1
|
Xia L, He Y, Sui Y, Feng X, Qian X, Liu Y, Qi Z. UBL5 and Its Role in Viral Infections. Viruses 2024; 16:1922. [PMID: 39772229 PMCID: PMC11680113 DOI: 10.3390/v16121922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/08/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Unlike other ubiquitin-like family members, UBL5 is structurally and functionally atypical, and a novel role in various biological processes and diseases has been discovered. UBL5 can stabilize the structure of the spliceosome, can promote post-transcriptional processing, and has been implicated in both DNA damage repair and protein unfolding reactions, as well as cellular mechanisms that are frequently exploited by viruses for their own proliferation during viral infections. In addition, UBL5 can inhibit viral infection by binding to the non-structural protein 3 of rice stripe virus and mediating its degradation. Therefore, UBL5 is an important link between viral infections and immunity, and its study will be beneficial for the prevention and treatment of viral infections in the future. However, a review of the current findings on the role of UBL5 in viral infection has not been undertaken. Therefore, in this review, we summarize the recent progress in understanding the functions of UBL5 and discuss its putative role in viral infections.
Collapse
Affiliation(s)
- Liancheng Xia
- Key Laboratory of Biosafety Defense (Naval Medical University), Ministry of Education, Naval Medical University (Second Military Medical University), Shanghai 200433, China; (L.X.); (Y.H.); (X.Q.)
| | - Yanhua He
- Key Laboratory of Biosafety Defense (Naval Medical University), Ministry of Education, Naval Medical University (Second Military Medical University), Shanghai 200433, China; (L.X.); (Y.H.); (X.Q.)
| | - Yifan Sui
- College of Basic Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China; (Y.S.); (X.F.)
| | - Xijia Feng
- College of Basic Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China; (Y.S.); (X.F.)
| | - Xijing Qian
- Key Laboratory of Biosafety Defense (Naval Medical University), Ministry of Education, Naval Medical University (Second Military Medical University), Shanghai 200433, China; (L.X.); (Y.H.); (X.Q.)
| | - Yangang Liu
- Key Laboratory of Biosafety Defense (Naval Medical University), Ministry of Education, Naval Medical University (Second Military Medical University), Shanghai 200433, China; (L.X.); (Y.H.); (X.Q.)
| | - Zhongtian Qi
- Key Laboratory of Biosafety Defense (Naval Medical University), Ministry of Education, Naval Medical University (Second Military Medical University), Shanghai 200433, China; (L.X.); (Y.H.); (X.Q.)
| |
Collapse
|
2
|
Kaminskaya AN, Evpak AS, Belogurov AA, Kudriaeva AA. Tracking of Ubiquitin Signaling through 3.5 Billion Years of Combinatorial Conjugation. Int J Mol Sci 2024; 25:8671. [PMID: 39201358 PMCID: PMC11354881 DOI: 10.3390/ijms25168671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Ubiquitination is an evolutionary, ancient system of post-translational modification of proteins that occurs through a cascade involving ubiquitin activation, transfer, and conjugation. The maturation of this system has followed two main pathways. The first is the conservation of a universal structural fold of ubiquitin and ubiquitin-like proteins, which are present in both Archaea and Bacteria, as well as in multicellular Eukaryotes. The second is the rise of the complexity of the superfamily of ligases, which conjugate ubiquitin-like proteins to substrates, in terms of an increase in the number of enzyme variants, greater variation in structural organization, and the diversification of their catalytic domains. Here, we examine the diversity of the ubiquitination system among different organisms, assessing the variety and conservation of the key domains of the ubiquitination enzymes and ubiquitin itself. Our data show that E2 ubiquitin-conjugating enzymes of metazoan phyla are highly conservative, whereas the homology of E3 ubiquitin ligases with human orthologues gradually decreases depending on "molecular clock" timing and evolutionary distance. Surprisingly, Chordata and Echinodermata, which diverged over 0.5 billion years ago during the Cambrian explosion, share almost the same homology with humans in the amino acid sequences of E3 ligases but not in their adaptor proteins. These observations may suggest that, firstly, the E2 superfamily already existed in its current form in the last common metazoan ancestor and was generally not affected by purifying selection in metazoans. Secondly, it may indicate convergent evolution of the ubiquitination system and highlight E3 adaptor proteins as the "upper deck" of the ubiquitination system, which plays a crucial role in chordate evolution.
Collapse
Affiliation(s)
- Alena N. Kaminskaya
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.N.K.); (A.S.E.)
| | - Alena S. Evpak
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.N.K.); (A.S.E.)
| | - Alexey A. Belogurov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.N.K.); (A.S.E.)
- Department of Biological Chemistry, Russian University of Medicine, Ministry of Health of Russian Federation, 127473 Moscow, Russia
| | - Anna A. Kudriaeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.N.K.); (A.S.E.)
| |
Collapse
|
3
|
Kolathur KK, Mallya S, Barve S, Bojja SL, Wagle MM. Moonlighting functions of the ubiquitin-like protein, Hub1/UBL-5. Int J Biochem Cell Biol 2023; 162:106445. [PMID: 37453225 DOI: 10.1016/j.biocel.2023.106445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/28/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
The faithful splicing of pre-mRNA is critical for accurate gene expression. Dysregulation of pre-mRNA splicing has been associated with several human diseases including cancer. The ubiquitin-like protein Hub1/UBL5 binds to the substrates non-covalently and promotes pre-mRNA splicing. Additionally, UBL5 promotes the common fragile sites stability and the Fanconi anemia pathway of DNA damage repair. These functions strongly suggests that UBL5 could potentially be implicated in cancer. Therefore, we analyzed the UBL5 expression in TCGA tumor sample datasets and observed the differences between tumor and normal tissues among different tumor subtypes. We have noticed the alteration frequency of UBL5 in TCGA tumor samples. Altogether, this review summarizes the UBL5 functions and discusses its putative role in tumorigenesis.
Collapse
Affiliation(s)
- Kiran Kumar Kolathur
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences (MCOPS), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India.
| | - Sandeep Mallya
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Shivmani Barve
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences (MCOPS), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Sree Lalitha Bojja
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences (MCOPS), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Manoj M Wagle
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
4
|
Mueller S, Bialas J, Ryu S, Catone N, Aichem A. The ubiquitin-like modifier FAT10 covalently modifies HUWE1 and strengthens the interaction of AMBRA1 and HUWE1. PLoS One 2023; 18:e0290002. [PMID: 37578983 PMCID: PMC10424871 DOI: 10.1371/journal.pone.0290002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/31/2023] [Indexed: 08/16/2023] Open
Abstract
The ubiquitin-like modifier FAT10 is highly upregulated under inflammatory conditions and targets its conjugation substrates to the degradation by the 26S proteasome. This process termed FAT10ylation is mediated by an enzymatic cascade and includes the E1 activating enzyme ubiquitin-like modifier activating enzyme 6 (UBA6), the E2 conjugating enzyme UBA6-specific E2 enzyme 1 (USE1) and E3 ligases, such as Parkin. In this study, the function of the HECT-type ubiquitin E3 ligase HUWE1 was investigated as a putative E3 ligase and/or conjugation substrate of FAT10. Our data provide strong evidence that HUWE1 is FAT10ylated in a UBA6 and FAT10 diglycine-dependent manner in vitro and in cellulo and that the HUWE1-FAT10 conjugate is targeted to proteasomal degradation. Since the mutation of all relevant cysteine residues within the HUWE1 HECT domain did not abolish FAT10 conjugation, a role of HUWE1 as E3 ligase for FAT10ylation is rather unlikely. Moreover, we have identified the autophagy-related protein AMBRA1 as a new FAT10 interaction partner. We show that the HUWE1-FAT10 conjugate formation is diminished in presence of AMBRA1, while the interaction between AMBRA1 and HUWE1 is strengthened in presence of FAT10. This implies a putative interplay of all three proteins in cellular processes such as mitophagy.
Collapse
Affiliation(s)
- Stefanie Mueller
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
- Division of Immunology, Department of Biology, University of Konstanz, Kontstanz, Germany
| | - Johanna Bialas
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
- Division of Immunology, Department of Biology, University of Konstanz, Kontstanz, Germany
| | - Stella Ryu
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
- Division of Immunology, Department of Biology, University of Konstanz, Kontstanz, Germany
| | - Nicola Catone
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
| | - Annette Aichem
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
- Division of Immunology, Department of Biology, University of Konstanz, Kontstanz, Germany
| |
Collapse
|
5
|
Wang Z, Li T, Zhang X, Feng J, Liu Z, Shan W, Joosten MHAJ, Govers F, Du Y. A Phytophthora infestans RXLR effector targets a potato ubiquitin-like domain-containing protein to inhibit the proteasome activity and hamper plant immunity. THE NEW PHYTOLOGIST 2023; 238:781-797. [PMID: 36653957 DOI: 10.1111/nph.18749] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Ubiquitin-like domain-containing proteins (UDPs) are involved in the ubiquitin-proteasome system because of their ability to interact with the 26S proteasome. Here, we identified potato StUDP as a target of the Phytophthora infestans RXLR effector Pi06432 (PITG_06432), which supresses the salicylic acid (SA)-related immune pathway. By overexpressing and silencing of StUDP in potato, we show that StUDP negatively regulates plant immunity against P. infestans. StUDP interacts with, and destabilizes, the 26S proteasome subunit that is referred to as REGULATORY PARTICLE TRIPLE-A ATP-ASE (RPT) subunit StRPT3b. This destabilization represses the proteasome activity. Proteomic analysis and Western blotting show that StUDP decreases the stability of the master transcription factor SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1 (SARD1) in SA biosynthesis. StUDP negatively regulates the SA signalling pathway by repressing the proteasome activity and destabilizing StSARD1, leading to a decreased expression of the SARD1-targeted gene ISOCHORISMATE SYNTHASE 1 and thereby a decrease in SA content. Pi06432 stabilizes StUDP, and it depends on StUDP to destabilize StRPT3b and thereby supress the proteasome activity. Our study reveals that the P. infestans effector Pi06432 targets StUDP to hamper the homeostasis of the proteasome by the degradation of the proteasome subunit StRPT3b and thereby suppresses SA-related immunity.
Collapse
Affiliation(s)
- Ziwei Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tingting Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Shaanxi Engineering Research Center for Vegetables, Yangling, Shaanxi, 712100, China
| | - Xiaojiang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jiashu Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhuting Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Matthieu H A J Joosten
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Francine Govers
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Yu Du
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Shaanxi Engineering Research Center for Vegetables, Yangling, Shaanxi, 712100, China
| |
Collapse
|
6
|
Um H, Jeong H, Lee B, Kim Y, Lee J, Roh JS, Lee SG, Park HR, Robinson WH, Sohn DH. FAT10 Induces cancer cell migration by stabilizing phosphorylated ABI3/NESH. Anim Cells Syst (Seoul) 2023; 27:53-60. [PMID: 36926204 PMCID: PMC10013321 DOI: 10.1080/19768354.2023.2186486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
The WAVE regulatory complex (WRC) is involved in various cellular processes by regulating actin polymerization. The dysregulation of WRC components is associated with cancer development. ABI family member 3 (ABI3)/new molecule including SH3 (NESH) is one of the WRC components and it has been reported that ABI3 phosphorylation can affect WRC function. Although several residues of ABI3 have been reported to be possible phosphorylation sites, it is still unclear which residues are important for the function of ABI3. Furthermore, it is unclear how the phosphorylated form of ABI3 is regulated. Here, we demonstrate that ABI3 is stabilized by its interaction with human leukocyte antigen-F adjacent transcript 10 (FAT10). Using phospho-dead or phospho-mimetic mutants of ABI3, we showed that serine 213 and 216 are important phosphorylation sites of ABI3. In particular, FAT10 has a higher affinity for the phosphorylated form of ABI3 than the non-phosphorylated form, and it stabilizes the phosphorylated form more than the non-phosphorylated form through this differential affinity. The interaction between FAT10 and the phosphorylated form of ABI3 promoted cancer cell migration. Therefore, our results suggest that FAT10 stabilizes the phosphorylated form of ABI3, which may lead to WRC activation, thereby promoting cancer cell migration.
Collapse
Affiliation(s)
- Hyojin Um
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Hoim Jeong
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Beomgu Lee
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Yerin Kim
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Jihyeon Lee
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Jong Seong Roh
- Department of Herbal Prescription, College of Korean Medicine, Daegu Haany University, Gyeongsan, Republic of Korea
| | - Seung-Geun Lee
- Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea.,Division of Rheumatology, Department of Internal Medicine, Pusan National University School of Medicine, Pusan National University Hospital, Busan, Republic of Korea
| | - Hae Ryoun Park
- Department of Oral Pathology, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| | - William H Robinson
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.,VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Dong Hyun Sohn
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| |
Collapse
|
7
|
Reyes Romero A, Kubica K, Kitel R, Rodríguez I, Magiera-Mularz K, Dömling A, Holak TA, Surmiak E. Computer- and NMR-Aided Design of Small-Molecule Inhibitors of the Hub1 Protein. Molecules 2022; 27:8282. [PMID: 36500376 PMCID: PMC9738620 DOI: 10.3390/molecules27238282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
By binding to the spliceosomal protein Snu66, the human ubiquitin-like protein Hub1 is a modulator of the spliceosome performance and facilitates alternative splicing. Small molecules that bind to Hub1 would be of interest to study the protein-protein interaction of Hub1/Snu66, which is linked to several human pathologies, such as hypercholesterolemia, premature aging, neurodegenerative diseases, and cancer. To identify small molecule ligands for Hub1, we used the interface analysis, peptide modeling of the Hub1/Snu66 interaction and the fragment-based NMR screening. Fragment-based NMR screening has not proven sufficient to unambiguously search for fragments that bind to the Hub1 protein. This was because the Snu66 binding pocket of Hub1 is occupied by pH-sensitive residues, making it difficult to distinguish between pH-induced NMR shifts and actual binding events. The NMR analyses were therefore verified experimentally by microscale thermophoresis and by NMR pH titration experiments. Our study found two small peptides that showed binding to Hub1. These peptides are the first small-molecule ligands reported to interact with the Hub1 protein.
Collapse
Affiliation(s)
- Atilio Reyes Romero
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Department of Drug Design, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Katarzyna Kubica
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Radoslaw Kitel
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Ismael Rodríguez
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Katarzyna Magiera-Mularz
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Alexander Dömling
- Department of Drug Design, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- Department of Innovative Chemistry, Palackӯ University, CATRIN, Šlechtitelů 241/27, 779 00 Olomouc, Czech Republic
| | - Tad A. Holak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Ewa Surmiak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| |
Collapse
|
8
|
Kolobynina KG, Rapp A, Cardoso MC. Chromatin Ubiquitination Guides DNA Double Strand Break Signaling and Repair. Front Cell Dev Biol 2022; 10:928113. [PMID: 35865631 PMCID: PMC9294282 DOI: 10.3389/fcell.2022.928113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Chromatin is the context for all DNA-based molecular processes taking place in the cell nucleus. The initial chromatin structure at the site of the DNA damage determines both, lesion generation and subsequent activation of the DNA damage response (DDR) pathway. In turn, proceeding DDR changes the chromatin at the damaged site and across large fractions of the genome. Ubiquitination, besides phosphorylation and methylation, was characterized as an important chromatin post-translational modification (PTM) occurring at the DNA damage site and persisting during the duration of the DDR. Ubiquitination appears to function as a highly versatile “signal-response” network involving several types of players performing various functions. Here we discuss how ubiquitin modifiers fine-tune the DNA damage recognition and response and how the interaction with other chromatin modifications ensures cell survival.
Collapse
|
9
|
Lan W, Qiu Y, Xu Y, Liu Y, Miao Y. Ubiquitination and Ubiquitin-Like Modifications as Mediators of Alternative Pre-mRNA Splicing in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:869870. [PMID: 35646014 PMCID: PMC9134077 DOI: 10.3389/fpls.2022.869870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
Alternative splicing (AS) is a common post-transcriptional regulatory process in eukaryotes. AS has an irreplaceable role during plant development and in response to environmental stress as it evokes differential expression of downstream genes or splicing factors (e.g., serine/arginine-rich proteins). Numerous studies have reported that loss of AS capacity leads to defects in plant growth and development, and induction of stress-sensitive phenotypes. A role for post-translational modification (PTM) of AS components has emerged in recent years. These modifications are capable of regulating the activity, stability, localization, interaction, and folding of spliceosomal proteins in human cells and yeast, indicating that PTMs represent another layer of AS regulation. In this review, we summarize the recent reports concerning ubiquitin and ubiquitin-like modification of spliceosome components and analyze the relationship between spliceosome and the ubiquitin/26S proteasome pathway in plants. Based on the totality of the evidence presented, we further speculate on the roles of protein ubiquitination mediated AS in plant development and environmental response.
Collapse
|
10
|
Li W, Li F, Zhang X, Lin HK, Xu C. Insights into the post-translational modification and its emerging role in shaping the tumor microenvironment. Signal Transduct Target Ther 2021; 6:422. [PMID: 34924561 PMCID: PMC8685280 DOI: 10.1038/s41392-021-00825-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 12/11/2022] Open
Abstract
More and more in-depth studies have revealed that the occurrence and development of tumors depend on gene mutation and tumor heterogeneity. The most important manifestation of tumor heterogeneity is the dynamic change of tumor microenvironment (TME) heterogeneity. This depends not only on the tumor cells themselves in the microenvironment where the infiltrating immune cells and matrix together forming an antitumor and/or pro-tumor network. TME has resulted in novel therapeutic interventions as a place beyond tumor beds. The malignant cancer cells, tumor infiltrate immune cells, angiogenic vascular cells, lymphatic endothelial cells, cancer-associated fibroblastic cells, and the released factors including intracellular metabolites, hormonal signals and inflammatory mediators all contribute actively to cancer progression. Protein post-translational modification (PTM) is often regarded as a degradative mechanism in protein destruction or turnover to maintain physiological homeostasis. Advances in quantitative transcriptomics, proteomics, and nuclease-based gene editing are now paving the global ways for exploring PTMs. In this review, we focus on recent developments in the PTM area and speculate on their importance as a critical functional readout for the regulation of TME. A wealth of information has been emerging to prove useful in the search for conventional therapies and the development of global therapeutic strategies.
Collapse
Affiliation(s)
- Wen Li
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 610042, Chengdu, P. R. China
| | - Feifei Li
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 610042, Chengdu, P. R. China
- Guangxi Collaborative Innovation Center for Biomedicine (Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment), Guangxi Medical University, 530021, Nanning, Guangxi, China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, 27101, USA
| | - Chuan Xu
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 610042, Chengdu, P. R. China.
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, 27101, USA.
| |
Collapse
|
11
|
Ghimire S, Tang X, Liu W, Fu X, Zhang H, Zhang N, Si H. SUMO conjugating enzyme: a vital player of SUMO pathway in plants. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2421-2431. [PMID: 34744375 PMCID: PMC8526628 DOI: 10.1007/s12298-021-01075-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Plants face numerous challenges such as biotic and abiotic stresses during their whole lifecycle. As they are sessile in nature, they ought to develop multiple ways to act during stressed conditions to maintain cellular homeostasis. Among various defense mechanisms, the small ubiquitin-like modifiers (SUMO) pathway is considered as the most important because several nuclear proteins regulated by this pathway are involved in several cellular functions such as response to stress, transcription, translation, metabolism of RNA, energy metabolism, repairing damaged DNA, ensuring genome stability and nuclear trafficking. In general, the SUMO pathway has its own particular set of enzymes E1, E2, and E3. The SUMO conjugating enzyme [SCE (E2)] is a very crucial member of the pathway which can transfer SUMO to its target protein even without the involvement of E3. More than just a middle player, it has shown its involvement in effective triggered immunity in crops like tomato and various abiotic stresses like drought and salinity in maize, rice, and Arabidopsis. This review tries to explore the importance of the SUMOylation process, focusing on the E2 enzyme and its regulatory role in the abiotic stress response, plant immunity, and DNA damage repair.
Collapse
Affiliation(s)
- Shantwana Ghimire
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Xun Tang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Weigang Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Xue Fu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Huanhuan Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Ning Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Huaijun Si
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| |
Collapse
|
12
|
Chanarat S. UBL5/Hub1: An Atypical Ubiquitin-Like Protein with a Typical Role as a Stress-Responsive Regulator. Int J Mol Sci 2021; 22:ijms22179384. [PMID: 34502293 PMCID: PMC8431670 DOI: 10.3390/ijms22179384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 08/25/2021] [Accepted: 08/29/2021] [Indexed: 11/23/2022] Open
Abstract
Members of the ubiquitin-like protein family are known for their ability to modify substrates by covalent conjugation. The highly conserved ubiquitin relative UBL5/Hub1, however, is atypical because it lacks a carboxy-terminal di-glycine motif required for conjugation, and the whole E1-E2-E3 enzyme cascade is likely absent. Though the conjugation-mediated role of UBL5/Hub1 is controversial, it undoubtedly functions by interacting non-covalently with its partners. Several interactors of UBL5/Hub1 identified to date have suggested broad stress-responsive functions of the protein, for example, stress-induced control of pre-mRNA splicing, Fanconi anemia pathway of DNA damage repair, and mitochondrial unfolded protein response. While having an atypical mode of function, UBL5/Hub1 is still a stress protein that regulates feedback to various stimuli in a similar manner to other ubiquitin-like proteins. In this review, I discuss recent progress in understanding the functions of UBL5/Hub1 and the fundamental questions which remain to be answered.
Collapse
Affiliation(s)
- Sittinan Chanarat
- Laboratory of Molecular Cell Biology, Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
13
|
Arshad M, Abdul Hamid N, Chan MC, Ismail F, Tan GC, Pezzella F, Tan KL. NUB1 and FAT10 Proteins as Potential Novel Biomarkers in Cancer: A Translational Perspective. Cells 2021; 10:2176. [PMID: 34571823 PMCID: PMC8468723 DOI: 10.3390/cells10092176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 12/30/2022] Open
Abstract
Cancer increases the global disease burden substantially, but it remains a challenge to manage it. The search for novel biomarkers is essential for risk assessment, diagnosis, prognosis, prediction of treatment response, and cancer monitoring. This paper examined NEDD8 ultimate buster-1 (NUB1) and F-adjacent transcript 10 (FAT10) proteins as novel biomarkers in cancer. This literature review is based on the search of the electronic database, PubMed. NUB1 is an interferon-inducible protein that mediates apoptotic and anti-proliferative actions in cancer, while FAT10 is a ubiquitin-like modifier that promotes cancer. The upregulated expression of both NUB1 and FAT10 has been observed in various cancers. NUB1 protein binds to FAT10 non-covalently to promote FAT10 degradation. An overexpressed FAT10 stimulates nuclear factor-kappa β, activates the inflammatory pathways, and induces the proliferation of cancer. The FAT10 protein interacts with the mitotic arrest deficient 2 protein, causing chromosomal instability and breast tumourigenesis. FAT10 binds to the proliferating cell nuclear antigen protein and inhibits the DNA damage repair response. In addition, FAT10 involves epithelial-mesenchymal transition, invasion, apoptosis, and multiplication in hepatocellular carcinoma. Our knowledge about them is still limited. There is a need to further develop NUB1 and FAT10 as novel biomarkers.
Collapse
Affiliation(s)
- Maria Arshad
- Faculty of Medicine & Health Sciences, Universiti Sains Islam Malaysia (USIM), Persiaran Ilmu, Putra Nilai, Nilai 71800, Malaysia; (M.A.); (N.A.H.)
| | - Nazefah Abdul Hamid
- Faculty of Medicine & Health Sciences, Universiti Sains Islam Malaysia (USIM), Persiaran Ilmu, Putra Nilai, Nilai 71800, Malaysia; (M.A.); (N.A.H.)
| | - Mun Chiang Chan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Fuad Ismail
- Department of Radiotherapy & Oncology, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia;
| | - Geok Chin Tan
- Department of Pathology, Faculty of Medicine, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia;
| | - Francesco Pezzella
- Tumour Pathology Laboratory, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK;
| | - Ka-Liong Tan
- Faculty of Medicine & Health Sciences, Universiti Sains Islam Malaysia (USIM), Persiaran Ilmu, Putra Nilai, Nilai 71800, Malaysia; (M.A.); (N.A.H.)
| |
Collapse
|
14
|
Manzanza NDO, Sedlackova L, Kalaria RN. Alpha-Synuclein Post-translational Modifications: Implications for Pathogenesis of Lewy Body Disorders. Front Aging Neurosci 2021; 13:690293. [PMID: 34248606 PMCID: PMC8267936 DOI: 10.3389/fnagi.2021.690293] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022] Open
Abstract
Lewy Body Disorders (LBDs) lie within the spectrum of age-related neurodegenerative diseases now frequently categorized as the synucleinopathies. LBDs are considered to be among the second most common form of neurodegenerative dementias after Alzheimer's disease. They are progressive conditions with variable clinical symptoms embodied within specific cognitive and behavioral disorders. There are currently no effective treatments for LBDs. LBDs are histopathologically characterized by the presence of abnormal neuronal inclusions commonly known as Lewy Bodies (LBs) and extracellular Lewy Neurites (LNs). The inclusions predominantly comprise aggregates of alpha-synuclein (aSyn). It has been proposed that post-translational modifications (PTMs) such as aSyn phosphorylation, ubiquitination SUMOylation, Nitration, o-GlcNacylation, and Truncation play important roles in the formation of toxic forms of the protein, which consequently facilitates the formation of these inclusions. This review focuses on the role of different PTMs in aSyn in the pathogenesis of LBDs. We highlight how these PTMs interact with aSyn to promote misfolding and aggregation and interplay with cell membranes leading to the potential functional and pathogenic consequences detected so far, and their involvement in the development of LBDs.
Collapse
Affiliation(s)
- Nelson de Oliveira Manzanza
- Translational and Clinical Research Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lucia Sedlackova
- Biosciences Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Raj N. Kalaria
- Translational and Clinical Research Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
15
|
Martín-Villanueva S, Gutiérrez G, Kressler D, de la Cruz J. Ubiquitin and Ubiquitin-Like Proteins and Domains in Ribosome Production and Function: Chance or Necessity? Int J Mol Sci 2021; 22:ijms22094359. [PMID: 33921964 PMCID: PMC8122580 DOI: 10.3390/ijms22094359] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
Ubiquitin is a small protein that is highly conserved throughout eukaryotes. It operates as a reversible post-translational modifier through a process known as ubiquitination, which involves the addition of one or several ubiquitin moieties to a substrate protein. These modifications mark proteins for proteasome-dependent degradation or alter their localization or activity in a variety of cellular processes. In most eukaryotes, ubiquitin is generated by the proteolytic cleavage of precursor proteins in which it is fused either to itself, constituting a polyubiquitin precursor, or as a single N-terminal moiety to ribosomal proteins, which are practically invariably eL40 and eS31. Herein, we summarize the contribution of the ubiquitin moiety within precursors of ribosomal proteins to ribosome biogenesis and function and discuss the biological relevance of having maintained the explicit fusion to eL40 and eS31 during evolution. There are other ubiquitin-like proteins, which also work as post-translational modifiers, among them the small ubiquitin-like modifier (SUMO). Both ubiquitin and SUMO are able to modify ribosome assembly factors and ribosomal proteins to regulate ribosome biogenesis and function. Strikingly, ubiquitin-like domains are also found within two ribosome assembly factors; hence, the functional role of these proteins will also be highlighted.
Collapse
Affiliation(s)
- Sara Martín-Villanueva
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41009 Seville, Spain;
- Departamento de Genética, Universidad de Sevilla, 41013 Seville, Spain;
| | - Gabriel Gutiérrez
- Departamento de Genética, Universidad de Sevilla, 41013 Seville, Spain;
| | - Dieter Kressler
- Unit of Biochemistry, Department of Biology, University of Fribourg, CH-1700 Fribourg, Switzerland
- Correspondence: (D.K.); (J.d.l.C.); Tel.: +41-26-300-86-45 (D.K.); +34-955-923-126 (J.d.l.C.)
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41009 Seville, Spain;
- Departamento de Genética, Universidad de Sevilla, 41013 Seville, Spain;
- Correspondence: (D.K.); (J.d.l.C.); Tel.: +41-26-300-86-45 (D.K.); +34-955-923-126 (J.d.l.C.)
| |
Collapse
|
16
|
Joo H, Baek W, Lim CW, Lee SC. Post-translational Modifications of bZIP Transcription Factors in Abscisic Acid Signaling and Drought Responses. Curr Genomics 2021; 22:4-15. [PMID: 34045920 PMCID: PMC8142349 DOI: 10.2174/1389202921999201130112116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/25/2020] [Accepted: 10/03/2020] [Indexed: 11/22/2022] Open
Abstract
Under drought stress, plants have developed various mechanisms to survive in the reduced water supply, of which the regulation of stress-related gene expression is responsible for several transcription factors. The basic leucine zippers (bZIPs) are one of the largest and most diverse transcription factor families in plants. Among the 10 Arabidopsis bZIP groups, group A bZIP transcription factors function as a positive or negative regulator in ABA signal transduction and drought stress response. These bZIP transcription factors, which are involved in the drought response, have also been isolated in various plant species such as rice, pepper, potato, and maize. Recent studies have provided substantial evidence that many bZIP transcription factors undergo the post-translational modifications, through which the regulation of their activity or stability affects plant responses to various intracellular or extracellular stimuli. This review aims to address the modulation of the bZIP proteins in ABA signaling and drought responses through phosphorylation, ubiquitination and sumoylation.
Collapse
Affiliation(s)
- Hyunhee Joo
- Department of Life Science (BK21 Program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 06974, Republic of Korea
| | - Woonhee Baek
- Department of Life Science (BK21 Program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 06974, Republic of Korea
| | - Chae Woo Lim
- Department of Life Science (BK21 Program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 06974, Republic of Korea
| | - Sung Chul Lee
- Department of Life Science (BK21 Program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 06974, Republic of Korea
| |
Collapse
|
17
|
He J, Lin X, Yang H, Tian Y, Zhao Y, Zhang L, Wei W, Chen J. UBXN1 is a strong candidate gene in regulation of pork water-holding capacity. Arch Anim Breed 2021; 64:109-118. [PMID: 34084909 PMCID: PMC8162240 DOI: 10.5194/aab-64-109-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/15/2021] [Indexed: 11/15/2022] Open
Abstract
The UBX domain containing protein 1-like gene (UBXN1) promotes the degradation of
myofibrillar proteins during meat maturation, which affects meat water-holding capacity (WHC). This study aims to identify functional mutations in
UBXN1 promoter region, which affects the transcription activity and therefore the
WHC. Firstly, we confirmed that the UBXN1 expression level was positively
associated with WHC. Individuals with high and low WHC (n=16 per
group) were selected from 168 Duroc × Large White × Yorkshire (D × L × Y) crossbred pigs. The UBXN1 promoter region
was comparatively sequenced using DNA pools from these two groups, and a
mutation ca. -379T > G was revealed that had reverse allele distribution.
The single nucleotide polymorphism (SNP) was then genotyped in the abovementioned population. TT genotype individuals exhibited higher UBXN1 mRNA level
and higher WHC compared with GG genotype ones. Further luciferase assay
confirmed that TT genotype promoter had higher activity. Moreover, the
degradation of cytoskeletal framework proteins of muscle cells like
desmin, synemin, dystrophin, and vinculin was higher in TT genotype individuals than GG ones. In
conclusion, we identified a SNP in the UBXN1 gene promoter that contributes to
WHC improvement and pork quality. And UBXN1 is a strong candidate gene in
regulation of pork WHC.
Collapse
Affiliation(s)
- Jiawen He
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiangsheng Lin
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Haoxin Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ye Tian
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yuelei Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lifan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jie Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
18
|
Scholz N, Kurian KM, Siebzehnrubl FA, Licchesi JDF. Targeting the Ubiquitin System in Glioblastoma. Front Oncol 2020; 10:574011. [PMID: 33324551 PMCID: PMC7724090 DOI: 10.3389/fonc.2020.574011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma is the most common primary brain tumor in adults with poor overall outcome and 5-year survival of less than 5%. Treatment has not changed much in the last decade or so, with surgical resection and radio/chemotherapy being the main options. Glioblastoma is highly heterogeneous and frequently becomes treatment-resistant due to the ability of glioblastoma cells to adopt stem cell states facilitating tumor recurrence. Therefore, there is an urgent need for novel therapeutic strategies. The ubiquitin system, in particular E3 ubiquitin ligases and deubiquitinating enzymes, have emerged as a promising source of novel drug targets. In addition to conventional small molecule drug discovery approaches aimed at modulating enzyme activity, several new and exciting strategies are also being explored. Among these, PROteolysis TArgeting Chimeras (PROTACs) aim to harness the endogenous protein turnover machinery to direct therapeutically relevant targets, including previously considered "undruggable" ones, for proteasomal degradation. PROTAC and other strategies targeting the ubiquitin proteasome system offer new therapeutic avenues which will expand the drug development toolboxes for glioblastoma. This review will provide a comprehensive overview of E3 ubiquitin ligases and deubiquitinating enzymes in the context of glioblastoma and their involvement in core signaling pathways including EGFR, TGF-β, p53 and stemness-related pathways. Finally, we offer new insights into how these ubiquitin-dependent mechanisms could be exploited therapeutically for glioblastoma.
Collapse
Affiliation(s)
- Nico Scholz
- Department of Biology & Biochemistry, University of Bath, Bath, United Kingdom
| | - Kathreena M. Kurian
- Brain Tumour Research Group, Institute of Clinical Neurosciences, University of Bristol, Bristol, United Kingdom
| | - Florian A. Siebzehnrubl
- Cardiff University School of Biosciences, European Cancer Stem Cell Research Institute, Cardiff, United Kingdom
| | | |
Collapse
|
19
|
Solution structure of TbUfm1 from Trypanosoma brucei and its binding to TbUba5. J Struct Biol 2020; 212:107580. [PMID: 32693018 DOI: 10.1016/j.jsb.2020.107580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 11/21/2022]
Abstract
Ubiquitin-like proteins are conserved in eukaryotes and involved in numerous cellular processes. Ufm1 is proved to play important roles in endoplasmic reticulum homeostasis, vesicle transportation and embryonic development. Enzyme cascade of Ufm1 is similar to that of ubiquitin. Mature Ufm1 is activated and conjugated to substrates by assistance of Ufm1 activating enzyme Uba5 (E1), Ufm1 conjugating enzyme Ufc1 (E2), and Ufm1 ligating enzyme Ufl1 (E3). Here, we determined the solution structure of TbUfm1 from Trypanosoma brucei (T. brucei) by NMR spectroscopy and explored the interactions between TbUfm1 and TbUba5/TbUfc1/TbUfl1. TbUfm1 adopts a typical β-grasp fold, which partially wraps a central α-helix and the other two helixes. NMR chemical shift perturbation indicated that TbUfm1 interacts with TbUba5 via a hydrophobic pocket formed by α1α2β1β2. Although the structure and Uba5-interaction mode of TbUfm1 are conserved in Ufm1 proteins, there are also some differences, which might reflect the potential diversity of Ufm1 in evolution and biological functions.
Collapse
|
20
|
Srivastava M, Srivastava AK, Orosa-Puente B, Campanaro A, Zhang C, Sadanandom A. SUMO Conjugation to BZR1 Enables Brassinosteroid Signaling to Integrate Environmental Cues to Shape Plant Growth. Curr Biol 2020; 30:1410-1423.e3. [PMID: 32109396 PMCID: PMC7181186 DOI: 10.1016/j.cub.2020.01.089] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 01/07/2020] [Accepted: 01/30/2020] [Indexed: 01/21/2023]
Abstract
Brassinosteroids (BRs) play crucial roles in plant development, but little is known of mechanisms that integrate environmental cues into BR signaling. Conjugation to the small ubiquitin-like modifier (SUMO) is emerging as an important mechanism to transduce environmental cues into cellular signaling. In this study, we show that SUMOylation of BZR1, a key transcription factor of BR signaling, provides a conduit for environmental influence to modulate growth during stress. SUMOylation stabilizes BZR1 in the nucleus by inhibiting its interaction with BIN2 kinase. During salt stress, Arabidopsis plants arrest growth through deSUMOylation of BZR1 in the cytoplasm by promoting the accumulation of the BZR1 targeting SUMO protease, ULP1a. ULP1a mutants are salt tolerant and insensitive to the BR inhibitor, brassinazole. BR treatment stimulates ULP1a degradation, allowing SUMOylated BZR1 to accumulate and promote growth. This study uncovers a mechanism for integrating environmental cues into BR signaling to shape growth. BZR1 SUMOylation allows brassinosteroids to shape plant growth to its environment SUMOylation stabilizes BZR1 by inhibiting BIN2 interaction, promoting plant growth Salinity stimulates BZR1 deSUMOylation via ULP1a SUMO protease to suppress growth BRs destabilize ULP1a, allowing SUMOylated BZR1 to accumulate and promote growth
Collapse
Affiliation(s)
- Moumita Srivastava
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK
| | - Anjil K Srivastava
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK
| | | | - Alberto Campanaro
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK
| | - Cunjin Zhang
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK
| | - Ari Sadanandom
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK.
| |
Collapse
|
21
|
Shimoda Y, Imaizumi-Anraku H, Hayashi M. Kinase activity-dependent stability of calcium/calmodulin-dependent protein kinase of Lotus japonicus. PLANTA 2019; 250:1773-1779. [PMID: 31440828 DOI: 10.1007/s00425-019-03264-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/17/2019] [Indexed: 06/10/2023]
Abstract
Accumulation of calcium/calmodulin-dependent protein kinase (CCaMK) in root cell nucleus depends on its kinase activity but not on nuclear symbiotic components crucial for nodulation. Plant calcium/calmodulin-dependent protein kinase (CCaMK) is a key regulator of symbioses with rhizobia and arbuscular mycorrhizal fungi as it decodes symbiotic calcium signals induced by microsymbionts. CCaMK is expressed mainly in root cells and localizes to the nucleus, where microsymbiont-triggered calcium oscillations occur. The molecular mechanisms that control CCaMK localization are unknown. Here, we analyzed the expression and subcellular localization of mutated CCaMK in the roots of Lotus japonicus and found a clear relation between CCaMK kinase activity and its stability. Kinase-defective CCaMK variants showed lower protein levels than the variants with kinase activity. The levels of transcripts driven by the CaMV 35S promoter were similar among the variants, indicating that stability of CCaMK is regulated post-translationally. We also demonstrated that CCaMK localized to the root cell nucleus in several symbiotic mutants, including cyclops, an interaction partner and phosphorylation target of CCaMK. Our results suggest that kinase activity of CCaMK is required not only for the activation of downstream symbiotic components but also for its stability in root cells.
Collapse
Affiliation(s)
- Yoshikazu Shimoda
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan.
| | - Haruko Imaizumi-Anraku
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Makoto Hayashi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
- Plant Symbiosis Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| |
Collapse
|
22
|
Zhou J, Xu Y, Lin S, Guo Y, Deng W, Zhang Y, Guo A, Xue Y. iUUCD 2.0: an update with rich annotations for ubiquitin and ubiquitin-like conjugations. Nucleic Acids Res 2019; 46:D447-D453. [PMID: 29106644 PMCID: PMC5753239 DOI: 10.1093/nar/gkx1041] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/18/2017] [Indexed: 01/01/2023] Open
Abstract
Here, we described the updated database iUUCD 2.0 (http://iuucd.biocuckoo.org/) for ubiquitin-activating enzymes (E1s), ubiquitin-conjugating enzymes (E2s), ubiquitin-protein ligases (E3s), deubiquitinating enzymes (DUBs), ubiquitin/ubiquitin-like binding domains (UBDs) and ubiquitin-like domains (ULDs), which act as key regulators in modulating ubiquitin and ubiquitin-like (UB/UBL) conjugations. In total, iUUCD 2.0 contained 136 512 UB/UBL regulators, including 1230 E1s, 5636 E2s, 93 343 E3s, 9548 DUBs, 30 173 UBDs and 11 099 ULDs in 148 eukaryotic species. In particular, we provided rich annotations for regulators of eight model organisms, especially in humans, by compiling and integrating the knowledge from nearly 70 widely used public databases that cover cancer mutations, single nucleotide polymorphisms (SNPs), mRNA expression, DNA and RNA elements, protein–protein interactions, protein 3D structures, disease-associated information, drug-target relations, post-translational modifications, DNA methylation and protein expression/proteomics. Compared with our previously developed UUCD 1.0 (∼0.41 GB), iUUCD 2.0 has a size of ∼32.1 GB of data with a >75-fold increase in data volume. We anticipate that iUUCD 2.0 can be a more useful resource for further study of UB/UBL conjugations.
Collapse
Affiliation(s)
- Jiaqi Zhou
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yang Xu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shaofeng Lin
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yaping Guo
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Wankun Deng
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Ying Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Anyuan Guo
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yu Xue
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
23
|
Kudriaeva AA, Belogurov AA. Proteasome: a Nanomachinery of Creative Destruction. BIOCHEMISTRY (MOSCOW) 2019; 84:S159-S192. [PMID: 31213201 DOI: 10.1134/s0006297919140104] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In the middle of the 20th century, it was postulated that degradation of intracellular proteins is a stochastic process. More than fifty years of intense studies have finally proven that protein degradation is a very complex and tightly regulated in time and space process that plays an incredibly important role in the vast majority of metabolic pathways. Degradation of more than a half of intracellular proteins is controlled by a hierarchically aligned and evolutionarily perfect system consisting of many components, the main ones being ubiquitin ligases and proteasomes, together referred to as the ubiquitin-proteasome system (UPS). The UPS includes more than 1000 individual components, and most of them are critical for the cell functioning and survival. In addition to the well-known signaling functions of ubiquitination, such as modification of substrates for proteasomal degradation and DNA repair, polyubiquitin (polyUb) chains are involved in other important cellular processes, e.g., cell cycle regulation, immunity, protein degradation in mitochondria, and even mRNA stability. This incredible variety of ubiquitination functions is related to the ubiquitin ability to form branching chains through the ε-amino group of any of seven lysine residues in its sequence. Deubiquitination is accomplished by proteins of the deubiquitinating enzyme family. The second main component of the UPS is proteasome, a multisubunit proteinase complex that, in addition to the degradation of functionally exhausted and damaged proteins, regulates many important cellular processes through controlled degradation of substrates, for example, transcription factors and cyclins. In addition to the ubiquitin-dependent-mediated degradation, there is also ubiquitin-independent degradation, when the proteolytic signal is either an intrinsic protein sequence or shuttle molecule. Protein hydrolysis is a critically important cellular function; therefore, any abnormalities in this process lead to systemic impairments further transforming into serious diseases, such as diabetes, malignant transformation, and neurodegenerative disorders (multiple sclerosis, Alzheimer's disease, Parkinson's disease, Creutzfeldt-Jakob disease and Huntington's disease). In this review, we discuss the mechanisms that orchestrate all components of the UPS, as well as the plurality of the fine-tuning pathways of proteasomal degradation.
Collapse
Affiliation(s)
- A A Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | - A A Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia. .,Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
24
|
Chachami G, Stankovic-Valentin N, Karagiota A, Basagianni A, Plessmann U, Urlaub H, Melchior F, Simos G. Hypoxia-induced Changes in SUMO Conjugation Affect Transcriptional Regulation Under Low Oxygen. Mol Cell Proteomics 2019; 18:1197-1209. [PMID: 30926672 PMCID: PMC6553927 DOI: 10.1074/mcp.ra119.001401] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/14/2019] [Indexed: 12/20/2022] Open
Abstract
Hypoxia occurs in pathological conditions, such as cancer, as a result of the imbalance between oxygen supply and consumption by proliferating cells. HIFs are critical molecular mediators of the physiological response to hypoxia but also regulate multiple steps of carcinogenesis including tumor progression and metastasis. Recent data support that sumoylation, the covalent attachment of the Small Ubiquitin-related MOdifier (SUMO) to proteins, is involved in the activation of the hypoxic response and the ensuing signaling cascade. To gain insights into differences of the SUMO1 and SUMO2/3 proteome of HeLa cells under normoxia and cells grown for 48 h under hypoxic conditions, we employed endogenous SUMO-immunoprecipitation in combination with quantitative mass spectrometry (SILAC). The group of proteins whose abundance was increased both in the total proteome and in the SUMO IPs from hypoxic conditions was enriched in enzymes linked to the hypoxic response. In contrast, proteins whose SUMOylation status changed without concomitant change in abundance were predominantly transcriptions factors or transcription regulators. Particularly interesting was transcription factor TFAP2A (Activating enhancer binding Protein 2 alpha), whose sumoylation decreased on hypoxia. TFAP2A is known to interact with HIF-1 and we provide evidence that deSUMOylation of TFAP2A enhances the transcriptional activity of HIF-1 under hypoxic conditions. Overall, these results support the notion that SUMO-regulated signaling pathways contribute at many distinct levels to the cellular response to low oxygen.
Collapse
Affiliation(s)
- Georgia Chachami
- From the ‡Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece;
- ‡‡Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, 69120 Heidelberg, Germany
| | - Nicolas Stankovic-Valentin
- §Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, 69120 Heidelberg, Germany
| | - Angeliki Karagiota
- From the ‡Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece
| | - Angeliki Basagianni
- From the ‡Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece
| | - Uwe Plessmann
- ¶Bioanalytical Mass Spectrometry Group Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Henning Urlaub
- ¶Bioanalytical Mass Spectrometry Group Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
- ‖Bioanalytics, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Frauke Melchior
- §Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, 69120 Heidelberg, Germany
| | - George Simos
- From the ‡Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece
- **Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, Canada
| |
Collapse
|
25
|
NMR structure of a non-conjugatable, ADP-ribosylation associated, ubiquitin-like domain from Tetrahymena thermophila polyubiquitin locus. Biochim Biophys Acta Gen Subj 2019; 1863:749-759. [PMID: 30690122 DOI: 10.1016/j.bbagen.2019.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/27/2018] [Accepted: 01/22/2019] [Indexed: 11/21/2022]
Abstract
BACKGROUND Ubiquitin-like domains (UbLs), in addition to being post-translationally conjugated to the target through the E1-E2-E3 enzymatic cascade, can be translated as a part of the protein they ought to regulate. As integral UbLs coexist with the rest of the protein, their structural properties can differ from canonical ubiquitin, depending on the protein context and how they interact with it. In this work, we investigate T.th-ubl5, a UbL present in a polyubiquitin locus of Tetrahymena thermophila, which is integral to an ADP-ribosyl transferase protein. Only one other co-occurrence of these two domains within the same protein has been reported. METHODS NMR, multiple sequence alignment, MD simulations and SPR have been used to characterize the structure of T.th-ubl5, identify putative binders and experimentally test the interaction, respectively. RESULTS Molecular dynamics simulations showed that T.th-ubl5 is unable to bind the proteasome like ubiquitin due to the lack of the conserved hydrophobic patch. Of other integral UbLs identified by structural and sequence alignment, T.th-ubl5 showed high structural and sequence resemblance with the Ras-binding epitope of FERM UbLs. SPR experiments confirmed that a strong and specific interaction occurs between T.th-ubl5 and T.th-Ras. CONCLUSION Data indicate that T.th-ubl5 does not interact with the proteasome like ubiquitin but acts as a decoy for the recruitment of Ras protein by the ADP-ribosyl transferase domain. GENERAL SIGNIFICANCE Mono-ADP-ribosylation of Ras proteins is known as a prerogative of bacterial toxins. T.th-ubl5 mediated recruitment of Ras highlights the possibility of an unprecedented post-translational modification with interesting implication for signalling pathways.
Collapse
|
26
|
Han HG, Moon HW, Jeon YJ. ISG15 in cancer: Beyond ubiquitin-like protein. Cancer Lett 2018; 438:52-62. [DOI: 10.1016/j.canlet.2018.09.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 09/06/2018] [Indexed: 01/08/2023]
|
27
|
Zou Y, Ouyang Q, Wei W, Yang S, Zhang Y, Yang W. FAT10 promotes the invasion and migration of breast cancer cell through stabilization of ZEB2. Biochem Biophys Res Commun 2018; 506:563-570. [PMID: 30361097 DOI: 10.1016/j.bbrc.2018.10.109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 10/17/2018] [Indexed: 01/08/2023]
Abstract
FAT10, an ubiquitin-like protein, functions as a potential tumor promoter in several caners. However, the function and clinical significance of FAT10 in breast cancer (BC) remains unclear. Here, we found that high FAT10 expression was detected frequently in primary BC tissues, and was closely associated with malignant phenotype and shorter survival among the BC patients. Multivariate analyses also revealed that FAT10 overexpression was independent prognostic factors for poor outcome of patients with BC. Function assay demonstrated that FAT10 knockdown significantly inhibited the metastasis abilities and the epithelial-mesenchymal transition (EMT) of breast cancer cell. Further investigation revealed that FAT10 directly bound ZEB2 and decreased its ubiquitination to enhance the protein stability of ZEB2 in BC cells. Moreover, our data shown that the pro-metastasis effect of FAT10 in BC is partially dependent on ZEB2 enhancement. Collectively, our data suggest that FAT10 plays a crucial oncogenic role in BC metastasis, and we provide a novel evidence that FAT10 may be serve as a prognostic and therapeutic target for BC patients.
Collapse
Affiliation(s)
- Yufeng Zou
- Department of Breast Surgery, The Third Hospital of Nanchang, Jiangxi Provincial-Key-Laboratory for Breast Diseases, Jiangxi Province, 330006, China
| | - Qianwen Ouyang
- Department of Breast Surgery, The Third Hospital of Nanchang, Jiangxi Provincial-Key-Laboratory for Breast Diseases, Jiangxi Province, 330006, China
| | - Wensong Wei
- Department of Breast Surgery, The Third Hospital of Nanchang, Jiangxi Provincial-Key-Laboratory for Breast Diseases, Jiangxi Province, 330006, China
| | - Shixin Yang
- Department of Breast Surgery, The Third Hospital of Nanchang, Jiangxi Provincial-Key-Laboratory for Breast Diseases, Jiangxi Province, 330006, China
| | - Yan Zhang
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Wenlong Yang
- Department of Infectious Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.
| |
Collapse
|
28
|
Wang Y, Ding Q, Lu YC, Cao SY, Liu QX, Zhang L. Interferon-stimulated gene 15 enters posttranslational modifications of p53. J Cell Physiol 2018; 234:5507-5518. [PMID: 30317575 DOI: 10.1002/jcp.27347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/17/2018] [Indexed: 12/27/2022]
Abstract
The tumor suppressor protein p53 is a central governor of various cellular signals. It is well accepted that ubiquitination as well as ubiquitin-like (UBL) modifications of p53 protein is critical in the control of its activity. Interferon-stimulated gene 15 (ISG15) is a well-known UBL protein with pleiotropic functions, serving both as a free intracellular molecule and as a modifier by conjugating to target proteins. Initially, attentions have historically focused on the antiviral effects of ISG15 pathway. Remarkably, a significant role in the processes of autophagy, DNA repair, and protein translation provided considerable insight into the new functions of ISG15 pathway. Despite the deterministic revelation of the relation between ISG15 and p53, the functional consequence of p53 ISGylation appears somewhat confused. More important, more recent studies have hinted p53 ubiquitination or other UBL modifications that might interconnect with its ISGylation. Here, we aim to summarize the current knowledge of p53 ISGylation and the differences in other significant modifications, which would be beneficial for the development of p53-based cancer therapy.
Collapse
Affiliation(s)
- Yang Wang
- School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Disease, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, China
| | - Qi Ding
- School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Disease, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, China
| | - Yu-Chen Lu
- School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Disease, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, China
| | - Shi-Yang Cao
- School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Disease, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, China
| | - Qing-Xue Liu
- School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Disease, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, China
| | - Lei Zhang
- School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Disease, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, China
| |
Collapse
|
29
|
Al-Banna L, Sadder MT, Lafi HA, Dawabah AAM, Al-Nadhari SN. Bioinformatics analysis of ubiquitin expression protein gene from Heterodera latipons. Saudi J Biol Sci 2018; 26:1463-1467. [PMID: 31762610 PMCID: PMC6864184 DOI: 10.1016/j.sjbs.2018.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 06/01/2018] [Accepted: 06/26/2018] [Indexed: 11/28/2022] Open
Abstract
Ubiquitin expression protein DNA clone (Hl-UBI) was isolated from Heterodera latipons collected from North Jordan. Its sequence of 285 nucleotides was also determined and deposited in the GeneBank. The 285-bp open reading frame coded for 76-amino acid protein having two domains; the ubiquitin domain and the C terminal extension. The first 59 amino acids were predicted with the ubiquitin domain with identity percentages of 78% to ubiquitin of H. schachtii, 77% to polyubiquitin of Globodera pallida, 74% to ubiquitin of Globodera rostochiensis and 72% to ubiquitin of Heterodera glycines. The other domain at the C-terminus, containing 17 amino acids, showed no homology to any known protein. Sequence analysis showed a calculated encoding amino acids molecular weight of 8.77 kDa, theoretical isoelectric point = 4.76, negatively charged residues = 12, positively charged residues = 9, extinction coefficient = 1490, estimated half-life = 30 h, instability index = 32.51 and grand average of hydropathicity = -0.537. The demonstrated subcellular localization analysis of cytoplasm, cell nucleus, mitochondrion, cell skeleton and plasma membrane of Hl-UBI protein occupied about 52.20, 21.70, 17.40, 4.30 and 4.30%, respectively. Sequence, homology and structural analysis confirmed that Hl-UBI gene was highly conserved during evolution and belonged to ubiquitin gene family.
Collapse
Affiliation(s)
- Luma Al-Banna
- Department of Plant Protection, Faculty of Agriculture, The University of Jordan, Amman, Jordan
| | - Monther T Sadder
- Department of Horticulture and Crop Science, Faculty of Agriculture, The University of Jordan, Amman, Jordan
| | - Hamzeh A Lafi
- Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed A M Dawabah
- Nematode Diseases Research Department, Plant Pathology Research Institute, Agricultural Research Center, 9 Gamaa Street, Giza 12619, Egypt
| | - Saleh N Al-Nadhari
- Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
30
|
Jafari M, Mehrnejad F, Rahimi F, Asghari SM. The Molecular Basis of the Sodium Dodecyl Sulfate Effect on Human Ubiquitin Structure: A Molecular Dynamics Simulation Study. Sci Rep 2018; 8:2150. [PMID: 29391595 PMCID: PMC5794983 DOI: 10.1038/s41598-018-20669-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 01/16/2018] [Indexed: 01/01/2023] Open
Abstract
To investigate the molecular interactions of sodium dodecyl sulfate (SDS) with human ubiquitin and its unfolding mechanisms, a comparative study was conducted on the interactions of the protein in the presence and absence of SDS at different temperatures using six independent 500 ns atomistic molecular dynamics (MD) simulations. Moreover, the effects of partial atomic charges on SDS aggregation and micellar structures were investigated at high SDS concentrations. The results demonstrated that human ubiquitin retains its native-like structure in the presence of SDS and pure water at 300 K, while the conformation adopts an unfolded state at a high temperature. In addition, it was found that both SDS self-assembly and the conformation of the resulting protein may have a significant effect of reducing the partial atomic charges. The simulations at 370 K provided evidence that the SDS molecules disrupted the first hydration shell and expanded the hydrophobic core of ubiquitin, resulting in complete protein unfolding. According to these results, SDS and temperature are both required to induce a completely unfolded state under ambient conditions. We believe that these findings could be useful in protein folding/unfolding studies and structural biology.
Collapse
Affiliation(s)
- Majid Jafari
- Nanobiotechnology Lab, Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, 14395-1561, Tehran, Iran
| | - Faramarz Mehrnejad
- Nanobiotechnology Lab, Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, 14395-1561, Tehran, Iran.
| | - Fereshteh Rahimi
- Nanobiotechnology Lab, Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, 14395-1561, Tehran, Iran
| | - S Mohsen Asghari
- Department of Biology, Faculty of Sciences, University of Guilan, 4193833697, Rasht, Iran
| |
Collapse
|
31
|
Srivastava AK, Zhang C, Caine RS, Gray J, Sadanandom A. Rice SUMO protease Overly Tolerant to Salt 1 targets the transcription factor, OsbZIP23 to promote drought tolerance in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:1031-1043. [PMID: 29024118 DOI: 10.1111/tpj.13739] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/26/2017] [Accepted: 09/28/2017] [Indexed: 05/21/2023]
Abstract
Conjugation of SUMO (Small Ubiquitin-like Modifier) protein to cellular targets is emerging as a very influential protein modification system. Once covalently bound, SUMO conjugation can change the stability or functionality of its cognate target proteins. SUMO protease can rapidly reverse SUMO conjugation making this modification system highly dynamic. A major factor in the variation of SUMO-target function is the balance between the conjugated/de-conjugated forms. The mechanistic role of these regulatory SUMO proteases in mediating stress responses has not been defined in any crops. In this study, we reveal the role of the SUMO protease, OsOTS1 in mediating tolerance to drought in rice. OsOTS1 depleted transgenic plants accumulate more ABA and exhibit more productive agronomic traits during drought while OsOTS1 overexpressing lines are drought sensitive but ABA insensitive. Drought and ABA treatment stimulates the degradation of OsOTS1 protein indicating that SUMO conjugation is an important response to drought stress in rice achieved through down-regulation of OTS1/2 activity. We reveal that OsOTS1 SUMO protease directly targets the ABA and drought responsive transcription factor OsbZIP23 for de-SUMOylation affecting its stability. OsOTS-RNAi lines show increased abundance of OsbZIP23 and increased drought responsive gene expression while OsOTS1 overexpressing lines show reduced levels of OsbZIP23 leading to suppressed drought responsive gene expression. Our data reveal a mechanism in which rice plants govern ABA-dependant drought responsive gene expression by controlling the stability of OsbZIP23 by SUMO conjugation through manipulating specific SUMO protease levels.
Collapse
Affiliation(s)
| | - Cunjin Zhang
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Robert S Caine
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Julie Gray
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Ari Sadanandom
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| |
Collapse
|
32
|
Abstract
Ubiquitin-like proteins (Ubl's) are conjugated to target proteins or lipids to regulate their activity, stability, subcellular localization, or macromolecular interactions. Similar to ubiquitin, conjugation is achieved through a cascade of activities that are catalyzed by E1 activating enzymes, E2 conjugating enzymes, and E3 ligases. In this review, we will summarize structural and mechanistic details of enzymes and protein cofactors that participate in Ubl conjugation cascades. Precisely, we will focus on conjugation machinery in the SUMO, NEDD8, ATG8, ATG12, URM1, UFM1, FAT10, and ISG15 pathways while referring to the ubiquitin pathway to highlight common or contrasting themes. We will also review various strategies used to trap intermediates during Ubl activation and conjugation.
Collapse
Affiliation(s)
- Laurent Cappadocia
- Structural Biology Program, Sloan Kettering Institute , New York, New York 10021, United States
| | - Christopher D Lima
- Structural Biology Program, Sloan Kettering Institute , New York, New York 10021, United States.,Howard Hughes Medical Institute, Sloan Kettering Institute , New York, New York 10021, United States
| |
Collapse
|
33
|
Jeon YJ, Park JH, Chung CH. Interferon-Stimulated Gene 15 in the Control of Cellular Responses to Genotoxic Stress. Mol Cells 2017; 40:83-89. [PMID: 28241406 PMCID: PMC5339507 DOI: 10.14348/molcells.2017.0027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 02/23/2017] [Indexed: 12/15/2022] Open
Abstract
Error-free replication and repair of DNA are pivotal to organisms for faithful transmission of their genetic information. Cells orchestrate complex signaling networks that sense and resolve DNA damage. Post-translational protein modifications by ubiquitin and ubiquitin-like proteins, including SUMO and NEDD8, are critically involved in DNA damage response (DDR) and DNA damage tolerance (DDT). The expression of interferon-stimulated gene 15 (ISG15), the first identified ubiquitin-like protein, has recently been shown to be induced under various DNA damage conditions, such as exposure to UV, camptothecin, and doxorubicin. Here we overview the recent findings on the role of ISG15 and its conjugation to target proteins (e.g., p53, ΔNp63α, and PCNA) in the control of cellular responses to genotoxic stress, such as the inhibition of cell growth and tumorigenesis.
Collapse
Affiliation(s)
- Young Joo Jeon
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015,
Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015,
Korea
| | - Jong Ho Park
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826,
Korea
| | - Chin Ha Chung
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826,
Korea
| |
Collapse
|
34
|
Haq IU, Han Y, Ali T, Wang Y, Gao H, Lin L, Wu Y, Wu S, Zeng S. Expression of interferon-stimulated gene ISG15 and ubiquitination enzymes is upregulated in peripheral blood monocyte during early pregnancy in dairy cattle. Reprod Biol 2016; 16:255-260. [DOI: 10.1016/j.repbio.2016.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 09/21/2016] [Accepted: 10/04/2016] [Indexed: 11/28/2022]
|
35
|
Yadav DK, Yadav N, Yadav S, Haque S, Tuteja N. An insight into fusion technology aiding efficient recombinant protein production for functional proteomics. Arch Biochem Biophys 2016; 612:57-77. [DOI: 10.1016/j.abb.2016.10.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/15/2016] [Accepted: 10/18/2016] [Indexed: 11/27/2022]
|
36
|
Jo U, Cai W, Wang J, Kwon Y, D’Andrea AD, Kim H. PCNA-Dependent Cleavage and Degradation of SDE2 Regulates Response to Replication Stress. PLoS Genet 2016; 12:e1006465. [PMID: 27906959 PMCID: PMC5131917 DOI: 10.1371/journal.pgen.1006465] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 11/04/2016] [Indexed: 12/15/2022] Open
Abstract
Maintaining genomic integrity during DNA replication is essential for cellular survival and for preventing tumorigenesis. Proliferating cell nuclear antigen (PCNA) functions as a processivity factor for DNA replication, and posttranslational modification of PCNA plays a key role in coordinating DNA repair against replication-blocking lesions by providing a platform to recruit factors required for DNA repair and cell cycle control. Here, we identify human SDE2 as a new genome surveillance factor regulated by PCNA interaction. SDE2 contains an N-terminal ubiquitin-like (UBL) fold, which is cleaved at a diglycine motif via a PCNA-interacting peptide (PIP) box and deubiquitinating enzyme activity. The cleaved SDE2 is required for negatively regulating ultraviolet damage-inducible PCNA monoubiquitination and counteracting replication stress. The cleaved SDE2 products need to be degraded by the CRL4CDT2 ubiquitin E3 ligase in a cell cycle- and DNA damage-dependent manner, and failure to degrade SDE2 impairs S phase progression and cellular survival. Collectively, this study uncovers a new role for CRL4CDT2 in protecting genomic integrity against replication stress via regulated proteolysis of PCNA-associated SDE2 and provides insights into how an integrated UBL domain within linear polypeptide sequence controls protein stability and function. Preserving genomic integrity during DNA replication is essential for preventing tumorigenesis. The CRL4CDT2 ubiquitin E3 ligase plays a unique role in this pathway by coupling proteolysis to interaction with the DNA replication processivity factor PCNA, in order to ensure selective elimination of key factors in cell cycle regulation. However, the mechanisms by which CRL4CDT2 directly regulates replication-associated DNA repair remain elusive. In this work, we identify a new human protein called SDE2 that helps cells relieve replication stress and ensure completing DNA replication process, whose activity is regulated by PCNA interaction and CRL4CDT2. We show that SDE2 is cleaved by PCNA interaction and ubiquitin signaling to generate a functional C-terminal product. The cleaved SDE2 negatively regulates PCNA monoubiquitination required for relieving replication stress. Conversely, the cleaved SDE2 fragments need to be degraded, and failure to degrade SDE2 impairs S phase progression and cellular survival. Our findings uncover the role of CRL4CDT2-proteolytic signaling coupled to PCNA in protecting genomic integrity against replication stress. Knowledge on such mechanism will be useful to identify novel cancer therapeutic interventions exploiting deregulated ubiquitin signaling and SDE2 activities in cancer.
Collapse
Affiliation(s)
- Ukhyun Jo
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, United States of America
| | - Winson Cai
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, United States of America
| | - Jingming Wang
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, United States of America
| | - Yoojin Kwon
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, United States of America
| | - Alan D. D’Andrea
- Department of Radiation Oncology and Center for DNA damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Hyungjin Kim
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
37
|
Baz-Martínez M, El Motiam A, Ruibal P, Condezo GN, de la Cruz-Herrera CF, Lang V, Collado M, San Martín C, Rodríguez MS, Muñoz-Fontela C, Rivas C. Regulation of Ebola virus VP40 matrix protein by SUMO. Sci Rep 2016; 6:37258. [PMID: 27849047 PMCID: PMC5110971 DOI: 10.1038/srep37258] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/26/2016] [Indexed: 12/28/2022] Open
Abstract
The matrix protein of Ebola virus (EBOV) VP40 regulates viral budding, nucleocapsid recruitment, virus structure and stability, viral genome replication and transcription, and has an intrinsic ability to form virus-like particles. The elucidation of the regulation of VP40 functions is essential to identify mechanisms to inhibit viral replication and spread. Post-translational modifications of proteins with ubiquitin-like family members are common mechanisms for the regulation of host and virus multifunctional proteins. Thus far, no SUMOylation of VP40 has been described. Here we demonstrate that VP40 is modified by SUMO and that SUMO is included into the viral like particles (VLPs). We demonstrate that lysine residue 326 in VP40 is involved in SUMOylation, and by analyzing a mutant in this residue we show that SUMO conjugation regulates the stability of VP40 and the incorporation of SUMO into the VLPs. Our study indicates for the first time, to the best of our knowledge, that EBOV hijacks the cellular SUMOylation system in order to modify its own proteins. Modulation of the VP40-SUMO interaction may represent a novel target for the therapy of Ebola virus infection.
Collapse
Affiliation(s)
- Maite Baz-Martínez
- Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias (IDIS), Santiago de Compostela, E15706, Spain
| | - Ahmed El Motiam
- Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias (IDIS), Santiago de Compostela, E15706, Spain
| | - Paula Ruibal
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistraβe 52, D20251, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht Str 74, D20359, Hamburg, Germany
| | - Gabriela N Condezo
- Department of Macromolecular Structures and NanoBioMedicine Initiative, Centro Nacional de Biotecnología-CSIC, Darwin 3, Madrid 28049, Spain
| | - Carlos F de la Cruz-Herrera
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología-CSIC, Darwin 3, Madrid 28049, Spain
| | - Valerie Lang
- Ubiquitylation and Cancer Molecular Biology laboratory, Inbiomed, San Sebastian-Donostia, 20009 Gipuzkoa, Spain
| | - Manuel Collado
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, E15706, Spain
| | - Carmen San Martín
- Department of Macromolecular Structures and NanoBioMedicine Initiative, Centro Nacional de Biotecnología-CSIC, Darwin 3, Madrid 28049, Spain
| | - Manuel S Rodríguez
- Advanced Technology Institute in Life Sciences (ITAV) CNRS-USR3505, 31106 Toulouse, France.,University of Toulouse III-Paul Sabatier, 31077, Toulouse, France
| | - Cesar Muñoz-Fontela
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistraβe 52, D20251, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht Str 74, D20359, Hamburg, Germany
| | - Carmen Rivas
- Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias (IDIS), Santiago de Compostela, E15706, Spain.,Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología-CSIC, Darwin 3, Madrid 28049, Spain
| |
Collapse
|
38
|
Moreno P, Garcia-Rosado E, Borrego JJ, Alonso MC. Genetic characterization and transcription analyses of the European sea bass (Dicentrarchus labrax) isg15 gene. FISH & SHELLFISH IMMUNOLOGY 2016; 55:642-6. [PMID: 27368533 DOI: 10.1016/j.fsi.2016.06.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/21/2016] [Accepted: 06/27/2016] [Indexed: 05/07/2023]
Abstract
Fish interferons are cytokines involved in its resistance to viral infections by inducing the transcription of several interferon-induced genes, such as isg15. The aim of the present study was the genetic characterization of the European sea bass isg15 gene, describing the regulatory motifs found in its sequence. In addition, an in vivo analysis of transcription in response to betanodavirus (RGNNV genotype) and poly I:C has been performed. The analysis of the resulting sequences showed that sea bass isg15 gene is composed of two exons and a single 276-bp intron located at the 5'-UTR region. The full length cDNA is 1143-bp, including a 102-bp 5'-UTR region, a 474-bp ORF, and a 291-bp 3'-UTR region. Several mRNA-regulatory elements, including three unusual ATTTA instability motifs in the intron, and four ATTTA motifs along with a cytoplasmic polyadenylation element in the 3'-UTR region, have been found in this sequence. The in vivo analyses revealed a similar kinetics and level of transcription in fish brain and head kidney after poly I:C inoculation; however, the induction caused by RGNNV started earlier in brain, where the upregulation of isg15 gene transcription was high. The present study contributes to further characterize the European sea bass IFN I response against RGNNV infections.
Collapse
Affiliation(s)
- Patricia Moreno
- Universidad de Málaga, Departamento de Microbiología, Facultad de Ciencias, 29071 Málaga, Spain
| | - Esther Garcia-Rosado
- Universidad de Málaga, Departamento de Microbiología, Facultad de Ciencias, 29071 Málaga, Spain
| | - Juan J Borrego
- Universidad de Málaga, Departamento de Microbiología, Facultad de Ciencias, 29071 Málaga, Spain
| | - M Carmen Alonso
- Universidad de Málaga, Departamento de Microbiología, Facultad de Ciencias, 29071 Málaga, Spain.
| |
Collapse
|
39
|
Xue F, Zhu L, Meng QW, Wang L, Chen XS, Zhao YB, Xing Y, Wang XY, Cai L. FAT10 is associated with the malignancy and drug resistance of non-small-cell lung cancer. Onco Targets Ther 2016; 9:4397-409. [PMID: 27499634 PMCID: PMC4959415 DOI: 10.2147/ott.s98410] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Lung cancer has become one of the leading causes of cancer mortality worldwide, and non-small-cell lung cancer (NSCLC) accounts for ~85% of all lung cancer cases. Currently, platinum-based chemotherapy drugs, including cisplatin and carboplatin, are the most effective treatment for NSCLC. However, the clinical efficacy of chemotherapy is markedly reduced later in the treatment because drug resistance develops during the treatment. Recently, a series of studies has suggested the involvement of FAT10 in the development and malignancy of multiple cancer types. In this study, we focused our research on the function of FAT10 in NSCLC, which has not been previously reported in the literature. We found that the expression levels of FAT10 were elevated in quick chemoresistance NSCLC tissues, and we demonstrated that FAT10 promotes NSCLC cell proliferation, migration, and invasion. Furthermore, the protein levels of FAT10 were elevated in cisplatin- and carboplatin-resistant NSCLC cells, and knockdown of FAT10 reduced the drug resistance of NSCLC cells. In addition, we gained evidence that FAT10 regulates NSCLC malignancy and drug resistance by modulating the activity of the nuclear factor kappa B signaling pathway.
Collapse
Affiliation(s)
- Feng Xue
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital; Department of Medical Oncology, Heilongjiang Provincial Hospital
| | - Lin Zhu
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Qing-Wei Meng
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital
| | - Liyan Wang
- Department of Medical Oncology, Heilongjiang Provincial Hospital
| | - Xue-Song Chen
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital
| | - Yan-Bin Zhao
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital
| | - Ying Xing
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital
| | - Xiao-Yun Wang
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital
| | - Li Cai
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital
| |
Collapse
|
40
|
Wei Y, Xu X. UFMylation: A Unique & Fashionable Modification for Life. GENOMICS PROTEOMICS & BIOINFORMATICS 2016; 14:140-146. [PMID: 27212118 PMCID: PMC4936604 DOI: 10.1016/j.gpb.2016.04.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/15/2016] [Accepted: 04/22/2016] [Indexed: 10/28/2022]
Abstract
Ubiquitin-fold modifier 1 (UFM1) is one of the newly-identified ubiquitin-like proteins. Similar to ubiquitin, UFM1 is conjugated to its target proteins by a three-step enzymatic reaction. The UFM1-activating enzyme, ubiquitin-like modifier-activating enzyme 5 (UBA5), serves as the E1 to activate UFM1; UFM1-conjugating enzyme 1 (UFC1) acts as the E2 to transfer the activated UFM1 to the active site of the E2; and the UFM1-specific ligase 1 (UFL1) acts as the E3 to recognize its substrate, transfer, and ligate the UFM1 from E2 to the substrate. This process is called ufmylation. UFM1 chains can be cleaved from its target proteins by UFM1-specific proteases (UfSPs), suggesting that the ufmylation modification is reversible. UFM1 cascade is conserved among nearly all of the eukaryotic organisms, but not in yeast, and associated with several cellular activities including the endoplasmic reticulum stress response and hematopoiesis. Furthermore, the UFM1 cascade is closely related to a series of human diseases. In this review, we summarize the molecular details of this reversible modification process, the recent progress of its functional studies, as well as its implication in tumorigenesis and potential therapeutic targets for cancer.
Collapse
Affiliation(s)
- Ying Wei
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Xingzhi Xu
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
41
|
Beaudette P, Popp O, Dittmar G. Proteomic techniques to probe the ubiquitin landscape. Proteomics 2015; 16:273-87. [PMID: 26460060 DOI: 10.1002/pmic.201500290] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 09/03/2015] [Accepted: 10/06/2015] [Indexed: 01/06/2023]
Abstract
Protein ubiquitination is a powerful modulator of cellular functions. Classically linked to the degradation of proteins, it also plays a role in intracellular localization, DNA damage response, vesicle fusion events, and the immune and transcriptional responses. Ubiquitin is versatile and can code for several distinct signals, either by adding a single ubiquitin or forming a chain of ubiquitins on the target protein. The enzymatic cascade associated with the cellular process determines the nature of the modification. Numerous efforts have been made for the identification of ubiquitin acceptor sites in the target proteins using genetic, biochemical or MS-based proteomic methods, such as affinity-based enrichment of ubiquitinated proteins, and antibody-based enrichment of modified peptides. Modern instrumentation enables quantitative MS strategies to identify and characterize hundreds of ubiquitin substrates in a single analysis making it the dominant method for ubiquitin site detection. Characterization of the interubiquitin connectivity in ubiquitin polymers has also moved into focus, with the field of targeted proteomics techniques proving invaluable for identifying and quantifying linkage types found in such polyubiquitin chains. This review seeks to provide an overview of the many MS-based proteomics techniques available for exploring this dynamic field.
Collapse
Affiliation(s)
- Patrick Beaudette
- Department of Mass Spectrometry, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Oliver Popp
- Department of Mass Spectrometry, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Gunnar Dittmar
- Department of Mass Spectrometry, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
42
|
Dantuma NP, van Attikum H. Spatiotemporal regulation of posttranslational modifications in the DNA damage response. EMBO J 2015; 35:6-23. [PMID: 26628622 DOI: 10.15252/embj.201592595] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/06/2015] [Indexed: 11/09/2022] Open
Abstract
A timely and accurate cellular response to DNA damage requires tight regulation of the action of DNA damage response (DDR) proteins at lesions. A multitude of posttranslational modifications (PTMs) of chromatin and chromatin-associated proteins coordinates the recruitment of critical proteins that dictate the appropriate DNA repair pathway and enable the actual repair of lesions. Phosphorylation, ubiquitylation, SUMOylation, neddylation, poly(ADP-ribosyl)ation, acetylation, and methylation are among the DNA damage-induced PTMs that have taken center stage as important DDR regulators. Redundant and multivalent interactions of DDR proteins with PTMs may not only be a means to facilitate efficient relocalization, but also a feature that allows high temporal and spatial resolution of protein recruitment to, and extraction from, DNA damage sites. In this review, we will focus on the complex interplay between such PTMs, and discuss the importance of their interconnectivity in coding DNA lesions and maintaining the integrity of the genome.
Collapse
Affiliation(s)
- Nico P Dantuma
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
43
|
Ge WS, Fan JG, Chen YW, Xu LM. Expression and purification of functional HMGB1 A box by fusion with SUMO. Mol Med Rep 2015; 12:6527-32. [PMID: 26352592 PMCID: PMC4626187 DOI: 10.3892/mmr.2015.4308] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 08/17/2015] [Indexed: 01/14/2023] Open
Abstract
High-mobility-group-box chromosomal protein 1 (HMGB1) is a ubiquitous and abundant nuclear protein in eukaryotic cells. Nuclear HMGB1 serves an important role in maintaining nuclear stability under stress. However, extracellular HMGB1 exerts actions, which are distinctly different compared with these intracellular functions. HMGB1, when released extracellularly, is a potent innate signal, which initiates host defense mechanisms or tissue regeneration. HMGB1 has two DNA-binding domains: HMG A box and B box. The HMGB1 A box exhibits an antagonistic, anti-inflammatory effect, and is a potential therapeutic target, however, the large-scale expression and purification of the HMGB1 A box with high efficiency remains to be reported. In the present study, a SUMO-fusion expression system was used to express and purify high levels of functional HMGB1 A box to meet the requirements of therapeutic protein production.
Collapse
Affiliation(s)
- Wen-Song Ge
- Department of Gastroenterology, Shanghai Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Jian-Gao Fan
- Department of Gastroenterology, Shanghai Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Ying-Wei Chen
- Department of Gastroenterology, Shanghai Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Lei-Ming Xu
- Department of Gastroenterology, Shanghai Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| |
Collapse
|
44
|
Kho C, Lee A, Jeong D, Oh JG, Gorski PA, Fish K, Sanchez R, DeVita RJ, Christensen G, Dahl R, Hajjar RJ. Small-molecule activation of SERCA2a SUMOylation for the treatment of heart failure. Nat Commun 2015; 6:7229. [PMID: 26068603 PMCID: PMC4467461 DOI: 10.1038/ncomms8229] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 04/18/2015] [Indexed: 01/14/2023] Open
Abstract
Decreased activity and expression of the cardiac sarcoplasmic reticulum calcium ATPase (SERCA2a), a critical pump regulating calcium cycling in cardiomyocyte, are hallmarks of heart failure. We have previously described a role for the small ubiquitin-like modifier type 1 (SUMO-1) as a regulator of SERCA2a and have shown that gene transfer of SUMO-1 in rodents and large animal models of heart failure restores cardiac function. Here, we identify and characterize a small molecule, N106, which increases SUMOylation of SERCA2a. This compound directly activates the SUMO-activating enzyme, E1 ligase, and triggers intrinsic SUMOylation of SERCA2a. We identify a pocket on SUMO E1 likely to be responsible for N106's effect. N106 treatment increases contractile properties of cultured rat cardiomyocytes and significantly improves ventricular function in mice with heart failure. This first-in-class small-molecule activator targeting SERCA2a SUMOylation may serve as a potential therapeutic strategy for treatment of heart failure. SUMOylation of the cardiac calcium pump SERCA2a affects its activity and promotes cardiomyocyte contractility. Here the authors identify a small molecule N106 that increases SERCA2 SUMOylation and improves heart function in mice, and propose a promising therapeutic strategy for treatment of heart failure.
Collapse
Affiliation(s)
- Changwon Kho
- Department of Medicine/Cardiology, Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy place, Box 1030, New York, New York 10029, USA
| | - Ahyoung Lee
- Department of Medicine/Cardiology, Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy place, Box 1030, New York, New York 10029, USA
| | - Dongtak Jeong
- Department of Medicine/Cardiology, Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy place, Box 1030, New York, New York 10029, USA
| | - Jae Gyun Oh
- Department of Medicine/Cardiology, Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy place, Box 1030, New York, New York 10029, USA
| | - Przemek A Gorski
- Department of Medicine/Cardiology, Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy place, Box 1030, New York, New York 10029, USA
| | - Kenneth Fish
- Department of Medicine/Cardiology, Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy place, Box 1030, New York, New York 10029, USA
| | - Roberto Sanchez
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Robert J DeVita
- 1] Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA [2] Department of Pharmacology and System Therapeutics, Experimental Therapeutics Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Geir Christensen
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål and University of Oslo, Oslo 0450, Norway
| | - Russell Dahl
- Department of Pharmaceutical Science, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064, USA
| | - Roger J Hajjar
- Department of Medicine/Cardiology, Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy place, Box 1030, New York, New York 10029, USA
| |
Collapse
|
45
|
Lee JE, Kim JH. SUMO modification regulates the protein stability of NDRG1. Biochem Biophys Res Commun 2015; 459:161-5. [PMID: 25712528 DOI: 10.1016/j.bbrc.2015.02.090] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 02/13/2015] [Indexed: 12/22/2022]
Abstract
N-myc Downstream Regulated Gene 1 (NDRG1) is a metastasis suppressor protein which suppresses metastasis without affecting primary tumorigenesis. There have been many reports about the anti-metastatic function of NDRG1 in various cancers. However, the regulatory mechanism of NDRG1 at the protein level has not been studied widely. Here, we found that NDRG1 is posttranslationally modified by Small Ubiquitin-like Modifier (SUMO), preferentially by SUMO-2, and the major SUMO acceptor site of NDRG1 is Lys 14. Using various SUMO-2 modification status mimicking NDRG1 mutants, we characterized the role of SUMO-2 modification on NDRG1. SUMO-2 modification does not affect the subcellular distribution of NDRG1. However, the protein stability of NDRG1 is influenced by SUMO-2 modification. We found that both the wildtype and the SUMO modification site mutant form of the NDRG1 protein were very stable but the protein stability of SUMO-2 fused NDRG1 K14R had dramatically decreased. In addition, the expression of p21 is downregulated by overexpression of SUMO-2 fused NDRG1 K14R mutants. These results indicate that SUMO-2 modification is implicated in the modulation of NDRG1 protein level and function. This novel link between SUMO modification and regulation of NDRG1 could be a therapeutic target for treatment of various metastatic cancers.
Collapse
Affiliation(s)
- Jae Eun Lee
- Department of Biological Sciences, Inha University, Incheon 402-751, South Korea
| | - Jung Hwa Kim
- Department of Biological Sciences, Inha University, Incheon 402-751, South Korea.
| |
Collapse
|
46
|
Abstract
Identifying novel mechanisms, which are at the core of breast cancer biology, is of critical importance. Such mechanisms may explain response to treatment, reveal novel targets or drive detection assays. To uncover such novel mechanisms, we used survival analysis on gene expression datasets encompassing 1363 patients. By iterating over the compendia of genes, we screened for their significance as prognosis biomarkers and identified SUMO-specific protease 5 (SENP5) to significantly stratify patients into two survival groups across five unrelated tested datasets. According to these findings, low expression of SENP5 is associated with good prognosis among breast cancer patients. Following these findings, we analyzed SENP5 silencing and show it is followed by inhibition of anchorage-independence growth, proliferation, migration and invasion in breast cancer cell lines. We further show that these changes are conducted via regulation of TGFβRI levels. These data relate to recent reports about the SUMOylation of TGFβRI. Following TGFβRI changes in expression, we show that one of its target genes, MMP9, which plays a key role in degrading the extracellular matrix and contributes to TGFβ-induced invasion, is dramatically down regulated upon SENP5 silencing. This is the first report represents SENP5-TGFβ-MMP9 cascade and its mechanistic involvement in breast cancer.
Collapse
|
47
|
Labas V, Spina L, Belleannee C, Teixeira-Gomes AP, Gargaros A, Dacheux F, Dacheux JL. Analysis of epididymal sperm maturation by MALDI profiling and top-down mass spectrometry. J Proteomics 2015; 113:226-43. [DOI: 10.1016/j.jprot.2014.09.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 09/17/2014] [Accepted: 09/30/2014] [Indexed: 12/27/2022]
|
48
|
SUMOylation at K340 inhibits tau degradation through deregulating its phosphorylation and ubiquitination. Proc Natl Acad Sci U S A 2014; 111:16586-91. [PMID: 25378699 DOI: 10.1073/pnas.1417548111] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intracellular accumulation of the abnormally modified tau is hallmark pathology of Alzheimer's disease (AD), but the mechanism leading to tau aggregation is not fully characterized. Here, we studied the effects of tau SUMOylation on its phosphorylation, ubiquitination, and degradation. We show that tau SUMOylation induces tau hyperphosphorylation at multiple AD-associated sites, whereas site-specific mutagenesis of tau at K340R (the SUMOylation site) or simultaneous inhibition of tau SUMOylation by ginkgolic acid abolishes the effect of small ubiquitin-like modifier protein 1 (SUMO-1). Conversely, tau hyperphosphorylation promotes its SUMOylation; the latter in turn inhibits tau degradation with reduction of solubility and ubiquitination of tau proteins. Furthermore, the enhanced SUMO-immunoreactivity, costained with the hyperphosphorylated tau, is detected in cerebral cortex of the AD brains, and β-amyloid exposure of rat primary hippocampal neurons induces a dose-dependent SUMOylation of the hyperphosphorylated tau. Our findings suggest that tau SUMOylation reciprocally stimulates its phosphorylation and inhibits the ubiquitination-mediated tau degradation, which provides a new insight into the AD-like tau accumulation.
Collapse
|
49
|
Wondrak GT, Lobato-Gil S, Aillet F, Lang V, Rodriguez MS. The Ubiquitin-Proteasome System (UPS) as a Cancer Drug Target: Emerging Mechanisms and Therapeutics. STRESS RESPONSE PATHWAYS IN CANCER 2014. [PMCID: PMC7121086 DOI: 10.1007/978-94-017-9421-3_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Ubiquitin-Proteasome System (UPS) plays an important role in the setting of the cellular response to multiple stress signals. Although the primary function of ubiquitin was initially associated with proteolysis, it is now considered as a key regulator of protein function controlling, among other functions, signalling cascades, transcription, apoptosis or oncogenesis. Failure at any level of the UPS is associated with the development of multiple pathologies including metabolic problems, immune diseases, inflammation and cancer. The successful use of the proteasome inhibitor Bortezomib (Velcade) in the treatment of multiple myeloma (MM) and mantle cell lymphoma (MCL) revealed the potential of the UPS as pharmacological target. Ten years later, new inhibitors tackling not only the proteasome but also different subsets of enzymes which conjugate or de-conjugate ubiquitin or ubiquitin-like molecules, have been developed. Most of them are excellent tools to characterize better the emerging molecular mechanisms regulating distinct critical cellular processes. Some of them have been launched already while many others are still in pre-clinical development. This chapter updates some of the most successful efforts to develop and characterize inhibitors of the UPS which tackle mechanisms involved in cancer. Particular attention has been dedicated to updating the status of the clinical trials of these inhibitors.
Collapse
Affiliation(s)
- Georg T. Wondrak
- Dept. of Pharmacology and Toxicology, Univ. of Arizona, College of Pharm. & The Univ. of Arizona Cancer Ctr., Tucson, Arizona USA
| | | | | | | | | |
Collapse
|
50
|
Zhang C, He X, Gu Y, Zhou H, Cao J, Gao Q. Recombinant scorpine produced using SUMO fusion partner in Escherichia coli has the activities against clinically isolated bacteria and inhibits the Plasmodium falciparum parasitemia in vitro. PLoS One 2014; 9:e103456. [PMID: 25068263 PMCID: PMC4113386 DOI: 10.1371/journal.pone.0103456] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/29/2014] [Indexed: 11/26/2022] Open
Abstract
Scorpine, a small cationic peptide from the venom of Pandinus imperator, which has been shown to have anti-bacterial and anti-plasmodial activities, has potential important applications in the pharmaceutical industries. However, the isolation of scorpine from natural sources is inefficient and time-consuming. Here, we first report the expression and purification of recombinant scorpine in Escherichia coli, using small ubiquitin-related modifier (SUMO) fusion partner. The fusion protein was expressed in soluble form in E. coli, and expression was verified by SDS-PAGE and western blotting analysis. The fusion protein was purified to 90% purity by nickel-nitrilotriacetic acid (Ni2+-NTA) resin chromatography. After the SUMO-scorpine fusion protein was cleaved by the SUMO protease, the cleaved sample was reapplied to a Ni2+-NTA column. Tricine/SDS-PAGE gel results indicated that Scorpine had been purified successfully to more than 95% purity. The recombinantly expressed Scorpine showed anti-bacterial activity against two standard bacteria including Staphylococcus aureus ATCC 29213 and Acinetobacter baumannii ATCC 19606, and clinically isolated bacteria including S. aureus S, S. aureus R, A. baumannii S, and A. baumannii R. It also produced 100% reduction in Plasmodium falciparum parasitemia in vitro. Thus, the expression strategy presented in this study allowed convenient high yield and easy purification of recombinant Scorpine for pharmaceutical applications in the future.
Collapse
Affiliation(s)
- Chao Zhang
- School of Basic Medical and Biological Sciences, Medical College of Soochow University, Suzhou, Jiangsu Province, People’s Republic of China
- Jiangsu Institute of Parasitic Diseases, Key Laboratory of Parasitic Disease Control and Prevention (Ministry of Health), Jiangsu Provincial Key Laboratory of Parasite Molecular Biology, Wuxi, Jiangsu Province, People’s Republic of China
| | - Xinlong He
- The Third People's Hospital of Wuxi, Wuxi, Jiangsu Province, People’s Republic of China
| | - Yaping Gu
- Jiangsu Institute of Parasitic Diseases, Key Laboratory of Parasitic Disease Control and Prevention (Ministry of Health), Jiangsu Provincial Key Laboratory of Parasite Molecular Biology, Wuxi, Jiangsu Province, People’s Republic of China
| | - Huayun Zhou
- Jiangsu Institute of Parasitic Diseases, Key Laboratory of Parasitic Disease Control and Prevention (Ministry of Health), Jiangsu Provincial Key Laboratory of Parasite Molecular Biology, Wuxi, Jiangsu Province, People’s Republic of China
| | - Jun Cao
- Jiangsu Institute of Parasitic Diseases, Key Laboratory of Parasitic Disease Control and Prevention (Ministry of Health), Jiangsu Provincial Key Laboratory of Parasite Molecular Biology, Wuxi, Jiangsu Province, People’s Republic of China
| | - Qi Gao
- School of Basic Medical and Biological Sciences, Medical College of Soochow University, Suzhou, Jiangsu Province, People’s Republic of China
- Jiangsu Institute of Parasitic Diseases, Key Laboratory of Parasitic Disease Control and Prevention (Ministry of Health), Jiangsu Provincial Key Laboratory of Parasite Molecular Biology, Wuxi, Jiangsu Province, People’s Republic of China
| |
Collapse
|