1
|
Miao Y, Jia H, Li Z, Liu Y, Hou M. Transcriptomic and Expression Analysis of the Salivary Glands in Brown Planthoppers, Nilaparvata lugens (Hemiptera: Delphacidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:2884-2893. [PMID: 30265342 DOI: 10.1093/jee/toy238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Indexed: 06/08/2023]
Abstract
The brown planthopper (BPH), Nilaparvata lugens Stål (Hemiptera: Delphacidae), is a serious rice pest because of its destructive feeding. The salivary glands of the BPH play a key role in successful feeding. In this study, we explored the salivary gland transcriptome (sialotranscriptome) of adult BPHs using Illumina sequencing and a total of 55,913 transcripts and 45,421 unigenes were obtained. We identified one reference gene RPL9 (Ribosomal protein L9) and 19 salivary protein genes from the BPH sialotranscripome, which were categorized as those involved in sugar metabolism, extra-oral digestion of cell wall components, detoxification, and suppression of plant defenses. Tissue expression profiles of 19 salivary protein genes analysis revealed that the expression level of alpha-glucosidase family 31 had no difference in five tissues, suggesting that it may have functions in the whole-body parts. Glucose dehydrogenase (flavine adenine dinucleotide, quinone)-like was expressed highly in the salivary gland, which might play putative role in insect feeding. Glucose dehydrogenase (acceptor) was expressed the highest level in head without salivary gland. Other salivary protein genes were highly expressed in gut or malpighian tubule, suggesting that they may play roles in digestive and detoxification mechanism. Moreover, we detected RPL9 is one of the genes that is most consistently present for acquisition of gene expression in different tissues. Thus, RPL9 can be a new reference for expression studies of BPH. The obtained BPH sialotranscripome provides a list of genes that have potential roles in feeding and interaction between BPHs and rice plants.
Collapse
Affiliation(s)
- Yutong Miao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Ming Yuan Road, Beijing, China
| | - Haokang Jia
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Ming Yuan Road, Beijing, China
| | - Zhen Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Ming Yuan Road, Beijing, China
| | - Yudi Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Ming Yuan Road, Beijing, China
| | - Maolin Hou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Ming Yuan Road, Beijing, China
| |
Collapse
|
2
|
Sun Z, Shi Q, Xu C, Wang R, Wang H, Song Y, Zeng R. Regulation of NlE74A on vitellogenin may be mediated by angiotensin converting enzyme through a fecundity-related SNP in the brown planthopper, Nilaparvata lugens. Comp Biochem Physiol A Mol Integr Physiol 2018; 225:26-32. [PMID: 29932974 DOI: 10.1016/j.cbpa.2018.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/01/2018] [Accepted: 06/01/2018] [Indexed: 01/28/2023]
Abstract
The major yolk protein precursors (YPP) gene, vitellogenin (Vg), usually considered as a reproductive indicator and molecular marker for evaluating insect fecundity, is controlled by insect hormone (mainly ecdysteroids and juvenile hormone), transcription factors and many other fecundity-related genes. To better understand the underlying molecular regulation mechanisms of the NlVg in the brown planthopper Nilaparvata lugens (N. lugens), the correlation between one early ecdysone response gene E74 and one important fecundity-related gene angiotensin converting enzyme (ACE) on the regulation of Vg gene expression, was investigated. We first showed that the mRNA expression level of NlACE were significantly higher in a high-fecundity population (HFP) than a low-fecundity population (LFP) at different development stages, and knockdown of NlACE expression by RNA interference (RNAi) results in a reduced level of NlVg expression and N. lugens fecundity. Subsequently, we analyzed the promoter of NlACE and found an E74A binding site, which was also differentially expressed in HFP and LFP. Then a gene putatively encoding E74A, namely NlE74A, predominant in the ovary and fat body was cloned and characterized. Furthermore, the developmental profile during female adult and the tissue-specific expression pattern of NlACE and NlE74A were similar to the expression pattern of NlVg gene, implying that both NlACE and NlE74A may be involved in regulating the expression of NlVg. Finally, after injecting the dsRNA of NlE74A, the NlACE expression levels were significantly reduced simultaneously at 24 h and 48 h post-injection, and the NlVg expression level was significant reduced at 24 h post-injection and the downswing was more significant at 48 h post-injection. These results imply that regulation of NlE74A on NlVg transcription might be mediated by NlACE through the E74 binding site at the NlACE promoter region in N. lugens.
Collapse
Affiliation(s)
- Zhongxiang Sun
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qi Shi
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cuicui Xu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rumeng Wang
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huanhuan Wang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanyuan Song
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Rensen Zeng
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
3
|
Nagaoka S, Kawasaki S, Kawasaki H, Kamei K. The angiotensin converting enzyme (ACE) inhibitor, captopril disrupts the motility activation of sperm from the silkworm, Bombyx mori. JOURNAL OF INSECT PHYSIOLOGY 2017; 103:18-28. [PMID: 28964767 DOI: 10.1016/j.jinsphys.2017.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 06/07/2023]
Abstract
Angiotensin I-converting enzyme (also known as peptidyl dicarboxypeptidase A, ACE, and EC 3.4.15.1), which is found in a wide range of organisms, cleaves C-terminal dipeptides from relatively short oligopeptides. Mammalian ACE plays an important role in the regulation of blood pressure. However, the precise physiological functions of insect ACE homologs have not been understood. As part of our effort to elucidate new physiological roles of insect ACE, we herein report a soluble ACE protein in male reproductive secretions from the silkmoth, Bombyx mori. Seminal vesicle sperm are quiescent in vitro, but vigorous motility is activated by treatment with either a glandula (g.) prostatica homogenate or trypsin in vitro. When seminal vesicle sperm were pre-incubated with captopril, a strong and specific inhibitor of mammalian ACE, and then stimulated to initiate motility by the addition of the g. prostatica homogenate or trypsin, the overall level of acquired motility was reduced in an inhibitor-concentration-dependent manner. In the course of this project, we detected ACE-related carboxypeptidase activity that was inhibited by captopril in both the vesicular (v.) seminalis of the noncopulative male reproductive tract and in the spermatophore that forms in the female bursa copulatrix at the time of mating, just as in an earlier report on the tomato moth, Lacanobia oleracea, which belongs to a different lepidopteran species (Ekbote et al., 2003a). Two distinct genes encoding ACE-like proteins were identified by analysis of B. mori cDNA, and were named BmAcer and BmAcer2, respectively [the former was previously reported by Quan et al. (2001) and the latter was first isolated in this paper]. RT-qPCR and Western blot analyses indicated that the BmAcer2 was predominantly produced in v. seminalis and transferred to the spermatophore during copulation, while the BmAcer was not detected in the adult male reproductive organs. A recombinant protein of BmAcer2 (devoid of a signal peptide) that was expressed in Escherichia coli cells exhibited captopril-sensitive carboxypeptidase activities. Our findings show that the BmAcre2 gene encodes a secreted ACE protein included in the Bombyx seminal plasma. In particular, the silkworm ACE protein in the seminal fluid might be involved in the signaling pathway that leads to the activation and regulation of sperm motility.
Collapse
Affiliation(s)
- Sumiharu Nagaoka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; The Center for Advanced Insect Research Promotion (CAIRP), Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Saori Kawasaki
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hideki Kawasaki
- Faculty of Agriculture, Utsunomiya University, 350 Mine, Tochigi 321-8505, Japan
| | - Kaeko Kamei
- Department of Biomolecular Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
4
|
Yan HY, Mita K, Zhao X, Tanaka Y, Moriyama M, Wang H, Iwanaga M, Kawasaki H. The angiotensin-converting enzyme (ACE) gene family of Bombyx mori. Gene 2017; 608:58-65. [DOI: 10.1016/j.gene.2017.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/09/2016] [Accepted: 01/19/2017] [Indexed: 01/07/2023]
|
5
|
Zhang C, Wang Y, Fang Q, Xu M, Lv M, Liao J, Li S, Nie Z, Zhang W. Thymosin From Bombyx mori Is Down-Regulated in Expression by BmNPV Exhibiting Antiviral Activity. JOURNAL OF INSECT SCIENCE (ONLINE) 2016; 16:75. [PMID: 27432352 PMCID: PMC4948601 DOI: 10.1093/jisesa/iew039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 05/09/2016] [Indexed: 06/06/2023]
Abstract
Thymosins have been highly conserved during evolution. These hormones exist in many animal species and play an essential role in many biological events. However, little is known regarding the physiological function of silkworm Bombyx mori thymosin (BmTHY). In this study, we investigated the expression pattern of BmTHY in a Bombyx mori larval ovarian cell line (BmN) challenged with Bombyx mori nuclear polyhydrosis virus (BmNPV) and the antiviral effect of recombinant BmTHY (rBmTHY) for Bombyx mori against BmNPV. Western-blot assay and qRT-PCR analysis revealed that the level of BmTHY protein expression and transcription decreased over time when BmN cells were infected by BmNPV. Treatment with endotoxin-free rBmTHY led to a significant reduction in viral titer in the supernatant of BmN cells challenged with BmNPV. The results from antiviral tests performed in vitro and in vivo showed that endotoxin-free rBmTHY improved the survival rate of Bombyx mori infected with BmNPV. These findings suggest that BmTHY exerts immunomodulatory effects on Bombyx mori, rendering them resistant to viral infection.
Collapse
Affiliation(s)
- Chen Zhang
- College of Life Science, Institute of Biochemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China (; ; ; ; ; ; wuxinzm@126. com; )
| | - Yongdi Wang
- College of Life Science, Institute of Biochemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China (; ; ; ; ; ; wuxinzm@126. com; )
| | - Qiang Fang
- College of Life Science, Institute of Biochemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China (; ; ; ; ; ; wuxinzm@126. com; )
| | - Minlin Xu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mengyuan Lv
- College of Life Science, Institute of Biochemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China (; ; ; ; ; ; wuxinzm@126. com; )
| | - Jinxu Liao
- College of Life Science, Institute of Biochemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China (; ; ; ; ; ; wuxinzm@126. com; )
| | - Si Li
- College of Life Science, Institute of Biochemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China (; ; ; ; ; ; wuxinzm@126. com; )
| | - Zuoming Nie
- College of Life Science, Institute of Biochemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China (; ; ; ; ; ; wuxinzm@126. com; ) Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, China
| | - Wenping Zhang
- College of Life Science, Institute of Biochemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China (; ; ; ; ; ; wuxinzm@126. com; ) Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, China
| |
Collapse
|
6
|
Li Z, An XK, Liu YD, Hou ML. Transcriptomic and Expression Analysis of the Salivary Glands in White-Backed Planthoppers, Sogatella furcifera. PLoS One 2016; 11:e0159393. [PMID: 27414796 PMCID: PMC4945012 DOI: 10.1371/journal.pone.0159393] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/03/2016] [Indexed: 11/18/2022] Open
Abstract
The white-backed planthopper (WBPH), Sogatella furcifera (Horváth), is one of the serious rice pests because of its destructive feeding. The salivary glands of the WBPH play an important role in the feeding behaviour. Currently, however, very little is known about the salivary glands at the molecular level. We sequenced the salivary gland transcriptome (sialotranscripome) of adult WBPHs using the Illumina sequencing. A total of 65,595 transcripts and 51,842 unigenes were obtained from salivary glands. According to annotations against the Nr database, many of the unigenes identified were associated with the most studied enzymes in hemipteran saliva. In the present study, we identified 32 salivary protein genes from the WBPH sialotranscripome, which were categorized as those involved in sugar metabolism, detoxification, suppression of plant defense responses, immunity-related responses, general digestion, and other phytophagy processes. Tissue expression profiles analysis revealed that four of 32 salivary protein genes (multicopper oxidase 4, multicopper oxidase 6, carboxylesterase and uridine phosphorylase 1 isform X2) were primarily expressed in the salivary gland, suggesting that they played putative role in insect-rice interactions. 13 of 32 salivary protein genes were primarily expressed in gut, which might play putative role in digestive and detoxify mechanism. Development expression profiles analysis revealed that the expression level of 26 of 32 salivary protein genes had no significant difference, suggesting that they may play roles in every developmental stages of salivary gland of WBPH. The other six genes have a high expression level in the salivary gland of adult. 31 of 32 genes (except putative acetylcholinesterase 1) have no significant difference in male and female adult, suggesting that their expression level have no difference between sexes. This report analysis of the sialotranscripome for the WBPH, and the transcriptome provides a foundational list of the genes involved in feeding. Our data will be useful to investigate the mechanisms of interaction between the WBPH and the host plant.
Collapse
Affiliation(s)
- Zhen Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Ming Yuan Road, Beijing 100193, China
| | - Xing-Kui An
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Ming Yuan Road, Beijing 100193, China
| | - Yu-Di Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Ming Yuan Road, Beijing 100193, China
- * E-mail:
| | - Mao-Lin Hou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Ming Yuan Road, Beijing 100193, China
| |
Collapse
|
7
|
Wang W, Luo L, Lu H, Chen S, Kang L, Cui F. Angiotensin-converting enzymes modulate aphid-plant interactions. Sci Rep 2015; 5:8885. [PMID: 25744345 PMCID: PMC4351530 DOI: 10.1038/srep08885] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 02/10/2015] [Indexed: 12/21/2022] Open
Abstract
Angiotensin-converting enzymes (ACEs) are key components of the renin–angiotensin system in mammals. However, the function of ACE homologs in insect saliva is unclear. Aphids presumably deliver effector proteins via saliva into plant cells to maintain a compatible insect–plant interaction. In this study, we showed that ACE modulates aphid–plant interactions by affecting feeding behavior and survival of aphids on host plants. Three ACE genes were identified from the pea aphid Acyrthosiphon pisum genome. ACE1 and ACE2 were highly expressed in the salivary glands and are predicted to function as secretory proteins. The ACE2 transcript level decreased in aphids fed on artificial diet compared with aphids fed on Vicia faba. The knockdown of the expression of each ACE by RNAi failed to affect aphid survival. When ACE1 and ACE2 were simultaneously knocked down, aphid feeding was enhanced. Aphids required less time to find the phloem sap and showed longer passive ingestion. However, the simultaneous knockdown of ACE1 and ACE2 resulted in a higher mortality rate than the control group when aphids were fed on plants. These results indicated that ACE1 and ACE2 function together to modulate A. pisum feeding and survival on plants.
Collapse
Affiliation(s)
- Wei Wang
- 1] State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China [2] College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Lan Luo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shaoliang Chen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
8
|
Zhang YL, Xue RY, Cao GL, Zhu YX, Pan ZH, Gong CL. Shotgun proteomic analysis of wing discs from the domesticated silkworm (Bombyx mori) during metamorphosis. Amino Acids 2013; 45:1231-41. [PMID: 24005483 DOI: 10.1007/s00726-013-1588-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 08/27/2013] [Indexed: 11/24/2022]
Abstract
Proteomic profiles from the wing discs of silkworms at the larval, pupal, and adult moth stages were determined using shotgun proteomics and MS sequencing. We identified 241, 218, and 223 proteins from the larval, pupal, and adult moth stages, respectively, of which 139 were shared by all three stages. In addition, there were 55, 37, and 43 specific proteins identified at the larval, pupal, and adult moth stages, respectively. More metabolic enzymes were identified among the specific proteins expressed in the wing disc of larvae compared with pupae and moths. The identification of FKBP45 and the chitinase-like protein EN03 as two proteins solely expressed at the larval stage indicate these two proteins may be involved in the immunological functions of larvae. The myosin heavy chain was identified in the pupal wing disc, suggesting its involvement in the formation of wing muscle. Some proteins, such as proteasome alpha 3 subunits and ribosomal proteins, specifically identified from the moth stage may be involved in the degradation of old cuticle proteins and new cuticle protein synthesis. Gene ontology analysis of proteins specific to each of these three stages enabled their association with cellular component, molecular function, and biological process categories. The analysis of similarities and differences in these identified proteins will greatly further our understanding of wing disc development in silkworm and other insects.
Collapse
Affiliation(s)
- Yi-ling Zhang
- School of Biology and Basic Medical Sciences, Soochow University, No.199 Ren'ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park, Suzhou, 215123, People's Republic of China
| | | | | | | | | | | |
Collapse
|
9
|
Shotgun proteomic analysis on the diapause and non-diapause eggs of domesticated silkworm Bombyx mori. PLoS One 2013; 8:e60386. [PMID: 23580252 PMCID: PMC3620277 DOI: 10.1371/journal.pone.0060386] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 02/27/2013] [Indexed: 12/31/2022] Open
Abstract
To clarify the molecular mechanisms of silkworm diapause, it is necessary to investigate the molecular basis at protein level. Here, the spectra of peptides digested from silkworm diapause and non-diapause eggs were obtained from liquid chromatography tandem mass spectrometry (LC-MS/MS) and were analyzed by bioinformatics methods. A total of 501 and 562 proteins were identified from the diapause and non-diapause eggs respectively, of which 309 proteins were shared commonly. Among these common-expressed proteins, three main storage proteins (vitellogenin precursor, egg-specific protein and low molecular lipoprotein 30 K precursor), nine heat shock proteins (HSP19.9, 20.1, 20.4, 20.8, 21.4, 23.7, 70, 90-kDa heat shock protein and heat shock cognate protein), 37 metabolic enzymes, 22 ribosomal proteins were identified. There were 192 and 253 unique proteins identified in the diapause and non-diapause eggs respectively, of which 24 and 48 had functional annotations, these unique proteins indicated that the metabolism, translation of the mRNA and synthesis of proteins were potentially more highly represented in the non-dipause eggs than that in the diapause eggs. The relative mRNA levels of four identified proteins in the two kinds of eggs were also compared using quantitative reverse transcription PCR (qRT-PCR) and showed some inconsistencies with protein expression. GO signatures of 486 out of the 502 and 545 out of the 562 proteins identified in the diapause and non-diapause eggs respectively were available. In addition, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed the Metabolism, Translation and Transcription pathway were potentially more active in the non-dipause eggs at this stage.
Collapse
|
10
|
Rao SAK, Carolan JC, Wilkinson TL. Proteomic profiling of cereal aphid saliva reveals both ubiquitous and adaptive secreted proteins. PLoS One 2013; 8:e57413. [PMID: 23460852 PMCID: PMC3584018 DOI: 10.1371/journal.pone.0057413] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 01/22/2013] [Indexed: 12/29/2022] Open
Abstract
The secreted salivary proteins from two cereal aphid species, Sitobion avenae and Metopolophium dirhodum, were collected from artificial diets and analysed by tandem mass spectrometry. Protein identification was performed by searching MS data against the official protein set from the current pea aphid (Acyrthosiphon pisum) genome assembly and revealed 12 and 7 proteins in the saliva of S. avenae and M. dirhodum, respectively. When combined with a comparable dataset from A. pisum, only three individual proteins were common to all the aphid species; two paralogues of the GMC oxidoreductase family (glucose dehydrogenase; GLD) and ACYPI009881, an aphid specific protein previously identified as a putative component of the salivary sheath. Antibodies were designed from translated protein sequences obtained from partial cDNA sequences for ACYPI009881 and both saliva associated GLDs. The antibodies detected all parent proteins in secreted saliva from the three aphid species, but could only detect ACYPI009881, and not saliva associated GLDs, in protein extractions from the salivary glands. This result was confirmed by immunohistochemistry using whole and sectioned salivary glands, and in addition, localised ACYPI009881 to specific cell types within the principal salivary gland. The implications of these findings for the origin of salivary components and the putative role of the proteins identified are discussed in the context of our limited understanding of the functional relationship between aphid saliva and the plants they feed on. The mass spectrometry data have been deposited to the ProteomeXchange and can be accessed under the identifier PXD000113.
Collapse
Affiliation(s)
- Sohail A. K. Rao
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - James C. Carolan
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Tom L. Wilkinson
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
11
|
Riviere G, Fellous A, Franco A, Bernay B, Favrel P. A crucial role in fertility for the oyster angiotensin-converting enzyme orthologue CgACE. PLoS One 2011; 6:e27833. [PMID: 22174750 PMCID: PMC3235092 DOI: 10.1371/journal.pone.0027833] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 10/26/2011] [Indexed: 11/19/2022] Open
Abstract
Angiotensin-converting enzyme (ACE) is a highly conserved metallopeptidase. In mammals, the somatic isoform governs blood pressure whereas the germinal isoform (tACE) is required for fertility. In Ecdysozoans, ACE-like enzymes are implicated in reproduction. Despite ACE orthologues being present from bacteria to humans, their function(s) remain(s) unknown in distant organisms such as Lophotrochozoans. In silico analysis of an oyster (Crassostrea gigas) EST library suggested the presence of an ACE orthologue in molluscs. Primer walking and 5'-RACE revealed that the 1.9 kb cDNA encodes CgACE, a 632 amino acid protein displaying a conserved single active site and a putative C-terminal transmembrane anchor, thus resembling human tACE, as supported by molecular modelling. FRET activity assays and Maldi-TOF spectrometry indicated that CgACE is a functional dipeptidyl-carboxypeptidase which is active on Angiotensin I and sensitive to ACE inhibitors and chloride ion concentration. Immunocytochemistry revealed that, as its human counterpart, recombinant CgACE is synthesised as a transmembrane enzyme. RT-qPCR, in-situ hybridization and immunohistochemistry shed light on a tissue, and development stage, specific expression pattern for CgACE, which is increased in the gonad during spermatogenesis. The use of ACE inhibitors in vivo indicates that the dipeptidase activity of CgACE is crucial for the oyster fertilization. Our study demonstrates that a transmembrane active ACE is present in the oyster Crassostrea gigas, and for the first time ascribes a functional role for ACE in Lophotrochozoans. Its biological function in reproduction is conserved from molluscs to humans, a finding of particular evolutionary interest especially since oysters represent the most important aquaculture resource worldwide.
Collapse
Affiliation(s)
- Guillaume Riviere
- UMR M100 Physiologie et Ecophysiologie des Mollusques Marins, Université de Caen Basse-Normandie - IFREMER, Caen, France.
| | | | | | | | | |
Collapse
|
12
|
Rivière G. L'enzyme de conversion de l'angiotensine : une protéase conservée au cours de l'évolution. ACTA ACUST UNITED AC 2010; 203:281-93. [DOI: 10.1051/jbio/2009032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Zhao Y, Xu C. [Structure and function of angiotensin converting enzyme and its inhibitors]. SHENG WU GONG CHENG XUE BAO = CHINESE JOURNAL OF BIOTECHNOLOGY 2009; 24:171-6. [PMID: 18464595 PMCID: PMC7148949 DOI: 10.1016/s1872-2075(08)60007-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Angiotensin converting enzyme (ACE, EC 3.4.15.1) is a membrane-bound, zinc dependent dipeptidase that catalyzes the conversion of the decapeptide angiotensin I to the potent vasopressor octapeptide angiotensin II by removing the two C-terminal amino acids. ACE is well known to be a key part of the rennin-angiotensin system that regulates blood pressure. The inhibitors of ACE have the potency of treating hypertension. This article reviews the structure-function relationship of ACE as well as its gene polymorphism and inhibitor development. In particular, it has been found that the catalytic mechanisms of the two active sites of somatic ACE in the cleavage of angiotensin I and bradykin are different. Therefore, by specifically targeting the individual active sites of somatic ACE, it will likely offer a new way to develop novel ACE inhibitors with fewer side effects.
Collapse
Affiliation(s)
- Yulan Zhao
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | | |
Collapse
|
14
|
Carolan JC, Fitzroy CIJ, Ashton PD, Douglas AE, Wilkinson TL. The secreted salivary proteome of the pea aphid Acyrthosiphon pisum characterised by mass spectrometry. Proteomics 2009; 9:2457-67. [PMID: 19402045 DOI: 10.1002/pmic.200800692] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2008] [Indexed: 11/07/2022]
Abstract
Nine proteins secreted in the saliva of the pea aphid Acyrthosiphon pisum were identified by a proteomics approach using GE-LC-MS/MS and LC-MS/MS, with reference to EST and genomic sequence data for A. pisum. Four proteins were identified by their sequences: a homolog of angiotensin-converting enzyme (an M2 metalloprotease), an M1 zinc-dependant metalloprotease, a glucose-methanol-choline (GMC)-oxidoreductase and a homolog to regucalcin (also known as senescence marker protein 30). The other five proteins are not homologous to any previously described sequence and included an abundant salivary protein (represented by ACYPI009881), with a predicted length of 1161 amino acids and high serine, tyrosine and cysteine content. A. pisum feeds on plant phloem sap and the metalloproteases and regucalcin (a putative calcium-binding protein) are predicted determinants of sustained feeding, by inactivation of plant protein defences and inhibition of calcium-mediated occlusion of phloem sieve elements, respectively. The amino acid composition of ACYPI009881 suggests a role in the aphid salivary sheath that protects the aphid mouthparts from plant defences, and the oxidoreductase may promote gelling of the sheath protein or mediate oxidative detoxification of plant allelochemicals. Further salivary proteins are expected to be identified as more sensitive MS technologies are developed.
Collapse
Affiliation(s)
- James C Carolan
- UCD School of Biology and Environmental Science, University College Dublin, Dublin, Ireland.
| | | | | | | | | |
Collapse
|
15
|
Lemeire E, Vanholme B, Van Leeuwen T, Van Camp J, Smagghe G. Angiotensin-converting enzyme in Spodoptera littoralis: molecular characterization, expression and activity profile during development. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 38:166-175. [PMID: 18207078 DOI: 10.1016/j.ibmb.2007.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 10/07/2007] [Accepted: 10/09/2007] [Indexed: 05/25/2023]
Abstract
The characterization of the full-length angiotensin-converting enzyme (ACE) cDNA sequence of the lepidopteran Spodoptera littoralis is reported in this study. The predicted open reading frame encodes a 647 amino acids long protein (SlACE) and shows 63.6% identity with the Bombyx mori ACE sequence. A 3D-model, consisting of 26 alpha-helices and three beta-sheets, was predicted for the sequence. SlACE expression was studied in the embryonic, larval and pupal stages of S. littoralis and in different tissues of the last larval stage by reverse-transcribed PCR. This revealed that the gene is expressed throughout the life cycle and especially in brain, gut and fat body tissue of the last stage. These results are in agreement with a role of ACE in the metabolism of neuropeptides and gut hormones. In addition, ACE activity has been studied in more detail during development, making use of a fluorescent assay. High ACE peptidase activity coincides with every transition state, from embryo to larva, from larva to larva and from larva to pupa. A peak value in activity occurs during the early pupal stage. These results indicate the importance of SlACE during metamorphosis and reveal the high correlation of ACE activity with the insect's development, which is regulated by growth and developmental hormones.
Collapse
Affiliation(s)
- Els Lemeire
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | | | | | | | | |
Collapse
|
16
|
Kamech N, Simunic J, Franklin SJ, Francis S, Tabitsika M, Soyez D. Evidence for an angiotensin-converting enzyme (ACE) polymorphism in the crayfish Astacus leptodactylus. Peptides 2007; 28:1368-74. [PMID: 17628211 DOI: 10.1016/j.peptides.2007.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 06/11/2007] [Accepted: 06/11/2007] [Indexed: 11/15/2022]
Abstract
The present study was initiated to characterize angiotensin-converting enzyme (ACE) in Crustaceans. Using degenerate DNA primers deduced from consensus sequences located upward and downward from the active site of ACEs from different arthropod species, several tissues from the crayfish Astacus leptodactylus were screened by RT-PCR. Amplicons were obtained from hepatopancreas, testis and hemocytes. Analysis of the predicted protein sequences after cloning and Northern blot experiments revealed an original and complex polymorphism of the ACE-like active site. Two variants were obtained in the hepatopancreas, one displaying a 6.4 kb size transcript, probably corresponding to a double domain ACE, with an unusual active site structure while the other had a transcript size of 2.5 kb, close to the size of the transcript obtained in testis and hemocytes (2 and 3kb, respectively), likely representing single domain enzymes. Functional assays using a synthetic substrate were performed from the different tissues and showed a maximal ACE-like activity associated to membrane fraction from testis and hepatopancreas.
Collapse
Affiliation(s)
- Nédia Kamech
- Université Pierre et Marie Curie-Paris 6, FRE CNRS 2852, Protéines, Biochimie Structurale et Fonctionnelle, Equipe Biogenèse des Peptides Isomères, 7 Quai Saint Bernard, 75251 Paris cedex 05, France.
| | | | | | | | | | | |
Collapse
|
17
|
Isaac RE, Lamango NS, Ekbote U, Taylor CA, Hurst D, Weaver RJ, Carhan A, Burnham S, Shirras AD. Angiotensin-converting enzyme as a target for the development of novel insect growth regulators. Peptides 2007; 28:153-62. [PMID: 17157962 DOI: 10.1016/j.peptides.2006.08.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 08/14/2006] [Accepted: 08/14/2006] [Indexed: 11/25/2022]
Abstract
Insect angiotensin converting enzyme (ACE) is a zinc metallopeptidase capable of inactivating a variety of small to medium size peptide hormones by cleavage of C-terminal dipeptides and dipeptideamides. High levels of ACE activity are found in the hemolymph and in reproductive tissues of insects, where the enzyme is considered to have an important role in the metabolism of bioactive peptides. Therefore, inhibiting ACE activity is expected to interfere with the peptidergic endocrine system and to have detrimental effects on growth, development and reproduction. We will review the studies showing that ACE inhibitors do indeed disrupt growth and reproduction in various insect species. We will also present some new genetic and pharmacological data that strengthens our conclusion that ACE should be considered as a potential target for the development of new insect growth regulators.
Collapse
Affiliation(s)
- R Elwyn Isaac
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Vercruysse L, Gelman D, van de Velde S, Raes E, Hooghe B, Vermeirssen V, van Camp J, Smagghe G. ACE inhibitor captopril reduces ecdysteroids and oviposition in moths. Ann N Y Acad Sci 2006; 1040:498-500. [PMID: 15891100 DOI: 10.1196/annals.1327.102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
By using the selective ACE inhibitor captopril, we studied the effect of the angiotensin converting enzyme (ACE) on larval growth, metamorphosis, and reproduction in a lepidopteran species, the cotton leafworm, Spodoptera littoralis. Captopril was detrimental to adult formation and oviposition, and in female moths it elicited decreasing ecdysteroid levels, but increasing trypsin activities. Our results suggest that captopril downregulates oviposition by two independent pathways. Apparently, oviposition is influenced by a complex interaction of ACE, trypsin activity, and ecdysteroid levels.
Collapse
Affiliation(s)
- L Vercruysse
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Zhong YS, Mita K, Shimada T, Kawasaki H. Glycine-rich protein genes, which encode a major component of the cuticle, have different developmental profiles from other cuticle protein genes in Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2006; 36:99-110. [PMID: 16431278 DOI: 10.1016/j.ibmb.2005.07.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 07/19/2005] [Accepted: 07/26/2005] [Indexed: 05/06/2023]
Abstract
Three types of GRP (glycine-rich proteins) cDNAs were identified in the EST database of Bombyx mori. These came from 21 ESTs in the W3-stage wing disc EST library. We named them BmGRP1, BmGRP2 and BmGRP3. BmGRP1 and BmGRP2 had 57% identity in deduced amino acid sequences. Expression of all BmGRPs was observed in the epidermis at the fourth molting stage, and in the wing at pupation and mid-pupal stage. It is suggested that BmGRPs contribute to larval, pupal and adult cuticles together with other cuticle proteins. Transcripts of BmGRP2 increased after 7 days of pupal stage. BmGRP2 is suggested to construct adult trachea in the wing. Hormonal response of BmGRPs was compared with that of another group of cuticular protein genes, BMWCPs. BmGRPs were induced by a pulse of 20E. Induction of BmGRP3 was observed in W1 wing discs in the presence of JHA which was added with 20E, whereas that of BMWCP2 was inhibited in the presence of JHA. Induction of BmGRPs was observed in the wing discs of V3 and W1 stages, while that of BMWCP2 was not observed in the V3 wing discs. These differences between BMWCPs and BmGRPs in response to hormones at different developmental stages are discussed.
Collapse
Affiliation(s)
- Yang-Sheng Zhong
- Faculty of Agriculture, Utsunomiya University, 350 Mine, Utsunomiya, Tochigi 321-8505, Japan
| | | | | | | |
Collapse
|
20
|
Kawasaki H, Ote M, Okano K, Shimada T, Guo-Xing Q, Mita K. Change in the expressed gene patterns of the wing disc during the metamorphosis of Bombyx mori. Gene 2005; 343:133-42. [PMID: 15563839 DOI: 10.1016/j.gene.2004.08.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Revised: 07/30/2004] [Accepted: 08/12/2004] [Indexed: 11/29/2022]
Abstract
The present study was conducted to clarify what occurs during the metamorphosis of the imaginal disc in insects. To understand the metamorphosis on a molecular level, the changes in expression profiles in the imaginal disc during metamorphosis were investigated. For this purpose, we constructed cDNA libraries from four different stages of wing discs of Bombyx mori, sequenced about 1000 cDNAs randomly collected from each library, and constructed a database of expressed sequence tags (EST). The morphological changes and expression profiles from EST were compared during those four stages. Microarray analysis was applied to quantify the expression of each gene in each stage in order to confirm whether the expression of the genes identified from EST was induced by 20-hydroxyecdysone (20E) in a stage-specific manner. Wing discs showed dynamic morphogenesis in 4-5 days during the preparatory stage of metamorphosis, which was under the control of an ecdysteroid. Different expressed profiles were observed in each of the four different stages by comparison of each EST clone. These profiles reflected the morphological changes of the Bombyx wing disc during metamorphosis. The results of expression profiles from the four stages suggested that the V4 stage was cell proliferating; W0, proliferating and the beginning of differentiation; W2, morphologically changing; W3, cuticle secreting. Microarray analysis showed the effectiveness of its application on 20E induction of genes in wing discs. The wing disc of B. mori is an exceptionally suitable system for understanding the relationship between morphological changes and the distribution of mRNA.
Collapse
Affiliation(s)
- Hideki Kawasaki
- Faculty of Agriculture, Utsunomiya University, 350 Mine, Utsunomiya, Tochigi 321-8505, Japan.
| | | | | | | | | | | |
Collapse
|
21
|
RIVIèRE G, Michaud A, Deloffre L, Vandenbulcke F, Levoye A, Breton C, Corvol P, Salzet M, Vieau D. Characterization of the first non-insect invertebrate functional angiotensin-converting enzyme (ACE): leech TtACE resembles the N-domain of mammalian ACE. Biochem J 2005; 382:565-73. [PMID: 15175004 PMCID: PMC1133813 DOI: 10.1042/bj20040522] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Revised: 05/27/2004] [Accepted: 06/03/2004] [Indexed: 11/17/2022]
Abstract
Angiotensin-converting enzyme (ACE) is a zinc metallopeptidase that plays a major role in blood homoeostasis and reproduction in mammals. In vertebrates, both transmembrane and soluble ACE, containing one or two homologous active sites, have been characterized. So far, several ACEs from invertebrates have been cloned, but only in insects. They are soluble and display a single active site. Using biochemical procedures, an ACE-like activity was detected in our model, the leech, Theromyzon tessulatum. Annelida is the most distant phylum in which an ACE activity has been observed. To gain more insight into the leech enzyme, we have developed a PCR approach to characterize its mRNA. The approx. 2 kb cDNA has been predicted to encode a 616-amino-acid soluble enzyme containing a single active site, named TtACE (T. tessulatum ACE). Surprisingly, its primary sequence shows greater similarity to vertebrates than to invertebrates. Stable in vitro expression of TtACE in transfected Chinese-hamster ovary cells revealed that the leech enzyme is a functional metalloprotease. As in mammals, this 79 kDa glycosylated enzyme functions as a dipeptidyl carboxypeptidase capable of hydrolysing angiotensin I to angiotensin II. However, a weak chloride inhibitory effect and acetylated N-acetyl-SDKP (Ac SDAcKP) hydrolysis reveal that TtACE activity resembles that of the N-domain of mammalian ACE. In situ hybridization shows that its cellular distribution is restricted to epithelial midgut cells. Although the precise roles and endogenous substrates of TtACE remain to be identified, characterization of this ancestral peptidase will help to clarify its physiological roles in non-insect invertebrate species.
Collapse
Affiliation(s)
- Guillaume RIVIèRE
- *Laboratoire de Neuroendocrinologie du Développement, UPRES-EA 2701, Bat SN4 2 étage, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq Cédex, France
| | - Annie Michaud
- †INSERM U 36, Pathologie Vasculaire et Endocrinologie Rénale, Collège de France, 11, place Marcellin Berthelot, 75231, Paris cedex 05, France
| | - Laurence Deloffre
- ‡Centro de Ciencias do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Franck Vandenbulcke
- §CNRS UMR 8017, Laboratoire de Neuroimmunologie des Annélides, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq Cedex, France
| | - Angélique Levoye
- ∥Institut Cochin, CNRS UMR 8104–INSERM U567, IFR Alfred Jost, 22 rue Méchain, 75014 Paris, France
| | - Christophe Breton
- *Laboratoire de Neuroendocrinologie du Développement, UPRES-EA 2701, Bat SN4 2 étage, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq Cédex, France
| | - Pierre Corvol
- †INSERM U 36, Pathologie Vasculaire et Endocrinologie Rénale, Collège de France, 11, place Marcellin Berthelot, 75231, Paris cedex 05, France
| | - Michel Salzet
- §CNRS UMR 8017, Laboratoire de Neuroimmunologie des Annélides, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq Cedex, France
| | - Didier Vieau
- *Laboratoire de Neuroendocrinologie du Développement, UPRES-EA 2701, Bat SN4 2 étage, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq Cédex, France
- To whom correspondence should be addressed (email )
| |
Collapse
|
22
|
Goldsmith MR, Shimada T, Abe H. The genetics and genomics of the silkworm, Bombyx mori. ANNUAL REVIEW OF ENTOMOLOGY 2005; 50:71-100. [PMID: 15355234 DOI: 10.1146/annurev.ento.50.071803.130456] [Citation(s) in RCA: 324] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We review progress in applying molecular genetic and genomic technologies to studies in the domesticated silkworm, Bombyx mori, highlighting its use as a model for Lepidoptera, and in sericulture and biotechnology. Dense molecular linkage maps are being integrated with classical linkage maps for positional cloning and marker-assisted selection. Classical mutations have been identified by a candidate gene approach. Cytogenetic and sequence analyses show that the W chromosome is composed largely of nested full-length long terminal repeat retrotransposons. Z-chromosome-linked sequences show a lack of dosage compensation. The downstream sex differentiation mechanism has been studied via the silkworm homolog of doublesex. Expressed sequence tagged databases have been used to discover Lepidoptera-specific genes, provide evidence for horizontal gene transfer, and construct microarrays. Physical maps using large-fragment bacterial artificial chromosome libraries have been constructed, and whole-genome shotgun sequencing is underway. Germline transformation and transient expression systems are well established and available for functional studies, high-level protein expression, and gene silencing via RNA interference.
Collapse
Affiliation(s)
- Marian R Goldsmith
- Biological Sciences Department, University of Rhode Island, Kingston, Rhode Island 02881, USA.
| | | | | |
Collapse
|
23
|
Vercruysse L, Gelman D, Raes E, Hooghe B, Vermeirssen V, Van Camp J, Smagghe G. The angiotensin converting enzyme inhibitor captopril reduces oviposition and ecdysteroid levels in Lepidoptera. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2004; 57:123-132. [PMID: 15484260 DOI: 10.1002/arch.20023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The role of angiotensin converting enzyme (ACE, peptidyl dipeptidase A) in metamorphic- and reproductive-related events in the Egyptian cotton leafworm, Spodoptera littoralis (Lepidoptera, Noctuidae) was studied by using the selective ACE inhibitor captopril. Although oral administration of captopril had no effect on larval growth, topical administration to new pupae resulted in a large decrease of successful adult formation. Oviposition and overall appearance of adults emerging from treated larvae did not differ significantly from those emerging from non-treated larvae. In contrast, topical or oral administration of captopril to newly emerged adults caused a reduction in oviposition. By evaluating the effect of captopril on ecdysteroid titers and trypsin activity, we revealed an additional physiological role for ACE. Captopril exerted an inhibitory effect on ecdysteroid levels in female but not in male adults. Larvae fed a diet containing captopril exhibited increased trypsin activity. A similar captopril-induced increase in trypsin activity was observed in female adults. In male adults, however, captopril elicited reduced levels of trypsin activity. Our results suggest that captopril downregulates oviposition by two independent pathways, one through ecdysteroid biosynthesis regulation, and the other through regulation of trypsin activity. Apparently, fecundity is influenced by a complex interaction of ACE, trypsin activity, and ecdysteroid levels.
Collapse
Affiliation(s)
- L Vercruysse
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Agricultural and Applied Biological Sciences, Ghent University, Ghent, Belgium.
| | | | | | | | | | | | | |
Collapse
|
24
|
Ote M, Mita K, Kawasaki H, Seki M, Nohata J, Kobayashi M, Shimada T. Microarray analysis of gene expression profiles in wing discs of Bombyx mori during pupal ecdysis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2004; 34:775-784. [PMID: 15262282 DOI: 10.1016/j.ibmb.2004.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2004] [Accepted: 04/15/2004] [Indexed: 05/24/2023]
Abstract
Wing discs of holometabolous insects undergo dramatic morphological changes during metamorphosis, a process that is controlled by the actions of hundreds of gene products. Using cDNA microarrays constructed from 5086 ESTs, we monitored the gene expression profiles in wing discs of Bombyx mori at 13 time points during pupal ecdysis (day-4 fifth instar larvae to day-0 pupae). Of the 5086 ESTs on the microarrays, 2998 ESTs had significant signals in more than half of the experiments. Of the 2998 ESTs, genes represented by 683 ESTs showed significant perturbations during pupal ecdysis. Genes previously known to be induced during metamorphosis were identified, including E75, Urbain, Chitinases, and cuticle proteins. The expressions of genes represented by 59 ESTs induced at the beginning of wandering contained genes predicted to be involved in protein degradation, amino acid metabolism, and amino acid transport. The expressions of genes represented by 147 ESTs induced after the ecdysteroid peak had a role in cuticle synthesis, pigmentation, ion transport, protein transport, and transcription regulation. The expressions of genes represented by 85 ESTs repressed after the ecdysteroid peak were predicted to be involved in nucleotide and nucleic acid metabolism and cell cycle. This indicates the involvement of several biological processes in wing disc development during metamorphosis.
Collapse
Affiliation(s)
- Manabu Ote
- Department of Agricultural and Environmental Biology, University of Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
25
|
Macours N, Hens K. Zinc-metalloproteases in insects: ACE and ECE. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2004; 34:501-510. [PMID: 15147752 DOI: 10.1016/j.ibmb.2004.03.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Accepted: 03/26/2004] [Indexed: 05/24/2023]
Abstract
Research on the angiotensin-converting enzyme (ACE) in insects has substantially advanced during the recent decade. The cloning of this enzyme in many insect species, the determination of the 3D-structure and several molecular and physiological studies have contributed to the characterization of insect ACE as we know it today: a functional enzyme with a putative role in reproduction, development and defense. The discovery of the endothelin-converting enzyme in insects occurred more recently and cloning of the corresponding cDNA has been carried out in only one insect species so far. However, activity studies and analysis of insect genomes indicate that this enzyme is also widely distributed among insect species. Making hypotheses about its putative function would be preliminary, but its wide tissue distribution suggests a major and diverse biological role.
Collapse
Affiliation(s)
- Nathalie Macours
- Laboratory for Developmental Physiology, Genomics and Proteomics, Katholieke Universiteit Leuven, Naamsestraat 59, B-3000 Leuven, Belgium.
| | | |
Collapse
|
26
|
Macours N, Poels J, Hens K, Francis C, Huybrechts R. Structure, evolutionary conservation, and functions of angiotensin- and endothelin-converting enzymes. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 239:47-97. [PMID: 15464852 PMCID: PMC7126198 DOI: 10.1016/s0074-7696(04)39002-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Angiotensin-converting enzyme, a member of the M2 metalloprotease family, and endothelin-converting enzyme, a member of the M13 family, are key components in the regulation of blood pressure and electrolyte balance in mammals. From this point of view, they serve as important drug targets. Recently, the involvement of these enzymes in the development of Alzheimer's disease was discovered. The existence of homologs of these enzymes in invertebrates indicates that these enzyme systems are highly conserved during evolution. Most invertebrates lack a closed circulatory system, which excludes the need for blood pressure regulators. Therefore, these organisms represent excellent targets for gaining new insights and revealing additional physiological roles of these important enzymes. This chapter reviews the structural and functional aspects of ACE and ECE and will particularly focus on these enzyme homologues in invertebrates.
Collapse
Affiliation(s)
- Nathalie Macours
- Laboratory for Developmental Physiology, Genomics and Proteomics, Katholieke Universteit Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|
27
|
Mita K, Morimyo M, Okano K, Koike Y, Nohata J, Kawasaki H, Kadono-Okuda K, Yamamoto K, Suzuki MG, Shimada T, Goldsmith MR, Maeda S. The construction of an EST database for Bombyx mori and its application. Proc Natl Acad Sci U S A 2003; 100:14121-6. [PMID: 14614147 PMCID: PMC283556 DOI: 10.1073/pnas.2234984100] [Citation(s) in RCA: 216] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2002] [Indexed: 11/18/2022] Open
Abstract
To build a foundation for the complete genome analysis of Bombyx mori, we have constructed an EST database. Because gene expression patterns deeply depend on tissues as well as developmental stages, we analyzed many cDNA libraries prepared from various tissues and different developmental stages to cover the entire set of Bombyx genes. So far, the Bombyx EST database contains 35,000 ESTs from 36 cDNA libraries, which are grouped into approximately 11,000 nonredundant ESTs with the average length of 1.25 kb. The comparison with FlyBase suggests that the present EST database, SilkBase, covers >55% of all genes of Bombyx. The fraction of library-specific ESTs in each cDNA library indicates that we have not yet reached saturation, showing the validity of our strategy for constructing an EST database to cover all genes. To tackle the coming saturation problem, we have checked two methods, subtraction and normalization, to increase coverage and decrease the number of housekeeping genes, resulting in a 5-11% increase of library-specific ESTs. The identification of a number of genes and comprehensive cloning of gene families have already emerged from the SilkBase search. Direct links of SilkBase with FlyBase and WormBase provide ready identification of candidate Lepidoptera-specific genes.
Collapse
Affiliation(s)
- Kazuei Mita
- Laboratory of Insect Genome, National Institute of Agrobiological Sciences, Owashi 1-2, Tsukuba, Ibaraki 305-8634, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ekbote UV, Weaver RJ, Isaac RE. Angiotensin I-converting enzyme (ACE) activity of the tomato moth, Lacanobia oleracea: changes in levels of activity during development and after copulation suggest roles during metamorphosis and reproduction. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 33:989-998. [PMID: 14505692 DOI: 10.1016/s0965-1748(03)00105-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Angiotensin I-converting enzyme (ACE) is a dipeptidyl carboxypeptidase that removes C-terminal dipeptides from relatively short oligopeptides, usually smaller than 15 amino acids. In mammals, the enzyme has several important roles in the metabolism of vasoactive peptides, but its physiological role in insects is not fully understood. We now report the properties of an ACE in a lepidopteran species (the tomato moth, Lacanobia oleracea) and suggest new physiological roles for the enzyme in this insect. ACE activity increases four-fold during the last stadium and in early pupae, a rise which, in its timing, is similar to what has been observed previously in the transition of larva to pupa in Drosophila melanogaster. This suggests that the increase in ACE activity might be of general importance for peptide metabolism during metamorphosis in holometabolous insects. High levels of ACE activity were found in the haemolymph of sixth stadium larvae and adult insects, and in the reproductive tissues of both male and female adults. Almost all of the ACE activity in the reproductive tissues was found in the accessory glands of the male and the spermatheca and bursa copulatrix of the female. The decline in accessory gland ACE in mated males and the concomitant rise in ACE activity in the spermatheca and bursa copulatrix of the female suggested the transfer of ACE from the male to the female during copulation. Using several convenient peptides as substrates, we have shown that the spermatophore/bursa copulatrix taken from mated female insects possess an aminopeptidase, a carboxypeptidase and a dipeptidase, in addition to high levels of ACE. These peptidases might be involved in the breakdown of proteins to peptides and eventually to amino acids in the spermatophore. Evidence for such a proteolytic pathway and its role in providing substrates for the TCA cycle has been obtained previously in a study of reproduction in Bombyx mori.
Collapse
Affiliation(s)
- U V Ekbote
- Molecular and Cellular Biosciences, Faculty of Biological Sciences, University of Leeds, LC Miall Building, Clarendon Way, Leeds LS2 9JT, UK
| | | | | |
Collapse
|
29
|
Noji T, Ote M, Takeda M, Mita K, Shimada T, Kawasaki H. Isolation and comparison of different ecdysone-responsive cuticle protein genes in wing discs of Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 33:671-679. [PMID: 12826094 DOI: 10.1016/s0965-1748(03)00048-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Microarray analysis was used to isolate an ecdysone up-regulated cuticle protein gene from wing discs of Bombyx mori. Transcripts of isolated cDNAs were identified by Northern blot analysis. Expression of the BMWCP10 gene was observed during the W0-W3 stages with the strongest signal being at the W2 stage. In contrast, expression of the BMWCP2 gene was observed at the W3and P0 stages. Expression of BMWCP10 was identified after exposure to 20E in vitro, while that of BMWCP2 was identified after exposure to 20E followed by its removal. Induction of BMWCP10 by 20E was observed in 30 min and was not inhibited by cycloheximide. Expression of BMWCP2 was observed in wing discs cultured for more than 18 h in a hormone-free medium after 20E removal. At least 4 h exposure to 20E was required before removal for induction of BMWCP2. Induction of BMWCP2 required protein synthesis. Thus, different ecdysone-responsive cuticle protein genes in wing discs of Bombyx mori were isolated.
Collapse
Affiliation(s)
- Takanori Noji
- Utsunomiya University, Faculty of Agriculture, 350 Mine, Utsunomiya, Tochigi 321-8505, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Siviter RJ, Taylor CAM, Cottam DM, Denton A, Dani MP, Milner MJ, Shirras AD, Isaac RE. Ance, a Drosophila angiotensin-converting enzyme homologue, is expressed in imaginal cells during metamorphosis and is regulated by the steroid, 20-hydroxyecdysone. Biochem J 2002; 367:187-93. [PMID: 12093364 PMCID: PMC1222869 DOI: 10.1042/bj20020567] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2002] [Revised: 05/30/2002] [Accepted: 07/02/2002] [Indexed: 11/17/2022]
Abstract
Ance is a single domain homologue of mammalian angiotensin-converting enzyme (ACE) and is important for normal development and reproduction in Drosophila melanogaster. Mammalian ACE is responsible for the synthesis of angiotensin II and the inactivation of bradykinin and N -acetyl-Ser-Asp-Lys-Pro, but the absence of similar peptide hormones in insects suggests novel functions for Ance. We now provide evidence in support of a role for Ance during Drosophila metamorphosis. The transition of larva to pupa was accompanied by a 3-fold increase in ACE-like activity, which subsequently dropped to larval levels on adult eclosion. This increase was attributed to the induction of Ance expression during the wandering phase of the last larval instar in the imaginal cells (imaginal discs, abdominal histoblasts, gut imaginal cells and imaginal salivary gland). Ance expression was particularly strong in the presumptive adult midgut formed as a result of massive proliferation of the imaginal midgut cells soon after pupariation. No Ance transcripts were detected in the midgut of the fully differentiated adult intestine. Ance protein and mRNA were not detected in imaginal discs from wandering larvae of flies homozygous for the ecd ( 1 ) allele, a temperature-sensitive ecdysone-less mutant, suggesting that Ance expression is ecdysteroid-dependent. Physiological levels of 20-hydroxyecdysone induced the synthesis of ACE-like activity and Ance protein by a wing disc cell line (Cl.8+), confirming that Ance is an ecdysteroid-responsive gene. We propose that the expression of Ance in imaginal cells is co-ordinated by exposure to ecdysteroid (moulting hormone) during the last larval instar moult to increase levels of ACE-like activity during metamorphosis. The enzyme activity may be required for the processing of a developmental peptide hormone or may function in concert with other peptidases to provide amino acids for the synthesis of adult proteins.
Collapse
Affiliation(s)
- Richard J Siviter
- Molecular and Cellular Biosciences, Faculty of Biological Sciences, L. C. Miall Building, University of Leeds, Leeds, LS2 9JT, U.K
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Vandingenen A, Hens K, Baggerman G, Macours N, Schoofs L, De Loof A, Huybrechts R. Isolation and characterization of an angiotensin converting enzyme substrate from vitellogenic ovaries of Neobellieria bullata. Peptides 2002; 23:1853-63. [PMID: 12383874 DOI: 10.1016/s0196-9781(02)00144-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Vitellogenic ovaries of the gray fleshfly Neobellieria bullata contain a variety of unidentified substances that interact, either as a substrate or as an inhibitor, with angiotensin converting enzyme (ACE). We here report the isolation and characterization of the first ACE interactive compound hereof. This 1312.7 Da peptide with the sequence NKLKPSQWISL, is substrate to both insect and human ACE. It is a novel peptide that shows high sequence similarity to a sequence at the N-terminal part of dipteran yolk polypeptides (YPs). We propose to call it N. bullata ovary-derived ACE interactive factor or Neb-ODAIF. Both insect and human ACE hydrolyze Neb-ODAIF by sequentially cleaving off two C-terminal dipeptides. K(m) values of Neb-ODAIF and Neb-ODAIF(1-9) (NKLKPSQWI) for human somatic ACE (sACE) are 17 and 81 microM, respectively. Additionally, Neb-ODAIF(1-7) (NKLKPSQ) also interacts with sACE (K(m/i)=90 microM). These affinity-constants are in range with those of the physiological ACE substrates and suggest the importance of Neb-ODAIF and its cleavage products in the elucidation of the physiological role of insect ACE. Alternatively, they can serve as lead compounds in the development of new drugs against ACE-related diseases in humans.
Collapse
Affiliation(s)
- Anick Vandingenen
- Laboratory of Developmental Physiology and Molecular Biology, Zoological Institute of the Catholic University of Leuven, Naamsestraat 59, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
32
|
Hens K, Vandingenen A, Macours N, Baggerman G, Karaoglanovic AC, Schoofs L, De Loof A, Huybrechts R. Characterization of four substrates emphasizes kinetic similarity between insect and human C-domain angiotensin-converting enzyme. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:3522-30. [PMID: 12135492 DOI: 10.1046/j.1432-1033.2002.03043.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Angiotensin converting enzyme (ACE) was already discovered in insects in 1994, but its physiological role is still enigmatic. We have addressed this problem by purifying four new ACE substrates from the ovaries of the grey fleshfly, Neobellieria bullata. Their primary structures were identified as NKLKPSQWISLSD (Neb-ODAIF-1(1-13)), NKLKPSQWI (Neb-ODAIF-1(1-9)), SLKPSNWLTPSE (Neb-ODAIF-2) and LEQIYHL. Database analysis showed significant homology with amino acid sequence stretches as present in the N-terminal part of several fly yolk proteins. An antiserum raised against Neb-ODAIF-1(1-9) immunostained one out of three yolk protein bands of SDS/PAGE-separated fly haemolymph and egg homogenate, thus confirming that these peptides originate from a yolk protein gene product. Kinetic analysis of these peptides and of the peptides Neb-ODAIF and Neb-ODAIF-1(1-7) with insect ACE and human ACE show both similar and unique properties for insect ACE as compared with human C-domain ACE.
Collapse
Affiliation(s)
- Korneel Hens
- Zoological Institute of the Catholic University of Leuven, Laboratory of Developmental Physiology and Molecular Biology, Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Baggerman G, Huybrechts J, Clynen E, Hens K, Harthoorn L, Van der Horst D, Poulos C, De Loof A, Schoofs L. New insights in Adipokinetic Hormone (AKH) precursor processing in Locusta migratoria obtained by capillary liquid chromatography-tandem mass spectrometry. Peptides 2002; 23:635-44. [PMID: 11897382 DOI: 10.1016/s0196-9781(01)00657-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
After translation, the AKH I and AKH II precursors form three dimeric constructs prior to further processing into the respective AKHs and three dimeric Adipokinetic Hormone Precursor Related Peptides or APRPs (two homodimers and one heterodimer). By capillary liquid chromatography-tandem mass spectrometry we demonstrate that the APRPs in Locusta migratoria are further processed to form two smaller neuropeptides: DAADFADPYSFL (residue 36 to 47 of the AKH I precursor) and YADPNADPMAFL (residue 34 to 45 of the AKH II precursor). The peptides are designated as Adipokinetic Hormone Joining Peptide 1 (AKH-JP I) and 2 (AKH-JP II) respectively. Within the AKH I and AKH II precursor molecules, the classic KK and RR processing sites separate the AKH-JPs from the AKH I and II respectively. At the carboxyterminus, both AKH-JP I and II are flanked by Tyr-Arg, a cleaving site not described before. Such an unusual cleavage site suggests the presence, in the corpora cardiaca, of specific convertases. The AKH-JP-II does not stimulate lipid release from the fat body nor does it stimulate glycogen phosphorylase activity, both key functions of AKH.
Collapse
Affiliation(s)
- G Baggerman
- Laboratory for Developmental Physiology and Molecular Biology. KULeuven, 59 Naamsestraat B-3000, Leuven, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Zhao X, Mita K, Shimada T, Okano K, Quan GX, Kanke E, Kawasaki H. Isolation and expression of an ecdysteroid-inducible neutral endopeptidase 24.11-like gene in wing discs of Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2001; 31:1213-1219. [PMID: 11583934 DOI: 10.1016/s0965-1748(01)00069-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In the process of comparison of two cDNA libraries (W0, W2), we isolated a clone from the wing discs of Bombyx mori encoding a putative neutral endopeptidase 24.11-like gene. The predicted open reading frame encoded 772 amino acid residues, having about 53% identity with Drosophila GH07643, 36% with rat NEP, and 34% with rat ECE. This is the first NEP gene isolated in invertebrate. A 3.6-kb transcript was found to accumulate in the wing disc according to the increase of ecdysteroid titer during metamorphosis. Accumulation of the transcript was induced in wing discs with 20-hydroxyecdysone about 20h after incubation, which was inhibited by cycloheximide. This gene is ecdysone-inducible, appears to encode a functional protein, and may function during wing metamorphosis.
Collapse
Affiliation(s)
- X Zhao
- Faculty of Agriculture, Utsunomiya University, 350 Mine, Utsunomiya, 321-8505, Tochigi, Japan
| | | | | | | | | | | | | |
Collapse
|