1
|
Zaara K, Optasanu V, Le Gallet S, Escoda L, Saurina J, Bernard F, Khitouni M, Suñol JJ, Chemingui M. Study of Structural, Compression, and Soft Magnetic Properties of Fe 65Ni 28Mn 7 Alloy Prepared by Arc Melting, Mechanical Alloying, and Spark Plasma Sintering. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7244. [PMID: 38005172 PMCID: PMC10672919 DOI: 10.3390/ma16227244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023]
Abstract
Soft magnetic Fe65Ni28Mn7 (at. %) alloy was successfully synthesized by mechanical alloying and spark plasma sintering (SPS) and, in parallel, the same composition was prepared by arc melting (AM) for comparison. Several SPS conditions were tested. X-ray diffraction and scanning electron microscopy were used to investigate the structure, phase composition, and morphology of the samples. It was found that mechanical alloying produced BCC and FCC supersaturated solid solution after 130 h of milling, with a fine microstructure (i.e., crystallite size of 10 nm). Spark plasma sintering performed at 750 °C and 1000 °C under two pressures of 50 MPa and 75 MPa revealed stable FCC phases. A single FCC phase was observed after the arc melting synthesis. The magnetic properties of milled powders and solids obtained by AM and SPS were investigated. The specimen consolidated by SPS at 1000 °C under the pressure of 50 MPa exhibits soft magnetic behavior (coercivity 0.07 Oe), whereas the mechanically alloyed sample revealed hard magnetic behavior. The specimen consolidated at 750 °C under a pressure of 75 MPa showed a higher compressive strength of 1700 MPa and a Vickers hardness of 425 ± 18 HV. As a result, sintering at 750 °C/75 MPa can be utilized to enhance the mechanical properties, while those sintered at 1000 °C/50 MPa increase magnetic softness.
Collapse
Affiliation(s)
- Kaouther Zaara
- Department of Physics, University of Girona, Campus Montilivi, 17071 Girona, Spain; (K.Z.); (L.E.); (J.S.)
| | - Virgil Optasanu
- Laboratoire Interdisciplinaire Carnot de Bourgogne—ICB UMR 6303 CNRS, Université de Bourgogne, BP 47870, CEDEX, 21078 Dijon, France; (V.O.); (S.L.G.); (F.B.)
| | - Sophie Le Gallet
- Laboratoire Interdisciplinaire Carnot de Bourgogne—ICB UMR 6303 CNRS, Université de Bourgogne, BP 47870, CEDEX, 21078 Dijon, France; (V.O.); (S.L.G.); (F.B.)
| | - Lluisa Escoda
- Department of Physics, University of Girona, Campus Montilivi, 17071 Girona, Spain; (K.Z.); (L.E.); (J.S.)
| | - Joan Saurina
- Department of Physics, University of Girona, Campus Montilivi, 17071 Girona, Spain; (K.Z.); (L.E.); (J.S.)
| | - Frédéric Bernard
- Laboratoire Interdisciplinaire Carnot de Bourgogne—ICB UMR 6303 CNRS, Université de Bourgogne, BP 47870, CEDEX, 21078 Dijon, France; (V.O.); (S.L.G.); (F.B.)
| | - Mohamed Khitouni
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia;
| | - Joan-Josep Suñol
- Department of Physics, University of Girona, Campus Montilivi, 17071 Girona, Spain; (K.Z.); (L.E.); (J.S.)
| | - Mahmoud Chemingui
- Laboratory of Inorganic Chemistry, LR 17-ES-07, University of Sfax, B.P. 1171, Sfax 3018, Tunisia;
| |
Collapse
|
2
|
Structural and microstructural properties of nanocrystalline Cu–Fe–Ni powders produced by mechanical alloying. POWDER TECHNOL 2014. [DOI: 10.1016/j.powtec.2014.03.064] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Azabou M, Ibn Gharsallah H, Escoda L, Suñol J, Kolsi A, Khitouni M. Mechanochemical reactions in nanocrystalline Cu–Fe system induced by mechanical alloying in air atmosphere. POWDER TECHNOL 2012. [DOI: 10.1016/j.powtec.2012.03.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
4
|
A review of methods for synthesis of nanostructured metals with emphasis on iron compounds. CHEMICAL PAPERS 2007. [DOI: 10.2478/s11696-007-0014-7] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AbstractSynthesis of metal nanoparticles with specific properties is a newly established research area attracting a great deal of attention. Several methods have been put forward for synthesis of these materials, namely chemical vapor condensation, arc discharge, hydrogen plasma—metal reaction, and laser pyrolysis in the vapor phase, microemulsion, hydrothermal, sol-gel, sonochemical, and microbial processes taking place in the liquid phase, and ball milling carried out in the solid phase.The properties of metal nanoparticles depend largely on their synthesis procedures. In this paper the fundamentals, advantages, and disadvantages of each synthesis method are discussed.
Collapse
|
6
|
Pranda P, Hlavacek V, Markowski ML. Ultrafine Iron Powder as an Oxygen Adsorbent for Argon Purification. Activation of Iron by Milling. Ind Eng Chem Res 2001. [DOI: 10.1021/ie0011324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- P. Pranda
- Department of Chemical Engineering, SUNY Buffalo, 218 Furnas Hall, Buffalo, New York 14260, and Praxair Technology Center, Tonawanda, New York 14150
| | - V. Hlavacek
- Department of Chemical Engineering, SUNY Buffalo, 218 Furnas Hall, Buffalo, New York 14260, and Praxair Technology Center, Tonawanda, New York 14150
| | - M. L. Markowski
- Department of Chemical Engineering, SUNY Buffalo, 218 Furnas Hall, Buffalo, New York 14260, and Praxair Technology Center, Tonawanda, New York 14150
| |
Collapse
|