein. Here we show that Msn5 regulates Cln2 by an additional mechanism. Inactivation of Msn5 causes a severe reduction in the cellular content of Cln2. This occurs by a post-transcriptional mechanism, since CLN2 mRNA level is not importantly affected in asynchronous cultures. Cln2 stability is not significantly altered in msn5 cells and inactivation of Msn5 causes a reduction in protein level even when Cln2 is stabilized. Therefore, the reduced amount of Cln2 in msn5 cells is mainly due not to a higher rate of protein degradation but to a defect in Cln2 synthesis. In fact, analysis of polysome profiles indicated that Msn5 inactivation causes a shift of CLN2 and SWI5 mRNAs from heavy-polysomal to light-polysomal and non-polysomal fractions, supporting a defect in Cln2 and Swi5 protein synthesis in the msn5 mutant. The analysis of truncated versions of Cln2 and of chimeric cyclins combining distinct domains from Cln2 and the related Cln1 cyclin identified an internal region in Cln2 from 181 to 225 residues that when fused to GFP is able to confer Msn5-dependent regulation of protein cellular content. Finally, we showed that a high level of Cln2 is toxic in the absence of Msn5. In summary, we described that Msn5 is required for the proper protein synthesis of specific proteins, introducing a new level of control of cell cycle regulators.
Collapse
Affiliation(s)
- Inma Quilis
- a Departament de Bioquímica i Biologia Molecular , Universitat de València , Valencia , Spain.,b Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED) , Universitat de València , Valencia , Spain
| | - Francisco J Taberner
- a Departament de Bioquímica i Biologia Molecular , Universitat de València , Valencia , Spain.,b Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED) , Universitat de València , Valencia , Spain
| | - Carlos A Martínez-Garay
- a Departament de Bioquímica i Biologia Molecular , Universitat de València , Valencia , Spain.,b Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED) , Universitat de València , Valencia , Spain
| | - Paula Alepuz
- a Departament de Bioquímica i Biologia Molecular , Universitat de València , Valencia , Spain.,b Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED) , Universitat de València , Valencia , Spain
| | - J Carlos Igual
- a Departament de Bioquímica i Biologia Molecular , Universitat de València , Valencia , Spain.,b Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED) , Universitat de València , Valencia , Spain
| |
Collapse
|
16
|
Van Ende M, Wijnants S, Van Dijck P. Sugar Sensing and Signaling in Candida albicans and Candida glabrata. Front Microbiol 2019; 10:99. [PMID: 30761119 PMCID: PMC6363656 DOI: 10.3389/fmicb.2019.00099] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/16/2019] [Indexed: 12/30/2022] Open
Abstract
Candida species, such as Candida albicans and Candida glabrata, cause infections at different host sites because they adapt their metabolism depending on the available nutrients. They are able to proliferate under both nutrient-rich and nutrient-poor conditions. This adaptation is what makes these fungi successful pathogens. For both species, sugars are very important nutrients and as the sugar level differs depending on the host niche, different sugar sensing systems must be present. Saccharomyces cerevisiae has been used as a model for the identification of these sugar sensing systems. One of the main carbon sources for yeast is glucose, for which three different pathways have been described. First, two transporter-like proteins, ScSnf3 and ScRgt2, sense glucose levels resulting in the induction of different hexose transporter genes. This situation is comparable in C. albicans and C. glabrata, where sensing of glucose by CaHgt4 and CgSnf3, respectively, also results in hexose transporter gene induction. The second glucose sensing mechanism in S. cerevisiae is via the G-protein coupled receptor ScGpr1, which causes the activation of the cAMP/PKA pathway, resulting in rapid adaptation to the presence of glucose. The main components of this glucose sensing system are also conserved in C. albicans and C. glabrata. However, it seems that the ligand(s) for CaGpr1 are not sugars but lactate and methionine. In C. glabrata, this pathway has not yet been investigated. Finally, the glucose repression pathway ensures repression of respiration and repression of the use of alternative carbon sources. This pathway is not well characterized in Candida species. It is important to note that, apart from glucose, other sugars and sugar-analogs, such as N-acetylglucosamine in the case of C. albicans, are also important carbon sources. In these fungal pathogens, sensing sugars is important for a number of virulence attributes, including adhesion, oxidative stress resistance, biofilm formation, morphogenesis, invasion, and antifungal drug tolerance. In this review, the sugar sensing and signaling mechanisms in these Candida species are compared to S. cerevisiae.
Collapse
Affiliation(s)
- Mieke Van Ende
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Stefanie Wijnants
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| |
Collapse
|
17
|
Tripodi F, Castoldi A, Nicastro R, Reghellin V, Lombardi L, Airoldi C, Falletta E, Maffioli E, Scarcia P, Palmieri L, Alberghina L, Agrimi G, Tedeschi G, Coccetti P. Methionine supplementation stimulates mitochondrial respiration. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1901-1913. [PMID: 30290237 DOI: 10.1016/j.bbamcr.2018.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/28/2018] [Accepted: 09/23/2018] [Indexed: 10/28/2022]
Abstract
Mitochondria play essential metabolic functions in eukaryotes. Although their major role is the generation of energy in the form of ATP, they are also involved in maintenance of cellular redox state, conversion and biosynthesis of metabolites and signal transduction. Most mitochondrial functions are conserved in eukaryotic systems and mitochondrial dysfunctions trigger several human diseases. By using multi-omics approach, we investigate the effect of methionine supplementation on yeast cellular metabolism, considering its role in the regulation of key cellular processes. Methionine supplementation induces an up-regulation of proteins related to mitochondrial functions such as TCA cycle, electron transport chain and respiration, combined with an enhancement of mitochondrial pyruvate uptake and TCA cycle activity. This metabolic signature is more noticeable in cells lacking Snf1/AMPK, the conserved signalling regulator of energy homeostasis. Remarkably, snf1Δ cells strongly depend on mitochondrial respiration and suppression of pyruvate transport is detrimental for this mutant in methionine condition, indicating that respiration mostly relies on pyruvate flux into mitochondrial pathways. These data provide new insights into the regulation of mitochondrial metabolism and extends our understanding on the role of methionine in regulating energy signalling pathways.
Collapse
Affiliation(s)
- Farida Tripodi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy; SYSBIO, Centre of Systems Biology, Milan, Italy
| | - Andrea Castoldi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Raffaele Nicastro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Veronica Reghellin
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Linda Lombardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Cristina Airoldi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy; SYSBIO, Centre of Systems Biology, Milan, Italy
| | | | - Elisa Maffioli
- DIMEVET - Department of Veterinary Medicine, University of Milano, Milan, Italy
| | - Pasquale Scarcia
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Italy
| | - Luigi Palmieri
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Italy
| | - Lilia Alberghina
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy; SYSBIO, Centre of Systems Biology, Milan, Italy
| | - Gennaro Agrimi
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Italy.
| | - Gabriella Tedeschi
- DIMEVET - Department of Veterinary Medicine, University of Milano, Milan, Italy.
| | - Paola Coccetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy; SYSBIO, Centre of Systems Biology, Milan, Italy.
| |
Collapse
|
18
|
Coccetti P, Nicastro R, Tripodi F. Conventional and emerging roles of the energy sensor Snf1/AMPK in Saccharomyces cerevisiae. MICROBIAL CELL 2018; 5:482-494. [PMID: 30483520 PMCID: PMC6244292 DOI: 10.15698/mic2018.11.655] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
All proliferating cells need to match metabolism, growth and cell cycle progression with nutrient availability to guarantee cell viability in spite of a changing environment. In yeast, a signaling pathway centered on the effector kinase Snf1 is required to adapt to nutrient limitation and to utilize alternative carbon sources, such as sucrose and ethanol. Snf1 shares evolutionary conserved functions with the AMP-activated Kinase (AMPK) in higher eukaryotes which, activated by energy depletion, stimulates catabolic processes and, at the same time, inhibits anabolism. Although the yeast Snf1 is best known for its role in responding to a number of stress factors, in addition to glucose limitation, new unconventional roles of Snf1 have recently emerged, even in glucose repressing and unstressed conditions. Here, we review and integrate available data on conventional and non-conventional functions of Snf1 to better understand the complexity of cellular physiology which controls energy homeostasis.
Collapse
Affiliation(s)
- Paola Coccetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,SYSBIO, Centre of Systems Biology, Milan, Italy
| | - Raffaele Nicastro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,Present address: Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Farida Tripodi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,SYSBIO, Centre of Systems Biology, Milan, Italy
| |
Collapse
|
19
|
Regulation of Aspergillus nidulans CreA-Mediated Catabolite Repression by the F-Box Proteins Fbx23 and Fbx47. mBio 2018; 9:mBio.00840-18. [PMID: 29921666 PMCID: PMC6016232 DOI: 10.1128/mbio.00840-18] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The attachment of one or more ubiquitin molecules by SCF (Skp-Cullin-F-box) complexes to protein substrates targets them for subsequent degradation by the 26S proteasome, allowing the control of numerous cellular processes. Glucose-mediated signaling and subsequent carbon catabolite repression (CCR) are processes relying on the functional regulation of target proteins, ultimately controlling the utilization of this carbon source. In the filamentous fungus Aspergillus nidulans, CCR is mediated by the transcription factor CreA, which modulates the expression of genes encoding biotechnologically relevant enzymes. Although CreA-mediated repression of target genes has been extensively studied, less is known about the regulatory pathways governing CCR and this work aimed at further unravelling these events. The Fbx23 F-box protein was identified as being involved in CCR and the Δfbx23 mutant presented impaired xylanase production under repressing (glucose) and derepressing (xylan) conditions. Mass spectrometry showed that Fbx23 is part of an SCF ubiquitin ligase complex that is bridged via the GskA protein kinase to the CreA-SsnF-RcoA repressor complex, resulting in the degradation of the latter under derepressing conditions. Upon the addition of glucose, CreA dissociates from the ubiquitin ligase complex and is transported into the nucleus. Furthermore, casein kinase is important for CreA function during glucose signaling, although the exact role of phosphorylation in CCR remains to be determined. In summary, this study unraveled novel mechanistic details underlying CreA-mediated CCR and provided a solid basis for studying additional factors involved in carbon source utilization which could prove useful for biotechnological applications.IMPORTANCE The production of biofuels from plant biomass has gained interest in recent years as an environmentally friendly alternative to production from petroleum-based energy sources. Filamentous fungi, which naturally thrive on decaying plant matter, are of particular interest for this process due to their ability to secrete enzymes required for the deconstruction of lignocellulosic material. A major drawback in fungal hydrolytic enzyme production is the repression of the corresponding genes in the presence of glucose, a process known as carbon catabolite repression (CCR). This report provides previously unknown mechanistic insights into CCR through elucidating part of the protein-protein interaction regulatory system that governs the CreA transcriptional regulator in the reference organism Aspergillus nidulans in the presence of glucose and the biotechnologically relevant plant polysaccharide xylan.
Collapse
|
20
|
Shashkova S, Wollman AJM, Leake MC, Hohmann S. The yeast Mig1 transcriptional repressor is dephosphorylated by glucose-dependent and -independent mechanisms. FEMS Microbiol Lett 2018; 364:3884263. [PMID: 28854669 DOI: 10.1093/femsle/fnx133] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 06/21/2017] [Indexed: 12/28/2022] Open
Abstract
A yeast Saccharomyces cerevisiae Snf1 kinase, an analog of mammalian AMPK, regulates glucose derepression of genes required for utilization of alternative carbon sources through the transcriptional repressor Mig1. It has been suggested that the Glc7-Reg1 phosphatase dephosphorylates Mig1. Here we report that Mig1 is dephosphorylated by Glc7-Reg1 in an apparently glucose-dependent mechanism but also by a mechanism independent of glucose and Glc7-Reg1. In addition to serine/threonine phosphatases another process including tyrosine phosphorylation seems crucial for Mig1 regulation. Taken together, Mig1 dephosphorylation appears to be controlled in a complex manner, in line with the importance for rapid and sensitive regulation upon altered glucose concentrations in the growth medium.
Collapse
Affiliation(s)
- Sviatlana Shashkova
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Göteborg, Sweden.,Biological Physical Sciences Institute, University of York, York YO10 5DD, UK
| | - Adam J M Wollman
- Biological Physical Sciences Institute, University of York, York YO10 5DD, UK
| | - Mark C Leake
- Biological Physical Sciences Institute, University of York, York YO10 5DD, UK
| | - Stefan Hohmann
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Göteborg, Sweden.,Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
| |
Collapse
|
21
|
Tripodi F, Fraschini R, Zocchi M, Reghellin V, Coccetti P. Snf1/AMPK is involved in the mitotic spindle alignment in Saccharomyces cerevisiae. Sci Rep 2018; 8:5853. [PMID: 29643469 PMCID: PMC5895576 DOI: 10.1038/s41598-018-24252-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/01/2018] [Indexed: 12/17/2022] Open
Abstract
Before anaphase onset, budding yeast cells must align the mitotic spindle parallel to the mother-bud axis to ensure proper chromosome segregation. The protein kinase Snf1/AMPK is a highly conserved energy sensor, essential for adaptation to glucose limitation and in response to cellular stresses. However, recent findings indicate that it plays important functions also in non-limiting glucose conditions. Here we report a novel role of Snf1/AMPK in the progression through mitosis in glucose-repressing condition. We show that active Snf1 is localized to the bud neck from bud emergence to cytokinesis in a septin-dependent manner. In addition, loss of Snf1 induces a delay of the metaphase to anaphase transition that is due to a defect in the correct alignment of the mitotic spindle. In particular, genetic data indicate that Snf1 promotes spindle orientation acting in parallel with Dyn1 and in concert with Kar9. Altogether this study describes a new role for Snf1 in mitosis and connects cellular metabolism to mitosis progression.
Collapse
Affiliation(s)
- Farida Tripodi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy. .,SYSBIO, Centre of Systems Biology, Milan, Italy.
| | - Roberta Fraschini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Monica Zocchi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy.,Museo della Scienza e della Tecnologia Leonardo da Vinci, Milano, Italy
| | - Veronica Reghellin
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy.,Eurofins BioPharma, Vimodrone, Italy
| | - Paola Coccetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy. .,SYSBIO, Centre of Systems Biology, Milan, Italy.
| |
Collapse
|
22
|
Adamczyk M, Szatkowska R. Low RNA Polymerase III activity results in up regulation of HXT2 glucose transporter independently of glucose signaling and despite changing environment. PLoS One 2017; 12:e0185516. [PMID: 28961268 PMCID: PMC5621690 DOI: 10.1371/journal.pone.0185516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/14/2017] [Indexed: 01/13/2023] Open
Abstract
Background Saccharomyces cerevisiae responds to glucose availability in the environment, inducing the expression of the low-affinity transporters and high-affinity transporters in a concentration dependent manner. This cellular decision making is controlled through finely tuned communication between multiple glucose sensing pathways including the Snf1-Mig1, Snf3/Rgt2-Rgt1 (SRR) and cAMP-PKA pathways. Results We demonstrate the first evidence that RNA Polymerase III (RNAP III) activity affects the expression of the glucose transporter HXT2 (RNA Polymerase II dependent—RNAP II) at the level of transcription. Down-regulation of RNAP III activity in an rpc128-1007 mutant results in a significant increase in HXT2 mRNA, which is considered to respond only to low extracellular glucose concentrations. HXT2 expression is induced in the mutant regardless of the growth conditions either at high glucose concentration or in the presence of a non-fermentable carbon source such as glycerol. Using chromatin immunoprecipitation (ChIP), we found an increased association of Rgt1 and Tup1 transcription factors with the highly activated HXT2 promoter in the rpc128-1007 strain. Furthermore, by measuring cellular abundance of Mth1 corepressor, we found that in rpc128-1007, HXT2 gene expression was independent from Snf3/Rgt2-Rgt1 (SRR) signaling. The Snf1 protein kinase complex, which needs to be active for the release from glucose repression, also did not appear perturbed in the mutated strain. Conclusions/Significance These findings suggest that the general activity of RNAP III can indirectly affect the RNAP II transcriptional machinery on the HXT2 promoter when cellular perception transduced via the major signaling pathways, broadly recognized as on/off switch essential to either positive or negative HXT gene regulation, remain entirely intact. Further, Rgt1/Ssn6-Tup1 complex, which has a dual function in gene transcription as a repressor-activator complex, contributes to HXT2 transcriptional activation.
Collapse
Affiliation(s)
- Malgorzata Adamczyk
- Institute of Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
- * E-mail:
| | - Roza Szatkowska
- Institute of Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
23
|
Wollman AJ, Shashkova S, Hedlund EG, Friemann R, Hohmann S, Leake MC. Transcription factor clusters regulate genes in eukaryotic cells. eLife 2017; 6:27451. [PMID: 28841133 PMCID: PMC5602325 DOI: 10.7554/elife.27451] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/24/2017] [Indexed: 01/07/2023] Open
Abstract
Transcription is regulated through binding factors to gene promoters to activate or repress expression, however, the mechanisms by which factors find targets remain unclear. Using single-molecule fluorescence microscopy, we determined in vivo stoichiometry and spatiotemporal dynamics of a GFP tagged repressor, Mig1, from a paradigm signaling pathway of Saccharomyces cerevisiae. We find the repressor operates in clusters, which upon extracellular signal detection, translocate from the cytoplasm, bind to nuclear targets and turnover. Simulations of Mig1 configuration within a 3D yeast genome model combined with a promoter-specific, fluorescent translation reporter confirmed clusters are the functional unit of gene regulation. In vitro and structural analysis on reconstituted Mig1 suggests that clusters are stabilized by depletion forces between intrinsically disordered sequences. We observed similar clusters of a co-regulatory activator from a different pathway, supporting a generalized cluster model for transcription factors that reduces promoter search times through intersegment transfer while stabilizing gene expression.
Collapse
Affiliation(s)
- Adam Jm Wollman
- Biological Physical Sciences Institute, University of York, York, United Kingdom
| | - Sviatlana Shashkova
- Biological Physical Sciences Institute, University of York, York, United Kingdom.,Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Erik G Hedlund
- Biological Physical Sciences Institute, University of York, York, United Kingdom
| | - Rosmarie Friemann
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Stefan Hohmann
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.,Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Mark C Leake
- Biological Physical Sciences Institute, University of York, York, United Kingdom
| |
Collapse
|
24
|
Metabolic Adaptation to Nutrients Involves Coregulation of Gene Expression by the RNA Helicase Dbp2 and the Cyc8 Corepressor in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2017; 7:2235-2247. [PMID: 28500049 PMCID: PMC5499131 DOI: 10.1534/g3.117.041814] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cells fine-tune their metabolic programs according to nutrient availability in order to maintain homeostasis. This is achieved largely through integrating signaling pathways and the gene expression program, allowing cells to adapt to nutritional change. Dbp2, a member of the DEAD-box RNA helicase family in Saccharomyces cerevisiae, has been proposed to integrate gene expression with cellular metabolism. Prior work from our laboratory has reported the necessity of DBP2 in proper gene expression, particularly for genes involved in glucose-dependent regulation. Here, by comparing differentially expressed genes in dbp2∆ to those of 700 other deletion strains from other studies, we find that CYC8 and TUP1, which form a complex and inhibit transcription of numerous genes, corepress a common set of genes with DBP2. Gene ontology (GO) annotations reveal that these corepressed genes are related to cellular metabolism, including respiration, gluconeogenesis, and alternative carbon-source utilization genes. Consistent with a direct role in metabolic gene regulation, loss of either DBP2 or CYC8 results in increased cellular respiration rates. Furthermore, we find that corepressed genes have a propensity to be associated with overlapping long noncoding RNAs and that upregulation of these genes in the absence of DBP2 correlates with decreased binding of Cyc8 to these gene promoters. Taken together, this suggests that Dbp2 integrates nutrient availability with energy homeostasis by maintaining repression of glucose-repressed, Cyc8-targeted genes across the genome.
Collapse
|
25
|
Casein Kinase I Isoform Hrr25 Is a Negative Regulator of Haa1 in the Weak Acid Stress Response Pathway in Saccharomyces cerevisiae. Appl Environ Microbiol 2017; 83:AEM.00672-17. [PMID: 28432100 DOI: 10.1128/aem.00672-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 04/15/2017] [Indexed: 11/20/2022] Open
Abstract
Haa1 is a transcription factor that adapts Saccharomyces cerevisiae cells to weak organic acid stresses by activating the expression of various genes. Many of these genes encode membrane proteins, such as TPO2 and YRO2 How Haa1 is activated by weak acids is not clear. Here, we show that casein kinase I isoform Hrr25 is an important negative regulator of Haa1. Haa1 is known to be multiply phosphorylated. We found that mutations in HRR25 lead to reduced Haa1 phosphorylation and increased expression of Haa1 target genes and that Hrr25 interacts with Haa1. The other three casein kinase I isoforms, Yck1, Yck2, and Yck3, do not seem to play critical roles in Haa1 regulation. Hrr25 has a 200-residue C-terminal region, including a proline- and glutamine-rich domain. Our data suggest that the C-terminal region of Hrr25 is required for normal inhibition of expression of Haa1 target genes TPO2 and YRO2 and is important for cell growth but is not required for cell morphogenesis. We propose that Hrr25 is an important regulator of cellular adaptation to weak acid stress by inhibiting Haa1 through phosphorylation.IMPORTANCE Our study has revealed the casein kinase I protein Hrr25 to be a negative regulator of Haa1, a transcription factor mediating the cellular response to stresses caused by weak acids. Many studies have focused on the target genes of Haa1 and their roles in weak acid stress responses, but little has been reported on the regulatory mechanism of Haa1. Weak acids, such as acetic acid, have long been used for food preservation by slowing down the growth of fungal species, including S. cerevisiae In the biofuel industry, acetic acid in the lignocellulosic hydrolysates limits the production of ethanol, which is undesirable. By understanding how Haa1 is regulated, we can make advances in the field of food sciences to better preserve food and engineer acetic acid-resistant strains that will increase productivity in the biofuel industry.
Collapse
|
26
|
Welkenhuysen N, Borgqvist J, Backman M, Bendrioua L, Goksör M, Adiels CB, Cvijovic M, Hohmann S. Single-cell study links metabolism with nutrient signaling and reveals sources of variability. BMC SYSTEMS BIOLOGY 2017; 11:59. [PMID: 28583118 PMCID: PMC5460408 DOI: 10.1186/s12918-017-0435-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 05/24/2017] [Indexed: 01/02/2023]
Abstract
BACKGROUND The yeast AMPK/SNF1 pathway is best known for its role in glucose de/repression. When glucose becomes limited, the Snf1 kinase is activated and phosphorylates the transcriptional repressor Mig1, which is then exported from the nucleus. The exact mechanism how the Snf1-Mig1 pathway is regulated is not entirely elucidated. RESULTS Glucose uptake through the low affinity transporter Hxt1 results in nuclear accumulation of Mig1 in response to all glucose concentrations upshift, however with increasing glucose concentration the nuclear localization of Mig1 is more intense. Strains expressing Hxt7 display a constant response to all glucose concentration upshifts. We show that differences in amount of hexose transporter molecules in the cell could cause cell-to-cell variability in the Mig1-Snf1 system. We further apply mathematical modelling to our data, both general deterministic and a nonlinear mixed effect model. Our model suggests a presently unrecognized regulatory step of the Snf1-Mig1 pathway at the level of Mig1 dephosphorylation. Model predictions point to parameters involved in the transport of Mig1 in and out of the nucleus as a majorsource of cell to cell variability. CONCLUSIONS With this modelling approach we have been able to suggest steps that contribute to the cell-to-cell variability. Our data indicate a close link between the glucose uptake rate, which determines the glycolytic rate, and the activity of the Snf1/Mig1 system. This study hence establishes a close relation between metabolism and signalling.
Collapse
Affiliation(s)
- Niek Welkenhuysen
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96, Gothenburg, Sweden
| | - Johannes Borgqvist
- Department of Mathematical Sciences, Chalmers University of Technology and the University of Gothenburg, SE-412 96, Gothenburg, Sweden
| | - Mattias Backman
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96, Gothenburg, Sweden
| | - Loubna Bendrioua
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96, Gothenburg, Sweden
| | - Mattias Goksör
- Department of Physics, University of Gothenburg, SE-412 96, Gothenburg, Sweden
| | - Caroline B Adiels
- Department of Physics, University of Gothenburg, SE-412 96, Gothenburg, Sweden
| | - Marija Cvijovic
- Department of Mathematical Sciences, Chalmers University of Technology and the University of Gothenburg, SE-412 96, Gothenburg, Sweden.
| | - Stefan Hohmann
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96, Gothenburg, Sweden. .,Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.
| |
Collapse
|
27
|
Rippert D, Backhaus K, Rodicio R, Heinisch JJ. Cell wall synthesis and central carbohydrate metabolism are interconnected by the SNF1/Mig1 pathway in Kluyveromyces lactis. Eur J Cell Biol 2017; 96:70-81. [DOI: 10.1016/j.ejcb.2016.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 11/12/2022] Open
|
28
|
The CreB deubiquitinating enzyme does not directly target the CreA repressor protein in Aspergillus nidulans. Curr Genet 2016; 63:647-667. [DOI: 10.1007/s00294-016-0666-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 12/12/2022]
|
29
|
Abstract
The survival of all organisms is dependent on complex, coordinated responses to environmental cues. Non-coding RNAs have been identified as major players in regulation of gene expression, with recent evidence supporting roles for long non-coding (lnc)RNAs in both transcriptional and post-transcriptional control. Evidence from our laboratory shows that lncRNAs have the ability to form hybridized structures called R-loops with specific DNA target sequences in S. cerevisiae, thereby modulating gene expression. In this Point of View, we provide an overview of the nature of lncRNA-mediated control of gene expression in the context of our studies using the GAL gene cluster as a model for controlling the timing of transcription.
Collapse
Affiliation(s)
- Zachary T Beck
- a Department of Biochemistry , Purdue University , West Lafayette , IN , USA
| | - Zheng Xing
- a Department of Biochemistry , Purdue University , West Lafayette , IN , USA
| | - Elizabeth J Tran
- a Department of Biochemistry , Purdue University , West Lafayette , IN , USA.,b Purdue University Center for Cancer Research, Purdue University , West Lafayette , IN , USA
| |
Collapse
|
30
|
Alam MA, Kamlangdee N, Kelly JM. The CreB deubiquitinating enzyme does not directly target the CreA repressor protein in Aspergillus nidulans. Curr Genet 2016:10.1007/s00294-016-0643-x. [PMID: 27589970 DOI: 10.1007/s00294-016-0643-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 11/25/2022]
Abstract
Ubiquitination/deubiquitination pathways are now recognized as key components of gene regulatory mechanisms in eukaryotes. The major transcriptional repressor for carbon catabolite repression in Aspergillus nidulans is CreA, and mutational analysis led to the suggestion that a regulatory ubiquitination/deubiquitination pathway is involved. A key unanswered question is if and how this pathway, comprising CreB (deubiquitinating enzyme) and HulA (ubiquitin ligase) and other proteins, is involved in the regulatory mechanism. Previously, missense alleles of creA and creB were analysed for genetic interactions, and here we extended this to complete loss-of-function alleles of creA and creB, and compared morphological and biochemical phenotypes, which confirmed genetic interaction between the genes. We investigated whether CreA, or a protein in a complex with it, is a direct target of the CreB deubiquitination enzyme, using co-purifications of CreA and CreB, first using strains that overexpress the proteins and then using strains that express the proteins from their native promoters. The Phos-tag system was used to show that CreA is a phosphorylated protein, but no ubiquitination was detected using anti-ubiquitin antibodies and Western analysis. These findings were confirmed using mass spectrometry, which confirmed that CreA was differentially phosphorylated but not ubiquitinated. Thus, CreA is not a direct target of CreB, and nor are proteins that form part of a stable complex with CreA a target of CreB. These results open up new questions regarding the molecular mechanism of CreA repressing activity, and how the ubiquitination pathway involving CreB interacts with this regulatory network.
Collapse
Affiliation(s)
- Md Ashiqul Alam
- Department of Genetics and Evolution, The University of Adelaide, Adelaide, 5005, Australia
| | - Niyom Kamlangdee
- Department of Genetics and Evolution, The University of Adelaide, Adelaide, 5005, Australia
- Walailak University, 222 Thaiburi Thasala, Nakhonsithamrat, Nakhon Si Thammarat, 80160, Thailand
| | - Joan M Kelly
- Department of Genetics and Evolution, The University of Adelaide, Adelaide, 5005, Australia.
| |
Collapse
|
31
|
Chandrashekarappa DG, McCartney RR, O'Donnell AF, Schmidt MC. The β subunit of yeast AMP-activated protein kinase directs substrate specificity in response to alkaline stress. Cell Signal 2016; 28:1881-1893. [PMID: 27592031 DOI: 10.1016/j.cellsig.2016.08.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/22/2016] [Accepted: 08/25/2016] [Indexed: 12/11/2022]
Abstract
Saccharomyces cerevisiae express three isoforms of Snf1 kinase that differ by which β subunit is present, Gal83, Sip1 or Sip2. Here we investigate the abundance, activation, localization and signaling specificity of the three Snf1 isoforms. The relative abundance of these isoforms was assessed by quantitative immunoblotting using two different protein extraction methods and by fluorescence microscopy. The Gal83 containing isoform is the most abundant in all assays while the abundance of the Sip1 and Sip2 isoforms is typically underestimated especially in glass-bead extractions. Earlier studies to assess Snf1 isoform function utilized gene deletions as a means to inactivate specific isoforms. Here we use point mutations in Gal83 and Sip2 and a 17 amino acid C-terminal truncation of Sip1 to inactivate specific isoforms without affecting their abundance or association with the other subunits. The effect of low glucose and alkaline stresses was examined for two Snf1 phosphorylation substrates, the Mig1 and Mig2 proteins. Any of the three isoforms was capable of phosphorylating Mig1 in response to glucose stress. In contrast, the Gal83 isoform of Snf1 was both necessary and sufficient for the phosphorylation of the Mig2 protein in response to alkaline stress. Alkaline stress led to the activation of all three isoforms yet only the Gal83 isoform translocates to the nucleus and phosphorylates Mig2. Deletion of the SAK1 gene blocked nuclear translocation of Gal83 and signaling to Mig2. These data strongly support the idea that Snf1 signaling specificity is mediated by localization of the different Snf1 isoforms.
Collapse
Affiliation(s)
| | - Rhonda R McCartney
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Martin C Schmidt
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
32
|
Höckner S, Neumann-Arnold L, Seufert W. Dual control by Cdk1 phosphorylation of the budding yeast APC/C ubiquitin ligase activator Cdh1. Mol Biol Cell 2016; 27:2198-212. [PMID: 27226481 PMCID: PMC4945139 DOI: 10.1091/mbc.e15-11-0787] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 05/18/2016] [Indexed: 12/15/2022] Open
Abstract
The antagonism between cyclin-dependent kinases (Cdks) and the ubiquitin ligase APC/C-Cdh1 is central to eukaryotic cell cycle control. APC/C-Cdh1 targets cyclin B and other regulatory proteins for degradation, whereas Cdks disable APC/C-Cdh1 through phosphorylation of the Cdh1 activator protein at multiple sites. Budding yeast Cdh1 carries nine Cdk phosphorylation sites in its N-terminal regulatory domain, most or all of which contribute to inhibition. However, the precise role of individual sites has remained unclear. Here, we report that the Cdk phosphorylation sites of yeast Cdh1 are organized into autonomous subgroups and act through separate mechanisms. Cdk sites 1-3 had no direct effect on the APC/C binding of Cdh1 but inactivated a bipartite nuclear localization sequence (NLS) and thereby controlled the partitioning of Cdh1 between cytoplasm and nucleus. In contrast, Cdk sites 4-9 did not influence the cell cycle-regulated localization of Cdh1 but prevented its binding to the APC/C. Cdk sites 4-9 reside near two recently identified APC/C interaction motifs in a pattern conserved with the human Cdh1 orthologue. Thus a Cdk-inhibited NLS goes along with Cdk-inhibited APC/C binding sites in yeast Cdh1 to relay the negative control by Cdk1 phosphorylation of the ubiquitin ligase APC/C-Cdh1.
Collapse
Affiliation(s)
- Sebastian Höckner
- Department of Genetics, University of Regensburg, D-93040 Regensburg, Germany
| | - Lea Neumann-Arnold
- Department of Genetics, University of Regensburg, D-93040 Regensburg, Germany
| | - Wolfgang Seufert
- Department of Genetics, University of Regensburg, D-93040 Regensburg, Germany
| |
Collapse
|
33
|
Vega M, Riera A, Fernández-Cid A, Herrero P, Moreno F. Hexokinase 2 Is an Intracellular Glucose Sensor of Yeast Cells That Maintains the Structure and Activity of Mig1 Protein Repressor Complex. J Biol Chem 2016; 291:7267-85. [PMID: 26865637 DOI: 10.1074/jbc.m115.711408] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Indexed: 11/06/2022] Open
Abstract
Hexokinase 2 (Hxk2) fromSaccharomyces cerevisiaeis a bi-functional enzyme, being both a catalyst in the cytosol and an important regulator of the glucose repression signal in the nucleus. Despite considerable recent progress, little is known about the regulatory mechanism that controls nuclear Hxk2 association with theSUC2promoter chromatin and how this association is necessary forSUC2gene repression. Our data indicate that in theSUC2promoter context, Hxk2 functions through a variety of structurally unrelated factors, mainly the DNA-binding Mig1 and Mig2 repressors and the regulatory Snf1 and Reg1 factors. Hxk2 sustains the repressor complex architecture maintaining transcriptional repression at theSUC2gene. Using chromatin immunoprecipitation assays, we discovered that the Hxk2 in its open configuration, at low glucose conditions, leaves the repressor complex that induces its dissociation and promotesSUC2gene expression. In high glucose conditions, Hxk2 adopts a close conformation that promotes Hxk2 binding to the Mig1 protein and the reassembly of theSUC2repressor complex. Additional findings highlight the possibility that Hxk2 constitutes an intracellular glucose sensor that operates by changing its conformation in response to cytoplasmic glucose levels that regulate its interaction with Mig1 and thus its recruitment to the repressor complex of theSUC2promoter. Thus, our data indicate that Hxk2 is more intimately involved in gene regulation than previously thought.
Collapse
Affiliation(s)
- Montserrat Vega
- From the Department of Biochemistry and Molecular Biology, University of Oviedo, 33006-Oviedo, Spain
| | - Alberto Riera
- From the Department of Biochemistry and Molecular Biology, University of Oviedo, 33006-Oviedo, Spain
| | - Alejandra Fernández-Cid
- From the Department of Biochemistry and Molecular Biology, University of Oviedo, 33006-Oviedo, Spain
| | - Pilar Herrero
- From the Department of Biochemistry and Molecular Biology, University of Oviedo, 33006-Oviedo, Spain
| | - Fernando Moreno
- From the Department of Biochemistry and Molecular Biology, University of Oviedo, 33006-Oviedo, Spain
| |
Collapse
|
34
|
Hu Z, Wang Y, Yu L, Mahanty SK, Mendoza N, Elion EA. Mapping regions in Ste5 that support Msn5-dependent and -independent nuclear export. Biochem Cell Biol 2016; 94:109-28. [PMID: 26824509 DOI: 10.1139/bcb-2015-0101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Careful control of the available pool of the MAPK scaffold Ste5 is important for mating-pathway activation and the prevention of inappropriate mating differentiation in haploid Saccharomyces cerevisiae. Ste5 shuttles constitutively through the nucleus, where it is degraded by a ubiquitin-dependent mechanism triggered by G1 CDK phosphorylation. Here we narrow-down regions of Ste5 that mediate nuclear export. Four regions in Ste5 relocalize SV40-TAgNLS-GFP-GFP from nucleus to cytoplasm. One region is N-terminal, dependent on exportin Msn5/Ste21/Kap142, and interacts with Msn5 in 2 hybrid assays independently of mating pheromone, Fus3, Kss1, Ptc1, the NLS/PM, and RING-H2. A second region overlaps the PH domain and Ste11 binding site and 2 others are on the vWA domain and include residues essential for MAPK activation. We find no evidence for dependence on Crm1/Xpo1, despite numerous potential nuclear export sequences (NESs) detected by LocNES and NetNES1.1 predictors. Thus, Msn5 (homolog of human Exportin-5) and one or more exportins or adaptor molecules besides Crm1/Xpo1 may regulate Ste5 through multiple recognition sites.
Collapse
Affiliation(s)
- Zhenhua Hu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Yunmei Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Lu Yu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Sanjoy K Mahanty
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Natalia Mendoza
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Elaine A Elion
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
35
|
Wollman AJM, Leake MC. Single-Molecule Narrow-Field Microscopy of Protein-DNA Binding Dynamics in Glucose Signal Transduction of Live Yeast Cells. Methods Mol Biol 2016; 1431:5-15. [PMID: 27283298 DOI: 10.1007/978-1-4939-3631-1_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Single-molecule narrow-field microscopy is a versatile tool to investigate a diverse range of protein dynamics in live cells and has been extensively used in bacteria. Here, we describe how these methods can be extended to larger eukaryotic, yeast cells, which contain subcellular compartments. We describe how to obtain single-molecule microscopy data but also how to analyze these data to track and obtain the stoichiometry of molecular complexes diffusing in the cell. We chose glucose mediated signal transduction of live yeast cells as the system to demonstrate these single-molecule techniques as transcriptional regulation is fundamentally a single-molecule problem-a single repressor protein binding a single binding site in the genome can dramatically alter behavior at the whole cell and population level.
Collapse
Affiliation(s)
- Adam J M Wollman
- Biological Physical Sciences Institute (BPSI), University of York, Heslington, York, YO10 5DD, UK.
| | - Mark C Leake
- Biological Physical Sciences Institute (BPSI), University of York, Heslington, York, YO10 5DD, UK
| |
Collapse
|
36
|
Lubitz T, Welkenhuysen N, Shashkova S, Bendrioua L, Hohmann S, Klipp E, Krantz M. Network reconstruction and validation of the Snf1/AMPK pathway in baker's yeast based on a comprehensive literature review. NPJ Syst Biol Appl 2015; 1:15007. [PMID: 28725459 PMCID: PMC5516868 DOI: 10.1038/npjsba.2015.7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 06/19/2015] [Accepted: 07/14/2015] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND/OBJECTIVES The SNF1/AMPK protein kinase has a central role in energy homeostasis in eukaryotic cells. It is activated by energy depletion and stimulates processes leading to the production of ATP while it downregulates ATP-consuming processes. The yeast SNF1 complex is best known for its role in glucose derepression. METHODS We performed a network reconstruction of the Snf1 pathway based on a comprehensive literature review. The network was formalised in the rxncon language, and we used the rxncon toolbox for model validation and gap filling. RESULTS We present a machine-readable network definition that summarises the mechanistic knowledge of the Snf1 pathway. Furthermore, we used the known input/output relationships in the network to identify and fill gaps in the information transfer through the pathway, to produce a functional network model. Finally, we convert the functional network model into a rule-based model as a proof-of-principle. CONCLUSIONS The workflow presented here enables large scale reconstruction, validation and gap filling of signal transduction networks. It is analogous to but distinct from that established for metabolic networks. We demonstrate the workflow capabilities, and the direct link between the reconstruction and dynamic modelling, with the Snf1 network. This network is a distillation of the knowledge from all previous publications on the Snf1/AMPK pathway. The network is a knowledge resource for modellers and experimentalists alike, and a template for similar efforts in higher eukaryotes. Finally, we envisage the workflow as an instrumental tool for reconstruction of large signalling networks across Eukaryota.
Collapse
Affiliation(s)
- Timo Lubitz
- Theoretical Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Niek Welkenhuysen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Sviatlana Shashkova
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Loubna Bendrioua
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Stefan Hohmann
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Edda Klipp
- Theoretical Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marcus Krantz
- Theoretical Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
37
|
Wollman AJM, Leake MC. Millisecond single-molecule localization microscopy combined with convolution analysis and automated image segmentation to determine protein concentrations in complexly structured, functional cells, one cell at a time. Faraday Discuss 2015; 184:401-24. [PMID: 26419209 DOI: 10.1039/c5fd00077g] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a single-molecule tool called the CoPro (concentration of proteins) method that uses millisecond imaging with convolution analysis, automated image segmentation and super-resolution localization microscopy to generate robust estimates for protein concentration in different compartments of single living cells, validated using realistic simulations of complex multiple compartment cell types. We demonstrate its utility experimentally on model Escherichia coli bacteria and Saccharomyces cerevisiae budding yeast cells, and use it to address the biological question of how signals are transduced in cells. Cells in all domains of life dynamically sense their environment through signal transduction mechanisms, many involving gene regulation. The glucose sensing mechanism of S. cerevisiae is a model system for studying gene regulatory signal transduction. It uses the multi-copy expression inhibitor of the GAL gene family, Mig1, to repress unwanted genes in the presence of elevated extracellular glucose concentrations. We fluorescently labelled Mig1 molecules with green fluorescent protein (GFP) via chromosomal integration at physiological expression levels in living S. cerevisiae cells, in addition to the RNA polymerase protein Nrd1 with the fluorescent protein reporter mCherry. Using CoPro we make quantitative estimates of Mig1 and Nrd1 protein concentrations in the cytoplasm and nucleus compartments on a cell-by-cell basis under physiological conditions. These estimates indicate a ∼4-fold shift towards higher values in the concentration of diffusive Mig1 in the nucleus if the external glucose concentration is raised, whereas equivalent levels in the cytoplasm shift to smaller values with a relative change an order of magnitude smaller. This compares with Nrd1 which is not involved directly in glucose sensing, and which is almost exclusively localized in the nucleus under high and low external glucose levels. CoPro facilitates time-resolved quantification of protein concentrations in single functional cells, and enables the distributions of concentrations across a cell population to be measured. This could be useful in investigating several cellular processes that are mediated by proteins, especially where changes in protein concentration in a single cell in response to changes in the extracellular chemical environment are subtle and rapid and may be smaller than the variability across a cell population.
Collapse
|
38
|
Shashkova S, Welkenhuysen N, Hohmann S. Molecular communication: crosstalk between the Snf1 and other signaling pathways. FEMS Yeast Res 2015; 15:fov026. [DOI: 10.1093/femsyr/fov026] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2015] [Indexed: 02/02/2023] Open
|
39
|
Almquist J, Bendrioua L, Adiels CB, Goksör M, Hohmann S, Jirstrand M. A Nonlinear Mixed Effects Approach for Modeling the Cell-To-Cell Variability of Mig1 Dynamics in Yeast. PLoS One 2015; 10:e0124050. [PMID: 25893847 PMCID: PMC4404321 DOI: 10.1371/journal.pone.0124050] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 02/25/2015] [Indexed: 11/29/2022] Open
Abstract
The last decade has seen a rapid development of experimental techniques that allow data collection from individual cells. These techniques have enabled the discovery and characterization of variability within a population of genetically identical cells. Nonlinear mixed effects (NLME) modeling is an established framework for studying variability between individuals in a population, frequently used in pharmacokinetics and pharmacodynamics, but its potential for studies of cell-to-cell variability in molecular cell biology is yet to be exploited. Here we take advantage of this novel application of NLME modeling to study cell-to-cell variability in the dynamic behavior of the yeast transcription repressor Mig1. In particular, we investigate a recently discovered phenomenon where Mig1 during a short and transient period exits the nucleus when cells experience a shift from high to intermediate levels of extracellular glucose. A phenomenological model based on ordinary differential equations describing the transient dynamics of nuclear Mig1 is introduced, and according to the NLME methodology the parameters of this model are in turn modeled by a multivariate probability distribution. Using time-lapse microscopy data from nearly 200 cells, we estimate this parameter distribution according to the approach of maximizing the population likelihood. Based on the estimated distribution, parameter values for individual cells are furthermore characterized and the resulting Mig1 dynamics are compared to the single cell times-series data. The proposed NLME framework is also compared to the intuitive but limited standard two-stage (STS) approach. We demonstrate that the latter may overestimate variabilities by up to almost five fold. Finally, Monte Carlo simulations of the inferred population model are used to predict the distribution of key characteristics of the Mig1 transient response. We find that with decreasing levels of post-shift glucose, the transient response of Mig1 tend to be faster, more extended, and displays an increased cell-to-cell variability.
Collapse
Affiliation(s)
- Joachim Almquist
- Fraunhofer-Chalmers Centre, Chalmers Science Park, Göteborg, Sweden
- Systems and Synthetic Biology, Department of Chemical and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
- * E-mail:
| | - Loubna Bendrioua
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
- Department of Physics, University of Gothenburg, Göteborg, Sweden
| | | | - Mattias Goksör
- Department of Physics, University of Gothenburg, Göteborg, Sweden
| | - Stefan Hohmann
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Mats Jirstrand
- Fraunhofer-Chalmers Centre, Chalmers Science Park, Göteborg, Sweden
| |
Collapse
|
40
|
Lichius A, Seidl-Seiboth V, Seiboth B, Kubicek CP. Nucleo-cytoplasmic shuttling dynamics of the transcriptional regulators XYR1 and CRE1 under conditions of cellulase and xylanase gene expression in Trichoderma reesei. Mol Microbiol 2014; 94:1162-1178. [PMID: 25302561 PMCID: PMC4282317 DOI: 10.1111/mmi.12824] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2014] [Indexed: 01/26/2023]
Abstract
Trichoderma reesei is a model for investigating the regulation of (hemi-)cellulase gene expression. Cellulases are formed adaptively, and the transcriptional activator XYR1 and the carbon catabolite repressor CRE1 are main regulators of their expression. We quantified the nucleo-cytoplasmic shuttling dynamics of GFP-fusion proteins of both transcription factors under cellulase and xylanase inducing conditions, and correlated their nuclear presence/absence with transcriptional changes. We also compared their subcellular localization in conidial germlings and mature hyphae. We show that cellulase gene expression requires de novo biosynthesis of XYR1 and its simultaneous nuclear import, whereas carbon catabolite repression is regulated through preformed CRE1 imported from the cytoplasmic pool. Termination of induction immediately stopped cellulase gene transcription and was accompanied by rapid nuclear degradation of XYR1. In contrast, nuclear CRE1 rapidly decreased upon glucose depletion, and became recycled into the cytoplasm. In mature hyphae, nuclei containing activated XYR1 were concentrated in the colony center, indicating that this is the main region of XYR1 synthesis and cellulase transcription. CRE1 was found to be evenly distributed throughout the entire mycelium. Taken together, our data revealed novel aspects of the dynamic shuttling and spatial bias of the major regulator of (hemi-)cellulase gene expression, XYR1, in T. reesei.
Collapse
Affiliation(s)
- Alexander Lichius
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of TechnologyVienna, Austria
| | - Verena Seidl-Seiboth
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of TechnologyVienna, Austria
| | - Bernhard Seiboth
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of TechnologyVienna, Austria
| | - Christian P Kubicek
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of TechnologyVienna, Austria
- Austrian Center of Industrial BiotechnologyGraz, Austria
| |
Collapse
|
41
|
Regulation of glucose-dependent gene expression by the RNA helicase Dbp2 in Saccharomyces cerevisiae. Genetics 2014; 198:1001-14. [PMID: 25164881 DOI: 10.1534/genetics.114.170019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cellular homeostasis requires a fine balance between energy uptake, utilization, and growth. Dbp2 is a member of the DEAD-box protein family in Saccharomyces cerevisiae with characterized ATPase and helicase activity in vitro. DEAD-box RNA helicases are a class of enzymes that utilize ATP hydrolysis to remodel RNA and/or RNA-protein (RNP) composition. Dbp2 has been proposed to utilize its helicase activity in vivo to promote RNA-protein complex assembly of both messenger (m)RNAs and long noncoding (lnc)RNAs. Previous work from our laboratory demonstrated that loss of DBP2 enhances the lncRNA-dependent transcriptional induction of the GAL genes by abolishing glucose-dependent repression. Herein, we report that either a carbon source switch or glucose deprivation results in rapid export of Dbp2 to the cytoplasm. Genome-wide RNA sequencing identified a new class of antisense hexose transporter transcripts that are specifically upregulated upon loss of DBP2. Further investigation revealed that both sense and antisense hexose transporter (HXT) transcripts are aberrantly expressed in DBP2-deficient cells and that this expression pathway can be partially mimicked in wild-type cells by glucose depletion. We also find that Dbp2 promotes ribosome biogenesis and represses alternative ATP-producing pathways, as loss of DBP2 alters the transcript levels of ribosome biosynthesis (snoRNAs and associated proteins) and respiration gene products. This suggests that Dbp2 is a key integrator of nutritional status and gene expression programs required for energy homeostasis.
Collapse
|
42
|
Kimura M, Imamoto N. Biological significance of the importin-β family-dependent nucleocytoplasmic transport pathways. Traffic 2014; 15:727-48. [PMID: 24766099 DOI: 10.1111/tra.12174] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/22/2014] [Accepted: 04/22/2014] [Indexed: 12/19/2022]
Abstract
Importin-β family proteins (Imp-βs) are nucleocytoplasmic transport receptors (NTRs) that import and export proteins and RNAs through the nuclear pores. The family consists of 14-20 members depending on the biological species, and each member transports a specific group of cargoes. Thus, the Imp-βs mediate multiple, parallel transport pathways that can be regulated separately. In fact, the spatiotemporally differential expressions and the functional regulations of Imp-βs have been reported. Additionally, the biological significance of each pathway has been characterized by linking the function of a member of Imp-βs to a cellular consequence. Connecting these concepts, the regulation of the transport pathways conceivably induces alterations in the cellular physiological states. However, few studies have linked the regulation of an importin-β family NTR to an induced cellular response and the corresponding cargoes, despite the significance of this linkage in comprehending the biological relevance of the transport pathways. This review of recent reports on the regulation and biological functions of the Imp-βs highlights the significance of the transport pathways in physiological contexts and points out the possibility that the identification of yet unknown specific cargoes will reinforce the importance of transport regulation.
Collapse
Affiliation(s)
- Makoto Kimura
- Cellular Dynamics Laboratory, RIKEN, Hirosawa 2-1, Wako, Saitama, 351-0198, Japan
| | | |
Collapse
|
43
|
Msn5p Is Involved in Formaldehyde Resistance but Not in Oxidative Stress Response in the Methylotrophic YeastCandida boidinii. Biosci Biotechnol Biochem 2014; 76:299-304. [DOI: 10.1271/bbb.110679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
44
|
Ye T, Bendrioua L, Carmena D, García-Salcedo R, Dahl P, Carling D, Hohmann S. The mammalian AMP-activated protein kinase complex mediates glucose regulation of gene expression in the yeast Saccharomyces cerevisiae. FEBS Lett 2014; 588:2070-7. [PMID: 24815694 DOI: 10.1016/j.febslet.2014.04.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 04/21/2014] [Accepted: 04/24/2014] [Indexed: 11/24/2022]
Abstract
The AMP-activated protein kinase (AMPK) controls energy homeostasis in eukaryotic cells. Here we expressed hetero-trimeric mammalian AMPK complexes in a Saccharomyces cerevisiae mutant lacking all five genes encoding yeast AMPK/SNF1 components. Certain mammalian complexes complemented the growth defect of the yeast mutant on non-fermentable carbon sources. Phosphorylation of the AMPK α1-subunit was glucose-regulated, albeit not by the Glc7-Reg1/2 phosphatase, which performs this function on yeast AMPK/SNF1. AMPK could take over SNF1 function in glucose derepression. While indirectly acting anti-diabetic drugs had no effect on AMPK in yeast, compound 991 stimulated α1-subunit phosphorylation. Our results demonstrate a remarkable functional conservation of AMPK and that glucose regulation of AMPK may not be mediated by regulatory features of a specific phosphatase.
Collapse
Affiliation(s)
- Tian Ye
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, S-40530 Göteborg, Sweden
| | - Loubna Bendrioua
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, S-40530 Göteborg, Sweden
| | - David Carmena
- MRC Clinical Sciences Centre, Cellular Stress Group, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Raúl García-Salcedo
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, S-40530 Göteborg, Sweden
| | - Peter Dahl
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, S-40530 Göteborg, Sweden
| | - David Carling
- MRC Clinical Sciences Centre, Cellular Stress Group, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Stefan Hohmann
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, S-40530 Göteborg, Sweden.
| |
Collapse
|
45
|
Nuclear localization of Haa1, which is linked to its phosphorylation status, mediates lactic acid tolerance in Saccharomyces cerevisiae. Appl Environ Microbiol 2014; 80:3488-95. [PMID: 24682296 DOI: 10.1128/aem.04241-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Improvement of the lactic acid resistance of the yeast Saccharomyces cerevisiae is important for the application of the yeast in industrial production of lactic acid from renewable resources. However, we still do not know the precise mechanisms of the lactic acid adaptation response in yeast and, consequently, lack effective approaches for improving its lactic acid tolerance. To enhance our understanding of the adaptation response, we screened for S. cerevisiae genes that confer enhanced lactic acid resistance when present in multiple copies and identified the transcriptional factor Haa1 as conferring resistance to toxic levels of lactic acid when overexpressed. The enhanced tolerance probably results from increased expression of its target genes. When cells that expressed Haa1 only from the endogenous promoter were exposed to lactic acid stress, the main subcellular localization of Haa1 changed from the cytoplasm to the nucleus within 5 min. This nuclear accumulation induced upregulation of the Haa1 target genes YGP1, GPG1, and SPI1, while the degree of Haa1 phosphorylation observed under lactic acid-free conditions decreased. Disruption of the exportin gene MSN5 led to accumulation of Haa1 in the nucleus even when no lactic acid was present. Since Msn5 was reported to interact with Haa1 and preferentially exports phosphorylated cargo proteins, our results suggest that regulation of the subcellular localization of Haa1, together with alteration of its phosphorylation status, mediates the adaptation to lactic acid stress in yeast.
Collapse
|
46
|
Bendrioua L, Smedh M, Almquist J, Cvijovic M, Jirstrand M, Goksör M, Adiels CB, Hohmann S. Yeast AMP-activated protein kinase monitors glucose concentration changes and absolute glucose levels. J Biol Chem 2014; 289:12863-75. [PMID: 24627493 DOI: 10.1074/jbc.m114.547976] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Analysis of the time-dependent behavior of a signaling system can provide insight into its dynamic properties. We employed the nucleocytoplasmic shuttling of the transcriptional repressor Mig1 as readout to characterize Snf1-Mig1 dynamics in single yeast cells. Mig1 binds to promoters of target genes and mediates glucose repression. Mig1 is predominantly located in the nucleus when glucose is abundant. Upon glucose depletion, Mig1 is phosphorylated by the yeast AMP-activated kinase Snf1 and exported into the cytoplasm. We used a three-channel microfluidic device to establish a high degree of control over the glucose concentration exposed to cells. Following regimes of glucose up- and downshifts, we observed a very rapid response reaching a new steady state within less than 1 min, different glucose threshold concentrations depending on glucose up- or downshifts, a graded profile with increased cell-to-cell variation at threshold glucose concentrations, and biphasic behavior with a transient translocation of Mig1 upon the shift from high to intermediate glucose concentrations. Fluorescence loss in photobleaching and fluorescence recovery after photobleaching data demonstrate that Mig1 shuttles constantly between the nucleus and cytoplasm, although with different rates, depending on the presence of glucose. Taken together, our data suggest that the Snf1-Mig1 system has the ability to monitor glucose concentration changes as well as absolute glucose levels. The sensitivity over a wide range of glucose levels and different glucose concentration-dependent response profiles are likely determined by the close integration of signaling with the metabolism and may provide for a highly flexible and fast adaptation to an altered nutritional status.
Collapse
Affiliation(s)
- Loubna Bendrioua
- From the Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Göteborg, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Jin C, Strich R, Cooper KF. Slt2p phosphorylation induces cyclin C nuclear-to-cytoplasmic translocation in response to oxidative stress. Mol Biol Cell 2014; 25:1396-407. [PMID: 24554767 PMCID: PMC3983003 DOI: 10.1091/mbc.e13-09-0550] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The conserved transcription factor cyclin C is both translocated to the cytoplasm and destroyed after oxidative stress. The signaling pathway that transmits the stress signal to cyclin C is complex and uses both the MAPK Slt2p and its pseudokinase homologue, Kdx1, via different mechanisms. The yeast C-type cyclin represses the transcription of genes required for the stress response and meiosis. To relieve this repression, cyclin C undergoes nuclear-to-cytoplasmic translocation in response to many stressors, including hydrogen peroxide, where it is destroyed by ubiquitin-mediated proteolysis. Before its destruction, cyclin C promotes stress-induced mitochondrial fission and programmed cell death, indicating that relocalization is an important cell fate regulator. Here we show that cyclin C cytoplasmic translocation requires the cell wall integrity (CWI) mitogen-activated protein kinase Slt2p, its pseudokinase paralogue, Kdx1p, and an associating transcription factor, Ask10p. Furthermore, Slt2p and Kdx1p regulate cyclin C stability through different but required mechanisms. Slt2p associates with, and directly phosphorylates, cyclin C at Ser-266. Eliminating or mimicking phosphorylation at this site restricts or enhances cyclin C cytoplasmic translocation and degradation, respectively. Conversely, Kdx1p does not bind cyclin C but instead coimmunoprecipitates with Ask10p, a transcription factor previously identified as a regulator of cyclin C destruction. These results reveal a complex regulatory circuitry involving both downstream effectors of the CWI mitogen-activated protein kinase signal transduction pathway to target the relocalization and consequent destruction of a single transcriptional repressor.
Collapse
Affiliation(s)
- Chunyan Jin
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084
| | | | | |
Collapse
|
48
|
Westerbeck JW, Pasupala N, Guillotte M, Szymanski E, Matson BC, Esteban C, Kerscher O. A SUMO-targeted ubiquitin ligase is involved in the degradation of the nuclear pool of the SUMO E3 ligase Siz1. Mol Biol Cell 2013; 25:1-16. [PMID: 24196836 PMCID: PMC3873881 DOI: 10.1091/mbc.e13-05-0291] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Here we show that the Slx5/Slx8 STUbL complex is involved in the efficient degradation of the nuclear pool of Siz1, a SUMO E3 ligase with many nuclear and cytosolic substrates. This novel finding suggests that STUbLs can regulate cellular SUMO homeostasis by targeting SUMO E3 ligases. The Slx5/Slx8 heterodimer constitutes a SUMO-targeted ubiquitin ligase (STUbL) with an important role in SUMO-targeted degradation and SUMO-dependent signaling. This STUbL relies on SUMO-interacting motifs in Slx5 to aid in substrate targeting and carboxy-terminal RING domains in both Slx5 and Slx8 for substrate ubiquitylation. In budding yeast cells, Slx5 resides in the nucleus, forms distinct foci, and can associate with double-stranded DNA breaks. However, it remains unclear how STUbLs interact with other proteins and their substrates. To examine the targeting and functions of the Slx5/Slx8 STUbL, we constructed and analyzed truncations of the Slx5 protein. Our structure–function analysis reveals a domain of Slx5 involved in nuclear localization and in the interaction with Slx5, SUMO, Slx8, and a novel interactor, the SUMO E3 ligase Siz1. We further analyzed the functional interaction of Slx5 and Siz1 in vitro and in vivo. We found that a recombinant Siz1 fragment is an in vitro ubiquitylation target of the Slx5/Slx8 STUbL. Furthermore, slx5∆ cells accumulate phosphorylated and sumoylated adducts of Siz1 in vivo. Specifically, we show that Siz1 can be ubiquitylated in vivo and is degraded in an Slx5-dependent manner when its nuclear egress is prevented in mitosis. In conclusion, our data provide a first look into the STUbL-mediated regulation of a SUMO E3 ligase.
Collapse
Affiliation(s)
- Jason W Westerbeck
- Biology Department, The College of William & Mary, Williamsburg, VA 23187
| | | | | | | | | | | | | |
Collapse
|
49
|
The yeast AMPK homolog SNF1 regulates acetyl coenzyme A homeostasis and histone acetylation. Mol Cell Biol 2013; 33:4701-17. [PMID: 24081331 DOI: 10.1128/mcb.00198-13] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acetyl coenzyme A (acetyl-CoA) is a key metabolite at the crossroads of metabolism, signaling, chromatin structure, and transcription. Concentration of acetyl-CoA affects histone acetylation and links intermediary metabolism and transcriptional regulation. Here we show that SNF1, the budding yeast ortholog of the mammalian AMP-activated protein kinase (AMPK), plays a role in the regulation of acetyl-CoA homeostasis and global histone acetylation. SNF1 phosphorylates and inhibits acetyl-CoA carboxylase, which catalyzes the carboxylation of acetyl-CoA to malonyl-CoA, the first and rate-limiting reaction in the de novo synthesis of fatty acids. Inactivation of SNF1 results in a reduced pool of cellular acetyl-CoA, globally decreased histone acetylation, and reduced fitness and stress resistance. The histone acetylation and transcriptional defects can be partially suppressed and the overall fitness improved in snf1Δ mutant cells by increasing the cellular concentration of acetyl-CoA, indicating that the regulation of acetyl-CoA homeostasis represents another mechanism in the SNF1 regulatory repertoire.
Collapse
|
50
|
Bergdahl B, Sandström AG, Borgström C, Boonyawan T, van Niel EWJ, Gorwa-Grauslund MF. Engineering yeast hexokinase 2 for improved tolerance toward xylose-induced inactivation. PLoS One 2013; 8:e75055. [PMID: 24040384 PMCID: PMC3765440 DOI: 10.1371/journal.pone.0075055] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 08/05/2013] [Indexed: 11/21/2022] Open
Abstract
Hexokinase 2 (Hxk2p) from Saccharomyces cerevisiae is a bi-functional enzyme being both a catalyst and an important regulator in the glucose repression signal. In the presence of xylose Hxk2p is irreversibly inactivated through an autophosphorylation mechanism, affecting all functions. Consequently, the regulation of genes involved in sugar transport and fermentative metabolism is impaired. The aim of the study was to obtain new Hxk2p-variants, immune to the autophosphorylation, which potentially can restore the repressive capability closer to its nominal level. In this study we constructed the first condensed, rationally designed combinatorial library targeting the active-site in Hxk2p. We combined protein engineering and genetic engineering for efficient screening and identified a variant with Phe159 changed to tyrosine. This variant had 64% higher catalytic activity in the presence of xylose compared to the wild-type and is expected to be a key component for increasing the productivity of recombinant xylose-fermenting strains for bioethanol production from lignocellulosic feedstocks.
Collapse
Affiliation(s)
- Basti Bergdahl
- Division of Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
- * E-mail:
| | - Anders G. Sandström
- Division of Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| | - Celina Borgström
- Division of Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| | - Tarinee Boonyawan
- Division of Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| | - Ed W. J. van Niel
- Division of Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| | | |
Collapse
|