1
|
Sonsungsan P, Suratanee A, Buaboocha T, Chadchawan S, Plaimas K. Identification of Salt-Sensitive and Salt-Tolerant Genes through Weighted Gene Co-Expression Networks across Multiple Datasets: A Centralization and Differential Correlation Analysis. Genes (Basel) 2024; 15:316. [PMID: 38540375 PMCID: PMC10970189 DOI: 10.3390/genes15030316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/18/2024] [Accepted: 02/24/2024] [Indexed: 06/14/2024] Open
Abstract
Salt stress is a significant challenge that severely hampers rice growth, resulting in decreased yield and productivity. Over the years, researchers have identified biomarkers associated with salt stress to enhance rice tolerance. However, the understanding of the mechanism underlying salt tolerance in rice remains incomplete due to the involvement of multiple genes. Given the vast amount of genomics and transcriptomics data available today, it is crucial to integrate diverse datasets to identify key genes that play essential roles during salt stress in rice. In this study, we propose an integration of multiple datasets to identify potential key transcription factors. This involves utilizing network analysis based on weighted co-expression networks, focusing on gene-centric measurement and differential co-expression relationships among genes. Consequently, our analysis reveals 86 genes located in markers from previous meta-QTL analysis. Moreover, six transcription factors, namely LOC_Os03g45410 (OsTBP2), LOC_Os07g42400 (OsGATA23), LOC_Os01g13030 (OsIAA3), LOC_Os05g34050 (OsbZIP39), LOC_Os09g29930 (OsBIM1), and LOC_Os10g10990 (transcription initiation factor IIF), exhibited significantly altered co-expression relationships between salt-sensitive and salt-tolerant rice networks. These identified genes hold potential as crucial references for further investigation into the functions of salt stress response in rice plants and could be utilized in the development of salt-resistant rice cultivars. Overall, our findings shed light on the complex genetic regulation underlying salt tolerance in rice and contribute to the broader understanding of rice's response to salt stress.
Collapse
Affiliation(s)
- Pajaree Sonsungsan
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Apichat Suratanee
- Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand;
| | - Teerapong Buaboocha
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Supachitra Chadchawan
- Center of Excellence in Environment and Plant Physiology (CEEPP), Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
- Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kitiporn Plaimas
- Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Advanced Virtual and Intelligent Computing (AVIC) Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
2
|
Ito A, Fukaya M, Okamoto H, Sakagami H. Physiological and Pathological Roles of the Cytohesin Family in Neurons. Int J Mol Sci 2022; 23:5087. [PMID: 35563476 PMCID: PMC9104363 DOI: 10.3390/ijms23095087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 02/05/2023] Open
Abstract
The cytohesin proteins, consisting of four closely related members (cytohesins-1, -2, -3, and -4), are a subfamily of the Sec7 domain-containing guanine nucleotide exchange factors for ADP ribosylation factors (Arfs), which are critical regulators of membrane trafficking and actin cytoskeleton remodeling. Recent advances in molecular biological techniques and the development of a specific pharmacological inhibitor for cytohesins, SecinH3, have revealed the functional involvement of the cytohesin-Arf pathway in diverse neuronal functions from the formation of axons and dendrites, axonal pathfinding, and synaptic vesicle recycling, to pathophysiological processes including chronic pain and neurotoxicity induced by proteins related to neurodegenerative disorders, such as amyotrophic lateral sclerosis and Alzheimer's disease. Here, we review the physiological and pathological roles of the cytohesin-Arf pathway in neurons and discuss the future directions of this research field.
Collapse
Affiliation(s)
- Akiko Ito
- Department of Anesthesiology, Kitasato University School of Medicine, Sagamihara 252-0374, Kanagawa, Japan; (A.I.); (H.O.)
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara 252-0374, Kanagawa, Japan;
| | - Masahiro Fukaya
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara 252-0374, Kanagawa, Japan;
| | - Hirotsugu Okamoto
- Department of Anesthesiology, Kitasato University School of Medicine, Sagamihara 252-0374, Kanagawa, Japan; (A.I.); (H.O.)
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara 252-0374, Kanagawa, Japan;
| |
Collapse
|
3
|
Xian H, Huang W, Sun T, Yang S, Zhang C, Wang J, Zhang Y, Cui J. Unanchored ubiquitin chain sustains RIG-I-induced interferon-I activation and controls selective gene expression. Sci Bull (Beijing) 2021; 66:794-802. [PMID: 36654136 DOI: 10.1016/j.scib.2020.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/21/2020] [Accepted: 10/23/2020] [Indexed: 01/20/2023]
Abstract
Ubiquitination plays a crucial role in retinoic acid-inducible gene I (RIG-I)-induced antiviral responses. However, the precise regulatory mechanisms of RIG-I activity mediated by conjugated and unanchored ubiquitin chains remain to be determined. In this study, we discovered that T55 of RIG-I was required for its binding ability for the unanchored ubiquitin chains. Experimental and mathematical analysis showed that unanchored ubiquitin chains associated with RIG-I were essential for sustained activation of type I interferon (IFN) signaling. Transcriptomics study revealed that the binding of RIG-I with unanchored ubiquitin chains additionally regulated the expression of a subset of metabolic and cell fate decision genes. Moreover, we found that ubiquitin-specific peptidase 21 (USP21) and USP3 deubiquitinate conjugated and unanchored ubiquitin chains on RIG-I respectively. Taken together, characterization of the regulation mode and functions of conjugated ubiquitination and the unconjugated ubiquitin chain-binding of RIG-I may provide means to fine-tune RIG-I-mediated type I IFN signaling.
Collapse
Affiliation(s)
- Huifang Xian
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Wanming Huang
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Tingzhe Sun
- School of Life Sciences, Anqing Normal University, Anqing 246133, China
| | - Shuai Yang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Chuanxia Zhang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jun Wang
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Yuxia Zhang
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Jun Cui
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
4
|
Nieuwenhuis B, Eva R. ARF6 and Rab11 as intrinsic regulators of axon regeneration. Small GTPases 2020; 11:392-401. [PMID: 29772958 PMCID: PMC6124649 DOI: 10.1080/21541248.2018.1457914] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/21/2018] [Indexed: 10/28/2022] Open
Abstract
Adult central nervous system (CNS) axons do not regenerate after injury because of extrinsic inhibitory factors, and a low intrinsic capacity for axon growth. Developing CNS neurons have a better regenerative ability, but lose this with maturity. This mini-review summarises recent findings which suggest one reason for regenerative failure is the selective distribution of growth machinery away from axons as CNS neurons mature. These studies demonstrate roles for the small GTPases ARF6 and Rab11 as intrinsic regulators of polarised transport and axon regeneration. ARF6 activation prevents the axonal transport of integrins in Rab11 endosomes in mature CNS axons. Decreasing ARF6 activation permits axonal transport, and increases regenerative ability. The findings suggest new targets for promoting axon regeneration after CNS injury.
Collapse
Affiliation(s)
- Bart Nieuwenhuis
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK
- Laboratory for Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands
| | - Richard Eva
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK
| |
Collapse
|
5
|
De Tito S, Hervás JH, van Vliet AR, Tooze SA. The Golgi as an Assembly Line to the Autophagosome. Trends Biochem Sci 2020; 45:484-496. [PMID: 32307224 DOI: 10.1016/j.tibs.2020.03.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/05/2020] [Accepted: 03/17/2020] [Indexed: 12/11/2022]
Abstract
Autophagy is traditionally depicted as a signaling cascade that culminates in the formation of an autophagosome that degrades cellular cargo. However, recent studies have identified myriad pathways and cellular organelles underlying the autophagy process, be it as signaling platforms or through the contribution of proteins and lipids. The Golgi complex is recognized as being a central transport hub in the cell, with a critical role in endocytic trafficking and endoplasmic reticulum (ER) to plasma membrane (PM) transport. However, the Golgi is also an important site of key autophagy regulators, including the protein autophagy-related (ATG)-9A and the lipid, phosphatidylinositol-4-phosphate [PI(4)P]. In this review, we highlight the central function of this organelle in autophagy as a transport hub supplying various components of autophagosome formation.
Collapse
Affiliation(s)
- Stefano De Tito
- The Molecular Cell Biology of Autophagy, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Javier H Hervás
- The Molecular Cell Biology of Autophagy, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Instituto Biofisika (CSIC, UPV/EHU), Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, Bilbao, Spain
| | - Alexander R van Vliet
- The Molecular Cell Biology of Autophagy, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Sharon A Tooze
- The Molecular Cell Biology of Autophagy, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
6
|
Liu Y, Wang M, Marcora EM, Zhang B, Goate AM. Promoter DNA hypermethylation - Implications for Alzheimer's disease. Neurosci Lett 2019; 711:134403. [PMID: 31351091 PMCID: PMC6759378 DOI: 10.1016/j.neulet.2019.134403] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 07/12/2019] [Accepted: 07/23/2019] [Indexed: 12/31/2022]
Abstract
Recent methylome-wide association studies (MWAS) in humans have solidified the concept that aberrant DNA methylation is associated with Alzheimer's disease (AD). We summarize these findings to improve the understanding of mechanisms governing DNA methylation pertinent to transcriptional regulation, with an emphasis of AD-associated promoter DNA hypermethylation, which establishes an epigenetic barrier for transcriptional activation. By considering brain cell type specific expression profiles that have been published only for non-demented individuals, we detail functional activities of selected neuron, microglia, and astrocyte-enriched genes (AGAP2, DUSP6 and GPR37L1, respectively), which are DNA hypermethylated at promoters in AD. We highlight future directions in MWAS including experimental confirmation, functional relevance to AD, cell type-specific temporal characterization, and mechanism investigation.
Collapse
Affiliation(s)
- Yiyuan Liu
- Department of Neuroscience and Department of Genetics and Genomic Sciences, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA.
| | - Edoardo M Marcora
- Department of Neuroscience and Department of Genetics and Genomic Sciences, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
| | - Alison M Goate
- Department of Neuroscience and Department of Genetics and Genomic Sciences, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
| |
Collapse
|
7
|
Yu J, Adapala NS, Doherty L, Sanjay A. Cbl-PI3K interaction regulates Cathepsin K secretion in osteoclasts. Bone 2019; 127:376-385. [PMID: 31299383 PMCID: PMC6708784 DOI: 10.1016/j.bone.2019.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/06/2019] [Accepted: 07/08/2019] [Indexed: 10/26/2022]
Abstract
Effective bone resorption by osteoclasts is critical for balanced bone remodeling. We have previously reported that mice harboring a substitution mutation of tyrosine 737 to phenylalanine in the adapter protein Cbl (CblY737F, YF) have increased bone volume partly due to decreased osteoclast-mediated bone resorption. The CblY737F mutation abrogates interaction between Cbl and the p85 subunit of PI3K. Here, we studied the mechanism for defective resorptive function of YF mutant osteoclasts. The YF osteoclasts had intact actin cytoskeletons and sealing zones. Expression and localization of proteins needed for acidification of the resorptive lacunae were also comparable between the WT and YF osteoclasts. In contrast, secretion of Cathepsin K, a major protease needed to degrade collagen, was diminished in the conditioned media derived from YF osteoclasts. The targeting of Cathepsin K into LAMP2-positive vesicles was also compromised due to decreased number of LAMP2-positive vesicles in YF osteoclasts. Further, we found that in contrast to WT, conditioned media derived from YF osteoclasts promoted increased numbers of alkaline phosphatase positive colonies, and increased expression of osteogenic markers in WT calvarial cultures. Cumulatively, our results suggest that the Cbl-PI3K interaction regulates Cathepsin K secretion required for proper bone resorption, and secretion of factors which promote osteogenesis.
Collapse
Affiliation(s)
- Jungeun Yu
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, United States of America
| | - Naga Suresh Adapala
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, United States of America
| | - Laura Doherty
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, United States of America
| | - Archana Sanjay
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, United States of America.
| |
Collapse
|
8
|
Navarro-Corcuera A, López-Zabalza MJ, Martínez-Irujo JJ, Álvarez-Sola G, Ávila MA, Iraburu MJ, Ansorena E, Montiel-Duarte C. Role of AGAP2 in the profibrogenic effects induced by TGFβ in LX-2 hepatic stellate cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:673-685. [PMID: 30660615 DOI: 10.1016/j.bbamcr.2019.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/21/2018] [Accepted: 01/14/2019] [Indexed: 11/15/2022]
Abstract
Liver damage induces hepatic stellate cells (HSC) activation, characterised by a fibrogenic, proliferative and migratory phenotype. Activated HSC are mainly regulated by transforming growth factor β 1 (TGFβ1), which increases the production of extracellular matrix proteins (e.g. collagen-I) promoting the progression of hepatic fibrosis. AGAP2 (ArfGAP with GTPase domain, ankyrin repeat and PH domain 2) is a GTPase/GTP-activating protein involved in the actin remodelling system and receptor recycling. In the present work the role of AGAP2 in human HSC in response to TGFβ1 was investigated. LX-2 HSC were transfected with AGAP2 siRNA and treated with TGFβ1. AGAP2 knockdown prevented to some extent the proliferative and migratory TGFβ1-induced capacities of LX-2 cells. An array focused on human fibrosis revealed that AGAP2 knockdown partially prevented TGFβ1-mediated gene expression of the fibrogenic genes ACTA2, COL1A2, EDN1, INHBE, LOX, PDGFB, TGFΒ12, while favored the expression of CXCR4, IL1A, MMP1, MMP3 and MMP9 genes. Furthermore, TGFβ1 induced AGAP2 promoter activation and its protein expression in LX-2. Moreover, AGAP2 protein levels were significantly increased in liver samples from rats with thioacetamide-induced fibrosis. In addition, AGAP2 silencing affected TGFβ1-receptor 2 (TGFR2) trafficking in U2OS cells, blocking its effective recycling to the membrane. AGAP2 silencing in LX-2 cells prevented the TGFβ1-induced increase of collagen-I protein levels, while its overexpression enhanced collagen-I protein expression in the presence or absence of the cytokine. AGAP2 overexpression also increased focal adhesion kinase (FAK) phosphorylated levels in LX-2 cells. FAK and MEK1 inhibitors prevented the increase of collagen-I expression caused by TGFβ1 in LX-2 overexpressing AGAP2. In summary, the present work shows for the first time, that AGAP2 is a potential new target involved in TGFβ1 signalling, contributing to the progression of hepatic fibrosis.
Collapse
Affiliation(s)
| | - María J López-Zabalza
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain.
| | - Juan J Martínez-Irujo
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain.
| | - Gloria Álvarez-Sola
- Hepatology Program. CIMA, University of Navarra, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Spain.
| | - Matías A Ávila
- Hepatology Program. CIMA, University of Navarra, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Spain.
| | - María J Iraburu
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain.
| | - Eduardo Ansorena
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Spain.
| | | |
Collapse
|
9
|
Yang L, Zha Y, Ding J, Ye B, Liu M, Yan C, Dong Z, Cui H, Ding HF. Histone demethylase KDM6B has an anti-tumorigenic function in neuroblastoma by promoting differentiation. Oncogenesis 2019; 8:3. [PMID: 30631055 PMCID: PMC6328563 DOI: 10.1038/s41389-018-0112-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/19/2018] [Accepted: 12/11/2018] [Indexed: 02/07/2023] Open
Abstract
Induction of differentiation is a therapeutic strategy in high-risk neuroblastoma, a childhood cancer of the sympathetic nervous system. Neuroblastoma differentiation requires transcriptional upregulation of neuronal genes. How this process is regulated at epigenetic levels is not well understood. Here we report that the histone H3 lysine 27 demethylase KDM6B is an epigenetic activator of neuroblastoma cell differentiation. KDM6B mRNA expression is downregulated in poorly differentiated high-risk neuroblastomas and upregulated in differentiated tumors, and high KDM6B expression is prognostic for better survival in neuroblastoma patients. In neuroblastoma cell lines, KDM6B depletion promotes cell proliferation, whereas KDM6B overexpression induces neuronal differentiation and inhibits cell proliferation and tumorgenicity. Mechanistically, KDM6B epigenetically activates the transcription of neuronal genes by removing the repressive chromatin marker histone H3 lysine 27 trimethylation. In addition, we show that KDM6B functions downstream of the retinoic acid-HOXC9 axis in inducing neuroblastoma cell differentiation: KDM6B expression is upregulated by retinoic acid via HOXC9, and KDM6B is required for HOXC9-induced neuroblastoma cell differentiation. Finally, we present evidence that KDM6B interacts with HOXC9 to target neuronal genes for epigenetic activation. These findings identify a KDM6B-dependent epigenetic mechanism in the control of neuroblastoma cell differentiation, providing a rationale for reducing histone H3 lysine 27 trimethylation as a strategy for enhancing differentiation-based therapy in high-risk neuroblastoma.
Collapse
Affiliation(s)
- Liqun Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Yunhong Zha
- Institute of Neural Regeneration and Repair and Department of Neurology, The First Hospital of Yichang, Three Gorges University College of Medicine, Yichang, 443000, China
| | - Jane Ding
- Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
| | - Bingwei Ye
- Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
| | - Mengling Liu
- Institute of Neural Regeneration and Repair and Department of Neurology, The First Hospital of Yichang, Three Gorges University College of Medicine, Yichang, 443000, China
| | - Chunhong Yan
- Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA.,Department of Biochemistry and Molecular, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Zheng Dong
- Department of Cell Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.,Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China.
| | - Han-Fei Ding
- Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA. .,Department of Biochemistry and Molecular, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA. .,Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
10
|
Pacault M, Nizon M, Pichon O, Vincent M, Le Caignec C, Isidor B. A de novo 2q37.2 deletion encompassing AGAP1 and SH3BP4 in a patient with autism and intellectual disability. Eur J Med Genet 2018; 62:103586. [PMID: 30472483 DOI: 10.1016/j.ejmg.2018.11.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 10/19/2018] [Accepted: 11/22/2018] [Indexed: 11/27/2022]
Abstract
Autism spectrum disorders are complex neurodevelopmental syndromes characterized by phenotypic and genetic heterogeneity. Further identification of causal genes may help in better understanding the underlying mechanisms of the disorder, thus improving the patients' management. To date, abnormal synaptogenesis is thought to be one of the major underlying causes of autism spectrum disorders. Here, using oligoarray-based comparative genomic hybridization, we identified a de novo deletion at 2q37.2 locus spanning 1 Mb and encompassing AGAP1 and SH3BP4, in a boy with autism and intellectual disability. Both genes have been described as being involved in endosomal trafficking, and AGAP1 in particular has been shown to be expressed in the developing brain and to play a role in dendritic spine formation and synapse function, making it a potential causative gene to our patient's phenotype.
Collapse
Affiliation(s)
| | - Mathilde Nizon
- CHU Nantes, Service de Génétique Médicale, Nantes, France
| | - Olivier Pichon
- CHU Nantes, Service de Génétique Médicale, Nantes, France
| | - Marie Vincent
- CHU Nantes, Service de Génétique Médicale, Nantes, France
| | - Cédric Le Caignec
- CHU Nantes, Service de Génétique Médicale, Nantes, France; INSERM, UMR 1238, Bone Sarcoma and Remodeling of Calcified Tissue, Nantes, France
| | - Bertrand Isidor
- CHU Nantes, Service de Génétique Médicale, Nantes, France; INSERM, UMR 1238, Bone Sarcoma and Remodeling of Calcified Tissue, Nantes, France
| |
Collapse
|
11
|
Matsumoto Y, Shimizu K, Arahata K, Suzuki M, Shimizu A, Takei K, Yamauchi J, Hakeda-Suzuki S, Suzuki T, Morimoto T. Prepulse inhibition in Drosophila melanogaster larvae. Biol Open 2018; 7:bio034710. [PMID: 30262549 PMCID: PMC6176951 DOI: 10.1242/bio.034710] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/15/2018] [Indexed: 12/26/2022] Open
Abstract
The neural mechanisms of psychiatric diseases like autism spectrum disorder and schizophrenia have been intensively studied, and a number of candidate genes have been identified. However, the relationship between genes and neural system functioning remains unclear. Model organisms may serve as a powerful tool for addressing this question due to the availability of established genetic tools. Here, we report prepulse inhibition (PPI) in Drosophila larvae for the first time. PPI is a neurological phenomenon found in humans and other organisms and is used in the diagnosis of schizophrenia and other psychiatric disorders. A weaker prestimulus (prepulse) inhibits the reaction to a subsequent strong, startling stimulus (pulse). Using the larval startle response to the buzz of a predator (wasp), we examined PPI in wild-type flies and two mutants: an fmr1 mutant, which is implicated in Fragile X syndrome, and a centaurin gamma 1A (CenG1A) mutant, which is associated with GTPase, PH, ArfGAP, and ANK domains and implicated in autism. Both mutants showed decreased PPI, whereas, interestingly, double mutants showed substantial PPI. The PPI phenomenon described here can provide a useful tool for the study of neural mechanisms of synaptic modification and psychiatric diseases.
Collapse
Affiliation(s)
- Yutaro Matsumoto
- Laboratory of Molecular Neuroscience and Neurology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Kazuya Shimizu
- Laboratory of Molecular Neuroscience and Neurology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Kota Arahata
- Laboratory of Molecular Neuroscience and Neurology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Miku Suzuki
- Laboratory of Molecular Neuroscience and Neurology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Akira Shimizu
- Laboratory of Molecular Neuroscience and Neurology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Koki Takei
- Laboratory of Molecular Neuroscience and Neurology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neuroscience and Neurology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Satoko Hakeda-Suzuki
- Tokyo Institute of Technology, School of Life Science and Technology, Yokohama, 226-8501, Japan
| | - Takashi Suzuki
- Tokyo Institute of Technology, School of Life Science and Technology, Yokohama, 226-8501, Japan
| | - Takako Morimoto
- Laboratory of Molecular Neuroscience and Neurology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
12
|
Tse MCL, Herlea-Pana O, Brobst D, Yang X, Wood J, Hu X, Liu Z, Lee CW, Zaw AM, Chow BKC, Ye K, Chan CB. Tumor Necrosis Factor-α Promotes Phosphoinositide 3-Kinase Enhancer A and AMP-Activated Protein Kinase Interaction to Suppress Lipid Oxidation in Skeletal Muscle. Diabetes 2017; 66:1858-1870. [PMID: 28404596 PMCID: PMC5482076 DOI: 10.2337/db16-0270] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 03/29/2017] [Indexed: 12/12/2022]
Abstract
Tumor necrosis factor-α (TNF-α) is an inflammatory cytokine that plays a central role in obesity-induced insulin resistance. It also controls cellular lipid metabolism, but the underlining mechanism is poorly understood. We report in this study that phosphoinositide 3-kinase enhancer A (PIKE-A) is a novel effector of TNF-α to facilitate its metabolic modulation in the skeletal muscle. Depletion of PIKE-A in C2C12 myotubes diminished the inhibitory activities of TNF-α on mitochondrial respiration and lipid oxidation, whereas PIKE-A overexpression exacerbated these cellular responses. We also found that TNF-α promoted the interaction between PIKE-A and AMP-activated protein kinase (AMPK) to suppress its kinase activity in vitro and in vivo. As a result, animals with PIKE ablation in the skeletal muscle per se display an upregulation of AMPK phosphorylation and a higher preference to use lipid as the energy production substrate under high-fat diet feeding, which mitigates the development of diet-induced hyperlipidemia, ectopic lipid accumulation, and muscle insulin resistance. Hence, our data reveal PIKE-A as a new signaling factor that is important for TNF-α-initiated metabolic changes in skeletal muscle.
Collapse
Affiliation(s)
- Margaret Chui Ling Tse
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Oana Herlea-Pana
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Daniel Brobst
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Xiuying Yang
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Drug Screening Center, Institute of Materia Medica, Beijing, People's Republic of China
| | - John Wood
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Xiang Hu
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Zhixue Liu
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Chi Wai Lee
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Aung Moe Zaw
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Billy K C Chow
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Chi Bun Chan
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| |
Collapse
|
13
|
Yin MX, Catimel B, Gregory M, Condron M, Kapp E, Holmes AB, Burgess AW. Synthesis of an inositol hexakisphosphate (IP6) affinity probe to study the interactome from a colon cancer cell line. Integr Biol (Camb) 2016; 8:309-18. [PMID: 26840369 DOI: 10.1039/c5ib00264h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inositol hexakisphosphate (InsP6 or IP6) is an important signalling molecule in vesicular trafficking, neurotransmission, immune responses, regulation of protein kinases and phosphatases, activation of ion channels, antioxidant functions and anticancer activities. An IP6 probe was synthesised from myo-inositol via a derivatised analogue, which was immobilised through a terminal amino group onto Dynabeads. Systematic analysis of the IP6 interactome has been performed using the IP6 affinity probe using cytosolic extracts from the LIM1215 colonic carcinoma cell line. LC/MS/MS analysis identified 77 proteins or protein complexes that bind to IP6 specifically, including AP-2 complex proteins and β-arrestins as well as a number of novel potential IP6 interacting proteins. Bioinformatic enrichment analysis of the IP6 interactome reinforced the concept that IP6 regulates a number of biological processes including cell cycle and division, signal transduction, intracellular protein transport, vesicle-mediated transport and RNA splicing.
Collapse
Affiliation(s)
- Meng-Xin Yin
- School of Chemistry, Bio21 Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria 3052, Australia
| | - Bruno Catimel
- Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Olivia Newton-John Cancer & Wellness Centre, Studley Road, Heidelberg, Victoria 3084, Australia
| | - Mark Gregory
- School of Chemistry, Bio21 Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria 3052, Australia
| | - Melanie Condron
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia. and Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Eugene Kapp
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia. and Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Andrew B Holmes
- School of Chemistry, Bio21 Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria 3052, Australia
| | - Antony W Burgess
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia. and Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia and Department of Surgery, RMH, University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
14
|
Role of Host Type IA Phosphoinositide 3-Kinase Pathway Components in Invasin-Mediated Internalization of Yersinia enterocolitica. Infect Immun 2016; 84:1826-1841. [PMID: 27068087 DOI: 10.1128/iai.00142-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 04/03/2016] [Indexed: 02/07/2023] Open
Abstract
Many bacterial pathogens subvert mammalian type IA phosphoinositide 3-kinase (PI3K) in order to induce their internalization into host cells. How PI3K promotes internalization is not well understood. Also unclear is whether type IA PI3K affects different pathogens through similar or distinct mechanisms. Here, we performed an RNA interference (RNAi)-based screen to identify components of the type IA PI3K pathway involved in invasin-mediated entry of Yersinia enterocolitica, an enteropathogen that causes enteritis and lymphadenitis. The 69 genes targeted encode known upstream regulators or downstream effectors of PI3K. A similar RNAi screen was previously performed with the food-borne bacterium Listeria monocytogenes The results of the screen with Y. enterocolitica indicate that at least nine members of the PI3K pathway are needed for invasin-mediated entry. Several of these proteins, including centaurin-α1, Dock180, focal adhesion kinase (FAK), Grp1, LL5α, LL5β, and PLD2 (phospholipase D2), were recruited to sites of entry. In addition, centaurin-α1, FAK, PLD2, and mTOR were required for remodeling of the actin cytoskeleton during entry. Six of the human proteins affecting invasin-dependent internalization also promote InlB-mediated entry of L. monocytogenes Our results identify several host proteins that mediate invasin-induced effects on the actin cytoskeleton and indicate that a subset of PI3K pathway components promote internalization of both Y. enterocolitica and L. monocytogenes.
Collapse
|
15
|
Huang T, Yang J, Cai YD. Novel candidate key drivers in the integrative network of genes, microRNAs, methylations, and copy number variations in squamous cell lung carcinoma. BIOMED RESEARCH INTERNATIONAL 2015; 2015:358125. [PMID: 25802847 PMCID: PMC4352729 DOI: 10.1155/2015/358125] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 01/06/2015] [Accepted: 01/22/2015] [Indexed: 01/03/2023]
Abstract
The mechanisms of lung cancer are highly complex. Not only mRNA gene expression but also microRNAs, DNA methylation, and copy number variation (CNV) play roles in tumorigenesis. It is difficult to incorporate so much information into a single model that can comprehensively reflect all these lung cancer mechanisms. In this study, we analyzed the 129 TCGA (The Cancer Genome Atlas) squamous cell lung carcinoma samples with gene expression, microRNA expression, DNA methylation, and CNV data. First, we used variance inflation factor (VIF) regression to build the whole genome integrative network. Then, we isolated the lung cancer subnetwork by identifying the known lung cancer genes and their direct regulators. This subnetwork was refined by the Bayesian method, and the directed regulations among mRNA genes, microRNAs, methylations, and CNVs were obtained. The novel candidate key drivers in this refined subnetwork, such as the methylation of ARHGDIB and HOXD3, microRNA let-7a and miR-31, and the CNV of AGAP2, were identified and analyzed. On three large public available lung cancer datasets, the key drivers ARHGDIB and HOXD3 demonstrated significant associations with the overall survival of lung cancer patients. Our results provide new insights into lung cancer mechanisms.
Collapse
Affiliation(s)
- Tao Huang
- College of Life Science, Shanghai University, Shanghai 200444, China
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| | - Jing Yang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| | - Yu-dong Cai
- College of Life Science, Shanghai University, Shanghai 200444, China
| |
Collapse
|
16
|
Homma M, Nagashima S, Fukuda T, Yanagi S, Miyakawa H, Suzuki E, Morimoto T. Downregulation of Centaurin gamma1A increases synaptic transmission at Drosophila larval neuromuscular junctions. Eur J Neurosci 2014; 40:3158-70. [PMID: 25074496 DOI: 10.1111/ejn.12681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/24/2014] [Accepted: 06/25/2014] [Indexed: 12/22/2022]
Abstract
Adequate regulation of synaptic transmission is critical for appropriate neural circuit functioning. Although a number of molecules involved in synaptic neurotransmission have been identified, the molecular mechanisms regulating neurotransmission are not fully understood. Here, we focused on Centaurin gamma1A (CenG1A) and examined its role in synaptic transmission regulation using Drosophila larval neuromuscular junctions. CenG1A is a member of the Centaurin family, which contains Pleckstrin homology, ADP ribosylation factor GTPase-activating protein, and ankyrin repeat domains. Due to the existence of these functional domains, CenG1A is proposed to be involved in the process of synaptic release; however, no evidence for this has been found to date. In this study, we investigated the potential role for CenG1A in the process of synaptic release by performing intracellular recordings in larval muscle cells. We found that neurotransmitter release from presynaptic cells was enhanced in cenG1A mutants. This effect was also observed in larvae with reduced CenG1A function in either presynaptic or postsynaptic cells. In addition, we revealed that suppressing CenG1A function in postsynaptic muscle cells led to an increase in the probability of neurotransmitter release, whereas its suppression in presynaptic neurons led to an increase in neurotransmitter release probability and an increase in the number of synaptic vesicles. These results suggested that CenG1A functions at both presynaptic and postsynaptic sites as a negative regulator of neurotransmitter release. Our study provided evidence for a key role of CenG1A in proper synaptic transmission at neuromuscular junctions.
Collapse
Affiliation(s)
- Mizuho Homma
- Laboratory of Cellular Neurobiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachiouji, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Asymmetric neuroblast divisions producing apoptotic cells require the cytohesin GRP-1 in Caenorhabditis elegans. Genetics 2014; 198:229-47. [PMID: 25053664 DOI: 10.1534/genetics.114.167189] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cytohesins are Arf guanine nucleotide exchange factors (GEFs) that regulate membrane trafficking and actin cytoskeletal dynamics. We report here that GRP-1, the sole Caenorhabditis elegans cytohesin, controls the asymmetric divisions of certain neuroblasts that divide to produce a larger neuronal precursor or neuron and a smaller cell fated to die. In the Q neuroblast lineage, loss of GRP-1 led to the production of daughter cells that are more similar in size and to the transformation of the normally apoptotic daughter into its sister, resulting in the production of extra neurons. Genetic interactions suggest that GRP-1 functions with the previously described Arf GAP CNT-2 and two other Arf GEFs, EFA-6 and BRIS-1, to regulate the activity of Arf GTPases. In agreement with this model, we show that GRP-1's GEF activity, mediated by its SEC7 domain, is necessary for the posterior Q cell (Q.p) neuroblast division and that both GRP-1 and CNT-2 function in the Q.posterior Q daughter cell (Q.p) to promote its asymmetry. Although functional GFP-tagged GRP-1 proteins localized to the nucleus, the extra cell defects were rescued by targeting the Arf GEF activity of GRP-1 to the plasma membrane, suggesting that GRP-1 acts at the plasma membrane. The detection of endogenous GRP-1 protein at cytokinesis remnants, or midbodies, is consistent with GRP-1 functioning at the plasma membrane and perhaps at the cytokinetic furrow to promote the asymmetry of the divisions that require its function.
Collapse
|
18
|
The PIKE homolog Centaurin gamma regulates developmental timing in Drosophila. PLoS One 2014; 9:e97332. [PMID: 24845618 PMCID: PMC4028201 DOI: 10.1371/journal.pone.0097332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 04/17/2014] [Indexed: 12/30/2022] Open
Abstract
Phosphoinositide-3-kinase enhancer (PIKE) proteins encoded by the PIKE/CENTG1 gene are members of the gamma subgroup of the Centaurin superfamily of small GTPases. They are characterized by their chimeric protein domain architecture consisting of a pleckstrin homology (PH) domain, a GTPase-activating (GAP) domain, Ankyrin repeats as well as an intrinsic GTPase domain. In mammals, three PIKE isoforms with variations in protein structure and subcellular localization are encoded by the PIKE locus. PIKE inactivation in mice results in a broad range of defects, including neuronal cell death during brain development and misregulation of mammary gland development. PIKE -/- mutant mice are smaller, contain less white adipose tissue, and show insulin resistance due to misregulation of AMP-activated protein kinase (AMPK) and insulin receptor/Akt signaling. here, we have studied the role of PIKE proteins in metabolic regulation in the fly. We show that the Drosophila PIKE homolog, ceng1A, encodes functional GTPases whose internal GAP domains catalyze their GTPase activity. To elucidate the biological function of ceng1A in flies, we introduced a deletion in the ceng1A gene by homologous recombination that removes all predicted functional PIKE domains. We found that homozygous ceng1A mutant animals survive to adulthood. In contrast to PIKE -/- mouse mutants, genetic ablation of Drosophila ceng1A does not result in growth defects or weight reduction. Although metabolic pathways such as insulin signaling, sensitivity towards starvation and mobilization of lipids under high fed conditions are not perturbed in ceng1A mutants, homozygous ceng1A mutants show a prolonged development in second instar larval stage, leading to a late onset of pupariation. In line with these results we found that expression of ecdysone inducible genes is reduced in ceng1A mutants. Together, we propose a novel role for Drosophila Ceng1A in regulating ecdysone signaling-dependent second to third instar larval transition.
Collapse
|
19
|
Hongu T, Kanaho Y. Activation machinery of the small GTPase Arf6. Adv Biol Regul 2013; 54:59-66. [PMID: 24139303 DOI: 10.1016/j.jbior.2013.09.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 09/11/2013] [Accepted: 09/12/2013] [Indexed: 11/17/2022]
Abstract
The small GTPase ADP-ribosylation factor 6 (Arf6) plays pivotal roles in a wide variety of cellular events, including exocytosis, endocytosis, actin cytoskeleton reorganization and phosphoinositide metabolism, in various types of cells. To control such a wide variety of actions of Arf6, activation of Arf6 could be precisely controlled by its activators, guanine nucleotide exchange factors (GEFs), in spatial and temporal manners. In this manuscript, we summarize and discuss the characteristics of previously identified GEFs specific to Arf6 and activation machineries of Arf6.
Collapse
Affiliation(s)
- Tsunaki Hongu
- Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yasunori Kanaho
- Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| |
Collapse
|
20
|
Qi Q, Ye K. The roles of PIKE in tumorigenesis. Acta Pharmacol Sin 2013; 34:991-7. [PMID: 23770988 PMCID: PMC3733165 DOI: 10.1038/aps.2013.71] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 04/28/2013] [Indexed: 01/22/2023] Open
Abstract
Tumorigenesis is the process by which normal cells evolve the capacity to evade and overcome the constraints usually placed upon their growth and survival. To ensure the integrity of organs and tissues, the balance of cell proliferation and cell death is tightly maintained. The proteins controlling this balance are either considered oncogenes, which promote tumorigenesis, or tumor suppressors, which prevent tumorigenesis. Phosphoinositide 3-kinase enhancer (PIKE) is a family of GTP-binding proteins that possess anti-apoptotic functions and play an important role in the central nervous system. Notably, accumulating evidence suggests that PIKE is a proto-oncogene involved in tumor progression. The PIKE gene (CENTG1) is amplified in a variety of human cancers, leading to the resistance against apoptosis and the enhancement of invasion. In this review, we will summarize the functions of PIKE proteins in tumorigenesis and discuss their potential implications in cancer therapy.
Collapse
|
21
|
Grp1-associated scaffold protein (GRASP) is a regulator of the ADP ribosylation factor 6 (Arf6)-dependent membrane trafficking pathway. Cell Biol Int 2013; 36:1115-28. [PMID: 22931251 DOI: 10.1042/cbi20120221] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
GRASP interacts with Grp1 (general receptor for phosphoinositides 1; cytohesin 3), which catalyses nucleotide exchange on and activation of Arf6 (ADP-ribosylation factor-6). Arf6 is a low-molecular-mass GTPase that regulates key aspects of endocytic recycling pathways. Overexpressed GRASP accumulated in the juxtanuclear ERC (endocytic recycling compartment). GRASP co-localized with a constitutively inactive mutant of Arf6 in the ERC such that it was reversed by expression of wild-type Grp1. Co-expression of GRASP and Grp1 promoted membrane ruffling, a cellular hallmark of Arf6 activation. GRASP accumulation in ERC was found to block recycling of the MHC-I (major histocompatibility complex-I), which is trafficked by the Arf6-dependent pathway. In contrast, overexpression of GRASP had no effect on the recycling of transferrin receptors, which are trafficked by a clathrin-dependent pathway. The findings suggest that GRASP regulates the non-clathrin/Arf6-dependent, plasma membrane recycling and signalling pathways.
Collapse
|
22
|
Chen HC, Ziemba BP, Landgraf KE, Corbin JA, Falke JJ. Membrane docking geometry of GRP1 PH domain bound to a target lipid bilayer: an EPR site-directed spin-labeling and relaxation study. PLoS One 2012; 7:e33640. [PMID: 22479423 PMCID: PMC3316598 DOI: 10.1371/journal.pone.0033640] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Accepted: 02/14/2012] [Indexed: 11/18/2022] Open
Abstract
The second messenger lipid PIP3 (phosphatidylinositol-3,4,5-trisphosphate) is generated by the lipid kinase PI3K (phosphoinositide-3-kinase) in the inner leaflet of the plasma membrane, where it regulates a broad array of cell processes by recruiting multiple signaling proteins containing PIP3-specific pleckstrin homology (PH) domains to the membrane surface. Despite the broad importance of PIP3-specific PH domains, the membrane docking geometry of a PH domain bound to its target PIP3 lipid on a bilayer surface has not yet been experimentally determined. The present study employs EPR site-directed spin labeling and relaxation methods to elucidate the membrane docking geometry of GRP1 PH domain bound to bilayer-embedded PIP3. The model target bilayer contains the neutral background lipid PC and both essential targeting lipids: (i) PIP3 target lipid that provides specificity and affinity, and (ii) PS facilitator lipid that enhances the PIP3 on-rate via an electrostatic search mechanism. The EPR approach measures membrane depth parameters for 18 function-retaining spin labels coupled to the PH domain, and for calibration spin labels coupled to phospholipids. The resulting depth parameters, together with the known high resolution structure of the co-complex between GRP1 PH domain and the PIP3 headgroup, provide sufficient constraints to define an optimized, self-consistent membrane docking geometry. In this optimized geometry the PH domain engulfs the PIP3 headgroup with minimal bilayer penetration, yielding the shallowest membrane position yet described for a lipid binding domain. This binding interaction displaces the PIP3 headgroup from its lowest energy position and orientation in the bilayer, but the headgroup remains within its energetically accessible depth and angular ranges. Finally, the optimized docking geometry explains previous biophysical findings including mutations observed to disrupt membrane binding, and the rapid lateral diffusion observed for PIP3-bound GRP1 PH domain on supported lipid bilayers.
Collapse
Affiliation(s)
| | | | | | | | - Joseph J. Falke
- Department of Chemistry and Biochemistry and the Molecular Biophysics Program, University of Colorado, Boulder, Colorado, United States of America
- * E-mail:
| |
Collapse
|
23
|
Chan CB, Ye K. Phosphoinositide 3-kinase enhancer (PIKE) in the brain: is it simply a phosphoinositide 3-kinase/Akt enhancer? Rev Neurosci 2012; 23:153-61. [PMID: 22499674 DOI: 10.1515/revneuro-2011-0066] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 12/12/2011] [Indexed: 02/06/2023]
Abstract
Since its discovery in 2000, phosphoinositide 3-kinase enhancer (PIKE) has been recognized as a class of GTPase that controls the enzymatic activities of phosphoinositide 3-kinase (PI3K) and Akt in the central nervous system (CNS). However, recent studies suggest that PIKEs are not only enhancers to PI3K/Akt but also modulators to other kinases including insulin receptor tyrosine kinase and focal adhesion kinases. Moreover, they regulate transcription factors such as signal transducer and activator of transcription and nuclear factor κB. Indeed, PIKE proteins participate in multiple cellular processes including control of cell survival, brain development, memory formation, gene transcription, and metabolism. In this review, we have summarized the functions of PIKE proteins in CNS and discussed their potential implications in various neurological disorders.
Collapse
Affiliation(s)
- Chi Bun Chan
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA.
| | | |
Collapse
|
24
|
Pilling C, Landgraf KE, Falke JJ. The GRP1 PH domain, like the AKT1 PH domain, possesses a sentry glutamate residue essential for specific targeting to plasma membrane PI(3,4,5)P(3). Biochemistry 2011; 50:9845-56. [PMID: 21932773 DOI: 10.1021/bi2011306] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
During the appearance of the signaling lipid PI(3,4,5)P(3), an important subset of pleckstrin homology (PH) domains target signaling proteins to the plasma membrane. To ensure proper pathway regulation, such PI(3,4,5)P(3)-specific PH domains must exclude the more prevalant, constitutive plasma membrane lipid PI(4,5)P(2) and bind the rare PI(3,4,5)P(3) target lipid with sufficiently high affinity. Our previous study of the E17K mutant of the protein kinase B (AKT1) PH domain, together with evidence from Carpten et al. [Carpten, J. D., et al. (2007) Nature 448, 439-444], revealed that the native AKT1 E17 residue serves as a sentry glutamate that excludes PI(4,5)P(2), thereby playing an essential role in specific PI(3,4,5)P(3) targeting [Landgraf, K. E., et al. (2008) Biochemistry 47, 12260-12269]. The sentry glutamate hypothesis proposes that an analogous sentry glutamate residue is a widespread feature of PI(3,4,5)P(3)-specific PH domains, and that charge reversal mutation at the sentry glutamate position will yield both increased PI(4,5)P(2) affinity and constitutive plasma membrane targeting. To test this hypothesis, we investigated the E345 residue, a putative sentry glutamate, of the general receptor for phosphoinositides 1 (GRP1) PH domain. The results show that incorporation of the E345K charge reversal mutation into the GRP1 PH domain enhances PI(4,5)P(2) affinity 8-fold and yields constitutive plasma membrane targeting in cells, reminiscent of the effects of the E17K mutation in the AKT1 PH domain. Hydrolysis of plasma membrane PI(4,5)P(2) releases the E345K GRP1 PH domain into the cytoplasm, and the efficiency of this release increases when Arf6 binding is disrupted. Overall, the findings provide strong support for the sentry glutamate hypothesis and suggest that the GRP1 E345K mutation will be linked to changes in cell physiology and human pathologies, as demonstrated for AKT1 E17K [Carpten, J. D., et al. (2007) Nature 448, 439-444; Lindhurst, M. J., et al. (2011) N. Engl. J. Med. 365, 611-619]. Analysis of available PH domain structures suggests that a lone glutamate residue (or, in some cases, an aspartate) is a common, perhaps ubiquitous, feature of PI(3,4,5)P(3)-specific binding pockets that functions to lower PI(4,5)P(2) affinity.
Collapse
Affiliation(s)
- Carissa Pilling
- Department of Chemistry and Biochemistry and Molecular Biophysics Program, University of Colorado, Boulder, Colorado 80309-0215, United States
| | | | | |
Collapse
|
25
|
Hannan S, Wilkins ME, Dehghani-Tafti E, Thomas P, Baddeley SM, Smart TG. Gamma-aminobutyric acid type B (GABA(B)) receptor internalization is regulated by the R2 subunit. J Biol Chem 2011; 286:24324-35. [PMID: 21724853 PMCID: PMC3129212 DOI: 10.1074/jbc.m110.220814] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 04/20/2011] [Indexed: 01/04/2023] Open
Abstract
γ-Aminobutyric acid type B (GABA(B)) receptors are important for slow synaptic inhibition in the CNS. The efficacy of inhibition is directly related to the stability of cell surface receptors. For GABA(B) receptors, heterodimerization between R1 and R2 subunits is critical for cell surface expression and signaling, but how this determines the rate and extent of receptor internalization is unknown. Here, we insert a high affinity α-bungarotoxin binding site into the N terminus of the R2 subunit and reveal its dominant role in regulating the internalization of GABA(B) receptors in live cells. To simultaneously study R1a and R2 trafficking, a new α-bungarotoxin binding site-labeling technique was used, allowing α-bungarotoxin conjugated to different fluorophores to selectively label R1a and R2 subunits. This approach demonstrated that R1a and R2 are internalized as dimers. In heterologous expression systems and neurons, the rates and extents of internalization for R1aR2 heteromers and R2 homomers are similar, suggesting a regulatory role for R2 in determining cell surface receptor stability. The fast internalization rate of R1a, which has been engineered to exit the endoplasmic reticulum, was slowed to that of R2 by truncating the R1a C-terminal tail or by removing a dileucine motif in its coiled-coil domain. Slowing the rate of internalization by co-assembly with R2 represents a novel role for GPCR heterodimerization whereby R2 subunits, via their C terminus coiled-coil domain, mask a dileucine motif on R1a subunits to determine the surface stability of the GABA(B) receptor.
Collapse
Affiliation(s)
- Saad Hannan
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom and
- GlaxoSmithKline R&D, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
| | - Megan E. Wilkins
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom and
| | - Ebrahim Dehghani-Tafti
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom and
| | - Philip Thomas
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom and
| | - Stuart M. Baddeley
- GlaxoSmithKline R&D, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
| | - Trevor G. Smart
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom and
| |
Collapse
|
26
|
Hannan S, Wilkins ME, Dehghani-Tafti E, Thomas P, Baddeley SM, Smart TG. γ-Aminobutyric Acid Type B (GABAB) Receptor Internalization Is Regulated by the R2 Subunit. J Biol Chem 2011. [DOI: 10.1074/jbc.m111.220814] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
27
|
Rahman P, Huysmans RD, Wiradjaja F, Gurung R, Ooms LM, Sheffield DA, Dyson JM, Layton MJ, Sriratana A, Takada H, Tiganis T, Mitchell CA. Silencer of death domains (SODD) inhibits skeletal muscle and kidney enriched inositol 5-phosphatase (SKIP) and regulates phosphoinositide 3-kinase (PI3K)/Akt signaling to the actin cytoskeleton. J Biol Chem 2011; 286:29758-70. [PMID: 21712384 DOI: 10.1074/jbc.m111.263103] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Phosphoinositide 3-kinase (PI3K) regulates cell polarity and migration by generating phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P(3)) at the leading edge of migrating cells. The serine-threonine protein kinase Akt binds to PI(3,4,5)P(3), resulting in its activation. Active Akt promotes spatially regulated actin cytoskeletal remodeling and thereby directed cell migration. The inositol polyphosphate 5-phosphatases (5-ptases) degrade PI(3,4,5)P(3) to form PI(3,4)P(2), which leads to diminished Akt activation. Several 5-ptases, including SKIP and SHIP2, inhibit actin cytoskeletal reorganization by opposing PI3K/Akt signaling. In this current study, we identify a molecular co-chaperone termed silencer of death domains (SODD/BAG4) that forms a complex with several 5-ptase family members, including SKIP, SHIP1, and SHIP2. The interaction between SODD and SKIP exerts an inhibitory effect on SKIP PI(3,4,5)P(3) 5-ptase catalytic activity and consequently enhances the recruitment of PI(3,4,5)P(3)-effectors to the plasma membrane. In contrast, SODD(-/-) mouse embryonic fibroblasts exhibit reduced Akt-Ser(473) and -Thr(308) phosphorylation following EGF stimulation, associated with increased SKIP PI(3,4,5)P(3)-5-ptase activity. SODD(-/-) mouse embryonic fibroblasts exhibit decreased EGF-stimulated F-actin stress fibers, lamellipodia, and focal adhesion complexity, a phenotype that is rescued by the expression of constitutively active Akt1. Furthermore, reduced cell migration was observed in SODD(-/-) macrophages, which express the three 5-ptases shown to interact with SODD (SKIP, SHIP1, and SHIP2). Therefore, this study identifies SODD as a novel regulator of PI3K/Akt signaling to the actin cytoskeleton.
Collapse
Affiliation(s)
- Parvin Rahman
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Knight JD, Lerner MG, Marcano-Velázquez JG, Pastor RW, Falke JJ. Single molecule diffusion of membrane-bound proteins: window into lipid contacts and bilayer dynamics. Biophys J 2011; 99:2879-87. [PMID: 21044585 DOI: 10.1016/j.bpj.2010.08.046] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 07/12/2010] [Accepted: 08/12/2010] [Indexed: 11/19/2022] Open
Abstract
Membrane targeting proteins are recruited to specific membranes during cell signaling events, including signals at the leading edge of chemotaxing cells. Recognition and binding to specific lipids play a central role in targeting reactions, but it remains difficult to analyze the molecular features of such protein-lipid interactions. We propose that the surface diffusion constant of peripheral membrane-bound proteins contains useful information about protein-lipid contacts and membrane dynamics. To test this hypothesis, we use single-molecule fluorescence microscopy to probe the effects of lipid binding stoichiometry on the diffusion constants of engineered proteins containing one to three pleckstrin homology domains coupled by flexible linkers. Within error, the lateral diffusion constants of these engineered constructs are inversely proportional to the number of tightly bound phosphatidylinositol-(3,4,5)-trisphosphate lipids. The same trend is observed in coarse-grained molecular dynamics simulations and hydrodynamic bead calculations of lipid multimers connected by model tethers. Overall, single molecule diffusion measurements are found to provide molecular information about protein-lipid interactions. Moreover, the experimental and computational results independently indicate that the frictional contributions of multiple, coupled but well-separated lipids are additive, analogous to the free-draining limit for isotropic fluids--an insight with significant implications for theoretical description of bilayer lipid dynamics.
Collapse
Affiliation(s)
- Jefferson D Knight
- Molecular Biophysics Program and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado, USA
| | | | | | | | | |
Collapse
|
29
|
A conserved gene cluster as a putative functional unit in insect innate immunity. FEBS Lett 2010; 584:4375-8. [PMID: 20951134 DOI: 10.1016/j.febslet.2010.10.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 10/07/2010] [Accepted: 10/08/2010] [Indexed: 11/23/2022]
Abstract
The Nimrod gene superfamily is an important component of the innate immune response. The majority of its member genes are located in close proximity within the Drosophila melanogaster genome and they lie in a larger conserved cluster ("Nimrod cluster"), made up of non-related groups (families, superfamilies) of genes. This cluster has been a part of the Arthropod genomes for about 300-350 million years. The available data suggest that the Nimrod cluster is a functional module of the insect innate immune response.
Collapse
|
30
|
DiNitto JP, Lee MT, Malaby AW, Lambright DG. Specificity and membrane partitioning of Grsp1 signaling complexes with Grp1 family Arf exchange factors. Biochemistry 2010; 49:6083-92. [PMID: 20527794 DOI: 10.1021/bi1000454] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Arf exchange factor Grp1 selectively binds phosphatidylinositol 3,4,5-triphosphate [PtdIns(3,4,5)P(3)], which is required for recruitment to the plasma membrane in stimulated cells. The mechanisms for phosphoinositide recognition by the PH domain, catalysis of nucleotide exchange by the Sec7 domain, and autoinhibition by elements proximal to the PH domain are well-characterized. The N-terminal heptad repeats in Grp1 have also been shown to mediate homodimerization in vitro as well as heteromeric interactions with heptad repeats in the FERM domain-containing protein Grsp1 both in vitro and in cells [Klarlund, J. K., et al. (2001) J. Biol. Chem. 276, 40065-40070]. Here, we have characterized the oligomeric state of Grsp1 and Grp1 family proteins (Grp1, ARNO, and Cytohesin-1) as well as the oligomeric state, stoichiometry, and specificity of Grsp1 complexes with Grp1, ARNO, and Cytohesin-1. At low micromolar concentrations, Grp1 and ARNO are homodimeric whereas Cytohesin-1 and Grsp1 are monomeric. When mixed with Grsp1, Grp1 homodimers and Cytohesin-1 monomers spontaneously re-equilibrate to form heterodimers, whereas approximately 50% of ARNO remains homodimeric under the same conditions. Fluorescence resonance energy transfer experiments suggest that the Grsp1 heterodimers with Grp1 and Cytohesin-1 adopt a largely antiparallel orientation. Finally, formation of Grsp1-Grp1 heterodimers does not substantially influence the binding of Grp1 to the headgroups of PtdIns(3,4,5)P(3) or PtdIns(4,5)P(2), nor does it influence partitioning with liposomes containing PtdIns(3,4,5)P(3), PtdIns(4,5)P(2), and/or phosphatidylserine.
Collapse
Affiliation(s)
- Jonathan P DiNitto
- Program in Molecular Medicine and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | |
Collapse
|
31
|
ASAP1 promotes tumor cell motility and invasiveness, stimulates metastasis formation in vivo, and correlates with poor survival in colorectal cancer patients. Oncogene 2010; 29:2393-403. [PMID: 20154719 DOI: 10.1038/onc.2010.6] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We have previously performed an unbiased screen to identify genes whose expression is associated with the metastatic phenotype. Secondary screening of these genes using custom microarray chips identified ASAP1, a multi-domain adaptor protein with ADP-ribosylation factor-GAP activity, as being potentially involved in tumor progression. Here, we show that at least three different splice forms of ASAP1 are upregulated in rodent tumor models in a manner that correlates with metastatic potential. In human cancers, we found that ASAP1 expression is strongly upregulated in a variety of tumors in comparison with normal tissue and that this expression correlates with poor metastasis-free survival and prognosis in colorectal cancer patients. Using loss and gain of function approaches, we were able to show that ASAP1 promotes metastasis formation in vivo and stimulates tumor cell motility, invasiveness, and adhesiveness in vitro. Furthermore, we show that ASAP1 interacts with the metastasis-promoting protein h-prune and stimulates its phosphodiesterase activity. In addition, ASAP1 binds to the SH3 domains of several proteins, including SLK with which it co-immunoprecipitates. These data support the notion that ASAP1 can contribute to the dissemination of a variety of tumor types and represent a potential target for cancer therapy.
Collapse
|
32
|
Yergeau DA, Kelley CM, Kuliyev E, Zhu H, Sater AK, Wells DE, Mead PE. Remobilization of Tol2 transposons in Xenopus tropicalis. BMC DEVELOPMENTAL BIOLOGY 2010; 10:11. [PMID: 20096115 PMCID: PMC2848417 DOI: 10.1186/1471-213x-10-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Accepted: 01/22/2010] [Indexed: 12/05/2022]
Abstract
Background The Class II DNA transposons are mobile genetic elements that move DNA sequence from one position in the genome to another. We have previously demonstrated that the naturally occurring Tol2 element from Oryzias latipes efficiently integrates its corresponding non-autonomous transposable element into the genome of the diploid frog, Xenopus tropicalis. Tol2 transposons are stable in the frog genome and are transmitted to the offspring at the expected Mendelian frequency. Results To test whether Tol2 transposons integrated in the Xenopus tropicalis genome are substrates for remobilization, we injected in vitro transcribed Tol2 mRNA into one-cell embryos harbouring a single copy of a Tol2 transposon. Integration site analysis of injected embryos from two founder lines showed at least one somatic remobilization event per embryo. We also demonstrate that the remobilized transposons are transmitted through the germline and re-integration can result in the generation of novel GFP expression patterns in the developing tadpole. Although the parental line contained a single Tol2 transposon, the resulting remobilized tadpoles frequently inherit multiple copies of the transposon. This is likely to be due to the Tol2 transposase acting in discrete blastomeres of the developing injected embryo during the cell cycle after DNA synthesis but prior to mitosis. Conclusions In this study, we demonstrate that single copy Tol2 transposons integrated into the Xenopus tropicalis genome are effective substrates for excision and random re-integration and that the remobilized transposons are transmitted through the germline. This is an important step in the development of 'transposon hopping' strategies for insertional mutagenesis, gene trap and enhancer trap screens in this highly tractable developmental model organism.
Collapse
Affiliation(s)
- Donald A Yergeau
- Department of Pathology, St, Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Mayer G, Faulhammer D, Grättinger M, Fessele S, Blind M. A RNA-based approach towards small-molecule inhibitors. Chembiochem 2009; 10:1993-6. [PMID: 19575374 DOI: 10.1002/cbic.200900325] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Günter Mayer
- LIMES, University of Bonn, c/o Kekulé-Institut für Org. Chemie und Biochemie, 53121 Bonn (Germany).
| | | | | | | | | |
Collapse
|
34
|
Catimel B, Yin MX, Schieber C, Condron M, Patsiouras H, Catimel J, Robinson DEJE, Wong LSM, Nice EC, Holmes AB, Burgess AW. PI(3,4,5)P3 Interactome. J Proteome Res 2009; 8:3712-26. [DOI: 10.1021/pr900320a] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bruno Catimel
- Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Royal Melbourne Hospital, Parkville, Victoria, 3052, Australia, and School of Chemistry, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Meng-Xin Yin
- Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Royal Melbourne Hospital, Parkville, Victoria, 3052, Australia, and School of Chemistry, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christine Schieber
- Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Royal Melbourne Hospital, Parkville, Victoria, 3052, Australia, and School of Chemistry, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Melanie Condron
- Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Royal Melbourne Hospital, Parkville, Victoria, 3052, Australia, and School of Chemistry, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Heather Patsiouras
- Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Royal Melbourne Hospital, Parkville, Victoria, 3052, Australia, and School of Chemistry, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jenny Catimel
- Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Royal Melbourne Hospital, Parkville, Victoria, 3052, Australia, and School of Chemistry, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Diane E. J. E. Robinson
- Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Royal Melbourne Hospital, Parkville, Victoria, 3052, Australia, and School of Chemistry, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Leon S.-M. Wong
- Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Royal Melbourne Hospital, Parkville, Victoria, 3052, Australia, and School of Chemistry, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Edouard C. Nice
- Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Royal Melbourne Hospital, Parkville, Victoria, 3052, Australia, and School of Chemistry, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andrew B. Holmes
- Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Royal Melbourne Hospital, Parkville, Victoria, 3052, Australia, and School of Chemistry, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Antony W. Burgess
- Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Royal Melbourne Hospital, Parkville, Victoria, 3052, Australia, and School of Chemistry, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
35
|
Knight JD, Falke JJ. Single-molecule fluorescence studies of a PH domain: new insights into the membrane docking reaction. Biophys J 2009; 96:566-82. [PMID: 19167305 DOI: 10.1016/j.bpj.2008.10.020] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 10/23/2008] [Indexed: 01/15/2023] Open
Abstract
Proteins containing membrane targeting domains play essential roles in many cellular signaling pathways. However, important features of the membrane-bound state are invisible to bulk methods, thereby hindering mechanistic analysis of membrane targeting reactions. Here we use total internal reflection fluorescence microscopy (TIRFM), combined with single particle tracking, to probe the membrane docking mechanism of a representative pleckstrin homology (PH) domain isolated from the general receptor for phosphoinositides, isoform 1 (GRP1). The findings show three previously undescribed features of GRP1 PH domain docking to membranes containing its rare target lipid, phosphatidylinositol (3,4,5)-trisphosphate [PI(3,4,5)P(3)]. First, analysis of surface diffusion kinetics on supported lipid bilayers shows that in the absence of other anionic lipids, the PI(3,4,5)P(3)-bound protein exhibits the same diffusion constant as a single lipid molecule. Second, the binding of the anionic lipid phosphatidylserine to a previously unidentified secondary binding site slows both diffusion and dissociation kinetics. Third, TIRFM enables direct observation of rare events in which dissociation from the membrane surface is followed by transient diffusion through solution and rapid rebinding to a nearby, membrane-associated target lipid. Overall, this study shows that in vitro single-molecule TIRFM provides a new window into the molecular mechanisms of membrane docking reactions.
Collapse
Affiliation(s)
- Jefferson D Knight
- Molecular Biophysics Program, Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado, USA
| | | |
Collapse
|
36
|
Wang H, Ma J, Ruan L, Xu X. Cloning of a centaurin-alpha1 like gene MjCent involved in WSSV infection from shrimp Marsupeneaus japonicus. FISH & SHELLFISH IMMUNOLOGY 2009; 26:279-284. [PMID: 19073266 DOI: 10.1016/j.fsi.2008.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2008] [Revised: 10/22/2008] [Accepted: 10/28/2008] [Indexed: 05/27/2023]
Abstract
Centaurin-alpha1 specifically binds phosphatidylinositol 3,4,5-trisphosphate (PI (3,4,5)P3) and is a GTPase-activating protein (GAP) of ADP-ribosylation factor (ARF6). It actively engages in phosphatidylinositol 3-kinase (PI3-K) mediated cell signal transduction. Here, for the first time, we have identified a virus related centaurin-alpha1 homologue named MjCent from the shrimp, Marsupeneaus japonicus, an economically important crustacean in the aquaculture industry. MjCent has one conserved ArfGAP and two Pleckstrin homology domains (PH domains). As shown by RT-PCR and immunofluorescence, MjCent appeared in every tissue examined and was localized mainly in the cell cytoplasm. Further investigation with real-time quantitative PCR showed that MjCent was significantly up-regulated during white spot syndrome virus (WSSV) infection, but notably decreased in virus-resistant shrimps. This suggests a close relationship between MjCent and WSSV invasion and host defense of the shrimp, M. japonicus.
Collapse
Affiliation(s)
- Huifen Wang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, PR China
| | | | | | | |
Collapse
|
37
|
Localization of EFA6A, a guanine nucleotide exchange factor for ARF6, in spermatogenic cells of testes of adult mice. J Mol Histol 2008; 40:77-80. [PMID: 19085064 DOI: 10.1007/s10735-008-9207-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Accepted: 11/26/2008] [Indexed: 11/27/2022]
Abstract
ADP ribosylation factors (ARFs) of small GTPase are molecular switches regulating various membrane dynamics. Among them, ARF6 has recently been highlighted because of its function to facilitate the interaction between the cytoskeleton and the plasma membrane. Each ARFs has its preferable or even specific guanine nucleotide exchange factors (GEFs) as its activators. According to our previous RT-PCR analysis, EFA6A, a guanine nucleotide exchange factor for ARF6, was restrictedly expressed in the brain, retina and testis. Different from previous studies on neurons, EFA6A, a guanine nucleotide exchange factor for ARF6, was first shown to be localized intensely in nuclei of spermatocytes of adult mouse testes in the present immunohistochemical study. This suggests a possible involvement of EFA6A-ARF6 signaling in the karyokinesis and cytokinesis.
Collapse
|
38
|
Displacement of protein-bound aptamers with small molecules screened by fluorescence polarization. Nat Protoc 2008; 3:579-87. [PMID: 18388939 DOI: 10.1038/nprot.2008.15] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Small molecule inhibitors of proteins are invaluable tools in research and as starting points for drug development. However, their screening can be tedious, as most screening methods have to be tailored to the corresponding drug target. Here, we describe a detailed protocol for a modular and generally applicable assay for the identification of small organic compounds that displace an aptamer complexed to its target protein. The method relies on fluorescence-labeled aptamers and the increase of fluorescence polarization upon their binding to the target protein. The assay has high Z'-factors, making it compatible with high-throughput screening. It allows easy automation, making fluorescence readout the time-limiting step. As aptamers can be generated for virtually any protein target, the assay allows identification of small molecule inhibitors for targets or individual protein domains for which no functional screen is available. We provide the step-by-step protocol to screen for antagonists of the cytohesin class of small guanosine exchange factors.
Collapse
|
39
|
Kölsch V, Charest PG, Firtel RA. The regulation of cell motility and chemotaxis by phospholipid signaling. J Cell Sci 2008; 121:551-9. [PMID: 18287584 DOI: 10.1242/jcs.023333] [Citation(s) in RCA: 278] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Phosphoinositide 3-kinase (PI3K), PTEN and localized phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P3] play key roles in chemotaxis, regulating cell motility by controlling the actin cytoskeleton in Dictyostelium and mammalian cells. PtdIns(3,4,5)P3, produced by PI3K, acts via diverse downstream signaling components, including the GTPase Rac, Arf-GTPases and the kinase Akt (PKB). It has become increasingly apparent, however, that chemotaxis results from an interplay between the PI3K-PTEN pathway and other parallel pathways in Dictyostelium and mammalian cells. In Dictyostelium, the phospholipase PLA2 acts in concert with PI3K to regulate chemotaxis, whereas phospholipase C (PLC) plays a supporting role in modulating PI3K activity. In adenocarcinoma cells, PLC and the actin regulator cofilin seem to provide the direction-sensing machinery, whereas PI3K might regulate motility.
Collapse
Affiliation(s)
- Verena Kölsch
- Section of Cell and Developmental Biology, Division of Biological Sciences, Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0380, USA
| | | | | |
Collapse
|
40
|
Karim ZA, Choi W, Whiteheart SW. Primary platelet signaling cascades and integrin-mediated signaling control ADP-ribosylation factor (Arf) 6-GTP levels during platelet activation and aggregation. J Biol Chem 2008; 283:11995-2003. [PMID: 18326492 DOI: 10.1074/jbc.m800146200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Previous studies showed that ADP-ribosylation factor 6 (Arf6) is important for platelet function; however, little is known about which signaling events regulate this small GTP-binding protein. Arf6-GTP was monitored in platelets stimulated with a number of agonists (TRAP, thrombin, convulxin, collagen, PMA, thapsigargin, or A23187) and all led to a time-dependent decrease in Arf6-GTP. ADP and U46619 were without effect. Using inhibitors, it was shown that the decrease of Arf6-GTP is a direct consequence of known signaling cascades. Upon stimulation via PAR receptors, Arf6-GTP loss could be blocked by treatment with U-73122, BAPTA/AM, Ro-31-8220, or Gö6976, indicating requirements for phospholipase C, calcium, and protein kinase C (PKC) alpha/beta, respectively. The Arf6-GTP decrease in convulxin-stimulated platelets showed similar requirements and was also sensitive to piceatannol, wortmannin, and LY294002, indicating additional requirements for Syk and phosphatidylinositol 3-kinase. The convulxin-induced decrease was sensitive to both PKCalpha/beta and delta inhibitors. Outside-in signaling, potentially via integrin engagement, caused a second wave of signaling that affected Arf6. Inclusion of RGDS peptides or EGTA, during activation, led to a biphasic response; Arf6-GTP levels partially recovered upon continued incubation. A similar response was seen in beta3 integrin-null platelets. These data show that Arf6-GTP decreases in response to known signaling pathways associated with PAR and GPVI. They further reveal a second, aggregation-dependent, process that dampens Arf6-GTP recovery. This study demonstrates that the nucleotide state of Arf6 in platelets is regulated during the initial phases of activation and during the later stages of aggregation.
Collapse
Affiliation(s)
- Zubair A Karim
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536-0509, USA
| | | | | |
Collapse
|
41
|
Abstract
Small G proteins play a central role in the organization of the secretory and endocytic pathways. The majority of such small G proteins are members of the Rab family, which are anchored to the bilayer by C-terminal prenyl groups. However, the recruitment of some effectors, including vesicle coat proteins, is mediated by a second class of small G proteins that is unique in having an N-terminal amphipathic helix that becomes available for membrane insertion upon GTP binding. Sar1, Arf1, and Arf6 are the best-characterized members of this ADP-ribosylation factor (Arf) family. In addition, all eukaryotes contain additional distantly related G proteins, often called Arf like, or Arls. The complete Arf family in humans has 29 members. The roles of these related G proteins are poorly understood, but recent work has shown that some are involved in membrane traffic or organizing the cytoskeleton. Here we review what is known about all the members of the Arf family, along with the known regulatory molecules that convert them between GDP- and GTP-bound states.
Collapse
|
42
|
Gillingham AK, Munro S. Identification of a guanine nucleotide exchange factor for Arf3, the yeast orthologue of mammalian Arf6. PLoS One 2007; 2:e842. [PMID: 17786213 PMCID: PMC1950683 DOI: 10.1371/journal.pone.0000842] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 07/30/2007] [Indexed: 11/19/2022] Open
Abstract
Small G proteins of the Arf and Rab families are fundamental to the organisation and activity of intracellular membranes. One of the most well characterised of these G proteins is mammalian Arf6, a protein that participates in many cellular processes including endocytosis, actin remodelling and cell adhesion. Exchange of GDP for GTP on Arf6 is performed by a variety of guanine nucleotide exchange factors (GEFs), principally of the cytohesin (PSCD) and EFA6 (PSD) families. In this paper we describe the characterisation of a GEF for the yeast orthologue of Arf6, Arf3, which we have named Yel1 (yeast EFA6-like-1) using yeast genetics, fluorescence microscopy and in vitro nucleotide exchange assays. Yel1 appears structurally related to the EFA6 family of GEFs, having an N-terminal Sec7 domain and C-terminal PH and coiled-coil domains. We find that Yel1 is constitutively targeted to regions of polarised growth in yeast, where it co-localises with Arf3. Moreover the Sec7 domain of Yel1 is required for its membrane targeting and for that of Arf3. Finally we show that the isolated Yel1 Sec7 domain strongly stimulates nucleotide exchange activity specifically on Arf3 in vitro.
Collapse
Affiliation(s)
- Alison K Gillingham
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom.
| | | |
Collapse
|
43
|
Li CC, Chiang TC, Wu TS, Pacheco-Rodriguez G, Moss J, Lee FJS. ARL4D recruits cytohesin-2/ARNO to modulate actin remodeling. Mol Biol Cell 2007; 18:4420-37. [PMID: 17804820 PMCID: PMC2043562 DOI: 10.1091/mbc.e07-02-0149] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
ARL4D is a developmentally regulated member of the ADP-ribosylation factor/ARF-like protein (ARF/ARL) family of Ras-related GTPases. Although the primary structure of ARL4D is very similar to that of other ARF/ARL molecules, its function remains unclear. Cytohesin-2/ARF nucleotide-binding-site opener (ARNO) is a guanine nucleotide-exchange factor (GEF) for ARF, and, at the plasma membrane, it can activate ARF6 to regulate actin reorganization and membrane ruffling. We show here that ARL4D interacts with the C-terminal pleckstrin homology (PH) and polybasic c domains of cytohesin-2/ARNO in a GTP-dependent manner. Localization of ARL4D at the plasma membrane is GTP- and N-terminal myristoylation-dependent. ARL4D(Q80L), a putative active form of ARL4D, induced accumulation of cytohesin-2/ARNO at the plasma membrane. Consistent with a known action of cytohesin-2/ARNO, ARL4D(Q80L) increased GTP-bound ARF6 and induced disassembly of actin stress fibers. Expression of inactive cytohesin-2/ARNO(E156K) or small interfering RNA knockdown of cytohesin-2/ARNO blocked ARL4D-mediated disassembly of actin stress fibers. Similar to the results with cytohesin-2/ARNO or ARF6, reduction of ARL4D suppressed cell migration activity. Furthermore, ARL4D-induced translocation of cytohesin-2/ARNO did not require phosphoinositide 3-kinase activation. Together, these data demonstrate that ARL4D acts as a novel upstream regulator of cytohesin-2/ARNO to promote ARF6 activation and modulate actin remodeling.
Collapse
Affiliation(s)
- Chun-Chun Li
- *Institute of Molecular Medicine, College of Medicine, National Taiwan University, and Department of Medical Research, National Taiwan University Hospital, Taipei 100, Taiwan; and
| | - Tsai-Chen Chiang
- *Institute of Molecular Medicine, College of Medicine, National Taiwan University, and Department of Medical Research, National Taiwan University Hospital, Taipei 100, Taiwan; and
| | - Tsung-Sheng Wu
- *Institute of Molecular Medicine, College of Medicine, National Taiwan University, and Department of Medical Research, National Taiwan University Hospital, Taipei 100, Taiwan; and
| | - Gustavo Pacheco-Rodriguez
- Pulmonary-Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1434
| | - Joel Moss
- Pulmonary-Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1434
| | - Fang-Jen S. Lee
- *Institute of Molecular Medicine, College of Medicine, National Taiwan University, and Department of Medical Research, National Taiwan University Hospital, Taipei 100, Taiwan; and
| |
Collapse
|
44
|
Hagforsen E, Sunnerberg K, Michaëlsson G, Kämpe O, Hedstrand H. Psoriasis Autoantigens in Normal Scalp Skin—Identification by Expression Cloning. J Invest Dermatol 2007; 127:2276-80. [PMID: 17476296 DOI: 10.1038/sj.jid.5700848] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
45
|
Ogawa M, Miyakawa T, Nakamura K, Kitano J, Furushima K, Kiyonari H, Nakayama R, Nakao K, Moriyoshi K, Nakanishi S. Altered sensitivities to morphine and cocaine in scaffold protein tamalin knockout mice. Proc Natl Acad Sci U S A 2007; 104:14789-94. [PMID: 17766434 PMCID: PMC1976212 DOI: 10.1073/pnas.0706945104] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tamalin is a scaffold protein that interacts with metabotropic glutamate receptors and the kinase-deficient neurotrophin TrkCT1 receptor and forms a protein complex with multiple protein-trafficking and intracellular signaling molecules. In culture, tamalin promotes intracellular trafficking of group 1 metabotropic glutamate receptors through its interaction with guanine nucleotide exchange factor cytohesins and causes actin reorganization and membrane ruffling via the TrkCT1/cytohesin-2 signaling mechanism. However, how tamalin serves its physiological function in vivo has remained elusive. In this study, we generated tamalin knockout (Tam(-/-) KO) mice and investigated behavioral alterations resulting from their deficiency in functional tamalin. Targeted deletion of functional tamalin altered neither the overall brain architecture nor the general behavior of the mice under ordinary conditions. However, Tam(-/-) KO mice showed a decrease in sensitivity to acute morphine-induced hyperlocomotion and morphine analgesic effects in the hot-plate test. Furthermore, tamalin deficiency impaired the ability of the animals to show conditioned place preference after repeated morphine administration and to display locomotor sensitization by chronic cocaine treatment. Upon in vivo microdialysis analysis of the nucleus accumbens, Tam(-/-) KO and wild-type mice showed no genotypic differences in their response patterns of extracellular dopamine and glutamate before or after morphine administration. These results demonstrate that the tamalin scaffold protein plays a unique role in both acute and adaptive behavioral responses to morphine and cocaine and could regulate common neural substrates implicated in drugs of abuse.
Collapse
Affiliation(s)
- Masaaki Ogawa
- *Department of Systems Biology, Osaka Bioscience Institute, Suita, Osaka 565-0874, Japan
- Department of Biological Sciences and
| | | | - Kenji Nakamura
- Mouse Genome Technology Laboratory, Mitsubishi Kagaku Institute of Life Sciences, Machida, Tokyo 194-8511, Japan; and
| | | | - Kenryo Furushima
- **Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Hyogo 650-0046, Japan
| | - Hiroshi Kiyonari
- **Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Hyogo 650-0046, Japan
| | - Rika Nakayama
- **Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Hyogo 650-0046, Japan
| | - Kazuki Nakao
- **Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Hyogo 650-0046, Japan
| | - Koki Moriyoshi
- Department of Molecular and System Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shigetada Nakanishi
- *Department of Systems Biology, Osaka Bioscience Institute, Suita, Osaka 565-0874, Japan
- Department of Biological Sciences and
- Department of Molecular and System Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
46
|
Moore CD, Thacker EE, Larimore J, Gaston D, Underwood A, Kearns B, Patterson SI, Jackson T, Chapleau C, Pozzo-Miller L, Theibert A. The neuronal Arf GAP centaurin alpha1 modulates dendritic differentiation. J Cell Sci 2007; 120:2683-93. [PMID: 17635995 PMCID: PMC2810648 DOI: 10.1242/jcs.006346] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Centaurin alpha1 is an Arf GTPase-activating protein (GAP) that is highly expressed in the nervous system. In the current study, we show that endogenous centaurin alpha1 protein is localized in the synaptosome fraction, with peak expression in early postnatal development. In cultured dissociated hippocampal neurons, centaurin alpha1 localizes to dendrites, dendritic spines and the postsynaptic region. siRNA-mediated knockdown of centaurin alpha1 levels or overexpression of a GAP-inactive mutant of centaurin alpha1 leads to inhibition of dendritic branching, dendritic filopodia and spine-like protrusions in dissociated hippocampal neurons. Overexpression of wild-type centaurin alpha1 in cultured hippocampal neurons in early development enhances dendritic branching, and increases dendritic filopodia and lamellipodia. Both filopodia and lamellipodia have been implicated in dendritic branching and spine formation. Following synaptogenesis in cultured neurons, wild-type centaurin alpha1 expression increases dendritic filopodia and spine-like protrusions. Expression of a GAP-inactive mutant diminishes spine density in CA1 pyramidal neurons within cultured organotypic hippocampal slice cultures. These data support the conclusion that centaurin alpha1 functions through GAP-dependent Arf regulation of dendritic branching and spines that underlie normal dendritic differentiation and development.
Collapse
Affiliation(s)
- Carlene D. Moore
- Department of Neurobiology and Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Erin E. Thacker
- Department of Neurobiology and Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jennifer Larimore
- Department of Neurobiology and Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David Gaston
- Department of Neurobiology and Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Alison Underwood
- Department of Neurobiology and Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Brian Kearns
- Department of Neurobiology and Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sean I. Patterson
- IHEM-CONICET, Departmento de Morfo-Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Trevor Jackson
- Departments of Physiology and Dermatology, School of Clinical and Laboratory Sciences, Medical School, University of Newcastle upon Tyne, NE2 4HH, UK
| | - Chris Chapleau
- Department of Neurobiology and Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lucas Pozzo-Miller
- Department of Neurobiology and Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Anne Theibert
- Department of Neurobiology and Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Author for correspondence ()
| |
Collapse
|
47
|
GxcDD, a putative RacGEF, is involved in Dictyostelium development. BMC Cell Biol 2007; 8:23. [PMID: 17584488 PMCID: PMC1914345 DOI: 10.1186/1471-2121-8-23] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Accepted: 06/20/2007] [Indexed: 01/02/2023] Open
Abstract
Background Rho subfamily GTPases are implicated in a large number of actin-related processes. They shuttle from an inactive GDP-bound form to an active GTP-bound form. This reaction is catalysed by Guanine nucleotide exchange factor (GEFs). GTPase activating proteins (GAPs) help the GTPase return to the inactive GDP-bound form. The social amoeba Dictyostelium discoideum lacks a Rho or Cdc42 ortholog but has several Rac related GTPases. Compared to our understanding of the downstream effects of Racs our understanding of upstream mechanisms that activate Rac GTPases is relatively poor. Results We report on GxcDD (Guanine exchange factor for Rac GTPases), a Dictyostelium RacGEF. GxcDD is a 180-kDa multidomain protein containing a type 3 CH domain, two IQ motifs, three PH domains, a RhoGEF domain and an ArfGAP domain. Inactivation of the gene results in defective streaming during development under different conditions and a delay in developmental timing. The characterization of single domains revealed that the CH domain of GxcDD functions as a membrane association domain, the RhoGEF domain can physically interact with a subset of Rac GTPases, and the ArfGAP-PH tandem accumulates in cortical regions of the cell and on phagosomes. Our results also suggest that a conformational change may be required for activation of GxcDD, which would be important for its downstream signaling. Conclusion The data indicate that GxcDD is involved in proper streaming and development. We propose that GxcDD is not only a component of the Rac signaling pathway in Dictyostelium, but is also involved in integrating different signals. We provide evidence for a Calponin Homology domain acting as a membrane association domain. GxcDD can bind to several Rac GTPases, but its function as a nucleotide exchange factor needs to be studied further.
Collapse
|
48
|
Skupsky R, McCann C, Nossal R, Losert W. Bias in the gradient-sensing response of chemotactic cells. J Theor Biol 2007; 247:242-58. [PMID: 17462672 PMCID: PMC2763186 DOI: 10.1016/j.jtbi.2007.02.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 01/15/2007] [Accepted: 02/27/2007] [Indexed: 12/22/2022]
Abstract
We apply linear stability theory and perform perturbation studies to better characterize, and to generate new experimental predictions from, a model of chemotactic gradient sensing in eukaryotic cells. The model uses reaction-diffusion equations to describe 3(') phosphoinositide signaling and its regulation at the plasma membrane. It demonstrates a range of possible gradient-sensing mechanisms and captures such characteristic behaviors as strong polarization in response to static gradients, adaptation to differing mean levels of stimulus, and plasticity in response to changing gradients. An analysis of the stability of polarized steady-state solutions indicates that the model is most sensitive to off-axis perturbations. This biased sensitivity is also reflected in responses to localized external stimuli, and leads to a clear experimental prediction, namely, that a cell which is polarized in a background gradient will be most sensitive to transient point-source stimuli lying within a range of angles that are oblique with respect to the polarization axis. Stimuli at angles below this range will elicit responses whose directions overshoot the stimulus angle, while responses to stimuli applied at larger angles will undershoot the stimulus angle. We argue that such a bias is likely to be a general feature of gradient sensing in highly motile cells, particularly if they are optimized to respond to small gradients. Finally, an angular bias in gradient sensing might lead to preferred turn angles and zigzag movements of cells moving up chemotactic gradients, as has been noted under certain experimental conditions.
Collapse
Affiliation(s)
- Ron Skupsky
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 USA
- Physics Department, University of Maryland, College Park, MD 20742 USA
| | - Colin McCann
- Physics Department, University of Maryland, College Park, MD 20742 USA
| | - Ralph Nossal
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 USA
| | - Wolfgang Losert
- Physics Department, University of Maryland, College Park, MD 20742 USA
| |
Collapse
|
49
|
Sakagami H, Honma T, Sukegawa J, Owada Y, Yanagisawa T, Kondo H. Somatodendritic localization of EFA6A, a guanine nucleotide exchange factor for ADP-ribosylation factor 6, and its possible interaction with α-actinin in dendritic spines. Eur J Neurosci 2007; 25:618-28. [PMID: 17298598 DOI: 10.1111/j.1460-9568.2007.05345.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
EFA6A is a member of the guanine nucleotide exchange factors that can specifically activate ADP ribosylation factor 6 (ARF6). In this study, we identified alpha-actinin-1 as a possible interacting protein with EFA6A by the yeast two-hybrid screening with its C-terminal region as bait. The central region of alpha-actinin-1 containing a part of spectrin repeat 1 and spectrin repeats 2-3 is responsible for this interaction. In the hippocampal formation, EFA6A immunoreactivity occurred at a high level as numerous fine puncta in the strata oriens, radiatum, lacunosum-moleculare of the hippocampal CA1-3 subfields and the dentate molecular layer, whereas the immunoreactivity was faint in the neuronal cell layers and the stratum lucidum, the mossy fiber-recipient layer of the CA3 subfield. Double-immunofluorescent analyses revealed a partial overlapping of EFA6A and alpha-actinin at the dendritic spines of in vivo and cultured hippocampal neurons. Our present findings suggest that EFA6A may form a protein complex with alpha-actinin and activate ARF6 in close proximity of the actin cytoskeleton and membrane proteins in the dendritic spines.
Collapse
Affiliation(s)
- Hiroyuki Sakagami
- Division of Histology, Department of Cell Biology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Sendai 980-8575, Japan.
| | | | | | | | | | | |
Collapse
|
50
|
Venkateswarlu K, Brandom KG, Yun H. PI-3-kinase-dependent membrane recruitment of centaurin-alpha2 is essential for its effect on ARF6-mediated actin cytoskeleton reorganisation. J Cell Sci 2007; 120:792-801. [PMID: 17284522 DOI: 10.1242/jcs.03373] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GTPase activating proteins (GAPs) of the centaurin family regulate the actin cytoskeleton and vesicle trafficking through inactivation of the ADP-ribosylation factor (ARF) family of small GTP-binding proteins. We report the functional characterisation of centaurin-alpha(2), which is structurally related to the centaurin-alpha(1) ARF6 GAP. centaurin-alpha(2) contains an N-terminal GAP domain followed by two pleckstrin homology (PH) domains (N-PH and C-PH). In vitro, GFP-centaurin-alpha(2) specifically binds the phosphatidylinositol (PI) 3-kinase lipid products, PI 3,4-P(2) and PI 3,4,5-P(3) (PIP(3)), through its C-terminal PH domain. In agreement with this observation, GFP-centaurin-alpha(2) was recruited to the plasma membrane from the cytosol in EGF-stimulated cells in a PI-3-kinase-dependent manner. Moreover, the C-PH domain is sufficient and necessary for membrane recruitment of centaurin-alpha(2). centaurin-alpha(2) shows sustained kinetics of PI-3-kinase-mediated membrane recruitment in EGF-stimulated cells, owing to its binding to PI 3,4-P(2). centaurin-alpha(2) prevents ARF6 translocation to, and cortical actin formation at, the plasma membrane, which are phenotypic indications for ARF6 activation in EGF-stimulated cells. Moreover, the constitutively active mutant of ARF6 reverses the effect of centaurin-alpha(2) on cortical actin formation. The membrane targeted centaurin-alpha(2) is constitutively active. Together, these studies indicate that centaurin-alpha(2) is recruited in a sustained manner to the plasma membrane through binding to PI 3,4-P(2) and thereby regulates actin reorganisation via ARF6.
Collapse
|