1
|
Nieuwenhuis B, Eva R. Promoting axon regeneration in the central nervous system by increasing PI3-kinase signaling. Neural Regen Res 2021; 17:1172-1182. [PMID: 34782551 PMCID: PMC8643051 DOI: 10.4103/1673-5374.327324] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Much research has focused on the PI3-kinase and PTEN signaling pathway with the aim to stimulate repair of the injured central nervous system. Axons in the central nervous system fail to regenerate, meaning that injuries or diseases that cause loss of axonal connectivity have life-changing consequences. In 2008, genetic deletion of PTEN was identified as a means of stimulating robust regeneration in the optic nerve. PTEN is a phosphatase that opposes the actions of PI3-kinase, a family of enzymes that function to generate the membrane phospholipid PIP3 from PIP2 (phosphatidylinositol (3,4,5)-trisphosphate from phosphatidylinositol (4,5)-bisphosphate). Deletion of PTEN therefore allows elevated signaling downstream of PI3-kinase, and was initially demonstrated to promote axon regeneration by signaling through mTOR. More recently, additional mechanisms have been identified that contribute to the neuron-intrinsic control of regenerative ability. This review describes neuronal signaling pathways downstream of PI3-kinase and PIP3, and considers them in relation to both developmental and regenerative axon growth. We briefly discuss the key neuron-intrinsic mechanisms that govern regenerative ability, and describe how these are affected by signaling through PI3-kinase. We highlight the recent finding of a developmental decline in the generation of PIP3 as a key reason for regenerative failure, and summarize the studies that target an increase in signaling downstream of PI3-kinase to facilitate regeneration in the adult central nervous system. Finally, we discuss obstacles that remain to be overcome in order to generate a robust strategy for repairing the injured central nervous system through manipulation of PI3-kinase signaling.
Collapse
Affiliation(s)
- Bart Nieuwenhuis
- John van Geest Center for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Richard Eva
- John van Geest Center for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
2
|
Bonavita R, Laukkanen MO. Common Signal Transduction Molecules Activated by Bacterial Entry into a Host Cell and by Reactive Oxygen Species. Antioxid Redox Signal 2021; 34:486-503. [PMID: 32600071 DOI: 10.1089/ars.2019.7968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Significance: An increasing number of pathogens are acquiring resistance to antibiotics. Efficient antimicrobial drug regimens are important even for the most advanced therapies, which range from cutting-edge invasive clinical protocols, such as robotic surgeries, to the treatment of harmless bacterial diseases and to minor scratches to the skin. Therefore, there is an urgent need to survey alternative antimicrobial drugs that can reinforce or replace existing antibiotics. Recent Advances: Bacterial proteins that are critical for energy metabolism, promising novel anticancer thiourea derivatives, and the use of synthetic molecules that increase the sensitivity of currently used antibiotics are among the recently discovered antimicrobial drugs. Critical Issues: In the development of new drugs, serious consideration should be given to the previous bacterial evolutionary selection caused by antibiotics, by the high proliferation rate of bacteria, and by the simple prokaryotic structure of bacteria. Future Directions: The survey of drug targets has mainly focused on bacterial proteins, although host signaling molecules involved in the treatment of various pathologies may have unknown antimicrobial characteristics. Recent data have suggested that small molecule inhibitors might enhance the effect of antibiotics, for example, by limiting bacterial entry into host cells. Phagocytosis, the mechanism by which host cells internalize pathogens through β-actin cytoskeletal rearrangement, induces calcium signaling, small GTPase activation, and phosphorylation of the phosphatidylinositol 3-kinase-serine/threonine-specific protein kinase B pathway. Antioxid. Redox Signal. 34, 486-503.
Collapse
Affiliation(s)
- Raffaella Bonavita
- Experimental Institute of Endocrinology and Oncology G. Salvatore, IEOS CNR, Naples, Italy
| | | |
Collapse
|
3
|
Petrova V, Eva R. The Virtuous Cycle of Axon Growth: Axonal Transport of Growth-Promoting Machinery as an Intrinsic Determinant of Axon Regeneration. Dev Neurobiol 2018; 78:898-925. [PMID: 29989351 DOI: 10.1002/dneu.22608] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 02/02/2023]
Abstract
Injury to the brain and spinal cord has devastating consequences because adult central nervous system (CNS) axons fail to regenerate. Injury to the peripheral nervous system (PNS) has a better prognosis, because adult PNS neurons support robust axon regeneration over long distances. CNS axons have some regenerative capacity during development, but this is lost with maturity. Two reasons for the failure of CNS regeneration are extrinsic inhibitory molecules, and a weak intrinsic capacity for growth. Extrinsic inhibitory molecules have been well characterized, but less is known about the neuron-intrinsic mechanisms which prevent axon re-growth. Key signaling pathways and genetic/epigenetic factors have been identified which can enhance regenerative capacity, but the precise cellular mechanisms mediating their actions have not been characterized. Recent studies suggest that an important prerequisite for regeneration is an efficient supply of growth-promoting machinery to the axon; however, this appears to be lacking from non-regenerative axons in the adult CNS. In the first part of this review, we summarize the evidence linking axon transport to axon regeneration. We discuss the developmental decline in axon regeneration capacity in the CNS, and comment on how this is paralleled by a similar decline in the selective axonal transport of regeneration-associated receptors such as integrins and growth factor receptors. In the second part, we discuss the mechanisms regulating selective polarized transport within neurons, how these relate to the intrinsic control of axon regeneration, and whether they can be targeted to enhance regenerative capacity. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 00: 000-000, 2018.
Collapse
Affiliation(s)
- Veselina Petrova
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 OPY, United Kingdom
| | - Richard Eva
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 OPY, United Kingdom
| |
Collapse
|
4
|
Nieuwenhuis B, Eva R. Linking axon transport to regeneration using in vitro laser axotomy. Neural Regen Res 2018; 13:410-412. [PMID: 29623918 PMCID: PMC5900496 DOI: 10.4103/1673-5374.228716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Bart Nieuwenhuis
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK,Laboratory for Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands
| | - Richard Eva
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK,Correspondence to: Richard Eva, .
| |
Collapse
|
5
|
Eva R, Koseki H, Kanamarlapudi V, Fawcett JW. EFA6 regulates selective polarised transport and axon regeneration from the axon initial segment. J Cell Sci 2017; 130:3663-3675. [PMID: 28935671 PMCID: PMC5702059 DOI: 10.1242/jcs.207423] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/08/2017] [Indexed: 12/11/2022] Open
Abstract
Central nervous system (CNS) axons lose their intrinsic ability to regenerate upon maturity, whereas peripheral nervous system (PNS) axons do not. A key difference between these neuronal types is their ability to transport integrins into axons. Integrins can mediate PNS regeneration, but are excluded from adult CNS axons along with their Rab11 carriers. We reasoned that exclusion of the contents of Rab11 vesicles including integrins might contribute to the intrinsic inability of CNS neurons to regenerate, and investigated this by performing laser axotomy. We identify a novel regulator of selective axon transport and regeneration, the ARF6 guanine-nucleotide-exchange factor (GEF) EFA6 (also known as PSD). EFA6 exerts its effects from a location within the axon initial segment (AIS). EFA6 does not localise at the AIS in dorsal root ganglion (DRG) axons, and in these neurons, ARF6 activation is counteracted by an ARF GTPase-activating protein (GAP), which is absent from the CNS, ACAP1. Depleting EFA6 from cortical neurons permits endosomal integrin transport and enhances regeneration, whereas overexpressing EFA6 prevents DRG regeneration. Our results demonstrate that ARF6 is an intrinsic regulator of regenerative capacity, implicating EFA6 as a focal molecule linking the AIS, signalling and transport. This article has an associated First Person interview with the first author of the paper. Highlighted Article: EFA6 is shown to reside in the axon initial segment, where it functions to prevent growth-promoting molecules from entering mature CNS axons. Removing EFA6 elevates the regenerative potential of the axon.
Collapse
Affiliation(s)
- Richard Eva
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 OPY, U.K
| | - Hiroaki Koseki
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 OPY, U.K
| | | | - James W Fawcett
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 OPY, U.K .,Centre of Reconstructive Neuroscience, Institute of Experimental Medicine AVCR, Prague, Czech Republic
| |
Collapse
|
6
|
Koseki H, Donegá M, Lam BY, Petrova V, van Erp S, Yeo GS, Kwok JC, Ffrench-Constant C, Eva R, Fawcett JW. Selective rab11 transport and the intrinsic regenerative ability of CNS axons. eLife 2017; 6:26956. [PMID: 28829741 PMCID: PMC5779230 DOI: 10.7554/elife.26956] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 08/07/2017] [Indexed: 12/12/2022] Open
Abstract
Neurons lose intrinsic axon regenerative ability with maturation, but the mechanism remains unclear. Using an in-vitro laser axotomy model, we show a progressive decline in the ability of cut CNS axons to form a new growth cone and then elongate. Failure of regeneration was associated with increased retraction after axotomy. Transportation into axons becomes selective with maturation; we hypothesized that selective exclusion of molecules needed for growth may contribute to regeneration decline. With neuronal maturity rab11 vesicles (which carry many molecules involved in axon growth) became selectively targeted to the somatodendritic compartment and excluded from axons by predominant retrograde transport However, on overexpression rab11 was mistrafficked into proximal axons, and these axons showed less retraction and enhanced regeneration after axotomy. These results suggest that the decline of intrinsic axon regenerative ability is associated with selective exclusion of key molecules, and that manipulation of transport can enhance regeneration. The nerves in the brain and spinal cord can be damaged by trauma, stroke and other conditions. Damage to these nerve fibres can destroy the connections they form with each other, which may lead to paralysis, loss of sensation and loss of body control. If we could stimulate the regeneration and reconnection of the damaged nerve fibres then neurological function could be restored. However, although embryonic nerve fibres can regenerate when they are transplanted into the adult central nervous system, this regenerative ability appears to be lost as the nerve fibres mature. To investigate when and why nerve fibres lose the ability to regenerate, Koseki et al. first developed a tissue culture assay in which individual nerve fibres were cut with a laser and imaged for several hours to track their regeneration (or failure to regenerate). The results demonstrate that nerve fibres from the central nervous system progressively lose the ability to grow and regenerate as they mature. To investigate why mature nerve fibres cannot regenerate, Koseki et al. measured whether nerve fibres can transport some of the molecules needed for growth and regeneration to sites of damage. This showed that the compartments in which some key growth molecules are transported become excluded from mature nerve fibres. These compartments are marked by a protein called rab11, and Koseki et al. found that forcing rab11 back into mature nerve fibres restored their ability to regenerate. There is still a lot of work needed before these findings can lead to a new regeneration treatment for patients, but it is a crucial step forwards. Furthermore, the assay developed by Koseki et al. could be used to develop and test such treatments.
Collapse
Affiliation(s)
- Hiroaki Koseki
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom.,Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Matteo Donegá
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Brian Yh Lam
- MRC Metabolic Diseases Unit, Metabolic Research Laboratories, University of Cambridge, Cambridge, United Kingdom
| | - Veselina Petrova
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom.,Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Susan van Erp
- MRC Centre of Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Giles Sh Yeo
- MRC Metabolic Diseases Unit, Metabolic Research Laboratories, University of Cambridge, Cambridge, United Kingdom
| | - Jessica Cf Kwok
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom.,Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.,School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom.,Centre of Reconstructive Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | | | - Richard Eva
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom.,Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - James W Fawcett
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom.,Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.,Centre of Reconstructive Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
7
|
Kolanus W. Guanine nucleotide exchange factors of the cytohesin family and their roles in signal transduction. Immunol Rev 2007; 218:102-13. [PMID: 17624947 DOI: 10.1111/j.1600-065x.2007.00542.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Members of the cytohesin protein family, a group of guanine nucleotide exchange factors for adenosine diphosphate ribosylation factor (ARF) guanosine triphosphatases, have recently emerged as important regulators of signal transduction in vertebrate and invertebrate biology. These proteins share a modular domain structure, comprising carboxy-terminal membrane recruitment elements, a Sec7 homology effector domain, and an amino-terminal coiled-coil domain that serve as a platform for their integration into larger signaling complexes. Although these proteins have a highly similar overall build, their individual biological functions appear to be at least partly specific. Cytohesin-1 had been identified as a regulator of beta2 integrin inside-out regulation in immune cells and was subsequently shown to be involved in mitogen-associated protein kinase signaling in tumor cell proliferation as well as in T-helper cell activation and differentiation. Cytohesin-3, which had been discovered to be strongly associated with T-cell anergy, was very recently described as an essential component of insulin signal transduction in Drosophila and in human and murine liver cells. Future work will aim to dissect the mechanistic details of the modes of action of the cytohesins as well as to define the precise roles of these versatile proteins in vertebrates at the genetic level.
Collapse
Affiliation(s)
- Waldemar Kolanus
- Laboratory of Molecular Immunology, Program Unit Molecular Immune and Cell Biology, LIMES (Life and Medical Sciences Bonn), University of Bonn, Bonn, Germany.
| |
Collapse
|
8
|
Fuss B, Becker T, Zinke I, Hoch M. The cytohesin Steppke is essential for insulin signalling in Drosophila. Nature 2007; 444:945-8. [PMID: 17167488 DOI: 10.1038/nature05412] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Accepted: 11/03/2006] [Indexed: 12/20/2022]
Abstract
In metazoans, the insulin signalling pathway has a key function in regulating energy metabolism and organismal growth. Its activation stimulates a highly conserved downstream kinase cascade that includes phosphatidylinositol-3-OH kinase (PI(3)K) and the serine-threonine protein kinase Akt. This study identifies a new component of insulin signalling in Drosophila, the steppke gene (step). step encodes a member of the cytohesin family of guanine nucleotide exchange factors (GEFs), which have been characterized as activators for ADP-ribosylation factor (ARF) GTPases. In step mutant animals both cell size and cell number are reduced, resulting in decreased body size and body weight in larvae, pupae and adults. step acts upstream of PI(3)K and is required for the proper regulation of Akt and the transcription factor FOXO. Temporally controlled interference with the GEF activity of the Step protein by feeding the chemical inhibitor SecinH3 causes a block of insulin signalling and a phenocopy of the step mutant growth defect. Step represses its own expression and the synthesis of growth inhibitors such as the translational repressor 4E-BP. Our findings indicate a crucial role of an ARF-GEF in insulin signalling that has implications for understanding insulin-related disorders, such as diabetes and obesity.
Collapse
Affiliation(s)
- Bernhard Fuss
- LIMES-Institute, Program Unit Development and Genetics, Laboratory for Molecular Developmental Biology, University of Bonn, Meckenheimer Allee 169, D-53115 Bonn, Germany
| | | | | | | |
Collapse
|
9
|
Gray JV, Petsko GA, Johnston GC, Ringe D, Singer RA, Werner-Washburne M. "Sleeping beauty": quiescence in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 2004; 68:187-206. [PMID: 15187181 PMCID: PMC419917 DOI: 10.1128/mmbr.68.2.187-206.2004] [Citation(s) in RCA: 436] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The cells of organisms as diverse as bacteria and humans can enter stable, nonproliferating quiescent states. Quiescent cells of eukaryotic and prokaryotic microorganisms can survive for long periods without nutrients. This alternative state of cells is still poorly understood, yet much benefit is to be gained by understanding it both scientifically and with reference to human health. Here, we review our knowledge of one "model" quiescent cell population, in cultures of yeast grown to stationary phase in rich media. We outline the importance of understanding quiescence, summarize the properties of quiescent yeast cells, and clarify some definitions of the state. We propose that the processes by which a cell enters into, maintains viability in, and exits from quiescence are best viewed as an environmentally triggered cycle: the cell quiescence cycle. We synthesize what is known about the mechanisms by which yeast cells enter into quiescence, including the possible roles of the protein kinase A, TOR, protein kinase C, and Snf1p pathways. We also discuss selected mechanisms by which quiescent cells maintain viability, including metabolism, protein modification, and redox homeostasis. Finally, we outline what is known about the process by which cells exit from quiescence when nutrients again become available.
Collapse
Affiliation(s)
- Joseph V Gray
- Division of Molecular Genetics, Faculty of Biomedical and Life Sciences, University of Glasgow, Anderson College, 56 Dumbarton Rd., Glasgow G11 6NU, United Kingdom.
| | | | | | | | | | | |
Collapse
|
10
|
Chantalat S, Park SK, Hua Z, Liu K, Gobin R, Peyroche A, Rambourg A, Graham TR, Jackson CL. The Arf activator Gea2p and the P-type ATPase Drs2p interact at the Golgi in Saccharomyces cerevisiae. J Cell Sci 2004; 117:711-22. [PMID: 14734650 DOI: 10.1242/jcs.00896] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Arf GTPases regulate both the morphological and protein sorting events that are essential for membrane trafficking. Guanine nucleotide exchange factors (GEFs) specific for Arf proteins determine when and where Arf GTPases will be activated in cells. The yeast Gea2p Arf GEF is a member of an evolutionarily conserved family of high molecular mass Arf GEFs that are peripherally associated with membranes. Nothing is known about how these proteins are localized to membranes, and few direct binding partners have been identified. In yeast, Gea2p has been implicated in trafficking through the Golgi apparatus and in maintaining Golgi structure. A major function of the Golgi apparatus is the packaging of cargo into secretory granules or vesicles. This process occurs through a series of membrane transformation events starting with fenestration of a saccular membrane, and subsequent remodeling of the fenestrated membrane into a mesh-like tubular network. Concentration of secretory cargo into nodes of the tubular network leads to enlargement of the nodes, which correspond to forming vesicles/granules, and thinning of the surrounding tubules. The tubules eventually break to release the secretory vesicles/granules into the cytoplasm. This process is highly conserved at the morphological level from yeast to mammalian cells. Drs2p, a multi-span transmembrane domain protein and putative aminophospholipid translocase, is required for the formation of a class of secretory granules/vesicles in yeast. Here we show that Drs2p interacts directly with Gea2p, both in vitro and in vivo. We mapped the domain of interaction of Drs2p to a 20-amino-acid region of the C-terminal cytoplasmic tail of the protein, adjacent to a region essential for Drs2p function. Mutations in Gea2p that abolish interaction with Drs2p are clustered in the C-terminal third of the Sec7 domain, and are important for Gea2p function. We characterize one such mutant that has a thermosensitive phenotype, and show that it has morphological defects along the secretory pathway in the formation of secretory granules/vesicles.
Collapse
Affiliation(s)
- Sophie Chantalat
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-5430, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Whitley P, Gibbard AM, Koumanov F, Oldfield S, Kilgour EE, Prestwich GD, Holman GD. Identification of centaurin-alpha2: a phosphatidylinositide-binding protein present in fat, heart and skeletal muscle. Eur J Cell Biol 2002; 81:222-30. [PMID: 12018390 DOI: 10.1078/0171-9335-00242] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We describe here the cloning, expression and characterisation of centaurin-alpha2 from a rat adipocyte cDNA library. The centaurin-alpha2 cDNA contains an open reading frame, which codes for a protein of 376 amino acids with predicted mass of 43.5 kDa. Centaurin-alpha2 shares 51-59% identity with centaurin-alpha1 proteins and has the same domain organisation, consisting of a predicted N-terminal ArfGAP domain followed by two successive pleckstrin homology domains. Despite the sequence similarity, there are a number of notable differences between the previously characterised centaurin-alpha1 proteins and the newly described centaurin-alpha2: (i) in vitro lipid binding experiments with centaurin-alpha2 do not reveal the same selectivity for phosphatidylinositol 3,4,5-trisphosphate over phosphatidylinositol 4,5-bisphosphate that has been shown for centaurin-alpha; (ii) unlike centaurin-alpha1 which is expressed mainly in the brain, centaurin-alpha2 has a broad tissue distribution, being particularly abundant in fat, heart and skeletal muscle; (iii) in contrast to centaurin-alpha1 which is found in both membrane and cytosolic fractions, endogenous centaurin-alpha2 is exclusively present in the dense membrane fractions of cell extracts, suggesting a constitutive membrane association. Insulin stimulation, which stimulates phosphatidylinositol 3,4,5-trisphosphate production, does not alter the subcellular distribution of centaurin-alpha2 between adipocyte membrane fractions. This observation is consistent with the lack of specificity of centaurin-alpha2 for phosphatidylinositol 3,4,5-trisphosphate over phosphatidylinositol 4,5-bisphosphate.
Collapse
Affiliation(s)
- Paul Whitley
- Department of Biology and Biochemistry, University of Bath, United Kingdom
| | | | | | | | | | | | | |
Collapse
|