1
|
Ma H, Qi F, Ji L, Xie S, Ran J, Liu M, Gao J, Zhou J. NuMA forms condensates through phase separation to drive spindle pole assembly. J Mol Cell Biol 2021; 14:6484797. [PMID: 34958389 PMCID: PMC8962682 DOI: 10.1093/jmcb/mjab081] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Huixian Ma
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Feifei Qi
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Li Ji
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Songbo Xie
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Jie Ran
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Min Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Jinmin Gao
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Jun Zhou
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan 250014, China.,State Key Laboratory of Medicinal Chemical Biology, Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
2
|
Kiyomitsu T, Boerner S. The Nuclear Mitotic Apparatus (NuMA) Protein: A Key Player for Nuclear Formation, Spindle Assembly, and Spindle Positioning. Front Cell Dev Biol 2021; 9:653801. [PMID: 33869212 PMCID: PMC8047419 DOI: 10.3389/fcell.2021.653801] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/10/2021] [Indexed: 01/10/2023] Open
Abstract
The nuclear mitotic apparatus (NuMA) protein is well conserved in vertebrates, and dynamically changes its subcellular localization from the interphase nucleus to the mitotic/meiotic spindle poles and the mitotic cell cortex. At these locations, NuMA acts as a key structural hub in nuclear formation, spindle assembly, and mitotic spindle positioning, respectively. To achieve its variable functions, NuMA interacts with multiple factors, including DNA, microtubules, the plasma membrane, importins, and cytoplasmic dynein. The binding of NuMA to dynein via its N-terminal domain drives spindle pole focusing and spindle positioning, while multiple interactions through its C-terminal region define its subcellular localizations and functions. In addition, NuMA can self-assemble into high-ordered structures which likely contribute to spindle positioning and nuclear formation. In this review, we summarize recent advances in NuMA’s domains, functions and regulations, with a focus on human NuMA, to understand how and why vertebrate NuMA participates in these functions in comparison with invertebrate NuMA-related proteins.
Collapse
Affiliation(s)
- Tomomi Kiyomitsu
- Cell Division Dynamics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Japan
| | - Susan Boerner
- Cell Division Dynamics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Japan
| |
Collapse
|
3
|
Serra-Marques A, Houtekamer R, Hintzen D, Canty JT, Yildiz A, Dumont S. The mitotic protein NuMA plays a spindle-independent role in nuclear formation and mechanics. J Cell Biol 2020; 219:e202004202. [PMID: 33044554 PMCID: PMC7555356 DOI: 10.1083/jcb.202004202] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/15/2020] [Accepted: 09/11/2020] [Indexed: 01/04/2023] Open
Abstract
Eukaryotic cells typically form a single, round nucleus after mitosis, and failures to do so can compromise genomic integrity. How mammalian cells form such a nucleus remains incompletely understood. NuMA is a spindle protein whose disruption results in nuclear fragmentation. What role NuMA plays in nuclear integrity, and whether its perceived role stems from its spindle function, are unclear. Here, we use live imaging to demonstrate that NuMA plays a spindle-independent role in forming a single, round nucleus. NuMA keeps the decondensing chromosome mass compact at mitotic exit and promotes a mechanically robust nucleus. NuMA's C terminus binds DNA in vitro and chromosomes in interphase, while its coiled-coil acts as a central regulatory and structural element: it prevents NuMA from binding chromosomes at mitosis, regulates its nuclear mobility, and is essential for nuclear formation. Thus, NuMA plays a structural role over the cell cycle, building and maintaining the spindle and nucleus, two of the cell's largest structures.
Collapse
Affiliation(s)
- Andrea Serra-Marques
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA
| | - Ronja Houtekamer
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA
| | - Dorine Hintzen
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA
| | - John T. Canty
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA
| | - Ahmet Yildiz
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA
- Department of Physics, University of California, Berkeley, Berkeley, CA
| | - Sophie Dumont
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA
- Chan Zuckerberg Biohub, San Francisco, CA
| |
Collapse
|
4
|
Rajeevan A, Keshri R, Kapoor S, Kotak S. NuMA interaction with chromatin is vital for proper chromosome decondensation at the mitotic exit. Mol Biol Cell 2020; 31:2437-2451. [PMID: 32845810 PMCID: PMC7851854 DOI: 10.1091/mbc.e20-06-0415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
NuMA is an abundant long coiled-coil protein that plays a prominent role in spindle organization during mitosis. In interphase, NuMA is localized to the nucleus and hypothesized to control gene expression and chromatin organization. However, because of the prominent mitotic phenotype upon NuMA loss, its precise function in the interphase nucleus remains elusive. Here, we report that NuMA is associated with chromatin in interphase and prophase but released upon nuclear envelope breakdown (NEBD) by the action of Cdk1. We uncover that NuMA directly interacts with DNA via evolutionarily conserved sequences in its C-terminus. Notably, the expression of the DNA-binding-deficient mutant of NuMA affects chromatin decondensation at the mitotic exit, and nuclear shape in interphase. We show that the nuclear shape defects observed upon mutant NuMA expression are due to its potential to polymerize into higher-order fibrillar structures. Overall, this work establishes the spindle-independent function of NuMA in choreographing proper chromatin decompaction and nuclear shape by directly associating with the DNA.
Collapse
Affiliation(s)
- Ashwathi Rajeevan
- Department of Microbiology and Cell Biology, Indian Institute of Science, 560012 Bangalore, India
| | - Riya Keshri
- Department of Microbiology and Cell Biology, Indian Institute of Science, 560012 Bangalore, India
| | - Sukriti Kapoor
- Department of Microbiology and Cell Biology, Indian Institute of Science, 560012 Bangalore, India
| | - Sachin Kotak
- Department of Microbiology and Cell Biology, Indian Institute of Science, 560012 Bangalore, India
| |
Collapse
|
5
|
Circulation autoantibodies against C-terminus of NuMA in patients with Behçet's disease. Cent Eur J Immunol 2020; 45:86-92. [PMID: 32425685 PMCID: PMC7226561 DOI: 10.5114/ceji.2020.94710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/08/2017] [Indexed: 11/17/2022] Open
Abstract
Circulating autoantibodies have a close association with autoimmune diseases, which may be seen even in healthy individuals. These are also considered as promising source of new biomarkers in various autoimmune diseases. However, their profile is not completely understood till now. Here, we evaluated autoantibodies against nuclear mitotic apparatus protein located at the carboxy terminus (C-NuMA)in blood circulation of Han Chinese patients, using different technical approaches to discover pathological reaction leading to Behçet's disease (BD). In the first step, the recombinant human carboxy-terminal region of NuMA peptide (C-NuMA) was over-expressed and purified. In the second step, the indirect immunofluorescence method was used with patients' sera, and commercial anti-NuMA antibody was used to determine the NuMA as a potential autoantigen. Results were confirmed at cell level by western blots, indicating that two of ten patients with Behçet's disease could react with the recombinant C-NuMA,and the presence of antibodies were further verified by immunoprecipitation technique. Finally, the corresponding immunoassay (ELISA) was developed and optimized with specific recombinant C-NuMA as an in vitro method to test the confirmed patients with Behçet's disease. Our findings demonstrated that C-terminus of NuMA is an immune target of Behçet's disease in Han Chinese patients.
Collapse
|
6
|
Mechanically Distinct Microtubule Arrays Determine the Length and Force Response of the Meiotic Spindle. Dev Cell 2019; 49:267-278.e5. [DOI: 10.1016/j.devcel.2019.03.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 01/17/2019] [Accepted: 03/14/2019] [Indexed: 11/19/2022]
|
7
|
The novel tankyrase inhibitor (AZ1366) enhances irinotecan activity in tumors that exhibit elevated tankyrase and irinotecan resistance. Oncotarget 2017; 7:28273-85. [PMID: 27070088 PMCID: PMC5053726 DOI: 10.18632/oncotarget.8626] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/28/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Dysregulation of the canonical Wnt signaling pathway has been implicated in colorectal cancer (CRC) development as well as incipient stages of malignant transformation. In this study, we investigated the antitumor effects of AZ1366 (a novel tankyrase inhibitor) as a single agent and in combination with irinotecan in our patient derived CRC explant xenograft models. RESULTS Six out of 18 CRC explants displayed a significant growth reduction to AZ1366. There was one CRC explant (CRC040) that reached the threshold of sensitivity (TGII ≤ 20%) in this study. In addition, the combination of AZ1366 + irinotecan demonstrated efficacy in 4 out of 18 CRC explants. Treatment effects on the WNT pathway revealed that tankyrase inhibition was ineffective at reducing WNT dependent signaling. However, the anti-tumor effects observed in this study were likely a result of alternative tankyrase effects whereby tankyrase inhibition reduced NuMA levels. MATERIALS AND METHODS Eighteen CRC explants were treated with AZ1366 single agent or in combination for 28 days and treatment responses were assessed. Pharmacokinetic (AZ1366 drug concentrations) and pharmacodynamic effects (Axin2 levels) were investigated over 48 hours. Immunohistochemistry of nuclear β-catenin levels as well as western blot was employed to examine the treatment effects on the WNT pathway as well as NuMA. CONCLUSIONS Combination AZ1366 and irinotecan achieved greater anti-tumor effects compared to monotherapy. Activity was limited to CRC explants that displayed irinotecan resistance and increased protein levels of tankyrase and NuMA.
Collapse
|
8
|
Identification and characterization of novel NuMA isoforms. Biochem Biophys Res Commun 2014; 454:387-92. [DOI: 10.1016/j.bbrc.2014.10.104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 10/20/2014] [Indexed: 01/22/2023]
|
9
|
Forth S, Hsia KC, Shimamoto Y, Kapoor TM. Asymmetric friction of nonmotor MAPs can lead to their directional motion in active microtubule networks. Cell 2014; 157:420-432. [PMID: 24725408 DOI: 10.1016/j.cell.2014.02.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 11/25/2013] [Accepted: 02/03/2014] [Indexed: 01/13/2023]
Abstract
Diverse cellular processes require microtubules to be organized into distinct structures, such as asters or bundles. Within these dynamic motifs, microtubule-associated proteins (MAPs) are frequently under load, but how force modulates these proteins' function is poorly understood. Here, we combine optical trapping with TIRF-based microscopy to measure the force dependence of microtubule interaction for three nonmotor MAPs (NuMA, PRC1, and EB1) required for cell division. We find that frictional forces increase nonlinearly with MAP velocity across microtubules and depend on filament polarity, with NuMA's friction being lower when moving toward minus ends, EB1's lower toward plus ends, and PRC1's exhibiting no directional preference. Mathematical models predict, and experiments confirm, that MAPs with asymmetric friction can move directionally within actively moving microtubule pairs they crosslink. Our findings reveal how nonmotor MAPs can generate frictional resistance in dynamic cytoskeletal networks via micromechanical adaptations whose anisotropy may be optimized for MAP localization and function within cellular structures.
Collapse
Affiliation(s)
- Scott Forth
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Kuo-Chiang Hsia
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Yuta Shimamoto
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Tarun M Kapoor
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
10
|
De Braekeleer E, Douet-Guilbert N, De Braekeleer M. RARA fusion genes in acute promyelocytic leukemia: a review. Expert Rev Hematol 2014; 7:347-57. [PMID: 24720386 DOI: 10.1586/17474086.2014.903794] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The t(15;17)(q24;q21), generating a PML-RARA fusion gene, is the hallmark of acute promyelocytic leukemia (APL). At present, eight other genes fusing with RARA have been identified. The resulting fusion proteins retain domains of the RARA protein allowing binding to retinoic acid response elements (RARE) and dimerization with the retinoid X receptor protein (RXRA). They participate in protein-protein interactions, associating with RXRA to form hetero-oligomeric complexes that can bind to RARE. They have a dominant-negative effect on wild-type RARA/RXRA transcriptional activity. Moreover, RARA fusion proteins can homodimerize, conferring the ability to regulate an expanded repertoire of genes normally not affected by RARA. RARA fusion proteins behave as potent transcriptional repressors of retinoic acid signalling, inducing a differentiation blockage at the promyelocyte stage which can be overcome with therapeutic doses of ATRA or arsenic trioxide. However, resistance to these two drugs is a major problem, which necessitates development of new therapies.
Collapse
Affiliation(s)
- Etienne De Braekeleer
- Laboratoire d'Histologie, Embryologie et Cytogénétique, Faculté de Médecine et des Sciences de la Santé, Université de Brest, Brest, France
| | | | | |
Collapse
|
11
|
Alvarez Sedó C, Schatten H, Combelles CM, Rawe VY. The nuclear mitotic apparatus (NuMA) protein: localization and dynamics in human oocytes, fertilization and early embryos. Mol Hum Reprod 2011; 17:392-8. [PMID: 21297155 DOI: 10.1093/molehr/gar009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The oocyte's meiotic spindle is a dynamic structure that relies on microtubule organization and regulation by centrosomes. Disorganization of centrosomal proteins, including the nuclear mitotic apparatus (NuMA) protein and the molecular motor complex dynein/dynactin, can lead to chromosomal instability and developmental abnormalities. The present study reports the distribution and function of these proteins in human oocytes, zygotes and early embryos. A total of 239 oocytes, 90 zygotes and discarded embryos were fixed and analyzed with confocal microscopy for NuMA and dynactin distribution together with microtubules and chromatin. Microtubule-associated dynein-dependent transport functions were explored by inhibiting phosphatase and ATPase activity with sodium-orthovanadate (SOV). At germinal vesicle (GV) stages, NuMA was dispersed across the nucleoplasm. After GV breaks down, NuMA became cytoplasmic before localizing at the spindle poles in metaphase I and II oocytes. Aberrant NuMA localization patterns were found during oocyte in vitro maturation. After fertilization, normal and abnormal pronuclear stage zygotes and embryos displayed translocation of NuMA to interphase nuclei. SOV treatment for up to 2 h induced lower maturation rates with chromosomal scattering and ectopic localization of NuMA. Accurate distribution of NuMA is important for oocyte maturation, zygote and embryo development in humans. Proper assembly of NuMA is likely necessary for bipolar spindle organization and human oocyte developmental competence.
Collapse
|
12
|
Bian M, Fu J, Yan Y, Chen Q, Yang C, Shi Q, Jiang Q, Zhang C. Short exposure to paclitaxel induces multipolar spindle formation and aneuploidy through promotion of acentrosomal pole assembly. SCIENCE CHINA-LIFE SCIENCES 2010; 53:1322-9. [DOI: 10.1007/s11427-010-4086-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 08/19/2010] [Indexed: 10/18/2022]
|
13
|
Radulescu AE, Cleveland DW. NuMA after 30 years: the matrix revisited. Trends Cell Biol 2010; 20:214-22. [PMID: 20137953 DOI: 10.1016/j.tcb.2010.01.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 01/05/2010] [Accepted: 01/05/2010] [Indexed: 12/17/2022]
Abstract
The large nuclear mitotic apparatus (NuMA) protein is an abundant component of interphase nuclei and an essential player in mitotic spindle assembly and maintenance. With its partner, cytoplasmic dynein, NuMA uses its cross-linking properties to tether microtubules to spindle poles. NuMA and its invertebrate homologs play a similar tethering role at the cell cortex, thereby mediating essential asymmetric divisions during development. Despite its maintenance as a nuclear component for decades after the final mitosis of many cell types (including neurons), an interphase role for NuMA remains to be established, although its structural properties implicate it as a component of a nuclear scaffold, perhaps as a central constituent of the proposed nuclear matrix.
Collapse
Affiliation(s)
- Andreea E Radulescu
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093-6070, USA
| | | |
Collapse
|
14
|
Yamauchi Y, Kiriyama K, Kimura H, Nishiyama Y. Herpes simplex virus induces extensive modification and dynamic relocalisation of the nuclear mitotic apparatus (NuMA) protein in interphase cells. J Cell Sci 2008; 121:2087-96. [PMID: 18505791 DOI: 10.1242/jcs.031450] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The nuclear mitotic apparatus (NuMA) protein is a component of the nuclear matrix in interphase cells and an essential protein for the formation of mitotic spindle poles. We used herpes simplex virus (HSV), an enveloped DNA virus that replicates in the nucleus, to study the intra-nuclear dynamics of NuMA in infected cells. This study shows that NuMA is extensively modified following HSV infection, including phosphorylation of an unidentified site(s), and that it depends to an extent on viral DNA synthesis. Although NuMA is insoluble in uninfected interphase cells, HSV infection induced solubilisation and dynamic relocalisation of NuMA, whereupon the protein became excluded from viral replication compartments -- sites of virus transcription and replication. Live cell, confocal imaging showed that NuMA localisation dramatically changed from the early stages (diffusely nuclear, excluding nucleoli) to late stages of infection (central diminuition, but remaining near the inner nuclear peripheries). In addition, NuMA knockdown using siRNA suggested that NuMA is important for efficient viral growth. In summary, we suggest that NuMA is required for efficient HSV infection, and identify further areas of research that address how the virus challenges host cell barriers.
Collapse
Affiliation(s)
- Yohei Yamauchi
- Department of Virology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | | | | | | |
Collapse
|
15
|
Kaposi's sarcoma-associated herpesvirus-encoded LANA can interact with the nuclear mitotic apparatus protein to regulate genome maintenance and segregation. J Virol 2008; 82:6734-46. [PMID: 18417561 DOI: 10.1128/jvi.00342-08] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) genomes are tethered to the host chromosomes and partitioned faithfully into daughter cells with the host chromosomes. The latency-associated nuclear antigen (LANA) is important for segregation of the newly synthesized viral genomes to the daughter nuclei. Here, we report that the nuclear mitotic apparatus protein (NuMA) and LANA can associate in KSHV-infected cells. In synchronized cells, NuMA and LANA are colocalized in interphase cells and separate during mitosis at the beginning of prophase, reassociating again at the end of telophase and cytokinesis. Silencing of NuMA expression by small interfering RNA and expression of LGN and a dominant-negative of dynactin (P150-CC1), which disrupts the association of NuMA with microtubules, resulted in the loss of KSHV terminal-repeat plasmids containing the major latent origin. Thus, NuMA is required for persistence of the KSHV episomes in daughter cells. This interaction between NuMA and LANA is critical for segregation and maintenance of the KSHV episomes through a temporally controlled mechanism of binding and release during specific phases of mitosis.
Collapse
|
16
|
Hsiao SJ, Smith S. Tankyrase function at telomeres, spindle poles, and beyond. Biochimie 2007; 90:83-92. [PMID: 17825467 DOI: 10.1016/j.biochi.2007.07.012] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 07/14/2007] [Indexed: 11/18/2022]
Abstract
Telomeres have special needs; they require distinct mechanisms for their protection, replication, and separation at mitosis. A dedicated six-subunit protein complex termed shelterin attends to these needs. But shelterin cannot do it alone and often relies on recruits from other cellular locales. One such recruit is tankyrase 1, a poly(ADP-ribose) polymerase that is brought to telomeres by the shelterin DNA binding subunit TRF1, where it functions in telomere length regulation and sister chromatid separation. An understanding of how tankyrase 1 functions at telomeres has been confounded by its complexity; it localizes to multiple subcellular sites, it has many diverse binding partners, and it has a closely related homolog (tankyrase 2) with which it may functionally overlap. This review summarizes our current knowledge of tankyrases focusing on their localization, binding partners, and function.
Collapse
Affiliation(s)
- Susan J Hsiao
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, 2nd Floor, New York, NY 10016, United States
| | | |
Collapse
|
17
|
Lin HH, Hsu HL, Yeh NH. Apoptotic cleavage of NuMA at the C-terminal end is related to nuclear disruption and death amplification. J Biomed Sci 2007; 14:681-94. [PMID: 17401638 DOI: 10.1007/s11373-007-9165-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Accepted: 03/05/2007] [Indexed: 10/23/2022] Open
Abstract
NuMA is a nuclear matrix protein in interphase and distributes to the spindle poles during mitosis. While the essential function of NuMA for mitotic spindle assembly is well established, a structural role of NuMA in interphase nucleus has also been proposed. Several observations suggest that the apoptotic degradation of NuMA may relate to chromatin condensation and micronucleation. Here we demonstrate that four apoptotic cleavage sites are clustered at a junction between the globular tail and the central coiled-coil domains of NuMA. Cleavage of a caspase-6-sensitive site at D(1705) produced the R-form, a major tail-less product of NuMA during apoptosis. The other two cleavage sites were defined at D(1726) and D(1747) that were catalyzed, respectively, by caspase-3 and an unknown aspartase. A NuMA deletion mutant missing the entire cleavage region of residues 1701-1828 resisted degradation and protected cells from nuclear disruption upon apoptotic attack. Under such conditions, cytochrome c was released from mitochondria, but the subsequent apoptotic events such as caspase-3 activation, poly(ADP-ribose) polymerase degradation, and DNA fragmentation were attenuated. Conversely, the tail-less NuMA alone, a mutant mimicking the R-form, induced chromatin condensation and activated the death machinery. It supports that intact NuMA is a structural element in maintaining nuclear integrity.
Collapse
Affiliation(s)
- Hsueh-Hsuan Lin
- Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, 155 Li-Nong Street Sec. 2, Taipei, 112, Taiwan ROC
| | | | | |
Collapse
|
18
|
Polanski Z, Hoffmann S, Tsurumi C. Oocyte nucleus controls progression through meiotic maturation. Dev Biol 2006; 281:184-95. [PMID: 15893972 DOI: 10.1016/j.ydbio.2005.02.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Revised: 02/21/2005] [Accepted: 02/23/2005] [Indexed: 11/26/2022]
Abstract
We analyzed progression through the meiotic maturation in oocytes manipulated to replace the prophase oocyte nucleus with the nucleus from a cumulus cell, a pachytene spermatocyte or the pronucleus from a fertilized egg. Removal of the oocyte nucleus led to a significant reduction in histone H1 kinase activity. Replacement of the oocyte nucleus by a pronucleus followed by culture resulted in premature pseudomeiotic division and occasional abnormal cytokinesis; however, histone H1 kinase activity was rescued, microtubules formed a bipolar spindle, and chromosomes were condensed. In addition to the anomalies observed after pronuclear transfer, those after transfer of the nucleus from a cumulus cell or spermatocyte included a dramatically impaired ability to form the bipolar spindle or to condense chromosomes, and histone H1 kinase activity was not rescued. Expression of a cyclin B-YFP in enucleated oocytes receiving the cumulus cell nucleus rescued histone H1 kinase activity, but spindle formation and chromosome condensation remained impaired, indicating a pleiotropic effect of oocyte nucleus removal. However, when the cumulus cell nucleus was first transformed into pronuclei (transfer into a metaphase II oocyte followed by activation), such pronuclei supported maturation after transfer into the oocyte in a manner similar to that of normal pronuclei. These results show that the oocyte nucleus contains specific components required for the control of progression through the meiotic maturation and that some of these components are also present in pronuclei.
Collapse
Affiliation(s)
- Zbigniew Polanski
- Department of Developmental Biology, Max-Planck-Institute of Immunobiology, Stuebeweg 51, D-79108 Freiburg, Germany.
| | | | | |
Collapse
|
19
|
Dai Y, Wang L, Wang H, Liu Y, Li N, Lyu Q, Keefe DL, Albertini DF, Liu L. Fate of centrosomes following somatic cell nuclear transfer (SCNT) in bovine oocytes. Reproduction 2006; 131:1051-61. [PMID: 16735544 DOI: 10.1530/rep.1.01058] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cloning mammalians by somatic cell nuclear transfer (SCNT) remains inefficient. A majority of clones produced by SCNT fail to develop properly and of those which do survive, some exhibit early aging, premature death, tumors, and other pathologies associated with aneuploidy. Alterations of centrosomes are linked to aberrant cell cycle progression, aneuploidy, and tumorigenesis in many cell types. It remains to be determined how centrosomes are remodeled in cloned bovine embryos. We show that abnormalities in either distribution and/or number of centrosomes were evident in approximately 50% of reconstructed embryos following SCNT. Moreover, centrosome abnormalities and failed ‘pronuclear’ migration which manifested during the first cell cycle coincided with errors in spindle morphogenesis, chromosome alignment, and cytokinesis. By contrast, nuclear mitotic apparatus protein (NuMA) exhibited normal expression patterns at metaphase spindle poles and in ‘pronucleus’ during interphase. The defects in centrosome remodeling and ‘pronuclear’ migration could lead to chromosome instability and developmental failures associated with embryo production by SCNT. Addressing these fundamental problems may enhance production of normal clones.
Collapse
Affiliation(s)
- Yunping Dai
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Nousiainen M, Silljé HHW, Sauer G, Nigg EA, Körner R. Phosphoproteome analysis of the human mitotic spindle. Proc Natl Acad Sci U S A 2006; 103:5391-6. [PMID: 16565220 PMCID: PMC1459365 DOI: 10.1073/pnas.0507066103] [Citation(s) in RCA: 262] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
During cell division, the mitotic spindle segregates the sister chromatids into two nascent cells, such that each daughter cell inherits one complete set of chromosomes. Errors in spindle formation can result in both chromosome missegregation and cytokinesis defects and hence lead to genomic instability. To ensure the correct function of the spindle, the activity and localization of spindle associated proteins has to be tightly regulated in time and space. Reversible phosphorylation has been shown to be one of the key regulatory mechanisms for the organization of the mitotic spindle. The relatively low number of identified in vivo phosphorylation sites of spindle components, however, has hampered functional analysis of regulatory spindle networks. A more complete inventory of the phosphorylation sites of spindle-associated proteins would therefore constitute an important advance. Here, we describe the mass spectrometry-based identification of in vivo phosphorylation sites from purified human mitotic spindles. In total, 736 phosphorylation sites were identified, of which 312 could be attributed to known spindle proteins. Among these are phosphorylation sites that were previously shown to be important for the regulation of spindle-associated proteins. Importantly, this data set also comprises 279 novel phosphorylation sites of known spindle proteins for future functional studies. This inventory of spindle phosphorylation sites should thus make an important contribution to a better understanding of the molecular mechanisms that regulate the formation, function, and integrity of the mitotic spindle.
Collapse
Affiliation(s)
- Marjaana Nousiainen
- Department of Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Herman H. W. Silljé
- Department of Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Guido Sauer
- Department of Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Erich A. Nigg
- Department of Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Roman Körner
- Department of Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
21
|
Chang W, Dynek J, Smith S. NuMA is a major acceptor of poly(ADP-ribosyl)ation by tankyrase 1 in mitosis. Biochem J 2006; 391:177-84. [PMID: 16076287 PMCID: PMC1276914 DOI: 10.1042/bj20050885] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Tankyrase 1 is a PARP [poly(ADP-ribose) polymerase] that localizes to multiple subcellular sites, including telomeres and mitotic centrosomes. Previous studies demonstrated that cells deficient in tankyrase 1 suffered a block in resolution of sister telomeres and arrested in early anaphase [Dynek and Smith (2004) Science 304, 97-100]. This phenotype was dependent on the catalytic PARP activity of tankyrase 1. To identify critical acceptors of PARsylation [poly(ADP-ribosyl)ation] by tankyrase 1 in mitosis, tankyrase 1 immunoprecipitates were analysed for associated PARsylated proteins. We identified NuMA (nuclear mitotic apparatus protein) as a major acceptor of poly(ADP-ribose) from tankyrase 1 in mitosis. We showed by immunofluorescence and immunoprecipitation that association between tankyrase 1 and NuMA increases dramatically at the onset of mitosis, concomitant with PARsylation of NuMA. Knockdown of tankyrase 1 by siRNA (small interfering RNA) eliminates PARsylation of NuMA in mitosis, confirming tankyrase 1 as the PARP responsible for this modification. However, even in the absence of tankyrase 1 and PARsylation, NuMA localizes to spindle poles. By contrast, siRNA knockdown of NuMA results in complete loss of tankyrase 1 from spindle poles. We discuss our result in terms of a model where PARsylation of NuMA by tankyrase 1 in mitosis could play a role in sister telomere separation and/or mitotic progression.
Collapse
Affiliation(s)
- William Chang
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, U.S.A
| | - Jasmin N. Dynek
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, U.S.A
| | - Susan Smith
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
22
|
Abstract
Heterotrimeric G-proteins are intracellular partners of G-protein-coupled receptors (GPCRs). GPCRs act on inactive Galpha.GDP/Gbetagamma heterotrimers to promote GDP release and GTP binding, resulting in liberation of Galpha from Gbetagamma. Galpha.GTP and Gbetagamma target effectors including adenylyl cyclases, phospholipases and ion channels. Signaling is terminated by intrinsic GTPase activity of Galpha and heterotrimer reformation - a cycle accelerated by 'regulators of G-protein signaling' (RGS proteins). Recent studies have identified several unconventional G-protein signaling pathways that diverge from this standard model. Whereas phospholipase C (PLC) beta is activated by Galpha(q) and Gbetagamma, novel PLC isoforms are regulated by both heterotrimeric and Ras-superfamily G-proteins. An Arabidopsis protein has been discovered containing both GPCR and RGS domains within the same protein. Most surprisingly, a receptor-independent Galpha nucleotide cycle that regulates cell division has been delineated in both Caenorhabditis elegans and Drosophila melanogaster. Here, we revisit classical heterotrimeric G-protein signaling and explore these new, non-canonical G-protein signaling pathways.
Collapse
Affiliation(s)
- C R McCudden
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, and UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7365, USA.
| | | | | | | | | |
Collapse
|
23
|
Kisurina-Evgenieva O, Mack G, Du Q, Macara I, Khodjakov A, Compton DA. Multiple mechanisms regulate NuMA dynamics at spindle poles. J Cell Sci 2004; 117:6391-400. [PMID: 15561764 DOI: 10.1242/jcs.01568] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The large coiled-coil protein NuMA plays an essential role in organizing microtubule minus ends at spindle poles in vertebrate cells. Here, we use both in vivo and in vitro methods to examine NuMA dynamics at mitotic spindle poles. Using fluorescence recovery after photobleaching, we show that an exogenously expressed green-fluorescent-protein/NuMA fusion undergoes continuous exchange between soluble and spindle-associated pools in living cells. These dynamics require cellular energy and display an average half-time for fluorescence recovery of approximately 3 minutes. To explore how NuMA dynamics at spindle poles is regulated, we exploited the association of NuMA with microtubule asters formed in mammalian mitotic extracts. Using a monoclonal antibody specific for human NuMA, we followed the fate of human NuMA associated with microtubule asters upon dilution with a hamster mitotic extract. Consistent with in vivo data, this assay shows that NuMA can be displaced from the core of pre-assembled asters into the soluble pool. The half-time of NuMA displacement from asters under these conditions is approximately 5 minutes. Using this assay, we show that protein kinase activity and the NuMA-binding protein LGN regulate the dynamic exchange of NuMA on microtubule asters. Thus, the dynamic properties of NuMA are regulated by multiple mechanisms including protein phosphorylation and binding to the LGN protein, and the rate of exchange between soluble and microtubule-associated pools suggests that NuMA associates with an insoluble matrix at spindle poles.
Collapse
Affiliation(s)
- Olga Kisurina-Evgenieva
- Division of Molecular Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
| | | | | | | | | | | |
Collapse
|
24
|
von Mikecz A, Zhang S, Montminy M, Tan EM, Hemmerich P. CREB-binding protein (CBP)/p300 and RNA polymerase II colocalize in transcriptionally active domains in the nucleus. J Cell Biol 2000; 150:265-73. [PMID: 10893273 PMCID: PMC2185550 DOI: 10.1083/jcb.150.1.265] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The spatial organization of transcription- associated proteins is an important control mechanism of eukaryotic gene expression. Here we analyzed the nuclear distribution of the transcriptional coactivators CREB-binding protein (CBP)/p300 in situ by confocal laser scanning microscopy, and in vivo complex formation by coimmunoprecipitation. A subpopulation of CBP and p300 is targeted to active sites of transcription and partially colocalizes with hyper- and hypophosphorylated RNA polymerase II (pol II) in discrete regions of variable size throughout the nucleus. However, the coactivators were found in tight association with hypophosphorylated, but not hyperphosphorylated pol II. Transcriptional inhibition induced a relocation of CBP/p300 and pol II into speckles. Moreover, double and triple immunofluorescence analyses revealed the presence of CBP, p300, and pol II in a subset of promyelocytic leukemia (PML) bodies. Our results provide evidence for a dynamic spacial link between coactivators of transcription and the basal transcription machinery in discrete nuclear domains dependent upon the transcriptional activity of the cell. The identification of pol II in CBP/PML-containing nuclear bodies supports the idea that transcription takes place at PML bodies.
Collapse
Affiliation(s)
- Anna von Mikecz
- Junior Research Group of Molecular Cell Biology, Medizinisches Institut für Umwelthygiene, Heinrich-Heine-Universät Düsseldorf, 40225 Düsseldorf, Germany
- Department of Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037
| | - Suisheng Zhang
- Department of Biochemistry, Institut für Molekulare Biotechnologie, 07745 Jena, Germany
| | | | - Eng M. Tan
- Department of Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037
| | - Peter Hemmerich
- Department of Molecular Biology, Institut für Molekulare Biotechnologie, 07745 Jena, Germany
- Department of Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
25
|
Abstract
Apoptosis is a form of cell death that takes place under physiologic conditions, and plays a key role in the control of biological processes such as embryonic development, tissue remodelation and renewal, or regulation of cell populations. Since its discovery in the early 1970s, there have been many relevant advances in the knowledge of the biochemical and molecular events involved in apoptosis. However, although the apoptotic process was defined on the basis of morphologic observations, only recently have we started to elucidate the molecular mechanisms that drive the structural changes observed in cells undergoing apoptosis. The article reviews current knowledge about the implications of cytoskeleton components (microfilaments, intermediate filaments, microtubules, and other cytoskeleton-related proteins) in the dynamics of apoptosis.
Collapse
Affiliation(s)
- R Atencia
- Departamento de Biologia Celular, Facultad de Medicina, Universidad del País Vasco/EHU, Leioa, España
| | | | | |
Collapse
|
26
|
Klein-Soyer C, Azorsa DO, Cazenave JP, Lanza F. CD9 participates in endothelial cell migration during in vitro wound repair. Arterioscler Thromb Vasc Biol 2000; 20:360-9. [PMID: 10669631 DOI: 10.1161/01.atv.20.2.360] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
CD9, a widely expressed membrane protein of the tetraspanin family, has been implicated in diverse functions, such as signal transduction, cell adhesion, and cell motility. We tested the effects of an anti-CD9 monoclonal antibody (ALMA.1) on the migration and proliferation of human vascular endothelial cells (ECs) during repair of an in vitro mechanical wound mimicking angiogenic processes. ALMA.1 induced dose-dependent inhibition of wound repair with a 35+/-1.5% decrease at 20 microg/mL. Only cell migration was affected, because the rate of proliferation of ECs at the lesion margin was not modified and because the inhibition of repair was also observed for nonproliferating irradiated ECs. Monoclonal antibodies against CD63 tetraspanin (H5C6) and control mouse IgG (MOPC-21) were inactive. CD9, one of the most abundant proteins at the surface of ECs, colocalized with beta(1) or beta(3) integrins on EC membranes in double-labeling immunofluorescence experiments with ALMA.1 and an anti-beta(1) (4B4) or anti-beta(3) (SDF.3) monoclonal antibody. Moreover, ALMA.1 and 4B4 had additive inhibitory effects on lesion repair, whereas 4B4 alone also inhibited EC proliferation. In transmembrane Boyden-type assays, ALMA.1 induced dose-dependent inhibition of EC migration toward fibronectin and vitronectin with 45+/-6% and 31+/-10% inhibition, respectively, at 100 microg/mL. 4B4 inhibited migration toward fibronectin at 10 microg/mL but had no effect in the case of vitronectin. Adhesion of ECs to immobilized anti-CD9 monoclonal antibodies induced tyrosine-phosphorylated protein levels similar to those observed during interactions with beta(1) or beta(3) integrins. These results point to the involvement of CD9 in EC adhesion and migration during lesion repair and angiogenesis, probably through cooperation with integrins. As such, CD9 is a potential target to inhibit angiogenesis in metastatic and atherosclerotic processes.
Collapse
Affiliation(s)
- C Klein-Soyer
- INSERM U. 311, Etablissement de Transfusion Sanguine de Strasbourg Strasbourg, France.
| | | | | | | |
Collapse
|
27
|
Grimwade D. The pathogenesis of acute promyelocytic leukaemia: evaluation of the role of molecular diagnosis and monitoring in the management of the disease. Br J Haematol 1999; 106:591-613. [PMID: 10468848 DOI: 10.1046/j.1365-2141.1999.01501.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- D Grimwade
- Division of Medical and Molecular Genetics, Guy's, King's and St Thomas' School of Medicine,, Department of Haematology, London
| |
Collapse
|
28
|
Huang Z, Philippin B, O'Leary E, Bonventre JV, Kriz W, Witzgall R. Expression of the transcriptional repressor protein Kid-1 leads to the disintegration of the nucleolus. J Biol Chem 1999; 274:7640-8. [PMID: 10075651 DOI: 10.1074/jbc.274.12.7640] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The rat Kid-1 gene codes for a 66-kDa protein with KRAB domains at the NH2 terminus and two Cys2His2-zinc finger clusters of four and nine zinc fingers at the COOH terminus. It was the first KRAB-zinc finger protein for which a transcriptional repressor activity was demonstrated. Subsequently, the KRAB-A domain was identified as a widespread transcriptional repressor motif. We now present a biochemical and functional analysis of the Kid-1 protein in transfected cells. The full-length Kid-1 protein is targeted to the nucleolus and adheres tightly to as yet undefined nucleolar structures, leading eventually to the disintegration of the nucleolus. The tight adherence and nucleolar distribution can be attributed to the larger zinc finger cluster, whereas the KRAB-A domain is responsible for the nucleolar fragmentation. Upon disintegration of the nucleolus, the nucleolar transcription factor upstream binding factor disappears from the nucleolar fragments. In the absence of Kid-1, the KRIP-1 protein, which represents the natural interacting partner of zinc finger proteins with a KRAB-A domain, is homogeneously distributed in the nucleus, whereas coexpression of Kid-1 leads to a shift of KRIP-1 into the nucleolus. Nucleolar run-ons demonstrate that rDNA transcription is shut off in the nucleolar fragments. Our data demonstrate the functional diversity of the KRAB and zinc finger domains of Kid-1 and provide new functional insights into the regulation of the nucleolar structure.
Collapse
Affiliation(s)
- Z Huang
- Institute of Anatomy and Cell Biology I, University of Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Paddy MR. The Tpr protein: linking structure and function in the nuclear interior? Am J Hum Genet 1998; 63:305-10. [PMID: 9683620 PMCID: PMC1377329 DOI: 10.1086/301989] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- M R Paddy
- Center for Structural Biology and Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL 32610-0235, USA.
| |
Collapse
|
30
|
Paoletti A, Bornens M. Organisation and functional regulation of the centrosome in animal cells. PROGRESS IN CELL CYCLE RESEARCH 1998; 3:285-99. [PMID: 9552423 DOI: 10.1007/978-1-4615-5371-7_23] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Molecular characterisation of centrosomal components is slowly progressing. Recent results indicate that the major aspects of centrosome-mediated microtubule nucleation may soon be understood at the molecular level. In contrast, centrosome reproduction, which is an important aspect of animal cell division, remains terra incognita. The most challenging issue for the future is to understand the molecular mechanisms which control centrosome biogenesis. There is a urgent need to identify with certainty proteins implicated in this process. Comparison between organisms with structurally different centrosomes might be critical for a better understanding of centrosome duplication if a general mechanism has been conserved throughout evolution.
Collapse
Affiliation(s)
- A Paoletti
- Biologie du Cycle Cellulaire et de la Motilité, UMR 144, CNRS-Institut Curie, Paris, France
| | | |
Collapse
|
31
|
Holleran EA, Karki S, Holzbaur EL. The role of the dynactin complex in intracellular motility. INTERNATIONAL REVIEW OF CYTOLOGY 1998; 182:69-109. [PMID: 9522459 DOI: 10.1016/s0074-7696(08)62168-3] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dynactin is a multisubunit complex that binds to the minus-end-directed microtubule motor cytoplasmic dynein and may provide a link between the motor and its cargo. Results from genetic studies in Saccharomyces cerevisiae, Neurospora crassa, Aspergillus nidulans, and Drosophila have suggested that cytoplasmic dynein and dynactin function in the same cellular pathways. p150Glued, a vertebrate homologue of the Drosophila gene Glued, is the largest polypeptide in the dynactin complex with multiple protein interactions. Centractin, the most abundant dynactin subunit polypeptide, forms an actin-like filament at the base of the complex. Studies on dynamitin, the 50-kDa dynactin subunit, predict a role for dynactin in mitotic spindle assembly. Other subunits of dynactin have also been cloned and characterized; these studies have provided insight into the role of the complex in essential cellular processes.
Collapse
Affiliation(s)
- E A Holleran
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia 19104, USA
| | | | | |
Collapse
|
32
|
Hassfeld W, Chan EK, Mathison DA, Portman D, Dreyfuss G, Steiner G, Tan EM. Molecular definition of heterogeneous nuclear ribonucleoprotein R (hnRNP R) using autoimmune antibody: immunological relationship with hnRNP P. Nucleic Acids Res 1998; 26:439-45. [PMID: 9421497 PMCID: PMC147279 DOI: 10.1093/nar/26.2.439] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Serum from a patient showing symptoms related to autoimmunity was found to contain autoantibodies to the nuclear mitotic apparatus (NuMA) protein and to several novel nuclear antigens with estimated molecular weights of 40, 43, 72, 74 and 82 kDa. Using this serum for screening a human cDNA expression library a 2.5 kb cDNA clone was isolated which encoded the complete sequence of a protein of 633 amino acids. Sequence analysis revealed a modular structure of the protein: an acidic N-terminal region of approximately 150 amino acids was followed by three adjacent consensus sequence RNA binding domains located in the central part of the protein. In the C-terminal portion a nuclear localization signal and an octapeptide (PPPRMPPP) with similarity to a major B cell epitope of the snRNP core protein B were identified. This was followed by a glycine- and arginine-rich section of approximately 120 amino acids forming another type of RNA binding motif, a RGG box. Interestingly, three copies of a tyrosine-rich decapeptide were found interspersed in the RGG box region. The major in vitro translation product of the cDNA co-migrated in SDS-PAGE with the 82 kDa polypeptide that was recognized by autoantibodies. The structural motifs as well as the immunofluorescence pattern generated by anti-82 kDa antibodies suggested that the antigen was one of the proteins of the heterogeneous nuclear ribonucleoprotein (hnRNP) complex. Subsequently the 82 kDa antigen was identified as hnRNP R protein by its presence in immunoprecipitated hnRNP complexes and co-migration of the recombinant protein with this hitherto uncharacterized hnRNP constituent in two-dimensional gel electrophoresis. The concomitant autoimmune response to a hnRNP component of the pre-mRNA processing machinery and to NuMA, a protein engaged in mitotic events and reported to be associated with mRNA splicing complexes in interphase, may indicate physical and functional association of these antigens. Support for this notion comes from observations that concomitant or coupling of autoantibody responses to proteins which are associated with each other as components of subcellular particles are often found in autoimmune diseases.
Collapse
Affiliation(s)
- W Hassfeld
- W. M. Keck Autoimmune Disease Center and DNA Core Laboratory for Structural Analysis, Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Schatten G, Hewitson L, Simerly C, Sutovsky P, Huszar G. Cell and molecular biological challenges of ICSI: ART before science? THE JOURNAL OF LAW, MEDICINE & ETHICS : A JOURNAL OF THE AMERICAN SOCIETY OF LAW, MEDICINE & ETHICS 1998; 26:29-3. [PMID: 11067583 DOI: 10.1111/j.1748-720x.1998.tb01903.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Authors discuss the possible genetic and cell biological risks to offspring conceived by ICSI in relation to the lack of fundamental research using relevant animal models.
Collapse
Affiliation(s)
- G Schatten
- Center for Women's Health, Oregon Regional Primate Research Center, Oregon Health Sciences University, Beaverton, USA
| | | | | | | | | |
Collapse
|
34
|
Abstract
To understand the role of microtubule-associated proteins (MAPs) in the regulation of microtubule (MT) dynamics we have characterized MAPs prepared from Xenopus laevis eggs (Andersen, S.S.L., B. Buendia, J.E. Domínguez, A. Sawyer, and E. Karsenti. 1994. J. Cell Biol. 127:1289-1299). Here we report on the purification and characterization of a 310-kD MAP (XMAP310) that localizes to the nucleus in interphase and to mitotic spindle MTs in mitosis. XMAP310 is present in eggs, oocytes, a Xenopus tissue culture cell line, testis, and brain. We have purified XMAP310 to homogeneity from egg extracts. The purified protein cross-links pure MTs. Analysis of the effect of this protein on MT dynamics by time-lapse video microscopy has shown that it increases the rescue frequency 5-10-fold and decreases the shrinkage rate twofold. It has no effect on the growth rate or the catastrophe frequency. Microsequencing data suggest that XMAP230 and XMAP310 are novel MAPs. Although the three Xenopus MAPs characterized so far, XMAP215 (Vasquez, R.J., D.L. Gard, and L. Cassimeris. 1994. J. Cell Biol. 127:985-993), XMAP230, and XMAP310 are localized to the mitotic spindle, they have distinct effects on MT dynamics. While XMAP215 promotes rapid MT growth, XMAP230 decreases the catastrophe frequency and XMAP310 increases the rescue frequency. This may have important implications for the regulation of MT dynamics during spindle morphogenesis and chromosome segregation.
Collapse
Affiliation(s)
- S S Andersen
- European Molecular Biology Laboratory, Cell Biology Programme, D-69117 Heidelberg, Germany.
| | | |
Collapse
|
35
|
|
36
|
Sodja C, Chaly N. Unique behaviour of NuMA during heat-induced apoptosis of lymphocytes. Biochem Cell Biol 1997. [DOI: 10.1139/o97-085] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
37
|
Gueth-Hallonet C, Weber K, Osborn M. Cleavage of the nuclear matrix protein NuMA during apoptosis. Exp Cell Res 1997; 233:21-4. [PMID: 9184071 DOI: 10.1006/excr.1997.3557] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
NuMA is a component of the nuclear matrix which may play a structural role in the architecture of the interphase nucleus. During apoptosis NuMA is redistributed within the nucleus and is proteolysed from a 238-kDa form to a 180- to 200-kDa form. Here we show that the cleavage site leading to the stable fragment occurs between residues 1701 and 1725. Both the changes in morphology associated with apoptosis and the cleavage of NuMA were retarded by treatment with TPCK but not by treatment by other protease inhibitors including ICE inhibitor II.
Collapse
Affiliation(s)
- C Gueth-Hallonet
- Department of Biochemistry, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | | | | |
Collapse
|
38
|
Abstract
When cells divide, the chromosomes must be delivered flawlessly to the daughter cells. Missing or extra chromosomes can result in birth defects and cancer. Chance events are the starting point for chromosome delivery, which makes the process prone to error. Errors are avoided by diverse uses of mechanical tension from mitotic forces. Tension stabilizes the proper chromosome configuration, controls a cell cycle checkpoint, and changes chromosome chemistry.
Collapse
Affiliation(s)
- R B Nicklas
- Department of Zoology, LSRC Building, Duke University, Box 91000, Durham, NC 27708-1000, USA.
| |
Collapse
|
39
|
Gaglio T, Saredi A, Bingham JB, Hasbani MJ, Gill SR, Schroer TA, Compton DA. Opposing motor activities are required for the organization of the mammalian mitotic spindle pole. J Cell Biol 1996; 135:399-414. [PMID: 8896597 PMCID: PMC2121053 DOI: 10.1083/jcb.135.2.399] [Citation(s) in RCA: 257] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We use both in vitro and in vivo approaches to examine the roles of Eg5 (kinesin-related protein), cytoplasmic dynein, and dynactin in the organization of the microtubules and the localization of NuMA (Nu-clear protein that associates with the Mitotic Apparatus) at the polar ends of the mammalian mitotic spindle. Perturbation of the function of Eg5 through either immunodepletion from a cell free system for assembly of mitotic asters or antibody microinjection into cultured cells leads to organized astral microtubule arrays with expanded polar regions in which the minus ends of the microtubules emanate from a ring-like structure that contains NuMA. Conversely, perturbation of the function of cytoplasmic dynein or dynactin through either specific immunodepletition from the cell free system or expression of a dominant negative subunit of dynactin in cultured cells results in the complete lack of organization of microtubules and the failure to efficiently concentrate the NuMA protein despite its association with the microtubules. Simultaneous immunodepletion of these proteins from the cell free system for mitotic aster assembly indicates that the plus end-directed activity of Eg5 antagonizes the minus end-directed activity of cytoplasmic dynein and a minus end-directed activity associated with NuMA during the organization of the microtubules into a morphologic pole. Taken together, these results demonstrate that the unique organization of the minus ends of microtubules and the localization of NuMA at the polar ends of the mammalian mitotic spindle can be accomplished in a centrosome-independent manner by the opposing activities of plus end- and minus end-directed motors.
Collapse
Affiliation(s)
- T Gaglio
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Whitehead CM, Winkfein RJ, Fritzler MJ, Rattner JB. The spindle kinesin-like protein HsEg5 is an autoantigen in systemic lupus erythematosus. ARTHRITIS AND RHEUMATISM 1996; 39:1635-42. [PMID: 8843853 DOI: 10.1002/art.1780391005] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Autoantibodies directed against the mitotic spindle apparatus (MSA) have been shown to target an antigen referred to as NuMA (nuclear mitotic apparatus). In this study, we identified a second MSA antigen as the spindle kinesin-like protein HsEg5. We studied the frequency of antibodies to HsEg5 in human sera that demonstrate the MSA pattern of staining, the frequency of autoantibodies to HsEg5 in patients with systemic lupus erythematosus (SLE), and the clinical features of patients with antibodies to HsEg5. METHODS A prototype serum from an SLE patient was used to isolate a 4.8-kilobase complementary DNA (cDNA) from a HeLa cDNA library. Western blot, immunoprecipitation, and sequence analysis revealed that the antigen was an approximately 130-kd protein, HsEg5. The frequency of autoantibodies to recombinant HsEg5 in 51 sera that demonstrated an MSA pattern of staining on HEp-2 and HeLa cells was detected by immunoblotting 2 constructs of the cDNA. The clinical features of patients with antibodies directed against HsEg5 was obtained by retrospective chart review. RESULTS The antigen responsible for the MSA-35 pattern was identified as the human kinesin-like protein HsEg5. Seven of 51 sera (14%) that demonstrated an MSA pattern of staining reacted with recombinant HsEg5. Six of 7 of the HsEg5-positive patients (86%) had SLE, and 1 had Sjögren's syndrome. The indirect immunofluorescent staining pattern of sera that reacted with HsEg5 could be distinguished from the other sera that reacted with NuMA. In an unselected cohort of 52 SLE patients, 3 (6%) had autoantibodies reactive with the recombinant HsEg5. CONCLUSION Autoantibodies to MSA fall into 2 major classes: those reactive with NuMA and those reactive with HsEg5. Autoantibodies to HsEg5 are found in a lower frequency than NuMA in sera that demonstrate the MSA pattern of staining and appear to be specifically associated with SLE. HsEg5 can be distinguished from NuMA by indirect immunofluorescence and Western blotting.
Collapse
|
41
|
Andrade LE, Chan EK, Peebles CL, Tan EM. Two major autoantigen-antibody systems of the mitotic spindle apparatus. ARTHRITIS AND RHEUMATISM 1996; 39:1643-53. [PMID: 8843854 DOI: 10.1002/art.1780391006] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To characterize human autoantigen-antibody systems related to the mitotic poles and spindles. METHODS Thirty-seven human sera with autoantibodies staining mitotic poles and spindles in indirect immunofluorescence (IIF) studies were further characterized by immunofluorescence on mitotic cells and by immunoblotting and immunoprecipitation. Clinical diagnoses meeting the American College of Rheumatology criteria were based on chart review and interview with the corresponding physicians. RESULTS Two autoantibody systems reactive with mitotic poles and spindles were defined. Type 1 nuclear mitotic apparatus (NuMA-1) antibodies were identified in the serum of 30 patients. Interphase cells showed a fine, speckled, nuclear staining, while mitotic cells had bright staining of the rim of the centrosomes and light staining of the spindles proximal to the centrosomes. In telophase, the staining shifted from the centrosomes to the reforming nuclei. On immunoblotting, anti-NuMA-1 sera reacted with a 210-kd protein. The reactivity of these sera was identified (with the aid of reference antibodies) as the previously described NuMA antigen-antibody system. Clinical information was available for only 17 of the 30 patients with anti-NuMA-1; of these, 17 (53%) had clinical and lip biopsy findings that met the criteria for Sjögren's syndrome. NuMA-2 antibodies were found in the sera of 7 patients. Interphase cells showed no nuclear or cytoplasmic staining, but mitotic cells had brightly stained poles and spindles. At anaphase/telophase, staining shifted to the midbody and the intercellular bridge. Anti-NuMA-2 sera immunoprecipitated a protein of 116 kd. This group of patients was more heterogeneous and had both systemic and organ-specific autoimmune diseases. CONCLUSIONS NuMA protein (here called NuMA-1) and a 116-kd protein (here called NuMA-2) are the major targets of the autoimmune response in the mitotic apparatus, since most of the selected sera (based on IIF staining of the mitotic spindles and poles) recognized 1 of these 2 antigens.
Collapse
Affiliation(s)
- L E Andrade
- W. M. Keck Autoimmune Disease Center, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
42
|
Mattern KA, Humbel BM, Muijsers AO, de Jong L, van Driel R. hnRNP proteins and B23 are the major proteins of the internal nuclear matrix of HeLa S3 cells. J Cell Biochem 1996; 62:275-89. [PMID: 8844407 DOI: 10.1002/(sici)1097-4644(199608)62:2<275::aid-jcb15>3.0.co;2-k] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The nuclear matrix is the structure that persists after removal of chromatin and loosely bound components from the nucleus. It consists of a peripheral lamina-pore complex and an intricate internal fibrogranular structure. Little is known about the molecular structure of this proteinaceous internal network. Our aim is to identify the major proteins of the internal nuclear matrix of HeLa 53 cells. To this end, a cell fraction containing the internal fibrogranular structure was compared with one from which this structure had been selectively dissociated. Protein compositions were quantitatively analyzed after high-resolution two-dimensional gel electrophoresis. We have identified the 21 most abundant polypeptides that are present exclusively in the internal nuclear matrix. Sixteen of these proteins are heterogeneous nuclear ribonucleoprotein (hnRNP) proteins. B23 (numatrin) is another abundant protein of the internal nuclear matrix. Our results show that most of the quantitatively major polypeptides of the internal nuclear matrix are proteins involved in RNA metabolism, including packaging and transport of RNA.
Collapse
Affiliation(s)
- K A Mattern
- E.C. Slater Instituut, University of Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
43
|
Abstract
Neuronal precursor proliferation and axodendritic outgrowth have been regarded as strictly sequential, with process formation presumably beginning after mitotic activity ceases. We now report that sympathetic precursors in vitro often elaborate long neurites before dividing. Of 437 neuroblasts observed in 48 time-lapse recordings, 42 neuroblasts divided. Thirty (71%) of these mitotic neuroblasts had neurites prior to cytokinesis. "Paramitotic" neurites were found to contain microtubules (MTs), indicating that precursors elaborate neuritic cytoskeleton during proliferation. Remarkably, the precise neuritic pattern exhibited by parental neuroblasts was consistently reproduced by daughter cell pairs. Preservation of neuritic morphology occurred through asymmetric division, with individual neurites allocated to specific daughter cells. Paramitotic neurites either remained intact throughout mitosis (12 of 65), or "retracted" into the soma during prophase and then "regrew" within minutes after cytokinesis (53 of 65). "Retraction" and "regrowth" involved resorption of cytoplasm into the soma, then refilling of residual cell membrane, resulting in recapitulation of the parental neurite pattern. Paramitotic neuritogenesis appears to be intrinsically driven, but is responsive to environmental signals. The culture substrate influenced neurite length, but not the response of paramitotic neurites during mitosis or the preservation of neuritic morphology. However, the incidence of neurite-bearing neuroblasts increased from 38 +/- 1.3% to 94 +/- 1.1% with growth factor treatment. The surprisingly high incidence of paramitotic neurites and the fidelity with which patterning was conserved across cell generations raise the possibility that mitotic precursors engage in pathfinding. Our studies suggest a novel link between neurogenesis and cytoarchitectonic patterning.
Collapse
Affiliation(s)
- E Wolf
- Department of Neuroscience and Cell Biology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway 08854, USA
| | | | | |
Collapse
|
44
|
Gaglio T, Saredi A, Compton DA. NuMA is required for the organization of microtubules into aster-like mitotic arrays. J Biophys Biochem Cytol 1995; 131:693-708. [PMID: 7593190 PMCID: PMC2120610 DOI: 10.1083/jcb.131.3.693] [Citation(s) in RCA: 204] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
NuMA (Nuclear protein that associates with the Mitotic Apparatus) is a 235-kD intranuclear protein that accumulates at the pericentrosomal region of the mitotic spindle in vertebrate cells. To determine if NuMA plays an active role in organizing the microtubules at the polar region of the mitotic spindle, we have developed a cell free system for the assembly of mitotic asters derived from synchronized cultured cells. Mitotic asters assembled in this extract are composed of microtubules arranged in a radial array that contain NuMA concentrated at the central core. The organization of microtubules into asters in this cell free system is dependent on NuMA because immunodepletion of NuMA from the extract results in randomly dispersed microtubules instead of organized mitotic asters, and addition of the purified recombinant NuMA protein to the NuMA-depleted extract fully reconstitutes the organization of the microtubules into mitotic asters. Furthermore, we show that NuMA is phosphorylated upon mitotic aster assembly and that NuMA is only required in the late stages of aster assembly in this cell free system consistent with the temporal accumulation of NuMA at the polar ends of the mitotic spindle in vivo. These results, in combination with the phenotype observed in vivo after the prevention of NuMA from targeting onto the mitotic spindle by antibody microinjection, suggest that NuMA plays a functional role in the organization of the microtubules of the mitotic spindle.
Collapse
Affiliation(s)
- T Gaglio
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | |
Collapse
|