1
|
Engevik AC, Goldenring JR. Trafficking Ion Transporters to the Apical Membrane of Polarized Intestinal Enterocytes. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a027979. [PMID: 28264818 DOI: 10.1101/cshperspect.a027979] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Epithelial cells lining the gastrointestinal tract require distinct apical and basolateral domains to function properly. Trafficking and insertion of enzymes and transporters into the apical brush border of intestinal epithelial cells is essential for effective digestion and absorption of nutrients. Specific critical ion transporters are delivered to the apical brush border to facilitate fluid and electrolyte uptake. Maintenance of these apical transporters requires both targeted delivery and regulated membrane recycling. Examination of altered apical trafficking in patients with Microvillus Inclusion disease caused by inactivating mutations in MYO5B has led to insights into the regulation of apical trafficking by elements of the apical recycling system. Modeling of MYO5B loss in cell culture and animal models has led to recognition of Rab11a and Rab8a as critical regulators of apical brush border function. All of these studies show the importance of apical membrane trafficking dynamics in maintenance of polarized epithelial cell function.
Collapse
Affiliation(s)
- Amy Christine Engevik
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232.,Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - James R Goldenring
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232.,Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee 37232.,Nashville VA Medical Center, Nashville, Tennessee 37232
| |
Collapse
|
2
|
Clarke JD, Novak P, Lake AD, Hardwick RN, Cherrington NJ. Impaired N-linked glycosylation of uptake and efflux transporters in human non-alcoholic fatty liver disease. Liver Int 2017; 37:1074-1081. [PMID: 28097795 PMCID: PMC5479731 DOI: 10.1111/liv.13362] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/30/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS N-linked glycosylation of proteins is critical for proper protein folding and trafficking to the plasma membrane. Drug transporters are one class of proteins that have reduced function when glycosylation is impaired. N-linked glycosylation of plasma proteins has also been investigated as a biomarker for several liver diseases, including non-alcoholic fatty liver disease (NAFLD). The purpose of this study was to assess the transcriptomic expression of genes involved in protein processing and glycosylation, and to determine the glycosylation status of key drug transporters during human NAFLD progression. METHODS Human liver samples diagnosed as healthy, steatosis, and non-alcoholic steatohepatitis (NASH) were analysed for gene expression of glycosylation-related genes and for protein glycosylation using immunoblot. RESULTS Genes involved in protein processing in the ER and biosynthesis of N-glycans were significantly enriched for down-regulation in NAFLD progression. Included in the down regulated N-glycan biosynthesis category were genes involved in the oligosaccharyltransferase complex, N-glycan quality control, N-glycan precursor biosynthesis, N-glycan trimming to the core, and N-glycan extension from the core. N-glycan degradation genes were unaltered in the progression to NASH. Immunoblot analysis of the uptake transporters organic anion transporting polypeptide-1B1 (OATP1B1), OATP1B3, OATP2B1, and Sodium/Taurocholate Co-transporting Polypeptide (NTCP) and the efflux transporter multidrug resistance-associated protein 2 (MRP2) demonstrated a significant loss of glycosylation following the progression to NASH. CONCLUSIONS These data suggest that the loss of glycosylation of key uptake and efflux transporters in humans NASH may influence transporter function and contribute to altered drug disposition observed in NASH.
Collapse
Affiliation(s)
- John D Clarke
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Petr Novak
- Biology Centre ASCR, Institute of Plant Molecular Biology, Ceske Budejovice, Czech Republic
| | - April D Lake
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Rhiannon N Hardwick
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Nathan J Cherrington
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
3
|
Chen J, Gao J, Zhang M, Cai M, Xu H, Jiang J, Tian Z, Wang H. Systemic localization of seven major types of carbohydrates on cell membranes by dSTORM imaging. Sci Rep 2016; 6:30247. [PMID: 27453176 PMCID: PMC4958959 DOI: 10.1038/srep30247] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/01/2016] [Indexed: 12/13/2022] Open
Abstract
Carbohydrates on the cell surface control intercellular interactions and play a vital role in various physiological processes. However, their systemic distribution patterns are poorly understood. Through the direct stochastic optical reconstruction microscopy (dSTORM) strategy, we systematically revealed that several types of representative carbohydrates are found in clustered states. Interestingly, the results from dual-color dSTORM imaging indicate that these carbohydrate clusters are prone to connect with one another and eventually form conjoined platforms where different functional glycoproteins aggregate (e.g., epidermal growth factor receptor, (EGFR) and band 3 protein). A thorough understanding of the ensemble distribution of carbohydrates on the cell surface paves the way for elucidating the structure-function relationship of cell membranes and the critical roles of carbohydrates in various physiological and pathological cell processes.
Collapse
Affiliation(s)
- Junling Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jing Gao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Min Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Mingjun Cai
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P.R. China
| | - Haijiao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P.R. China
| | - Junguang Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P.R. China
| | - Zhiyuan Tian
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P.R. China
| |
Collapse
|
4
|
Zurzolo C, Simons K. Glycosylphosphatidylinositol-anchored proteins: Membrane organization and transport. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:632-9. [DOI: 10.1016/j.bbamem.2015.12.018] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 12/12/2015] [Accepted: 12/15/2015] [Indexed: 11/17/2022]
|
5
|
Zhang Y, Moeini-Naghani I, Bai J, Santos-Sacchi J, Navaratnam DS. Tyrosine motifs are required for prestin basolateral membrane targeting. Biol Open 2015; 4:197-205. [PMID: 25596279 PMCID: PMC4365488 DOI: 10.1242/bio.201410629] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Prestin is targeted to the lateral wall of outer hair cells (OHCs) where its electromotility is critical for cochlear amplification. Using MDCK cells as a model system for polarized epithelial sorting, we demonstrate that prestin uses tyrosine residues, in a YXXΦ motif, to target the basolateral surface. Both Y520 and Y667 are important for basolateral targeting of prestin. Mutation of these residues to glutamine or alanine resulted in retention within the Golgi and delayed egress from the Golgi in Y667Q. Basolateral targeting is restored upon mutation to phenylalanine suggesting the importance of a phenol ring in the tyrosine side chain. We also demonstrate that prestin targeting to the basolateral surface is dependent on AP1B (μ1B), and that prestin uses transferrin containing early endosomes in its passage from the Golgi to the basolateral plasma membrane. The presence of AP1B (μ1B) in OHCs, and parallels between prestin targeting to the basolateral surface of OHCs and polarized epithelial cells suggest that outer hair cells resemble polarized epithelia rather than neurons in this important phenotypic measure.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - JunPing Bai
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Joseph Santos-Sacchi
- Department of Surgery, Yale School of Medicine, New Haven, CT 06510, USA Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Dhasakumar S Navaratnam
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA Department of Neurobiology, Yale School of Medicine, New Haven, CT 06510, USA Department of Surgery, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
6
|
Stoops EH, Caplan MJ. Trafficking to the apical and basolateral membranes in polarized epithelial cells. J Am Soc Nephrol 2014; 25:1375-86. [PMID: 24652803 DOI: 10.1681/asn.2013080883] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Renal epithelial cells must maintain distinct protein compositions in their apical and basolateral membranes in order to perform their transport functions. The creation of these polarized protein distributions depends on sorting signals that designate the trafficking route and site of ultimate functional residence for each protein. Segregation of newly synthesized apical and basolateral proteins into distinct carrier vesicles can occur at the trans-Golgi network, recycling endosomes, or a growing assortment of stations along the cellular trafficking pathway. The nature of the specific sorting signal and the mechanism through which it is interpreted can influence the route a protein takes through the cell. Cell type-specific variations in the targeting motifs of a protein, as are evident for Na,K-ATPase, demonstrate a remarkable capacity to adapt sorting pathways to different developmental states or physiologic requirements. This review summarizes our current understanding of apical and basolateral trafficking routes in polarized epithelial cells.
Collapse
Affiliation(s)
- Emily H Stoops
- Departments of Cellular & Molecular Physiology and Cell Biology, Yale University School of Medicine, New Haven, Connecticut
| | - Michael J Caplan
- Departments of Cellular & Molecular Physiology and Cell Biology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
7
|
Galmes R, Delaunay JL, Maurice M, Aït-Slimane T. Oligomerization is required for normal endocytosis/transcytosis of a GPI-anchored protein in polarized hepatic cells. J Cell Sci 2013; 126:3409-16. [PMID: 23750006 DOI: 10.1242/jcs.126250] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Targeting of glycosyl-phosphatidylinositol (GPI)-anchored proteins (GPI-APs) in polarized epithelial cells depends on their association with detergent-resistant membrane microdomains called rafts. In MDCK cells, GPI-APs associate with rafts in the trans-Golgi network and are directly delivered to the apical membrane. It has been shown that oligomerization is required for their stabilization in rafts and their apical targeting. In hepatocytes, GPI-APs are first delivered to the basolateral membrane and secondarily reach the apical membrane by transcytosis. We investigated whether oligomerization is required for raft association and apical sorting of GPI-APs in polarized HepG2 cells, and at which step of the pathway oligomerization occurs. Model proteins were wild-type GFP-GPI and a double cysteine GFP-GPI mutant, in which GFP dimerization was impaired. Unlike wild-type GFP-GPI, which was efficiently endocytosed and transcytosed to the apical surface, the double cysteine mutant was basolaterally internalized, but massively accumulated in early endosomes, and reached the bile canaliculi with delayed kinetics. The double cysteine mutant was less resistant to Triton X-100 extraction, and formed fewer high molecular weight complexes. We conclude from these results that, in hepatocytes, oligomerization plays a key role in targeting GPI-APs to the apical membrane, by increasing their affinity for rafts and allowing their transcytosis.
Collapse
Affiliation(s)
- Romain Galmes
- INSERM, UMR_S938, Centre de Recherche Saint-Antoine, Paris, France
| | | | | | | |
Collapse
|
8
|
Kay P, Yang YC, Paraoan L. Directional protein secretion by the retinal pigment epithelium: roles in retinal health and the development of age-related macular degeneration. J Cell Mol Med 2013; 17:833-43. [PMID: 23663427 PMCID: PMC3822888 DOI: 10.1111/jcmm.12070] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 03/24/2013] [Indexed: 11/29/2022] Open
Abstract
The structural and functional integrity of the retinal pigment epithelium (RPE) is fundamental for maintaining the function of the neuroretina. These specialized cells form a polarized monolayer that acts as the retinal–blood barrier, separating two distinct environments with highly specialized functions: photoreceptors of the neuroretina at the apical side and Bruch's membrane/highly vascularized choriocapillaris at the basal side. The polarized nature of the RPE is essential for the health of these two regions, not only in nutrient and waste transport but also in the synthesis and directional secretion of proteins required in maintaining retinal homoeostasis and function. Although multiple malfunctions within the RPE cells have been associated with development of age-related macular degeneration (AMD), the leading cause of legal blindness, clear causative processes have not yet been conclusively characterized at the molecular and cellular level. This article focuses on the involvement of directionally secreted RPE proteins in normal functioning of the retina and on the potential association of incorrect RPE protein secretion with development of AMD. Understanding the importance of RPE polarity and the correct secretion of essential structural and regulatory components emerge as critical factors for the development of novel therapeutic strategies targeting AMD.
Collapse
Affiliation(s)
- Paul Kay
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | | | | |
Collapse
|
9
|
Youker RT, Bruns JR, Costa SA, Rbaibi Y, Lanni F, Kashlan OB, Teng H, Weisz OA. Multiple motifs regulate apical sorting of p75 via a mechanism that involves dimerization and higher-order oligomerization. Mol Biol Cell 2013; 24:1996-2007. [PMID: 23637462 PMCID: PMC3681702 DOI: 10.1091/mbc.e13-02-0078] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The sorting signals that direct proteins to the apical surface of polarized epithelial cells are complex and can include posttranslational modifications, such as N- and O-linked glycosylation. Efficient apical sorting of the neurotrophin receptor p75 is dependent on its O-glycosylated membrane proximal stalk, but how this domain mediates targeting is unknown. Protein oligomerization or clustering has been suggested as a common step in the segregation of all apical proteins. Like many apical proteins, p75 forms dimers, and we hypothesized that formation of higher-order clusters mediated by p75 dimerization and interactions of the stalk facilitate its apical sorting. Using fluorescence fluctuation techniques (photon-counting histogram and number and brightness analyses) to study p75 oligomerization status in vivo, we found that wild-type p75-green fluorescent protein forms clusters in the trans-Golgi network (TGN) but not at the plasma membrane. Disruption of either the dimerization motif or the stalk domain impaired both clustering and polarized delivery. Manipulation of O-glycan processing or depletion of multiple galectins expressed in Madin-Darby canine kidney cells had no effect on p75 sorting, suggesting that the stalk domain functions as a structural prop to position other determinants in the lumenal domain of p75 for oligomerization. Additionally, a p75 mutant with intact dimerization and stalk motifs but with a dominant basolateral sorting determinant (Δ250 mutant) did not form oligomers, consistent with a requirement for clustering in apical sorting. Artificially enhancing dimerization restored clustering to the Δ250 mutant but was insufficient to reroute this mutant to the apical surface. Together these studies demonstrate that clustering in the TGN is required for normal biosynthetic apical sorting of p75 but is not by itself sufficient to reroute a protein to the apical surface in the presence of a strong basolateral sorting determinant. Our studies shed new light on the hierarchy of polarized sorting signals and on the mechanisms by which newly synthesized proteins are segregated in the TGN for eventual apical delivery.
Collapse
Affiliation(s)
- Robert T Youker
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
|
11
|
Abstract
Epithelial cells have an apical-basolateral axis of polarity, which is required for epithelial functions including barrier formation, vectorial ion transport and sensory perception. Here we review what is known about the sorting signals, machineries and pathways that maintain this asymmetry, and how polarity proteins interface with membrane-trafficking pathways to generate membrane domains de novo. It is becoming apparent that membrane traffic does not simply reinforce polarity, but is critical for the generation of cortical epithelial cell asymmetry.
Collapse
|
12
|
Fujita M, Kinoshita T. GPI-anchor remodeling: Potential functions of GPI-anchors in intracellular trafficking and membrane dynamics. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:1050-8. [DOI: 10.1016/j.bbalip.2012.01.004] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 12/28/2011] [Accepted: 01/04/2012] [Indexed: 01/08/2023]
|
13
|
Mo D, Costa SA, Ihrke G, Youker RT, Pastor-Soler N, Hughey RP, Weisz OA. Sialylation of N-linked glycans mediates apical delivery of endolyn in MDCK cells via a galectin-9-dependent mechanism. Mol Biol Cell 2012; 23:3636-46. [PMID: 22855528 PMCID: PMC3442411 DOI: 10.1091/mbc.e12-04-0329] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The sialomucin endolyn is implicated in adhesion, migration, and differentiation of various cell types. Apical delivery of endolyn requires recognition of sialic acids on its N-glycans possibly (or likely) mediated by galectin-9. The sialomucin endolyn is implicated in adhesion, migration, and differentiation of various cell types. Along rat kidney tubules, endolyn is variously localized to the apical surface and endosomal/lysosomal compartments. Apical delivery of newly synthesized rat endolyn predominates over direct lysosomal delivery in polarized Madin–Darby canine kidney cells. Apical sorting depends on terminal processing of a subset of lumenal N-glycans. Here we dissect the requirements of N-glycan processing for apical targeting and investigate the underlying mechanism. Modulation of glycan branching and subsequent polylactosamine elongation by knockdown of N-acetylglucosaminyltransferase III or V had no effect on apical delivery of endolyn. In contrast, combined but not individual knockdown of sialyltransferases ST3Gal-III, ST3Gal-IV, and ST6Gal-I, which together are responsible for addition of α2,3- and α2,6-linked sialic acids on N-glycans, dramatically decreased endolyn surface polarity. Endolyn synthesized in the presence of kifunensine, which blocks terminal N-glycan processing, reduced its interaction with several recombinant canine galectins, and knockdown of galectin-9 (but not galectin-3, -4, or -8) selectively disrupted endolyn polarity. Our data suggest that sialylation enables recognition of endolyn by galectin-9 to mediate efficient apical sorting. They raise the intriguing possibility that changes in glycosyltransferase expression patterns and/or galectin-9 distribution may acutely modulate endolyn trafficking in the kidney.
Collapse
Affiliation(s)
- Di Mo
- Renal Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Surma MA, Klose C, Simons K. Lipid-dependent protein sorting at the trans-Golgi network. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:1059-67. [PMID: 22230596 DOI: 10.1016/j.bbalip.2011.12.008] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 12/02/2011] [Accepted: 12/03/2011] [Indexed: 12/14/2022]
Abstract
In eukaryotic cells, the trans-Golgi network serves as a sorting station for post-Golgi traffic. In addition to coat- and adaptor-mediated mechanisms, studies in mammalian epithelial cells and yeast have provided evidence for lipid-dependent protein sorting as a major delivery mechanism for cargo sorting to the cell surface. The mechanism for lipid-mediated sorting is the generation of raft platforms of sphingolipids, sterols and specific sets of cargo proteins by phase segregation in the TGN. Here, we review the evidence for such lipid-raft-based sorting at the TGN, as well as their involvement in the formation of TGN-to-PM transport carriers. This article is part of a Special Issue entitled Lipids and Vesicular Transport.
Collapse
Affiliation(s)
- Michal A Surma
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | | | | |
Collapse
|
15
|
Mattila PE, Youker RT, Mo D, Bruns JR, Cresawn KO, Hughey RP, Ihrke G, Weisz OA. Multiple biosynthetic trafficking routes for apically secreted proteins in MDCK cells. Traffic 2011; 13:433-42. [PMID: 22118573 DOI: 10.1111/j.1600-0854.2011.01315.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 11/21/2011] [Accepted: 11/21/2011] [Indexed: 11/30/2022]
Abstract
Many newly synthesized membrane proteins traverse endocytic intermediates en route to the surface in polarized epithelial cells; however, the biosynthetic itinerary of secreted proteins has not been elucidated. We monitored the trafficking route of two secreted proteins with different apical sorting signals: the N-glycan-dependent cargo glycosylated growth hormone (gGH) and Ensol, a soluble version of endolyn whose apical sorting is independent of N-glycans. Both proteins were observed to colocalize in part with apical recycling endosome (ARE) markers. Cargo that lacks an apical targeting signal and is secreted in a nonpolarized manner did not localize to the ARE. Expression of a dominant-negative mutant of myosin Vb, which disrupts ARE export of glycan-dependent membrane proteins, selectively inhibited apical release of gGH but not Ensol. Fluorescence recovery after photobleaching (FRAP) measurements revealed that gGH in the ARE was less mobile than Ensol, consistent with tethering to a sorting receptor. However, knockdown of galectin-3 or galectin-4, lectins implicated in apical sorting, had no effect on the rate or polarity of gGH secretion. Together, our results suggest that apically secreted cargoes selectively access the ARE and are exported via differentially regulated pathways.
Collapse
Affiliation(s)
- Polly E Mattila
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Kano T, Wada S, Morimoto K, Kato Y, Ogihara T. Effect of Knockdown of Ezrin, Radixin, and Moesin on P-Glycoprotein Function in HepG2 Cells. J Pharm Sci 2011; 100:5308-14. [DOI: 10.1002/jps.22718] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 06/07/2011] [Accepted: 07/12/2011] [Indexed: 11/05/2022]
|
17
|
Imjeti NS, Lebreton S, Paladino S, de la Fuente E, Gonzalez A, Zurzolo C. N-Glycosylation instead of cholesterol mediates oligomerization and apical sorting of GPI-APs in FRT cells. Mol Biol Cell 2011; 22:4621-34. [PMID: 21998201 PMCID: PMC3226479 DOI: 10.1091/mbc.e11-04-0320] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In contrast to MDCK cells, in FRT cells oligomerization and apical sorting of GPI-APs are mediated by N-glycosylation independent of cholesterol and raft association. Sorting of glycosylphosphatidyl-inositol–anchored proteins (GPI-APs) in polarized epithelial cells is not fully understood. Oligomerization in the Golgi complex has emerged as the crucial event driving apical segregation of GPI-APs in two different kind of epithelial cells, Madin–Darby canine kidney (MDCK) and Fisher rat thyroid (FRT) cells, but whether the mechanism is conserved is unknown. In MDCK cells cholesterol promotes GPI-AP oligomerization, as well as apical sorting of GPI-APs. Here we show that FRT cells lack this cholesterol-driven oligomerization as apical sorting mechanism. In these cells both apical and basolateral GPI-APs display restricted diffusion in the Golgi likely due to a cholesterol-enriched membrane environment. It is striking that N-glycosylation is the critical event for oligomerization and apical sorting of GPI-APs in FRT cells but not in MDCK cells. Our data indicate that at least two mechanisms exist to determine oligomerization in the Golgi leading to apical sorting of GPI-APs. One depends on cholesterol, and the other depends on N-glycosylation and is insensitive to cholesterol addition or depletion.
Collapse
Affiliation(s)
- Naga Salaija Imjeti
- Institut Pasteur, Unité de Traffic Membranaire et Pathogenèse, 75015 Paris, France
| | | | | | | | | | | |
Collapse
|
18
|
Kinlough CL, Poland PA, Gendler SJ, Mattila PE, Mo D, Weisz OA, Hughey RP. Core-glycosylated mucin-like repeats from MUC1 are an apical targeting signal. J Biol Chem 2011; 286:39072-81. [PMID: 21937430 DOI: 10.1074/jbc.m111.289504] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MUC1 is efficiently delivered to the apical surface of polarized Madin-Darby canine kidney (MDCK) cells by transit through apical recycling endosomes, a route associated with delivery of apical proteins with glycan-dependent targeting signals. However, a role for glycans in MUC1 sorting has not been established. A key feature of MUC1 is a heavily O-glycosylated mucin-like domain with a variable number of nearly perfect tandem repeats and adjacent imperfect repeats. Metabolic labeling, cell surface biotinylation, immobilized lectins, and confocal immunofluorescence microscopy were used to characterize the polarized delivery of MUC1 mutants and chimeras in MDCK cells to identify the apical targeting signal. Both the interleukin-2 receptor α subunit (Tac) and a chimera where the Tac ectodomain replaced that of MUC1 were delivered primarily to the basolateral surface. Attachment of the MUC1 mucin-like domain to the N terminus of Tac enhanced apical but not basolateral delivery when compared with Tac. Conversely, deletions within the mucin-like domain in MUC1 reduced apical but not basolateral delivery when compared with MUC1. In pull-down assays with lectins, we found a notable difference in the presence of core 1 O-glycans, but not poly-N-acetyllactosamine, in apically targeted MUC1 and chimeras when compared with Tac. Consistent with these data, we found no effect on MUC1 targeting when galectin-3, with preference for poly-N-acetyllactosamine, was depleted from polarized MDCK cells. However, we did block the apical targeting activity of the mucin-like repeats when we overexpressed CMP-Neu5Ac:GalNAc-Rα2,6-sialyltransferase-1 to block core O-glycan synthesis. The cumulative data indicate that the core-glycosylated mucin-like repeats of MUC1 constitute an apical targeting signal.
Collapse
Affiliation(s)
- Carol L Kinlough
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Draheim V, Reichel A, Weitschies W, Moenning U. N-glycosylation of ABC transporters is associated with functional activity in sandwich-cultured rat hepatocytes. Eur J Pharm Sci 2010; 41:201-9. [PMID: 20558284 DOI: 10.1016/j.ejps.2010.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 05/30/2010] [Accepted: 06/08/2010] [Indexed: 02/08/2023]
Abstract
Hepatobiliary elimination via canalicular efflux transport proteins plays a key role in the clearance of endo- and xenobiotics. Correct membrane localization and coordinated action of the transport systems are essential for vectorial transport of drugs from blood into the bile. While basolaterally localized uptake transporters are responsible for the inward transport of substances from the blood into the hepatocyte, apically expressed ATP-dependent transport proteins such as P-glycoprotein (P-gp), multidrug resistance-associated protein (Mrp2) and breast cancer resistance protein (Bcrp) mediate the outward efflux into the bile canaliculus. Using sandwich-cultured rat hepatocytes we have characterized the expression and maturation of P-gp, Mrp2 and Bcrp transport proteins as well as their transport function over several days. The re-differentiation of the hepatocytes, which only occurs in sandwich configuration involves de novo synthesis and subsequent posttranslational N-glycosylation of all three transport proteins. Only fully N-glycosylated isoforms of the transporters were associated with functional activity as visualized by excretion of specific fluorescent substrates into the canalicular network. However, in what way N-glycosylation affects the functional activity of the ABC transporters investigated remains to be determined.
Collapse
Affiliation(s)
- Viola Draheim
- Research Pharmacokinetics, Bayer Schering Pharma AG, Berlin, Germany
| | | | | | | |
Collapse
|
20
|
Abstract
Mechanisms of generation and maintenance of cell polarity have been investigated using various organisms and cell lines. During and after the establishment of cell polarity, polarized (vesicular) transport as well as cell-cell adhesion is essential. Here, I introduce each molecular step of polarized transport and the molecules involved there. Usually, epithelial cells and neurons are two well-known examples of polarized cells. Thus, I next describe the similarity and difference in polarized transport between these two cell types. Though closely connected, the relationship between cell-cell adhesion and polarized transport remain poorly understood. I will take a few examples indicating the relationship between them. Finally, I will present the future directions in this field.
Collapse
Affiliation(s)
- Akihiro Harada
- Department of Cell Biology and Anatomy, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
21
|
Weisz OA, Rodriguez-Boulan E. Apical trafficking in epithelial cells: signals, clusters and motors. J Cell Sci 2010; 122:4253-66. [PMID: 19923269 DOI: 10.1242/jcs.032615] [Citation(s) in RCA: 237] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In the early days of epithelial cell biology, researchers working with kidney and/or intestinal epithelial cell lines and with hepatocytes described the biosynthetic and recycling routes followed by apical and basolateral plasma membrane (PM) proteins. They identified the trans-Golgi network and recycling endosomes as the compartments that carried out apical-basolateral sorting. They described complex apical sorting signals that promoted association with lipid rafts, and simpler basolateral sorting signals resembling clathrin-coated-pit endocytic motifs. They also noticed that different epithelial cell types routed their apical PM proteins very differently, using either a vectorial (direct) route or a transcytotic (indirect) route. Although these original observations have generally held up, recent studies have revealed interesting complexities in the routes taken by apically destined proteins and have extended our understanding of the machinery required to sustain these elaborate sorting pathways. Here, we critically review the current status of apical trafficking mechanisms and discuss a model in which clustering is required to recruit apical trafficking machineries. Uncovering the mechanisms responsible for polarized trafficking and their epithelial-specific variations will help understand how epithelial functional diversity is generated and the pathogenesis of many human diseases.
Collapse
Affiliation(s)
- Ora A Weisz
- Department of Medicine and Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | |
Collapse
|
22
|
Procino G, Barbieri C, Carmosino M, Rizzo F, Valenti G, Svelto M. Lovastatin-induced cholesterol depletion affects both apical sorting and endocytosis of aquaporin-2 in renal cells. Am J Physiol Renal Physiol 2009; 298:F266-78. [PMID: 19923410 DOI: 10.1152/ajprenal.00359.2009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Vasopressin causes the redistribution of the water channel aquaporin-2 (AQP2) from cytoplasmic storage vesicles to the apical plasma membrane of collecting duct principal cells, leading to urine concentration. The molecular mechanisms regulating the selective apical sorting of AQP2 are only partially uncovered. In this work, we investigate whether AQP2 sorting/trafficking is regulated by its association with membrane rafts. In both MCD4 cells and rat kidney, AQP2 preferentially associated with Lubrol WX-insoluble membranes regardless of its presence in the storage compartment or at the apical membrane. Block-and-release experiments indicate that 1) AQP2 associates with detergent-resistant membranes early in the biosynthetic pathway; 2) strong cholesterol depletion delays the exit of AQP2 from the trans-Golgi network. Interestingly, mild cholesterol depletion promoted a dramatic accumulation of AQP2 at the apical plasma membrane in MCD4 cells in the absence of forskolin stimulation. An internalization assay showed that AQP2 endocytosis was clearly reduced under this experimental condition. Taken together, these data suggest that association with membrane rafts may regulate both AQP2 apical sorting and endocytosis.
Collapse
Affiliation(s)
- G Procino
- Department of General and Environmental Physiology, University of Bari, Bari, Italy.
| | | | | | | | | | | |
Collapse
|
23
|
Gonzalez A, Rodriguez-Boulan E. Clathrin and AP1B: key roles in basolateral trafficking through trans-endosomal routes. FEBS Lett 2009; 583:3784-95. [PMID: 19854182 DOI: 10.1016/j.febslet.2009.10.050] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 10/15/2009] [Accepted: 10/20/2009] [Indexed: 12/12/2022]
Abstract
Research following introduction of the MDCK model system to study epithelial polarity (1978) led to an initial paradigm that posited independent roles of the trans Golgi network (TGN) and recycling endosomes (RE) in the generation of, respectively, biosynthetic and recycling routes of plasma membrane (PM) proteins to apical and basolateral PM domains. This model dominated the field for 20 years. However, studies over the past decade and the discovery of the involvement of clathrin and clathrin adaptors in protein trafficking to the basolateral PM has led to a new paradigm. TGN and RE are now believed to cooperate closely in both biosynthetic and recycling trafficking routes. Here, we critically review these recent advances and the questions that remain unanswered.
Collapse
Affiliation(s)
- Alfonso Gonzalez
- Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina, Centro de Regulación Celular y Patología and Centro de Envejecimiento y Regeneración, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 6510260 Santiago, Chile.
| | | |
Collapse
|
24
|
Abstract
The galectins, a family of lectins, modulate distinct cellular processes, such as cancer progression, immune response and cellular development, through their specific binding to extracellular or intracellular ligands. In the past few years, research has unravelled interactions of different galectins with lipids and glycoproteins in the outer milieu or in the secretory pathway of cells. Interestingly, these lectins do not possess a signalling sequence to enter the endoplasmic reticulum as a starting point for the classical secretory pathway. Instead they use a so-called non-classical mechanism for translocation across the plasma membrane and/or into the lumen of transport vesicles. Here, they stabilize transport platforms for apical trafficking or sort apical glycoproteins into specific vesicle populations. Modes of ligand interaction as well as the modulation of binding activities and trafficking pathways are discussed in this review.
Collapse
Affiliation(s)
- Delphine Delacour
- Department of Cell Biology and Cell Pathology, Philipps-Universität Marburg, Marburg, Germany
| | | | | |
Collapse
|
25
|
Luton F, Hexham MJ, Zhang M, Mostov KE. Identification of a cytoplasmic signal for apical transcytosis. Traffic 2009; 10:1128-42. [PMID: 19522755 DOI: 10.1111/j.1600-0854.2009.00941.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Polarized epithelial cells contain apical and basolateral surfaces with distinct protein compositions. To establish and maintain this asymmetry, newly made plasma membrane proteins are sorted in the trans Golgi network for delivery to apical or basolateral surfaces. Signals for basolateral sorting are generally located in the cytoplasmic domain of the protein, whereas signals for apical sorting can be in any part of the protein and can depend on N-linked glycosylation of the protein. Signals for constitutive transcytosis to the apical surface have not been reported. In this study, we used the polymeric immunoglobulin receptor (pIgR), which is biosynthetically delivered to the basolateral surface. There the pIgR can bind a ligand and, with or without bound ligand, the pIgR can then be transcytosed to the apical surface. We found that the glycosylation of the pIgR did not affect the biosynthetic transport of the pIgR. However, glycosylation had an effect on pIgR apical transcytosis. Importantly, analysis of the cytoplasmic tail of the pIgR suggested that a short peptide segment was sufficient to transcytose the pIgR or a neutral reporter from the basolateral to the apical surface. This apical transcytosis sorting signal was not involved in polarized biosynthetic traffic of the pIgR.
Collapse
Affiliation(s)
- Frédéric Luton
- Department of Anatomy, and Biochemistry and Biophysics, and Cardiovascular Research Institute, University of California, San Francisco, CA 94158-2140, USA
| | | | | | | |
Collapse
|
26
|
Xing L, Li J, Xu Y, Xu Z, Chong K. Phosphorylation modification of wheat lectin VER2 is associated with vernalization-induced O-GlcNAc signaling and intracellular motility. PLoS One 2009; 4:e4854. [PMID: 19287503 PMCID: PMC2654674 DOI: 10.1371/journal.pone.0004854] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Accepted: 02/09/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND O-linked beta-N-acetylglucosamine (O-GlcNAc) modification of proteins mediates stress response and cellular motility in animal cells. The plant lectin concanavalin A can increase nuclear O-GlcNAc levels and decrease cytoplasmic O-GlcNAc levels in T lymphocytes. However, the functions of O-GlcNAc signaling in plants, as well as the relation between plant lectins and O-GlcNAc in response to environmental stimuli are largely undefined. METHODOLOGY/PRINCIPAL FINDINGS We describe a jacalin-like lectin VER2 in wheat that shows N-acetylglucosamine and galactose specificity. Immunocytochemical localization showed VER2 expression induced predominantly at potential nuclear structures in shoot tips and young leaves and weakly in cytoplasm in response to vernalization. In contrast, under devernalization (continuous stimulation with a higher temperature after vernalization), VER2 signals appeared predominantly in cytoplasm. 2-D electrophoresis, together with western blot analysis, showed phosphorylation modification of VER2 under vernalization. Immunoblot assay with O-GlcNAc-specific antibody revealed that vernalization increased O-GlcNAc modification of proteins at the global level. An O-GlcNAc-modified protein co-immunoprecipitated with VER2 in vernalized wheat plants but not in devernalized materials. The dynamic of VER2 was observed in transgenic Arabidopsis overexpressing the VER2-GFP fusion protein. Overexpressed VER2 accelerated nuclear migration. Immunogold labeling and indirect immunofluoresence colocalization assay indicated that VER2-GFP was targeted to the secretory pathway. CONCLUSIONS/SIGNIFICANCE O-GlcNAc signaling is involved in the vernalization response in wheat, and phosphorylation is necessary for the lectin VER2 involving O-GlcNAc signaling during vernalization. Our findings open the way to studies of O-GlcNAc protein modification in response to environmental signals in plants.
Collapse
Affiliation(s)
- Lijing Xing
- Research Center for Molecular Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Juan Li
- Research Center for Molecular Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Yunyuan Xu
- Research Center for Molecular Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Zhihong Xu
- National Centre for Plant Gene Research, Beijing, China
| | - Kang Chong
- Research Center for Molecular Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
- National Centre for Plant Gene Research, Beijing, China
- * E-mail:
| |
Collapse
|
27
|
Galectin-glycan lattices regulate cell-surface glycoprotein organization and signalling. Biochem Soc Trans 2009; 36:1472-7. [PMID: 19021578 DOI: 10.1042/bst0361472] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The formation of multivalent complexes of soluble galectins with glycoprotein receptors on the plasma membrane helps to organize glycoprotein assemblies on the surface of the cell. In some cell types, this formation of galectin-glycan lattices or scaffolds is critical for organizing plasma membrane domains, such as lipid rafts, or for targeted delivery of glycoproteins to the apical or basolateral surface. Galectin-glycan lattice formation is also involved in regulating the signalling threshold of some cell-surface glycoproteins, including T-cell receptors and growth factor receptors. Finally, galectin-glycan lattices can determine receptor residency time by inhibiting endocytosis of glycoprotein receptors from the cell surface, thus modulating the magnitude or duration of signalling from the cell surface. This paper reviews recent evidence in vitro and in vivo for critical physiological and cellular functions that are regulated by galectin-glycoprotein interactions.
Collapse
|
28
|
Kuo TT, de Muinck EJ, Claypool SM, Yoshida M, Nagaishi T, Aveson VG, Lencer WI, Blumberg RS. N-Glycan Moieties in Neonatal Fc Receptor Determine Steady-state Membrane Distribution and Directional Transport of IgG. J Biol Chem 2009; 284:8292-300. [PMID: 19164298 DOI: 10.1074/jbc.m805877200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The neonatal Fc receptor (FcRn) is a major histocompatibility complex class I-related molecule known to protect IgG and albumin from catabolism and transport IgG across polarized epithelial cells in a bidirectional manner. Previous studies have shown species-specific differences in ligand binding, IgG transport direction, and steady-state membrane distribution when expressed in polarized epithelial cells. We hypothesized that these differences may be due to the additional N-glycans expressed on the rat FcRn, because N-glycans have been proposed to function as apical targeting signals, and that two of the N-glycan moieties have been shown to contribute to the IgG binding of rat FcRn. A panel of mutant human FcRn variants was generated to resemble the N-glycan expression of rat FcRn in various combinations and subsequently transfected into Madin-Darby canine kidney II cells together with human beta2-microglobulin. Mutant human FcRn clones that contained additional N-glycan side-chain modifications, including that which was fully rodentized, still exhibited specificity for human IgG and failed to bind to mouse IgG. At steady state, the mutant human FcRn with additional N-glycans redistributed to the apical cell surface similar to that of rat FcRn. Furthermore, the rodentized human FcRn exhibited a reversal of IgG transport with predominant transcytosis from an apical-to-basolateral direction, which resembled that of the rat FcRn isoform. These studies show that the N-glycans in FcRn contribute significantly to the steady-state membrane distribution and direction of IgG transport in polarized epithelia.
Collapse
Affiliation(s)
- Timothy T Kuo
- Department of Gastroenterology, Brigham & Women's Hospital and Harvard Medical School, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Gassama-Diagne A, Payrastre B. Phosphoinositide signaling pathways: promising role as builders of epithelial cell polarity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 273:313-43. [PMID: 19215908 DOI: 10.1016/s1937-6448(08)01808-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Polarity is a prerequisite for proper development and function of epithelia in metazoa. The major feature of polarized epithelial cells is the presence of specialized domains with asymmetric distribution of macromolecular contents including proteins and lipids. The apical domain is involved in exchange with the organ lumen, and the basolateral membrane maintains contact with neighboring cells and the underlying extracellular matrix. The two domains are separated by tight junctions, which act as a diffusion barrier to prevent free mixing of domain-specific proteins and lipids. Extensive studies have shed light on the numerous protein families involved in cell polarization. However, many questions still remain regarding the molecular mechanisms of polarity regulation and in particular very little is known about the role of lipids in building polarity. In this chapter, essential determinants of epithelial polarity will be reviewed with a particular focus on metabolism and function of phosphoinositides.
Collapse
Affiliation(s)
- Ama Gassama-Diagne
- Unité Mixte INSERM U785/Université Paris XI, Centre Hépatobiliaire, Hôpital Paul Brousse, Villejuif, France
| | | |
Collapse
|
30
|
Catino MA, Paladino S, Tivodar S, Pocard T, Zurzolo C. N- andO-Glycans Are Not Directly Involved in the Oligomerization and Apical Sorting of GPI Proteins. Traffic 2008; 9:2141-50. [DOI: 10.1111/j.1600-0854.2008.00826.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Donoso M, Cancino J, Lee J, van Kerkhof P, Retamal C, Bu G, Gonzalez A, Cáceres A, Marzolo MP. Polarized traffic of LRP1 involves AP1B and SNX17 operating on Y-dependent sorting motifs in different pathways. Mol Biol Cell 2008; 20:481-97. [PMID: 19005208 DOI: 10.1091/mbc.e08-08-0805] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Low-density lipoprotein receptor-related protein 1 (LRP1) is an endocytic recycling receptor with two cytoplasmic tyrosine-based basolateral sorting signals. Here we show that during biosynthetic trafficking LRP1 uses AP1B adaptor complex to move from a post-TGN recycling endosome (RE) to the basolateral membrane. Then it recycles basolaterally from the basolateral sorting endosome (BSE) involving recognition by sorting nexin 17 (SNX17). In the biosynthetic pathway, Y(29) but not N(26) from a proximal NPXY directs LRP1 basolateral sorting from the TGN. A N(26)A mutant revealed that this NPXY motif recognized by SNX17 is required for the receptor's exit from BSE. An endocytic Y(63)ATL(66) motif also functions in basolateral recycling, in concert with an additional endocytic motif (LL(86,87)), by preventing LRP1 entry into the transcytotic apical pathway. All this sorting information operates similarly in hippocampal neurons to mediate LRP1 somatodendritic distribution regardless of the absence of AP1B in neurons. LRP1 basolateral distribution results then from spatially and temporally segregation steps mediated by recognition of distinct tyrosine-based motifs. We also demonstrate a novel function of SNX17 in basolateral/somatodendritic recycling from a different compartment than AP1B endosomes.
Collapse
Affiliation(s)
- Maribel Donoso
- Centro de Regulación Celular y Patología , Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile and the Millenium Institute for Fundamental and Applied Biology, Santiago, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Cancino J, Torrealba C, Soza A, Yuseff MI, Gravotta D, Henklein P, Rodriguez-Boulan E, González A. Antibody to AP1B adaptor blocks biosynthetic and recycling routes of basolateral proteins at recycling endosomes. Mol Biol Cell 2007; 18:4872-84. [PMID: 17881725 PMCID: PMC2096610 DOI: 10.1091/mbc.e07-06-0563] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Accepted: 09/11/2007] [Indexed: 01/03/2023] Open
Abstract
The epithelial-specific adaptor AP1B sorts basolateral plasma membrane (PM) proteins in both biosynthetic and recycling routes, but the site where it carries out this function remains incompletely defined. Here, we have investigated this topic in Fischer rat thyroid (FRT) epithelial cells using an antibody against the medium subunit micro1B. This antibody was suitable for immunofluorescence and blocked the function of AP1B in these cells. The antibody blocked the basolateral recycling of two basolateral PM markers, Transferrin receptor (TfR) and LDL receptor (LDLR), in a perinuclear compartment with marker and functional characteristics of recycling endosomes (RE). Live imaging experiments demonstrated that in the presence of the antibody two newly synthesized GFP-tagged basolateral proteins (vesicular stomatitis virus G [VSVG] protein and TfR) exited the trans-Golgi network (TGN) normally but became blocked at the RE within 3-5 min. By contrast, the antibody did not block trafficking of green fluorescent protein (GFP)-LDLR from the TGN to the PM but stopped its recycling after internalization into RE in approximately 45 min. Our experiments conclusively demonstrate that 1) AP1B functions exclusively at RE; 2) TGN-to-RE transport is very fast and selective and is mediated by adaptors different from AP1B; and 3) the TGN and AP1B-containing RE cooperate in biosynthetic basolateral sorting.
Collapse
Affiliation(s)
- Jorge Cancino
- *Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina, and Centro de Regulación Celular y Patología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 6510260 Santiago, Chile
- Millennium Institute for Fundamental and Applied Biology, 7780344 Santiago, Chile
| | - Carolina Torrealba
- *Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina, and Centro de Regulación Celular y Patología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 6510260 Santiago, Chile
- Millennium Institute for Fundamental and Applied Biology, 7780344 Santiago, Chile
| | - Andrea Soza
- *Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina, and Centro de Regulación Celular y Patología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 6510260 Santiago, Chile
- Millennium Institute for Fundamental and Applied Biology, 7780344 Santiago, Chile
| | - María Isabel Yuseff
- *Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina, and Centro de Regulación Celular y Patología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 6510260 Santiago, Chile
- Millennium Institute for Fundamental and Applied Biology, 7780344 Santiago, Chile
| | - Diego Gravotta
- Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, NY 10021
| | - Peter Henklein
- Institute of Biochemistry Faculty of Medicine, Humboldt University, 10117 Berlin, Germany; and
| | - Enrique Rodriguez-Boulan
- Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, NY 10021
| | - Alfonso González
- *Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina, and Centro de Regulación Celular y Patología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 6510260 Santiago, Chile
- Millennium Institute for Fundamental and Applied Biology, 7780344 Santiago, Chile
| |
Collapse
|
34
|
Suzuki K, Daikoku S, Ako T, Shioiri Y, Kurimoto A, Ohtake A, Sarkar SK, Kanie O. High-yielding and controlled dissociation of glycosides producing B- and C-ion species under collision-induced dissociation MS/MS conditions and use in structural determination. Anal Chem 2007; 79:9022-9. [PMID: 17939746 DOI: 10.1021/ac701686n] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Collision-induced dissociation (CID) in mass spectrometry is a powerful technique with which to understand gas-phase chemical reactions. A mass spectrometer is used to carry out the reaction, isolation, and analysis. On the other hand, structural analysis of glycan structures is of extreme importance in the analysis of biomolecules, such as glycoproteins and glycolipids. In the analysis of glycan structures based on CID, certain ion species, including B-/Y-, C-/Z-, and A-/X-ions, are produced. Among these ions, we are interested in C-ion species that carry a glycosyl oxygen atom at the anomeric center and that possibly provide information regarding anomeric configuration. A method for generating C-ion species when necessary is thus considered to be important; however, none is currently available. In this study, synthetic glycosides carrying a series of aglycons were analyzed with the aim of identifying suitable glycosides with which to produce C-ions to be used in the structural determination of oligosaccharides. The results showed a 4-aminobutyl group was an excellent candidate. Furthermore, the use of C-ion species obtained in this manner in the structural characterization of a ganglioside, GM3, is described. The type of glycoside is believed to be valuable not only in structural analysis but also in biological investigation, because of the existing amino functionality that has been proven to be useful by enabling the generation of conjugates with other molecules and materials.
Collapse
Affiliation(s)
- Katsuhiko Suzuki
- Mitsubishi Kagaku Institute of Life Sciences (MITILS), 11 Minamiooya, Machida-shi, Tokyo 194-8511, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Daikoku S, Ako T, Kato R, Ohtsuka I, Kanie O. Discrimination of 16 structural isomers of fucosyl galactoside based on energy-resolved mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2007; 18:1873-9. [PMID: 17765571 DOI: 10.1016/j.jasms.2007.07.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 07/11/2007] [Accepted: 07/16/2007] [Indexed: 05/17/2023]
Abstract
Glycans, a family of compounds often attached to proteins and ceramides, are diverse molecules involved in a wide range of biological functions. Their structural analysis is necessary and is often carried out at the microscale level. Methods based on mass spectrometry are therefore used, although they do not provide information regarding isomeric structures often found in glycan structures. If one finds "factors" characteristic of a certain isomer, this information can be used to elucidate an unknown oligosaccharide sequence. One potential technique is to use energy-resolved mass spectrometry (ERMS) that has been used to distinguish a pair of isomeric compounds. Thus, compounds in a combinatorial library might be effectively used for this purpose. We analyzed a set of 16 isomeric disaccharides, the structures of which consisted of all possible combinations of anomeric configurations and interglycosidic linkage positions. All of the compounds were distinguished based on ERMS where normal collision-induced dissociation could distinguish only seven compounds. Furthermore, it was shown that alpha-glycosidic linkages of fucose were more reactive than the beta-isomers and the secondary glycosides were more reactive than the primary glycosides.
Collapse
Affiliation(s)
- Shusaku Daikoku
- Mitsubishi Kagaku Institute of Life Sciences (MITILS), Machida-shi, Tokyo, Japan
| | | | | | | | | |
Collapse
|
36
|
Cereijido M, Contreras RG, Shoshani L, Flores-Benitez D, Larre I. Tight junction and polarity interaction in the transporting epithelial phenotype. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:770-93. [PMID: 18028872 DOI: 10.1016/j.bbamem.2007.09.001] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2007] [Revised: 08/28/2007] [Accepted: 09/03/2007] [Indexed: 12/21/2022]
Abstract
Development of tight junctions and cell polarity in epithelial cells requires a complex cellular machinery to execute an internal program in response to ambient cues. Tight junctions, a product of this machinery, can act as gates of the paracellular pathway, fences that keep the identity of plasma membrane domains, bridges that communicate neighboring cells. The polarization internal program and machinery are conserved in yeast, worms, flies and mammals, and in cell types as different as epithelia, neurons and lymphocytes. Polarization and tight junctions are dynamic features that change during development, in response to physiological and pharmacological challenges and in pathological situations like infection.
Collapse
Affiliation(s)
- Marcelino Cereijido
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV, AP 14-740, México D.F. 07000, México.
| | | | | | | | | |
Collapse
|
37
|
Delacour D, Greb C, Koch A, Salomonsson E, Leffler H, Le Bivic A, Jacob R. Apical Sorting by Galectin-3-Dependent Glycoprotein Clustering. Traffic 2007; 8:379-88. [PMID: 17319896 DOI: 10.1111/j.1600-0854.2007.00539.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Epithelial cells are characterized by their polarized organization based on an apical membrane that is separated from the basolateral membrane domain by tight junctions. Maintenance of this morphology is guaranteed by highly specific sorting machinery that separates lipids and proteins into different carrier populations for the apical or basolateral cell surface. Lipid-raft-independent apical carrier vesicles harbour the beta-galactoside-binding lectin galectin-3, which interacts directly with apical cargo in a glycan-dependent manner. These glycoproteins are mistargeted to the basolateral membrane in galectin-3-depleted cells, dedicating a central role to this lectin in raft-independent sorting as apical receptor. Here, we demonstrate that high-molecular-weight clusters are exclusively formed in the presence of galectin-3. Their stability is sensitive to increased carbohydrate concentrations, and cluster formation as well as apical sorting are perturbed in glycosylation-deficient Madin-Darby canine kidney (MDCK) II cells. Together, our data suggest that glycoprotein cross-linking by galectin-3 is required for apical sorting of non-raft-associated cargo.
Collapse
Affiliation(s)
- Delphine Delacour
- Department of Cell Biology and Cell Pathology, Philipps-Universität Marburg, 35033 Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Florek M, Bauer N, Janich P, Wilsch-Braeuninger M, Fargeas CA, Marzesco AM, Ehninger G, Thiele C, Huttner WB, Corbeil D. Prominin-2 is a cholesterol-binding protein associated with apical and basolateral plasmalemmal protrusions in polarized epithelial cells and released into urine. Cell Tissue Res 2006; 328:31-47. [PMID: 17109118 DOI: 10.1007/s00441-006-0324-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Accepted: 08/08/2006] [Indexed: 02/08/2023]
Abstract
Prominin-2 is a pentaspan membrane glycoprotein structurally related to the cholesterol-binding protein prominin-1, which is expressed in epithelial and non-epithelial cells. Although prominin-1 expression is widespread throughout the organism, the loss of its function solely causes retinal degeneration. The finding that prominin-2 appears to be restricted to epithelial cells, such as those found in kidney tubules, raises the possibility that prominin-2 functionally substitutes prominin-1 in tissues other than the retina and provokes a search for a definition of its morphological and biochemical characteristics. Here, we have investigated, by using MDCK cells as an epithelial cell model, whether prominin-2 shares the biochemical and morphological properties of prominin-1. Interestingly, we have found that, whereas prominin-2 is not restricted to the apical domain like prominin-1 but is distributed in a non-polarized fashion between the apical and basolateral plasma membranes, it retains the main feature of prominin-1, i.e. its selective concentration in plasmalemmal protrusions; prominin-2 is confined to microvilli, cilia and other acetylated tubulin-positive protruding structures. Similar to prominin-1, prominin-2 is partly associated with detergent-resistant membranes in a cholesterol-dependent manner, suggesting its incorporation into membrane microdomains, and binds directly to plasma membrane cholesterol. Finally, prominin-2 is also associated with small membrane particles that are released into the culture media and found in a physiological fluid, i.e. urine. Together, these data show that all the characteristics of prominin-1 are shared by prominin-2, which is in agreement with a possible redundancy in their role as potential organizers of plasma membrane protrusions.
Collapse
Affiliation(s)
- Mareike Florek
- Medical Clinic and Polyclinic I, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Chmelar RS, Nathanson NM. Identification of a novel apical sorting motif and mechanism of targeting of the M2 muscarinic acetylcholine receptor. J Biol Chem 2006; 281:35381-96. [PMID: 16968700 DOI: 10.1074/jbc.m605954200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Previous studies have shown that the M2 receptor is localized at steady state to the apical domain in Madin-Darby canine kidney (MDCK) epithelial cells. In this study, we identify the molecular determinants governing the localization and the route of apical delivery of the M2 receptor. First, by confocal analysis of a transiently transfected glycosylation mutant in which the three putative glycosylation sites were mutated, we determined that N-glycans are not necessary for the apical targeting of the M2 receptor. Next, using a chimeric receptor strategy, we found that two independent sequences within the M2 third intracellular loop can confer apical targeting to the basolaterally targeted M4 receptor, Val270-Lys280 and Lys280-Ser350. Experiments using Triton X-100 extraction followed by OptiPrep density gradient centrifugation and cholera toxin beta-subunit-induced patching demonstrate that apical targeting is not because of association with lipid rafts. 35S-Metabolic labeling experiments with domain-specific surface biotinylation as well as immunocytochemical analysis of the time course of surface appearance of newly transfected confluent MDCK cells expressing FLAG-M2-GFP demonstrate that the M2 receptor achieves its apical localization after first appearing on the basolateral domain. Domain-specific application of tannic acid of newly transfected cells indicates that initial basolateral plasma membrane expression is required for subsequent apical localization. This is the first demonstration that a G-protein-coupled receptor achieves its apical localization in MDCK cells via transcytosis.
Collapse
Affiliation(s)
- Renée S Chmelar
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195-7750, USA
| | | |
Collapse
|
40
|
Ellis MA, Potter BA, Cresawn KO, Weisz OA. Polarized biosynthetic traffic in renal epithelial cells: sorting, sorting, everywhere. Am J Physiol Renal Physiol 2006; 291:F707-13. [PMID: 16788143 DOI: 10.1152/ajprenal.00161.2006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The maintenance of apical and basolateral membrane domains with distinct protein and lipid compositions is necessary for the proper function of polarized epithelial cells. Delivery of cargo to the basolateral surface is thought to be mediated by the interaction of cytoplasmically disposed sorting signals with sorting receptors, whereas apically destined cargoes are sorted via mechanisms dependent on cytoplasmic, glycan-mediated, or lipid-interacting sorting signals. Apical and basolateral cargo are delivered to the surface in discrete tubular and vesicular carriers that bud from the trans-Golgi network (TGN). While it has long been thought that the TGN is the primary compartment in which apical and basolateral cargoes are segregated, recent studies suggest that sorting may begin earlier along the biosynthetic pathway. Moreover, rather than being delivered directly from the TGN to the cell surface, at least a subset of biosynthetic cargo appears to transit recycling endosomes en route to the plasma membrane. The implications and limitations of these challenges to the conventional model for how proteins are sorted and trafficked along the biosynthetic pathway are discussed.
Collapse
Affiliation(s)
- Mark A Ellis
- Laboratory of Epithelial Cell Biology, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
41
|
Potter BA, Weixel KM, Bruns JR, Ihrke G, Weisz OA. N-glycans mediate apical recycling of the sialomucin endolyn in polarized MDCK cells. Traffic 2006; 7:146-54. [PMID: 16420523 DOI: 10.1111/j.1600-0854.2005.00371.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Apical and basolateral proteins are maintained within distinct membrane subdomains in polarized epithelial cells by biosynthetic and postendocytic sorting processes. Sorting of basolateral proteins in these processes has been well studied; however, the sorting signals and mechanisms that direct proteins to the apical surface are less well understood. We previously demonstrated that an N-glycan-dependent sorting signal directs the sialomucin endolyn to the apical surface in polarized Madin-Darby canine kidney cells. Terminal processing of a subset of endolyn's N-glycans is key for polarized biosynthetic delivery to the apical membrane. Endolyn is subsequently internalized, and via a cytoplasmic tyrosine-based sorting motif is targeted to lysosomes from where it constitutively cycles to the cell surface. Here, we examine the polarized sorting of endolyn along the postendocytic pathway in polarized cells. Our results suggest that similar N-glycan sorting determinants are required for apical delivery of endolyn along both the biosynthetic and the postendocytic pathways.
Collapse
Affiliation(s)
- Beth A Potter
- Laboratory of Epithelial Cell Biology, Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
42
|
Delacour D, Cramm-Behrens CI, Drobecq H, Le Bivic A, Naim HY, Jacob R. Requirement for Galectin-3 in Apical Protein Sorting. Curr Biol 2006; 16:408-14. [PMID: 16488876 DOI: 10.1016/j.cub.2005.12.046] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 12/05/2005] [Accepted: 12/28/2005] [Indexed: 01/22/2023]
Abstract
The central aspect of epithelial cells is their polarized structure, characterized by two distinct domains of the plasma membrane, the apical and the basolateral membrane. Apical protein sorting requires various signals and different intracellular routes to the cell surface. The first apical targeting motif identified is the membrane anchoring of a polypeptide by glycosyl-phosphatidyl-inositol (GPI). A second group of apical signals involves N- and O-glycans, which are exposed to the luminal side of the sorting organelle. Sucrase-isomaltase (SI) and lactase-phlorizin hydrolase (LPH), which use separate transport platforms for trafficking, are two model proteins for the study of apical protein sorting. In contrast to LPH, SI associates with sphingolipid/cholesterol-enriched membrane microdomains or "lipid rafts". After exit form the trans-Golgi network (TGN), the two proteins travel in distinct vesicle populations, SAVs (SI-associated vesicles) and LAVs (LPH-associated vesicles) . Here, we report the identification of the lectin galectin-3 delivering non-raft-dependent glycoproteins in the lumen of LAVs in a carbohydrate-dependent manner. Depletion of galectin-3 from MDCK cells results in missorting of non-raft-dependent apical membrane proteins to the basolateral cell pole. This suggests a direct role of galectin-3 in apical sorting as a sorting receptor.
Collapse
Affiliation(s)
- Delphine Delacour
- Department of Cell Biology and Cell Pathology, University of Marburg, D-35033 Marburg, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Potter BA, Hughey RP, Weisz OA. Role of N- and O-glycans in polarized biosynthetic sorting. Am J Physiol Cell Physiol 2006; 290:C1-C10. [PMID: 16338974 DOI: 10.1152/ajpcell.00333.2005] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The maintenance of proper epithelial function requires efficient sorting of newly synthesized and recycling proteins to the apical and basolateral surfaces of differentiated cells. Whereas basolateral protein sorting signals are generally confined to their cytoplasmic regions, apical targeting signals have been identified that localize to luminal, transmembrane, and cytoplasmic aspects of proteins. In the past few years, both N- and O-linked glycans have been identified as apical sorting determinants. Glycan structures are extraordinarily diverse and have tremendous information potential. Moreover, because the oligosaccharides added to a given protein can change depending on cell type and developmental stage, the potential exists for altering sorting pathways by modulation of the expression pattern of enzymes involved in glycan synthesis. In this review, we discuss the evidence for glycan-mediated apical sorting along the biosynthetic pathway and present possible mechanisms by which these common and heterogeneous posttranslational modifications might function as specific sorting signals.
Collapse
Affiliation(s)
- Beth A Potter
- Laboratory of Epithelial Cell Biology, Renal-Electrolyte Division, Univ. of Pittsburgh School of Medicine, 978 Scaife Hall, 3550 Terrace St., Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
44
|
Rai T, Sasaki S, Uchida S. Polarized trafficking of the aquaporin-3 water channel is mediated by an NH2-terminal sorting signal. Am J Physiol Cell Physiol 2006; 290:C298-304. [PMID: 16135541 DOI: 10.1152/ajpcell.00356.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Epithelial renal collecting duct cells express multiple types of aquaporin (AQP) water channels in a polarized fashion. AQP2 is specifically targeted to the apical cell domain, whereas AQP3 and AQP4 are expressed on the basolateral membrane. It is crucial that these AQP variants are sorted to their proper polarized membrane domains, because correct AQP sorting enables efficient water transport. However, the molecular mechanisms involved in the polarized targeting and membrane trafficking of AQPs remain largely unknown. In the present study, we have examined the polarized trafficking and surface expression of AQP3 in Madin-Darby canine kidney type II (MDCKII) cells in an effort to identify the molecular determinants of polarized targeting specificity. When expressed in MDCKII cells, the majority of the exogenous wild-type AQP3 was found to be targeted to the basolateral membrane, consistent with its localization pattern in vivo. A potential sorting signal consisting of tyrosine- and dileucine-based motifs was subsequently identified in the AQP3 NH2 terminus. When mutations were introduced into this signaling region, the basolateral targeting of the resulting mutant AQP3 was disrupted and the mutant protein remained in the cytoplasm. AQP2-AQP3 chimeras were then generated in which the entire NH2 terminus of AQP2 was replaced with the AQP3 NH2 terminus. This chimeric protein was observed to be mislocalized constitutively in the basolateral membrane, and mutations in the AQP3 NH2-terminal sorting signal abolished this effect. On the basis of these results, we conclude that an NH2-terminal sorting signal mediates the basolateral targeting of AQP3.
Collapse
Affiliation(s)
- Tatemitsu Rai
- Dept. of Nephrology, Graduate School of Medicine, Tokyo Medical and Dental Univ., 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| | | | | |
Collapse
|
45
|
Sawamiphak S, Sophasan S, Endou H, Boonchird C. Functional expression of the rat organic anion transporter 1 (rOAT1) in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1720:44-51. [PMID: 16325760 DOI: 10.1016/j.bbamem.2005.09.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 08/30/2005] [Accepted: 09/27/2005] [Indexed: 10/25/2022]
Abstract
Organic anion transporter 1 (OAT1) is localized in the basolateral membrane of the proximal tubule in the kidney and plays an essential role in eliminating a wide range of organic anions, preventing their toxic effects on the body. Structural and functional studies of the transporter would be greatly assisted by inexpensive and rapid expression in the yeast Saccharomyces cerevisiae. The gene encoding rat OAT1 (rOAT1) contains many yeast non-preferred codons at the N-terminus and so was modified by fusion of the favored codon sequence of a hemagglutinin (HA) epitope preceding the start codon. The modified gene was cloned into several yeast expression plasmids, both integrative and multicopy, with either ADH1 promoter or GAL1 promoter in order to find a suitable expression system. Compared with the wild type gene, a substantial increase in rOAT1 expression was achieved by modification in the translational initiation region, suggesting that the codon chosen at the N-terminus influenced its expression. The highest inducible expression of rOAT1 was obtained under GAL1 promoter in 2 mu plasmid. A large fraction of rOAT1 was glycosylated in yeast, unaffected by growth temperature. The recombinant yeast expressing rOAT1 showed an increase in the uptake of p-aminohippurate (PAH) and this showed a positive correlation with rOAT1 expression level. Location of rOAT1 predominantly in the yeast plasma membrane confirmed correct processing. The importance of glycosylation for rOAT1 targeting was also shown. To our knowledge, this is the first successful functional expression of rOAT1 in the yeast S. cerevisiae.
Collapse
Affiliation(s)
- Suphansa Sawamiphak
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama 6 Road, Phayathai, Rajathevee Bangkok 10400, Thailand
| | | | | | | |
Collapse
|
46
|
Doumanov JA, Daubrawa M, Unden H, Graeve L. Identification of a basolateral sorting signal within the cytoplasmic domain of the interleukin-6 signal transducer gp130. Cell Signal 2005; 18:1140-6. [PMID: 16274960 DOI: 10.1016/j.cellsig.2005.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Accepted: 09/09/2005] [Indexed: 01/30/2023]
Abstract
Interleukin-6-type cytokine receptors are expressed in polarized cells such as hepatocytes and intestinal cells. For the interleukin-6-receptor gp80 and its signal transducer gp130, a preferential basolateral localization was demonstrated in Madin-Darby canine kidney (MDCK) cells and two basolateral sorting signals were identified within the cytoplasmic domain of gp80. The cytoplasmic tail of gp130 is responsible for signaling via the Janus kinase/signal transducer and activator of transcription pathway. In addition, it mediates the internalization of the receptor complex which is dependent on a di-leucine motif. Truncated gp130 lacking the cytoplasmic domain is sorted apically in MDCK cells. For identification of the basolateral sorting signal(s) of gp130, a series of deletion mutants in the cytoplasmic domain of gp130 have been generated and stably expressed in MDCK cells. Biotinylation analyses of these mutants show that a ten amino acids sequence between amino acids 782 and 792 which contains the di-leucine internalization motif is also essential for a basolateral sorting. Accordingly, we detect apical delivery of a gp130 mutant in which the di-leucine motif has been exchanged by two alanines (gp130LL/AA). These findings indicate that the di-leucine motif which directs the internalization of the IL-6 receptor complex also mediates the basolateral sorting of the signal transducer gp130.
Collapse
Affiliation(s)
- Jordan A Doumanov
- Institut für Biologische Chemie und Ernährungswissenschaft, Universität Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
| | | | | | | |
Collapse
|
47
|
Sasanami T, Matsushima K, Ohtsuki M, Kansaku N, Hiyama G, Mori M. Vectorial Secretion of Perivitelline Membrane Glycoprotein ZPC of Japanese Quail (Coturnix japonica) in Polarized Madin-Darby Canine Kidney Cells. Cells Tissues Organs 2005; 180:169-77. [PMID: 16260863 DOI: 10.1159/000088245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2005] [Indexed: 11/19/2022] Open
Abstract
The avian perivitelline membrane (PL), which is an investment homologous to the mammalian zona pellucida, is found between the surface of the oocyte and the apical surface of ovarian granulosa cells. Our previous study demonstrated that ZPC, one of the components of PL, is synthesized in ovarian granulosa cells. However, how the secretion of ZPC is regulated in the cells has been insufficiently investigated. We studied the secretion of quail ZPC expressed in polarized Madin-Darby canine kidney (MDCK) cells in a dual-chamber apparatus. Western blot analyses of the conditioned medium demonstrated that the majority of the secreted ZPC were distributed in the apical compartment. When ZPC lacking N-linked oligosaccharides was transfected into the cells, the 31-kDa immunoreactive band was detected in both the apical and the basolateral medium. Interestingly, immunohistochemical observations of the follicular wall demonstrated that the predominant intracellular form of ZPC in the cells localized in the apical side of the perinuclear region apposed to the PL, but not the basolateral side, indicating the possibility that ZPC could be selectively transported toward the apical surface in vivo. Taken together, these results indicated that ZPC expressed in MDCK cells are selectively released to the apical compartment, and that the N-linked carbohydrates might possess information that causes the efficient transport of ZPC to the apical surface of the cells.
Collapse
Affiliation(s)
- Tomohiro Sasanami
- Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, Shizuoka, Japan.
| | | | | | | | | | | |
Collapse
|
48
|
Alfalah M, Wetzel G, Fischer I, Busche R, Sterchi EE, Zimmer KP, Sallmann HP, Naim HY. A novel type of detergent-resistant membranes may contribute to an early protein sorting event in epithelial cells. J Biol Chem 2005; 280:42636-43. [PMID: 16230359 DOI: 10.1074/jbc.m505924200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
One sorting mechanism of apical and basolateral proteins in epithelial cells is based on their solubility profiles with Triton X-100. Nevertheless, apical proteins themselves are also segregated beyond the trans-Golgi network by virtue of their association or nonassociation with cholesterol/sphingolipid-rich microdomains (Jacob, R., and Naim, H. Y. (2001) Curr. Biol. 11, 1444-1450). Therefore, extractability with Triton X-100 does not constitute an absolute criterion of protein sorting. Here, we investigate the solubility patterns of apical and basolateral proteins with other detergents and demonstrate that the mild detergent Tween 20 is adequate to discriminate between apical and basolateral proteins during early stages in their biosynthesis. Although the mannose-rich forms of the apical proteins sucrase-isomaltase, lactase-phlorizin hydrolase, aminopeptidase N, and dipeptidylpeptidase IV reveal similar solubility profiles comprising soluble and nonsoluble fractions, the basolateral proteins, vesicular stomatitis virus G protein, major histocompatibility complex class I, and CD46 are entirely soluble with this detergent. The insoluble Tween 20 membranes are enriched in phosphatidylinositol and phosphatidylglycerol compatible with their synthesis in the endoplasmic reticulum and the existence of a novel class of detergent-resistant membranes. The association of the mannose-rich biosynthetic forms of the apical proteins, sucraseisomaltase, lactase-phlorizin hydrolase, aminopeptidase N, and dipeptidylpeptidase IV with the Tween 20-resistant membranes suggests an early polarized sorting mechanism prior to maturation in the Golgi apparatus.
Collapse
Affiliation(s)
- Marwan Alfalah
- Department of Physiological Chemistry, School of Veterinary Medicine, D-30559 Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Vagin O, Turdikulova S, Sachs G. Recombinant addition of N-glycosylation sites to the basolateral Na,K-ATPase beta1 subunit results in its clustering in caveolae and apical sorting in HGT-1 cells. J Biol Chem 2005; 280:43159-67. [PMID: 16230337 DOI: 10.1074/jbc.m508262200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In most polarized cells, the Na,K-ATPase is localized on the basolateral plasma membrane. However, an unusual location of the Na,K-ATPase was detected in polarized HGT-1 cells (a human gastric adenocarcinoma cell line). The Na,K-ATPase alpha1 subunit was detected along with the beta2 subunit predominantly on the apical membrane, whereas the Na,K-ATPase beta1 subunit was not found in HGT-1 cells. However, when expressed in the same cell line, a yellow fluorescent protein-linked Na,K-ATPase beta1 subunit was localized exclusively to the basolateral surface and resulted in partial redistribution of the endogenous alpha1 subunit to the basolateral membrane. The human beta2 subunit has eight N-glycosylation sites, whereas the beta1 isoform has only three. Accordingly, up to five additional N-glycosylation sites homologous to the ones present in the beta2 subunit were successively introduced in the beta1 subunit by site-directed mutagenesis. The mutated beta1 subunits were detected on both apical and basolateral membranes. The fraction of a mutant beta1 subunit present on the apical membrane increased in proportion to the number of glycosylation sites inserted and reached 80% of the total surface amount for the beta1 mutant with five additional sites. Clustered distribution and co-localization with caveolin-1 was detected by confocal microscopy for the endogenous beta2 subunit and the beta1 mutant with additional glycosylation sites but not for the wild type beta1 subunit. Hence, the N-glycans linked to the beta2 subunit of the Na,K-ATPase contain apical sorting information, and the high abundance of the beta2 subunit isoform, which is rich in N-glycans, along with the absence of the beta1 subunit, is responsible for the unusual apical location of the Na,K-ATPase in HGT-1 cells.
Collapse
Affiliation(s)
- Olga Vagin
- Department of Physiology, School of Medicine at UCLA, Los Angeles, California 90073, USA.
| | | | | |
Collapse
|
50
|
Warner FJ, Lew RA, Smith AI, Lambert DW, Hooper NM, Turner AJ. Angiotensin-converting enzyme 2 (ACE2), but not ACE, is preferentially localized to the apical surface of polarized kidney cells. J Biol Chem 2005; 280:39353-62. [PMID: 16166094 DOI: 10.1074/jbc.m508914200] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Angiotensin-converting enzyme-2 (ACE2) is a homologue of angiotensin-I converting enzyme (ACE), the central enzyme of the renin-angiotensin system (RAS). ACE2 is abundant in human kidney and heart and has been implicated in renal and cardiac function through its ability to hydrolyze Angiotensin II. Although ACE2 and ACE are both type I integral membrane proteins and share 61% protein sequence similarity, they display distinct modes of enzyme action and tissue distribution. This study characterized ACE2 at the plasma membrane of non-polarized Chinese hamster ovary (CHO) cells and polarized Madin-Darby canine kidney (MDCKII) epithelial cells and compared its cellular localization to its related enzyme, ACE, using indirect immunofluorescence, cell-surface biotinylation, Western analysis, and enzyme activity assays. This study shows ACE2 and ACE are both cell-surface proteins distributed evenly to detergent-soluble regions of the plasma membrane in CHO cells. However, in polarized MDCKII cells under steady-state conditions the two enzymes are differentially expressed. ACE2 is localized predominantly to the apical surface ( approximately 92%) where it is proteolytically cleaved within its ectodomain to release a soluble form. Comparatively, ACE is present on both the apical ( approximately 55%) and basolateral membranes ( approximately 45%) where it is also secreted but differentially; the ectodomain cleavage of ACE is 2.5-fold greater from the apical surface than the basolateral surface. These studies suggest that both ACE2 and ACE are ectoenzymes that have distinct localization and secretion patterns that determine their role on the cell surface in kidney epithelium and in urine.
Collapse
Affiliation(s)
- Fiona J Warner
- Proteolysis Research Group, School of Biochemistry and Microbiology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | | | | | | | |
Collapse
|