1
|
Muroni A, Minicozzi V, Piro MC, Sinibaldi F, Mei G, Di Venere A. Human cytochrome C natural variants: Studying the membrane binding properties of G41S and Y48H by fluorescence energy transfer and molecular dynamics. Int J Biol Macromol 2024; 274:133371. [PMID: 38914400 DOI: 10.1016/j.ijbiomac.2024.133371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Cytochrome C (cyt C), the protein involved in oxidative phosphorylation, plays several other crucial roles necessary for both cell life and death. Studying natural variants of cyt C offers the possibility to better characterize the structure-to-function relationship that modulates the different activities of this protein. Naturally mutations in human cyt C (G41S and Y48H) occur in the protein central Ω-loop and cause thrombocytopenia 4. In this study, we have investigated the binding of such variants and of wild type (wt) cyt C to synthetic cardiolipin-containing vesicles. The mutants have a lower propensity in membrane binding, displaying higher dissociation constants with respect to the wt protein. Compressibility measurements reveal that both variants are more flexible than the wt, suggesting that the native central Ω-loop is important for the interaction with membranes. Such hypothesis is supported by molecular dynamics simulations. A minimal distance analysis indicates that in the presence of cardiolipin the central Ω-loop of the mutants is no more in contact with the membrane, as it happens instead in the case of wt cyt C. Such finding might provide a hint for the reduced membrane binding capacity of the variants and their enhanced peroxidase activity in vivo.
Collapse
Affiliation(s)
- Alessia Muroni
- Department of Physics, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Velia Minicozzi
- Department of Physics, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy; INFN, Section of Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Maria Cristina Piro
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Federica Sinibaldi
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Giampiero Mei
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| | - Almerinda Di Venere
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| |
Collapse
|
2
|
Kacirani A, Uralcan B, Domingues TS, Haji-Akbari A. Effect of Pressure on the Conformational Landscape of Human γD-Crystallin from Replica Exchange Molecular Dynamics Simulations. J Phys Chem B 2024; 128:4931-4942. [PMID: 38685567 DOI: 10.1021/acs.jpcb.4c00178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Human γD-crystallin belongs to a crucial family of proteins known as crystallins located in the fiber cells of the human lens. Since crystallins do not undergo any turnover after birth, they need to possess remarkable thermodynamic stability. However, their sporadic misfolding and aggregation, triggered by environmental perturbations or genetic mutations, constitute the molecular basis of cataracts, which is the primary cause of blindness in the globe according to the World Health Organization. Here, we investigate the impact of high pressure on the conformational landscape of wild-type HγD-crystallin using replica exchange molecular dynamics simulations augmented with principal component analysis. We find pressure to have a modest impact on global measures of protein stability, such as root-mean-square displacement and radius of gyration. Upon projecting our trajectories along the first two principal components from principal component analysis, however, we observe the emergence of distinct free energy basins at high pressures. By screening local order parameters previously shown or hypothesized as markers of HγD-crystallin stability, we establish correlations between a tyrosine-tyrosine aromatic contact within the N-terminal domain and the protein's end-to-end distance with projections along the first and second principal components, respectively. Furthermore, we observe the simultaneous contraction of the hydrophobic core and its intrusion by water molecules. This exploration sheds light on the intricate responses of HγD-crystallin to elevated pressures, offering insights into potential mechanisms underlying its stability and susceptibility to environmental perturbations, crucial for understanding cataract formation.
Collapse
Affiliation(s)
- Arlind Kacirani
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut 06520, United States
| | - Betül Uralcan
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Department of Chemical Engineering, Boğaziçi University, Istanbul 34342, Turkey
| | - Tiago S Domingues
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Graduate Program in Applied Mathematics, Yale University, New Haven, Connecticut 06520, United States
| | - Amir Haji-Akbari
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
3
|
Sulatsky MI, Stepanenko OV, Stepanenko OV, Povarova OI, Kuznetsova IM, Turoverov KK, Sulatskaya AI. Broken but not beaten: Challenge of reducing the amyloids pathogenicity by degradation. J Adv Res 2024:S2090-1232(24)00161-9. [PMID: 38642804 DOI: 10.1016/j.jare.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND The accumulation of ordered protein aggregates, amyloid fibrils, accompanies various neurodegenerative diseases (such as Parkinson's, Huntington's, Alzheimer's, etc.) and causes a wide range of systemic and local amyloidoses (such as insulin, hemodialysis amyloidosis, etc.). Such pathologies are usually diagnosed when the disease is already irreversible and a large amount of amyloid plaques have accumulated. In recent years, new drugs aimed at reducing amyloid levels have been actively developed. However, although clinical trials have demonstrated a reduction in amyloid plaque size with these drugs, their effect on disease progression has been controversial and associated with significant side effects, the reasons of which are not fully understood. AIM OF REVIEW The purpose of this review is to summarize extensive array of data on the effect of exogenous and endogenous factors (physico-mechanical effects, chemical effects of low molecular weight compounds, macromolecules and their complexes) on the structure and pathogenicity of mature amyloids for proposing future directions of the development of effective and safe anti-amyloid therapeutics. KEY SCIENTIFIC CONCEPTS OF REVIEW Our analysis show that destruction of amyloids is in most cases incomplete and degradation products often retain the properties of amyloids (including high and sometimes higher than fibrils, cytotoxicity), accelerate amyloidogenesis and promote the propagation of amyloids between cells. Probably, the appearance of protein aggregates, polymorphic in structure and properties (such as amorphous aggregates, fibril fragments, amyloid oligomers, etc.), formed because of uncontrolled degradation of amyloids, may be one of the reasons for the ambiguous effectiveness and serious side effects of the anti-amyloid drugs. This means that all medications that are supposed to be used both for degradation and slow down the fibrillogenesis must first be tested on mature fibrils: the mechanism of drug action and cytotoxic, seeding, and infectious activity of the degradation products must be analyzed.
Collapse
Affiliation(s)
- Maksim I Sulatsky
- Laboratory of Cell Morphology, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia
| | - Olga V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia
| | - Olesya V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia
| | - Olga I Povarova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia
| | - Irina M Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia
| | - Konstantin K Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia
| | - Anna I Sulatskaya
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia.
| |
Collapse
|
4
|
Wei W, Tian Y, Cai L, Xu Y, Xiao X, Wang Q, Wang H, Dong C, Shao Z, Jiao N, Zhang R. Survival of surface bacteriophages and their hosts in in situ deep-sea environments. Microbiol Spectr 2024; 12:e0453422. [PMID: 38051228 PMCID: PMC10783000 DOI: 10.1128/spectrum.04534-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 10/27/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE The survival of the sinking prokaryotes and viruses in the deep-sea environment is crucial for deep-sea ecosystems and biogeochemical cycles. Through an in situ deep-sea long-term incubation device, our results showed that viral particles and infectivity had still not decayed completely after in situ incubation for 1 year. This suggests that, via infection and lysis, surface viruses with long-term infectious activity in situ deep-sea environments may influence deep-sea microbial populations in terms of activity, function, diversity, and community structure and ultimately affect deep-sea biogeochemical cycles, highlighting the need for additional research in this area.
Collapse
Affiliation(s)
- Wei Wei
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yuan Tian
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Lanlan Cai
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yongle Xu
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Xilin Xiao
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Qiong Wang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Haowen Wang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Chunming Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
| |
Collapse
|
5
|
Mészáros B, Hatos A, Palopoli N, Quaglia F, Salladini E, Van Roey K, Arthanari H, Dosztányi Z, Felli IC, Fischer PD, Hoch JC, Jeffries CM, Longhi S, Maiani E, Orchard S, Pancsa R, Papaleo E, Pierattelli R, Piovesan D, Pritisanac I, Tenorio L, Viennet T, Tompa P, Vranken W, Tosatto SCE, Davey NE. Minimum information guidelines for experiments structurally characterizing intrinsically disordered protein regions. Nat Methods 2023; 20:1291-1303. [PMID: 37400558 DOI: 10.1038/s41592-023-01915-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 05/18/2023] [Indexed: 07/05/2023]
Abstract
An unambiguous description of an experiment, and the subsequent biological observation, is vital for accurate data interpretation. Minimum information guidelines define the fundamental complement of data that can support an unambiguous conclusion based on experimental observations. We present the Minimum Information About Disorder Experiments (MIADE) guidelines to define the parameters required for the wider scientific community to understand the findings of an experiment studying the structural properties of intrinsically disordered regions (IDRs). MIADE guidelines provide recommendations for data producers to describe the results of their experiments at source, for curators to annotate experimental data to community resources and for database developers maintaining community resources to disseminate the data. The MIADE guidelines will improve the interpretability of experimental results for data consumers, facilitate direct data submission, simplify data curation, improve data exchange among repositories and standardize the dissemination of the key metadata on an IDR experiment by IDR data sources.
Collapse
Affiliation(s)
- Bálint Mészáros
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Department of Structural Biology and Center for Data Driven Discovery, St Jude Children's Research Hospital, Memphis, TN, USA
| | - András Hatos
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Swiss Cancer Center Leman, Lausanne, Switzerland
| | - Nicolas Palopoli
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes - CONICET, Bernal, Buenos Aires, Argentina
| | - Federica Quaglia
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council (CNR-IBIOM), Bari, Italy
| | - Edoardo Salladini
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Kim Van Roey
- Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Haribabu Arthanari
- Harvard Medical School (HMS), Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute (DFCI), Boston, MA, USA
| | | | - Isabella C Felli
- Department of Chemistry 'Ugo Schiff' and Magnetic Resonance Center, University of Florence, Sesto Fiorentino (Florence), Italy
| | - Patrick D Fischer
- Harvard Medical School (HMS), Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute (DFCI), Boston, MA, USA
| | - Jeffrey C Hoch
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, USA
| | - Cy M Jeffries
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, c/o Deutsches Elektronen-Synchrotron, Hamburg, Germany
| | - Sonia Longhi
- Laboratory Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Aix Marseille University and Centre National de la Recherche Scientifique (CNRS), Marseille, France
| | - Emiliano Maiani
- Cancer Structural Biology, Danish Cancer Society Research Center, Copenhagen, Denmark
- UniCamillus - Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Sandra Orchard
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Hinxton, UK
| | - Rita Pancsa
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Elena Papaleo
- Cancer Structural Biology, Danish Cancer Society Research Center, Copenhagen, Denmark
- Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, Lyngby, Denmark
| | - Roberta Pierattelli
- Department of Chemistry 'Ugo Schiff' and Magnetic Resonance Center, University of Florence, Sesto Fiorentino (Florence), Italy
| | - Damiano Piovesan
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Iva Pritisanac
- Hospital for Sick Children, Toronto, Ontario, Canada
- Medical University of Graz, Graz, Austria
| | - Luiggi Tenorio
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Thibault Viennet
- Harvard Medical School (HMS), Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute (DFCI), Boston, MA, USA
| | - Peter Tompa
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
- VIB-VUB Center for Structural Biology, Brussels, Belgium
- Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Wim Vranken
- Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Norman E Davey
- Division Of Cancer Biology, Institute of Cancer Research, Chester Beatty Laboratories, Chelsea, London, UK.
| |
Collapse
|
6
|
Wang J, Koduru T, Harish B, McCallum SA, Larsen KP, Patel KS, Peters EV, Gillilan RE, Puglisi EV, Puglisi JD, Makhatadze G, Royer CA. Pressure pushes tRNA Lys3 into excited conformational states. Proc Natl Acad Sci U S A 2023; 120:e2215556120. [PMID: 37339210 PMCID: PMC10293818 DOI: 10.1073/pnas.2215556120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 05/16/2023] [Indexed: 06/22/2023] Open
Abstract
Conformational dynamics play essential roles in RNA function. However, detailed structural characterization of excited states of RNA remains challenging. Here, we apply high hydrostatic pressure (HP) to populate excited conformational states of tRNALys3, and structurally characterize them using a combination of HP 2D-NMR, HP-SAXS (HP-small-angle X-ray scattering), and computational modeling. HP-NMR revealed that pressure disrupts the interactions of the imino protons of the uridine and guanosine U-A and G-C base pairs of tRNALys3. HP-SAXS profiles showed a change in shape, but no change in overall extension of the transfer RNA (tRNA) at HP. Configurations extracted from computational ensemble modeling of HP-SAXS profiles were consistent with the NMR results, exhibiting significant disruptions to the acceptor stem, the anticodon stem, and the D-stem regions at HP. We propose that initiation of reverse transcription of HIV RNA could make use of one or more of these excited states.
Collapse
Affiliation(s)
- Jinqiu Wang
- Graduate Program in Biochemistry and Biophysics, Rensselaer Polytechnic Institute, Troy, NY12180
| | - Tejaswi Koduru
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY12180
| | | | - Scott A. McCallum
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY12180
| | - Kevin P. Larsen
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA94305
| | - Karishma S. Patel
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA94305
| | - Edgar V. Peters
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY12180
| | | | - Elisabetta V. Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA94305
| | - Joseph D. Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA94305
| | - George Makhatadze
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY12180
| | - Catherine A. Royer
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY12180
| |
Collapse
|
7
|
Amini M, Benson JD. Technologies for Vitrification Based Cryopreservation. Bioengineering (Basel) 2023; 10:bioengineering10050508. [PMID: 37237578 DOI: 10.3390/bioengineering10050508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/08/2023] [Accepted: 03/30/2023] [Indexed: 05/28/2023] Open
Abstract
Cryopreservation is a unique and practical method to facilitate extended access to biological materials. Because of this, cryopreservation of cells, tissues, and organs is essential to modern medical science, including cancer cell therapy, tissue engineering, transplantation, reproductive technologies, and bio-banking. Among diverse cryopreservation methods, significant focus has been placed on vitrification due to low cost and reduced protocol time. However, several factors, including the intracellular ice formation that is suppressed in the conventional cryopreservation method, restrict the achievement of this method. To enhance the viability and functionality of biological samples after storage, a large number of cryoprotocols and cryodevices have been developed and studied. Recently, new technologies have been investigated by considering the physical and thermodynamic aspects of cryopreservation in heat and mass transfer. In this review, we first present an overview of the physiochemical aspects of freezing in cryopreservation. Secondly, we present and catalog classical and novel approaches that seek to capitalize on these physicochemical effects. We conclude with the perspective that interdisciplinary studies provide pieces of the cryopreservation puzzle to achieve sustainability in the biospecimen supply chain.
Collapse
Affiliation(s)
- Mohammad Amini
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - James D Benson
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| |
Collapse
|
8
|
Zhou S, Zou H, Wang Y, Lo GV, Yuan S. Atomic Mechanisms of Transthyretin Tetramer Dissociation Studied by Molecular Dynamics Simulations. J Chem Inf Model 2022; 62:6667-6678. [PMID: 35993568 DOI: 10.1021/acs.jcim.2c00447] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The dissociation of the transthyretin (TTR) tetramer into a monomer is closely related to various TTR amyloidoses in humans. While the tetramer dissociation has been reported to be the rate-limiting step for TTR aggregation, few details are known about the mechanism. Here, molecular dynamics (MD) simulations were performed by combining conventional MD and biased metadynamics to investigate the mechanism for the wild-type (WT) and mutant (T119M) structures. Both were found to have a great deal in common. Conventional MD simulations reveal that interfacial hydrophobic interactions contribute significantly to stabilize the tetramer. Interfacial residues including L17, V20, L110, and V121 with close contacts form a hydrophobic channel. Metadynamics simulations indicate that the mouth opening of the hydrophobic channel is the first and the most difficult step for dissociation. Interactions of V20 between opposing dimers lock four monomers into the tetramer, and disruption of the interactions is found to be involved in the final step. During the dissociation, an increasing extent of solvation was observed by calculating the radial distribution functions of water around interfacial hydrophobic residues, suggesting that water plays a role in driving the tetramer dissociation. Moreover, compared to T119, residue M119 has a longer side chain that extends into the hydrophobic channel, making solvation more difficult, consistent with a higher energy barrier for dissociation of the T119M tetramer. This result provides a good explanation for the protective role of the T119M mutation. Overall, this study can provide atomic-level insights to better understand the pathogenesis of TTR amyloidosis and guide rational drug design in the future.
Collapse
Affiliation(s)
- Shuangyan Zhou
- Chongqing Key Laboratory on Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Huizhen Zou
- Chongqing Key Laboratory on Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Yu Wang
- Chongqing Key Laboratory on Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Glenn V Lo
- Department of Chemistry and Physical Sciences, Nicholls State University, P.O. Box 2022, Thibodaux, Louisiana 70310, United States
| | - Shuai Yuan
- Chongqing Key Laboratory on Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| |
Collapse
|
9
|
Dutta P, Roy P, Sengupta N. Effects of External Perturbations on Protein Systems: A Microscopic View. ACS OMEGA 2022; 7:44556-44572. [PMID: 36530249 PMCID: PMC9753117 DOI: 10.1021/acsomega.2c06199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Protein folding can be viewed as the origami engineering of biology resulting from the long process of evolution. Even decades after its recognition, research efforts worldwide focus on demystifying molecular factors that underlie protein structure-function relationships; this is particularly relevant in the era of proteopathic disease. A complex co-occurrence of different physicochemical factors such as temperature, pressure, solvent, cosolvent, macromolecular crowding, confinement, and mutations that represent realistic biological environments are known to modulate the folding process and protein stability in unique ways. In the current review, we have contextually summarized the substantial efforts in unveiling individual effects of these perturbative factors, with major attention toward bottom-up approaches. Moreover, we briefly present some of the biotechnological applications of the insights derived from these studies over various applications including pharmaceuticals, biofuels, cryopreservation, and novel materials. Finally, we conclude by summarizing the challenges in studying the combined effects of multifactorial perturbations in protein folding and refer to complementary advances in experiment and computational techniques that lend insights to the emergent challenges.
Collapse
Affiliation(s)
- Pallab Dutta
- Department
of Biological Sciences, Indian Institute
of Science Education and Research (IISER) Kolkata, Mohanpur741246, India
| | - Priti Roy
- Department
of Biological Sciences, Indian Institute
of Science Education and Research (IISER) Kolkata, Mohanpur741246, India
- Department
of Chemistry, Oklahoma State University, Stillwater, Oklahoma74078, United States
| | - Neelanjana Sengupta
- Department
of Biological Sciences, Indian Institute
of Science Education and Research (IISER) Kolkata, Mohanpur741246, India
| |
Collapse
|
10
|
An overview of the functional properties of egg white proteins and their application in the food industry. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Minić S, Annighöfer B, Hélary A, Sago L, Cornu D, Brûlet A, Combet S. Structure of proteins under pressure: covalent binding effects of biliverdin on β-lactoglobulin. Biophys J 2022; 121:2514-2525. [DOI: 10.1016/j.bpj.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/18/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022] Open
|
12
|
Chatur P, Johnson S, Coorey R, Bhattarai RR, Bennett SJ. The Effect of High Pressure Processing on Textural, Bioactive and Digestibility Properties of Cooked Kimberley Large Kabuli Chickpeas. Front Nutr 2022; 9:847877. [PMID: 35464029 PMCID: PMC9023011 DOI: 10.3389/fnut.2022.847877] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
High pressure processing is a non-thermal method for preservation of various foods while retaining nutritional value and can be utilized for the development of ready-to-eat products. This original research investigated the effects of high pressure processing for development of a ready-to eat chickpea product using Australian kabuli chickpeas. Three pressure levels (200, 400, and 600 MPA) and two treatment times (1 and 5 min) were selected to provide six distinct samples. When compared to the conventionally cooked chickpeas, high pressure processed chickpeas had a more desirable texture due to decrease in firmness, chewiness, and gumminess. The general nutrient composition and individual mineral content were not affected by high pressure processing, however, a significant increase in the slowly digestible starch from 50.53 to 60.92 g/100 g starch and a concomitant decrease in rapidly digestible starch (11.10-8.73 g/100 g starch) as well as resistant starch (50.53-30.35 g/100 g starch) content was observed. Increased starch digestibility due to high pressure processing was recorded, whereas in vitro protein digestibility was unaffected. Significant effects of high pressure processing on the polyphenol content and antioxidant activities (DPPH, ABTS and ORAC) were observed, with the sample treated at the highest pressure for the longest duration (600 MPa, 5 min) showing the lowest values. These findings suggest that high pressure processing could be utilized to produce a functional, ready to eat kabuli chickpea product with increased levels of beneficial slowly digestible starch.
Collapse
Affiliation(s)
- Prakhar Chatur
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Stuart Johnson
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
- Ingredients by Design Pty Ltd., Perth, WA, Australia
| | - Ranil Coorey
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | | | - Sarita Jane Bennett
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| |
Collapse
|
13
|
Poon GMK. The Non-continuum Nature of Eukaryotic Transcriptional Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1371:11-32. [PMID: 33616894 PMCID: PMC8380751 DOI: 10.1007/5584_2021_618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
Eukaryotic transcription factors are versatile mediators of specificity in gene regulation. This versatility is achieved through mutual specification by context-specific DNA binding on the one hand, and identity-specific protein-protein partnerships on the other. This interactivity, known as combinatorial control, enables a repertoire of complex transcriptional outputs that are qualitatively disjoint, or non-continuum, with respect to binding affinity. This feature contrasts starkly with prokaryotic gene regulators, whose activities in general vary quantitatively in step with binding affinity. Biophysical studies on prokaryotic model systems and more recent investigations on transcription factors highlight an important role for folded state dynamics and molecular hydration in protein/DNA recognition. Analysis of molecular models of combinatorial control and recent literature in low-affinity gene regulation suggest that transcription factors harbor unique conformational dynamics that are inaccessible or unused by prokaryotic DNA-binding proteins. Thus, understanding the intrinsic dynamics involved in DNA binding and co-regulator recruitment appears to be a key to understanding how transcription factors mediate non-continuum outcomes in eukaryotic gene expression, and how such capability might have evolved from ancient, structurally conserved counterparts.
Collapse
Affiliation(s)
- Gregory M K Poon
- Department of Chemistry, Georgia State University, Atlanta, GA, USA.
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
14
|
Influence of iron binding in the structural stability and cellular internalization of bovine lactoferrin. Heliyon 2021; 7:e08087. [PMID: 34632151 PMCID: PMC8487029 DOI: 10.1016/j.heliyon.2021.e08087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/20/2021] [Accepted: 09/26/2021] [Indexed: 02/05/2023] Open
Abstract
Lactoferrin (Lf) is an iron-binding glycoprotein and a component of many external secretions with a wide diversity of functions. Structural studies are important to understand the mechanisms employed by Lf to exert so varied functions. Here, we used guanidine hydrochloride and high hydrostatic pressure to cause perturbations in the structure of bovine Lf (bLf) in apo and holo (unsaturated and iron-saturated, respectively) forms, and analyzed conformational changes by intrinsic and extrinsic fluorescence spectroscopy. Our results showed that the iron binding promotes changes on tertiary structure of bLf and increases its structural stability. In addition, we evaluated the effects of bLf structural change on the kinetics of bLf internalization in Vero cells by confocal fluorescence microscopy, and observed that the holo form was faster than the apo form. This finding may indicate that structural changes promoted by iron binding may play a key role in the intracellular traffic of bLf. Altogether, our data improve the comprehension of bLf stability and uptake, adding knowledge to its potential use as a biopharmaceutical.
Collapse
|
15
|
Jahmidi-Azizi N, Gault S, Cockell CS, Oliva R, Winter R. Ions in the Deep Subsurface of Earth, Mars, and Icy Moons: Their Effects in Combination with Temperature and Pressure on tRNA-Ligand Binding. Int J Mol Sci 2021; 22:ijms221910861. [PMID: 34639202 PMCID: PMC8509373 DOI: 10.3390/ijms221910861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 01/12/2023] Open
Abstract
The interactions of ligands with nucleic acids are central to numerous reactions in the biological cell. How such reactions are affected by harsh environmental conditions such as low temperatures, high pressures, and high concentrations of destructive ions is still largely unknown. To elucidate the ions’ role in shaping habitability in extraterrestrial environments and the deep subsurface of Earth with respect to fundamental biochemical processes, we investigated the effect of selected salts (MgCl2, MgSO4, and Mg(ClO4)2) and high hydrostatic pressure (relevant for the subsurface of that planet) on the complex formation between tRNA and the ligand ThT. The results show that Mg2+ salts reduce the binding tendency of ThT to tRNA. This effect is largely due to the interaction of ThT with the salt anions, which leads to a strong decrease in the activity of the ligand. However, at mM concentrations, binding is still favored. The ions alter the thermodynamics of binding, rendering complex formation that is more entropy driven. Remarkably, the pressure favors ligand binding regardless of the type of salt. Although the binding constant is reduced, the harsh conditions in the subsurface of Earth, Mars, and icy moons do not necessarily preclude nucleic acid–ligand interactions of the type studied here.
Collapse
Affiliation(s)
- Nisrine Jahmidi-Azizi
- Physical Chemistry I-Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany;
| | - Stewart Gault
- UK Centre for Astrobiology, SUPA School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Edinburgh EH9 3FD, UK; (S.G.); (C.S.C.)
| | - Charles S. Cockell
- UK Centre for Astrobiology, SUPA School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Edinburgh EH9 3FD, UK; (S.G.); (C.S.C.)
| | - Rosario Oliva
- Physical Chemistry I-Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany;
- Correspondence: (R.O.); (R.W.)
| | - Roland Winter
- Physical Chemistry I-Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany;
- Correspondence: (R.O.); (R.W.)
| |
Collapse
|
16
|
High pressure processing pretreatment of Chinese mitten crab (Eriocheir sinensis) for quality attributes assessment. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
|
18
|
Effects of different physical technology on compositions and characteristics of bean dregs. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Hindson SA, Bunzel HA, Frank B, Svistunenko DA, Williams C, van der Kamp MW, Mulholland AJ, Pudney CR, Anderson JLR. Rigidifying a De Novo Enzyme Increases Activity and Induces a Negative Activation Heat Capacity. ACS Catal 2021; 11:11532-11541. [PMID: 34557328 PMCID: PMC8453482 DOI: 10.1021/acscatal.1c01776] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/29/2021] [Indexed: 12/22/2022]
Abstract
![]()
Conformational sampling
profoundly impacts the overall activity
and temperature dependence of enzymes. Peroxidases have emerged as
versatile platforms for high-value biocatalysis owing to their broad
palette of potential biotransformations. Here, we explore the role
of conformational sampling in mediating activity in the de
novo peroxidase C45. We demonstrate that 2,2,2-triflouoroethanol
(TFE) affects the equilibrium of enzyme conformational states, tending
toward a more globally rigid structure. This is correlated with increases
in both stability and activity. Notably, these effects are concomitant
with the emergence of curvature in the temperature-activity profile,
trading off activity gains at ambient temperature with losses at high
temperatures. We apply macromolecular rate theory (MMRT) to understand
enzyme temperature dependence data. These data point to an increase
in protein rigidity associated with a difference in the distribution
of protein dynamics between the ground and transition states. We compare
the thermodynamics of the de novo enzyme activity
to those of a natural peroxidase, horseradish peroxidase. We find
that the native enzyme resembles the rigidified de novo enzyme in terms of the thermodynamics of enzyme catalysis and the
putative distribution of protein dynamics between the ground and transition
states. The addition of TFE apparently causes C45 to behave more like
the natural enzyme. Our data suggest robust, generic strategies for
improving biocatalytic activity by manipulating protein rigidity;
for functional de novo protein catalysts in particular,
this can provide more enzyme-like catalysts without further rational
engineering, computational redesign, or directed evolution.
Collapse
Affiliation(s)
- Sarah A. Hindson
- Department of Biology and Biochemistry, Centre for Sustainable Chemical Technology, University of Bath, Bath BA2 7AY, U.K
| | - H. Adrian Bunzel
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, U.K
- Centre for Computational Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | - Bettina Frank
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, U.K
- Bristol Centre for Functional Nanomaterials, School of Physics, University of Bristol, Bristol BS8 1TL, U.K
| | | | | | | | | | - Christopher R. Pudney
- Department of Biology and Biochemistry, Centre for Sustainable Chemical Technology, University of Bath, Bath BA2 7AY, U.K
| | | |
Collapse
|
20
|
Wang Q, Zhang C, Li Z, Guo F, Zhang J, Liu Y, Su Z. High hydrostatic pressure refolding of highly hydrophobic protein: A case study of recombinant human interferon β-1b from inclusion bodies. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
The Right-Handed Parallel β-Helix Topology of Erwinia chrysanthemi Pectin Methylesterase Is Intimately Associated with Both Sequential Folding and Resistance to High Pressure. Biomolecules 2021; 11:biom11081083. [PMID: 34439750 PMCID: PMC8392785 DOI: 10.3390/biom11081083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 11/30/2022] Open
Abstract
The complex topologies of large multi-domain globular proteins make the study of their folding and assembly particularly demanding. It is often characterized by complex kinetics and undesired side reactions, such as aggregation. The structural simplicity of tandem-repeat proteins, which are characterized by the repetition of a basic structural motif and are stabilized exclusively by sequentially localized contacts, has provided opportunities for dissecting their folding landscapes. In this study, we focus on the Erwinia chrysanthemi pectin methylesterase (342 residues), an all-β pectinolytic enzyme with a right-handed parallel β-helix structure. Chemicals and pressure were chosen as denaturants and a variety of optical techniques were used in conjunction with stopped-flow equipment to investigate the folding mechanism of the enzyme at 25 °C. Under equilibrium conditions, both chemical- and pressure-induced unfolding show two-state transitions, with average conformational stability (ΔG° = 35 ± 5 kJ·mol−1) but exceptionally high resistance to pressure (Pm = 800 ± 7 MPa). Stopped-flow kinetic experiments revealed a very rapid (τ < 1 ms) hydrophobic collapse accompanied by the formation of an extended secondary structure but did not reveal stable tertiary contacts. This is followed by three distinct cooperative phases and the significant population of two intermediate species. The kinetics followed by intrinsic fluorescence shows a lag phase, strongly indicating that these intermediates are productive species on a sequential folding pathway, for which we propose a plausible model. These combined data demonstrate that even a large repeat protein can fold in a highly cooperative manner.
Collapse
|
22
|
Miron SM, de Espindola A, Dutournié P, Ponche A. Study of the relationship between applied transmembrane pressure and antimicrobial activity of lysozyme. Sci Rep 2021; 11:12086. [PMID: 34103632 PMCID: PMC8187345 DOI: 10.1038/s41598-021-91564-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/30/2021] [Indexed: 11/09/2022] Open
Abstract
During the processing of biomolecules by ultrafiltration, the lysozyme enzyme undergoes conformational changes, which can affect its antibacterial activity. Operational conditions are considered to be one of the main parameters responsible for such changes, especially when using the same membrane and molecule. The present study demonstrates that, the same cut-off membrane (commercial data) can result in different properties of the protein after filtration, due to their different pore network. The filtration of lysozyme, regardless of the membrane, produces a decrease in the membrane hydraulic permeability (between 10 and 30%) and an increase in its selectivity in terms of observed rejection rate (30%). For the filtrated lysozyme, it appears that the HPLC retention time increases depending on the membrane used. The antibacterial activity of the filtrated samples is lower than the native protein and decreases with the increase of the applied pressure reaching 55–60% loss for 12 bar which has not been reported in the literature before. The observed results by SEC-HPLC and bacteriological tests, suggest that the conformation of the filtrated molecules are indeed modified. These results highlight the relationship between protein conformation or activity and the imposed shear stress.
Collapse
Affiliation(s)
- Simona M Miron
- Institut de Science Des Matériaux de Mulhouse, Université de Haute-Alsace, CNRS IS2M UMR 7361, 3 bis rue A. Werner, 68098, Mulhouse Cedex, France.,Université de Strasbourg, Strasbourg, France
| | - Ariane de Espindola
- Institut de Science Des Matériaux de Mulhouse, Université de Haute-Alsace, CNRS IS2M UMR 7361, 3 bis rue A. Werner, 68098, Mulhouse Cedex, France.,Université de Strasbourg, Strasbourg, France
| | - Patrick Dutournié
- Institut de Science Des Matériaux de Mulhouse, Université de Haute-Alsace, CNRS IS2M UMR 7361, 3 bis rue A. Werner, 68098, Mulhouse Cedex, France. .,Université de Strasbourg, Strasbourg, France.
| | - Arnaud Ponche
- Institut de Science Des Matériaux de Mulhouse, Université de Haute-Alsace, CNRS IS2M UMR 7361, 3 bis rue A. Werner, 68098, Mulhouse Cedex, France.,Université de Strasbourg, Strasbourg, France
| |
Collapse
|
23
|
Fernández Del Río B, Rey A. Behavior of Proteins under Pressure from Experimental Pressure-Dependent Structures. J Phys Chem B 2021; 125:6179-6191. [PMID: 34100621 PMCID: PMC8478274 DOI: 10.1021/acs.jpcb.1c03313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Structure-based models are coarse-grained representations of the interactions responsible for the protein folding process. In their simplest form, they use only the native contact map of a given protein to predict the main features of its folding process by computer simulation. Given their limitations, these models are frequently complemented with sequence-dependent contributions or additional information. Specifically, to analyze the effect of pressure on the folding/unfolding transition, special forms of these interaction potentials are employed, which may a priori determine the outcome of the simulations. In this work, we have tried to keep the original simplicity of structure-based models. Therefore, we have used folded structures that have been experimentally determined at different pressures to define native contact maps and thus interactions dependent on pressure. Despite the apparently tiny structural differences induced by pressure, our simulation results provide different thermodynamic and kinetic behaviors, which roughly correspond to experimental observations (when there is a possible comparison) of two proteins used as benchmarks, hen egg-white lysozyme and dihydrofolate reductase. Therefore, this work shows the feasibility of using experimental native structures at different pressures to analyze the global effects of this physical property on the protein folding process.
Collapse
Affiliation(s)
- Beatriz Fernández Del Río
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Antonio Rey
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| |
Collapse
|
24
|
Chen Y, Mutukuri TT, Wilson NE, Zhou QT. Pharmaceutical protein solids: Drying technology, solid-state characterization and stability. Adv Drug Deliv Rev 2021; 172:211-233. [PMID: 33705880 PMCID: PMC8107147 DOI: 10.1016/j.addr.2021.02.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/18/2021] [Accepted: 02/22/2021] [Indexed: 01/30/2023]
Abstract
Despite the boom in biologics over the past decade, the intrinsic instability of these large molecules poses significant challenges to formulation development. Almost half of all pharmaceutical protein products are formulated in the solid form to preserve protein native structure and extend product shelf-life. In this review, both traditional and emerging drying techniques for producing protein solids will be discussed. During the drying process, various stresses can impact the stability of protein solids. However, understanding the impact of stress on protein product quality can be challenging due to the lack of reliable characterization techniques for biological solids. Both conventional and advanced characterization techniques are discussed including differential scanning calorimetry (DSC), solid-state Fourier transform infrared spectrometry (ssFTIR), solid-state fluorescence spectrometry, solid-state hydrogen deuterium exchange (ssHDX), solid-state nuclear magnetic resonance (ssNMR) and solid-state photolytic labeling (ssPL). Advanced characterization tools may offer mechanistic investigations into local structural changes and interactions at higher resolutions. The continuous exploration of new drying techniques, as well as a better understanding of the effects caused by different drying techniques in solid state, would advance the formulation development of biological products with superior quality.
Collapse
Affiliation(s)
- Yuan Chen
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Tarun Tejasvi Mutukuri
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Nathan E Wilson
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA.
| |
Collapse
|
25
|
High-Pressure Processing for the Production of Added-Value Claw Meat from Edible Crab ( Cancer pagurus). Foods 2021; 10:foods10050955. [PMID: 33925421 PMCID: PMC8146872 DOI: 10.3390/foods10050955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 11/17/2022] Open
Abstract
High-pressure processing (HPP) in a large-scale industrial unit was explored as a means for producing added-value claw meat products from edible crab (Cancer pagurus). Quality attributes were comparatively evaluated on the meat extracted from pressurized (300 MPa/2 min, 300 MPa/4 min, 500 MPa/2 min) or cooked (92 °C/15 min) chelipeds (i.e., the limb bearing the claw), before and after a thermal in-pack pasteurization (F9010 = 10). Satisfactory meat detachment from the shell was achieved due to HPP-induced cold protein denaturation. Compared to cooked or cooked-pasteurized counterparts, pressurized claws showed significantly higher yield (p < 0.05), which was possibly related to higher intra-myofibrillar water as evidenced by relaxometry data, together with lower volatile nitrogen levels. The polyunsaturated fatty acids content was unaffected, whereas the inactivation of total viable psychrotrophic and mesophilic bacteria increased with treatment pressure and time (1.1-1.9 log10 CFU g-1). Notably, pressurization at 300 MPa for 4 min resulted in meat with no discolorations and, after pasteurization, with high color similarity (ΔE* = 1.2-1.9) to conventionally thermally processed samples. Following further investigations into eating quality and microbiological stability, these HPP conditions could be exploited for producing uncooked ready-to-heat or pasteurized ready-to-eat claw meat products from edible crab.
Collapse
|
26
|
Ando N, Barquera B, Bartlett DH, Boyd E, Burnim AA, Byer AS, Colman D, Gillilan RE, Gruebele M, Makhatadze G, Royer CA, Shock E, Wand AJ, Watkins MB. The Molecular Basis for Life in Extreme Environments. Annu Rev Biophys 2021; 50:343-372. [PMID: 33637008 DOI: 10.1146/annurev-biophys-100120-072804] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sampling and genomic efforts over the past decade have revealed an enormous quantity and diversity of life in Earth's extreme environments. This new knowledge of life on Earth poses the challenge of understandingits molecular basis in such inhospitable conditions, given that such conditions lead to loss of structure and of function in biomolecules from mesophiles. In this review, we discuss the physicochemical properties of extreme environments. We present the state of recent progress in extreme environmental genomics. We then present an overview of our current understanding of the biomolecular adaptation to extreme conditions. As our current and future understanding of biomolecular structure-function relationships in extremophiles requires methodologies adapted to extremes of pressure, temperature, and chemical composition, advances in instrumentation for probing biophysical properties under extreme conditions are presented. Finally, we briefly discuss possible future directions in extreme biophysics.
Collapse
Affiliation(s)
- Nozomi Ando
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, New York 14853, USA.,Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Blanca Barquera
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, USA;
| | - Douglas H Bartlett
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0202, USA
| | - Eric Boyd
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59717, USA
| | - Audrey A Burnim
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Amanda S Byer
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Daniel Colman
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59717, USA
| | - Richard E Gillilan
- Center for High Energy X-ray Sciences (CHEXS), Ithaca, New York 14853, USA
| | - Martin Gruebele
- Department of Chemistry, University of Illinois, Urbana-Champaign, Illinois 61801, USA.,Department of Physics, University of Illinois, Urbana-Champaign, Illinois 61801, USA.,Center for Biophysics and Quantitative Biology, University of Illinois, Urbana-Champaign, Illinois 61801, USA
| | - George Makhatadze
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, USA;
| | - Catherine A Royer
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, USA;
| | - Everett Shock
- GEOPIG, School of Earth & Space Exploration, School of Molecular Sciences, Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona 85287, USA
| | - A Joshua Wand
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77845, USA.,Department of Chemistry, Texas A&M University, College Station, Texas 77845, USA.,Department of Molecular & Cellular Medicine, Texas A&M University, College Station, Texas 77845, USA
| | - Maxwell B Watkins
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, New York 14853, USA.,Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
27
|
Le Vay K, Carter BM, Watkins DW, Dora Tang TY, Ting VP, Cölfen H, Rambo RP, Smith AJ, Ross Anderson JL, Perriman AW. Controlling Protein Nanocage Assembly with Hydrostatic Pressure. J Am Chem Soc 2020; 142:20640-20650. [PMID: 33252237 DOI: 10.1021/jacs.0c07285] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Controlling the assembly and disassembly of nanoscale protein cages for the capture and internalization of protein or non-proteinaceous components is fundamentally important to a diverse range of bionanotechnological applications. Here, we study the reversible, pressure-induced dissociation of a natural protein nanocage, E. coli bacterioferritin (Bfr), using synchrotron radiation small-angle X-ray scattering (SAXS) and circular dichroism (CD). We demonstrate that hydrostatic pressures of 450 MPa are sufficient to completely dissociate the Bfr 24-mer into protein dimers, and the reversibility and kinetics of the reassembly process can be controlled by selecting appropriate buffer conditions. We also demonstrate that the heme B prosthetic group present at the subunit dimer interface influences the stability and pressure lability of the cage, despite its location being discrete from the interdimer interface that is key to cage assembly. This indicates a major cage-stabilizing role for heme within this family of ferritins.
Collapse
Affiliation(s)
- Kristian Le Vay
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K
- Bristol Centre for Functional Nanomaterials, HH Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, U.K
| | - Ben M Carter
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, U.K
| | - Daniel W Watkins
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K
| | - T-Y Dora Tang
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K
| | - Valeska P Ting
- Bristol Composites Institute (ACCIS), Department of Mechanical Engineering, University of Bristol, Queen's Building, Bristol BS8 1TR, U.K
| | - Helmut Cölfen
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Robert P Rambo
- Diamond House, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Fermi Ave., Didcot OX11 0DE, U.K
| | - Andrew J Smith
- Diamond House, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Fermi Ave., Didcot OX11 0DE, U.K
| | - J L Ross Anderson
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K
- BrisSynBio Synthetic Biology Research Centre, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, U.K
| | - Adam W Perriman
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, U.K
| |
Collapse
|
28
|
Minić S, Annighöfer B, Hélary A, Hamdane D, Hui Bon Hoa G, Loupiac C, Brûlet A, Combet S. Effect of Ligands on HP-Induced Unfolding and Oligomerization of β-Lactoglobulin. Biophys J 2020; 119:2262-2274. [PMID: 33129832 DOI: 10.1016/j.bpj.2020.10.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/25/2020] [Accepted: 10/19/2020] [Indexed: 10/23/2022] Open
Abstract
To probe intermediate states during unfolding and oligomerization of proteins remains a major challenge. High pressure (HP) is a powerful tool for studying these problems, revealing subtle structural changes in proteins not accessible by other means of denaturation. Bovine β-lactoglobulin (BLG), the main whey protein, has a strong propensity to bind various bioactive molecules such as retinol and resveratrol, two ligands with different affinity and binding sites. By combining in situ HP-small-angle neutron scattering (SANS) and HP-ultraviolet/visible absorption spectroscopy, we report the specific effects of these ligands on three-dimensional conformational and local changes in BLG induced by HP. Depending on BLG concentration, two different unfolding mechanisms are observed in situ under pressures up to ∼300 MPa: either a complete protein unfolding, from native dimers to Gaussian chains, or a partial unfolding with oligomerization in tetramers mediated by disulfide bridges. Retinol, which has a high affinity for the BLG hydrophobic cavity, significantly stabilizes BLG both in three-dimensional and local environments by shifting the onset of protein unfolding by ∼100 MPa. Increasing temperature from 30 to 37°C enhances the hydrophobic stabilization effects of retinol. In contrast, resveratrol, which has a low binding affinity for site(s) on the surface of the BLG, does not induce any significant effect on the structural changes of BLG due to pressure. HP treatment back and forth up to ∼300 MPa causes irreversible covalent oligomerization of BLG. Ab initio modeling of SANS shows that the oligomers formed from the BLG-retinol complex are smaller and more elongated compared to BLG without ligand or in the presence of resveratrol. By combining HP-SANS and HP-ultraviolet/visible absorption spectroscopy, our strategy highlights the crucial role of BLG hydrophobic cavity and opens up new possibilities for the structural determination of HP-induced protein folding intermediates and irreversible oligomerization.
Collapse
Affiliation(s)
- Simeon Minić
- Université Paris-Saclay, Laboratoire Léon-Brillouin, UMR12 CEA-CNRS, CEA-Saclay, Gif-sur-Yvette CEDEX, France.
| | - Burkhard Annighöfer
- Université Paris-Saclay, Laboratoire Léon-Brillouin, UMR12 CEA-CNRS, CEA-Saclay, Gif-sur-Yvette CEDEX, France
| | - Arnaud Hélary
- Université Paris-Saclay, Laboratoire Léon-Brillouin, UMR12 CEA-CNRS, CEA-Saclay, Gif-sur-Yvette CEDEX, France
| | - Djemel Hamdane
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège de France, Paris CEDEX 05, France
| | - Gaston Hui Bon Hoa
- National Institute of Health and Medical Research (INSERM), Paris, France
| | - Camille Loupiac
- Université de Bourgogne Franche-Comté, AgroSup Dijon, UMRA 02.102 Procédés Alimentaires et Microbiologiques, Equipe Physico-Chimie des Aliments et du Vin, Dijon, France
| | - Annie Brûlet
- Université Paris-Saclay, Laboratoire Léon-Brillouin, UMR12 CEA-CNRS, CEA-Saclay, Gif-sur-Yvette CEDEX, France
| | - Sophie Combet
- Université Paris-Saclay, Laboratoire Léon-Brillouin, UMR12 CEA-CNRS, CEA-Saclay, Gif-sur-Yvette CEDEX, France.
| |
Collapse
|
29
|
Cheng L, Zhu Z, Sun DW. Impacts of high pressure assisted freezing on the denaturation of polyphenol oxidase. Food Chem 2020; 335:127485. [PMID: 32763785 DOI: 10.1016/j.foodchem.2020.127485] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 06/22/2020] [Accepted: 07/01/2020] [Indexed: 02/08/2023]
Abstract
The mechanism of enzyme protein denaturation induced by high pressure freezing is complicated and unclear as this process involves Pressure-Factors (pressure and time) and Freezing-Factors (temperature, phase transition, recrystallization, and ice crystal types). In this study, the thermodynamics and conformation changes of mushroom polyphenol oxidase (PPO) under high pressure freezing treatments (HPF, 100,150,200,300,400,500MPaP-20°C/30min) and high pressure processes (HPP) followed with normal pressure immersion freezing (HPP-IF, 100-500MPaP25°C/30min - 0.1MPaP-20°C/30min) are investigated as compared with that processed under high pressure processes (HPP, 100-500MPaP25°C/30min) and normal pressure immersion freezing process (IF, 0.1MPaP-20°C/30min). The results suggested that the treated PPO with the same enzyme activity may have various thermodynamic characteristics and conformations; Pressure-Factors play the main roles in the denaturation of the PPO during the HPF treatment, and Freezing-Factors can weak the effect of Pressure-Factors on PPO denaturation; The treated PPO may be transferred into a partially fold intermediate state.
Collapse
Affiliation(s)
- Lina Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Sericulture & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Zhiwei Zhu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| |
Collapse
|
30
|
Sahoo BR, Cox SJ, Ramamoorthy A. High-resolution probing of early events in amyloid-β aggregation related to Alzheimer's disease. Chem Commun (Camb) 2020; 56:4627-4639. [PMID: 32300761 PMCID: PMC7254607 DOI: 10.1039/d0cc01551b] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In Alzheimer's disease (AD), soluble oligomers of amyloid-β (Aβ) are emerging as a crucial entity in driving disease progression as compared to insoluble amyloid deposits. The lacuna in establishing the structure to function relationship for Aβ oligomers prevents the development of an effective treatment for AD. While the transient and heterogeneous properties of Aβ oligomers impose many challenges for structural investigation, an effective use of a combination of NMR techniques has successfully identified and characterized them at atomic-resolution. Here, we review the successful utilization of solution and solid-state NMR techniques to probe the aggregation and structures of small and large oligomers of Aβ. Biophysical studies utilizing the commonly used solution and 19F based NMR experiments to identify the formation of small size early intermediates and to obtain their structures, and dock-lock mechanism of fiber growth at atomic-resolution are discussed. In addition, the use of proton-detected magic angle spinning (MAS) solid-state NMR experiments to obtain high-resolution insights into the aggregation pathways and structures of large oligomers and other aggregates is also presented. We expect these NMR based studies to be valuable for real-time monitoring of the depletion of monomers and the formation of toxic oligomers and high-order aggregates under a variety of conditions, and to solve the high-resolution structures of small and large size oligomers for most amyloid proteins, and therefore to develop inhibitors and drugs.
Collapse
Affiliation(s)
- Bikash R Sahoo
- Biophysics Program, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| | | | | |
Collapse
|
31
|
Abstract
Although many proteins possess a distinct folded structure lying at a minimum in a funneled free energy landscape, thermal energy causes any protein to continuously access lowly populated excited states. The existence of excited states is an integral part of biological function. Although transitions into the excited states may lead to protein misfolding and aggregation, little structural information is currently available for them. Here, we show how NMR spectroscopy, coupled with pressure perturbation, brings these elusive species to light. As pressure acts to favor states with lower partial molar volume, NMR follows the ensuing change in the equilibrium spectroscopically, with residue-specific resolution. For T4 lysozyme L99A, relaxation dispersion NMR was used to follow the increase in population of a previously identified "invisible" folded state with pressure, as this is driven by the reduction in cavity volume by the flipping-in of a surface aromatic group. Furthermore, multiple partly disordered excited states were detected at equilibrium using pressure-dependent H/D exchange NMR spectroscopy. Here, unfolding reduced partial molar volume by the removal of empty internal cavities and packing imperfections through subglobal and global unfolding. A close correspondence was found for the distinct pressure sensitivities of various parts of the protein and the amount of internal cavity volume that was lost in each unfolding event. The free energies and populations of excited states allowed us to determine the energetic penalty of empty internal protein cavities to be 36 cal⋅Å-3.
Collapse
|
32
|
BONFIM RC, OLIVEIRA FAD, GODOY RLDO, ROSENTHAL A. A review on high hydrostatic pressure for bivalve mollusk processing: relevant aspects concerning safety and quality. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1590/fst.26918] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
33
|
Karim NU, Kennedy JT, Linton M, Patterson M, Watson S, Gault N. Determination of nucleotide and enzyme degradation in haddock ( Melanogrammus aeglefinus) and herring ( Clupea harengus) after high pressure processing. PeerJ 2019; 7:e7527. [PMID: 31523503 PMCID: PMC6716499 DOI: 10.7717/peerj.7527] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 07/22/2019] [Indexed: 11/20/2022] Open
Abstract
Background The degradation of nucleotides and their enzymes had been widely used to evaluate fish freshness. Immediately after fish death, adenosine triphosphate (ATP) degrades into inosine-5-monophosphate (IMP) via adenosine-5-diphosphate (ADP) and adenosine-5-monophosphate (AMP). IMP degradation continues to produce inosine (ino) and hypoxanthine (Hx) and further deteriorates the fish by producing xanthine and uric acid. The dephosphorylation of IMP to Ino is carried out by the enzyme 5′-nucleotidase (5′-NT), whereas the degradation of Ino to Hx is carried out by the enzyme nucleoside phosphorylase (NP). This study assesses the application of high pressure processing (HPP) in two species of fishes; haddock (Melanogrammus aeglefinus) and herring (Clupea harengus) as a means to extend the shelf-life by slowing down the rate of nucleotides degradation. Methods Haddock (Melanogrammus aeglefinus) and herring (Clupea harengus) fillets were subjected to HPP at 200, 250 and 300 MPa for 1 and 3 min before being stored for 14 days. In addition, 5′-NT and NP enzyme activities were determined on both fish species that were subjected to 100–600 MPa for 1 and 3 min. Results Adenosine triphosphate, ADP and AMP in both haddock and herring were lower at higher pressure levels. Inosine (Ino) increased (p < 0.05) after treatment at higher pressures in both species. Hx in herring decreased significantly (p < 0.05) at higher pressures but not in haddock. K values are the ratio of Ino and Hx to all nucleotides. K values in haddock were not significantly (p > 0.05) affected by the pressure treatment. H values are ratio of Hx to the sum of IMP, Ino and Hx. H values in haddock were significantly decreased (p < 0.05) with increasing pressure level. F values are ratio of IMP to the sum of IMP, Ino and Hx. F values showed no significant effects (p > 0.05) after pressure treatment. Furthermore, K values in control herring were significantly higher (p < 0.05) than those of the pressure-treated samples. H values in herring decreased significantly (p < 0.05) with increasing pressure level. F values in herring showed no significant effects (p > 0.05) after pressure treatment. Pressure treatment brought a significant decrease (p < 0.05) in protein content in both haddock and herring. 5′-NT activity was 20–35 fold higher compared to NP activity in haddock and 15–44 fold higher than NP activity in herring. 5′-NT and NP activities decreased significantly with increasing pressure level in both species. Discussion High pressure processing effectively slows down the conversion of Ino to Hx, delaying the undesirable flavour that develops in spoiling fish. The autolytic conversion of IMP to Ino by endogenous 5′-NT predominates in the earliest stages of storage is an autolytic process. However, both bacterial and endogenous NP enzymes are probably responsible for the gradual accumulation of Hx in fish. K values are recommended as a useful measurement of fish freshness.
Collapse
Affiliation(s)
- Nurul Ulfah Karim
- School of Fisheries and Aquaculture Sciences, Universiti Malaysia Terengganu, Kuala Terengganu, Terengganu, Malaysia
| | - James Terence Kennedy
- Agriculture, Food and Environmental Science Division, Agri-Food and Biosciences Institute, Belfast, UK
| | - Mark Linton
- Agriculture, Food and Environmental Science Division, Agri-Food and Biosciences Institute, Belfast, UK
| | - Margaret Patterson
- Agriculture, Food and Environmental Science Division, Agri-Food and Biosciences Institute, Belfast, UK
| | - Sally Watson
- Agriculture, Food and Environmental Science Division, Agri-Food and Biosciences Institute, Belfast, UK
| | - Norman Gault
- Agriculture, Food and Environmental Science Division, Agri-Food and Biosciences Institute, Belfast, UK
| |
Collapse
|
34
|
Barnes CA, Robertson AJ, Louis JM, Anfinrud P, Bax A. Observation of β-Amyloid Peptide Oligomerization by Pressure-Jump NMR Spectroscopy. J Am Chem Soc 2019; 141:13762-13766. [DOI: 10.1021/jacs.9b06970] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- C. Ashley Barnes
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Angus J. Robertson
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - John M. Louis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Philip Anfinrud
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Ad Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
35
|
Effect of high hydrostatic pressure on mitochondrial activity, reactive oxygen species level and developmental competence of cultured pig embryos. Theriogenology 2019; 140:99-108. [PMID: 31465911 DOI: 10.1016/j.theriogenology.2019.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/07/2019] [Accepted: 08/12/2019] [Indexed: 01/01/2023]
Abstract
High hydrostatic pressure (HHP) has been previously used to increase mammalian oocyte and embryo tolerance on subsequent stresses related with different assisted reproductive technologies. Nevertheless, the mechanisms for HHP-induced stress responses in early embryos have not been yet well understood. Previous studies focused mainly on HHP-modified gene expression while possible changes in cellular functions, including modification of energy metabolism and oxidative stress were neglected. Therefore, we aimed to analyze the effect of HHP treatment on the efficiency of subsequent in vitro pig embryos culture in NCSU-23 medium, on mitochondrial membrane potential (ΔΨm) and reactive oxygen species (ROS) level during their pre-implantation development. Porcine embryos were exposed to the hydrostatic pressure of 20 MPa and their quick response to such stress was analyzed 1 h later. In comparison with control embryos, we detected lower ΔΨm by ∼13% only in expanded blastocysts as well as decreased ROS level by ∼30% and ∼42% at the morula and expanded blastocyst stages, respectively. After HHP-treatment at transcriptionally inactive zygote stage and subsequent embryo culture, long-time responses were found: (1) at expanded blastocyst stage manifesting by ΔΨm decrease by ∼16%, (2) at the morula and expanded blastocyst stages in the form of ROS level reduction by ∼38% and ∼33% respectively. Following HHP stress applied at the transcriptionally active morula stage the long-time response in the expanded blastocysts as a decrease of ΔΨm by ∼19% and ROS level by ∼37% was observed. The percentage of obtained expanded blastocysts was higher after culture of HHP-treated zygotes in comparison to the control. Moreover, expanded blastocysts developed in vitro from both HHP-treated zygotes or morulae, exhibited higher total number of cells per blastocyst, higher number of cells in the inner cell mass as well as lower number of TUNEL-positive nuclei per blastocyst and lower TUNEL index, when compared to untreated embryos. Therefore, the HHP stress applied at the zygote stage, enhances developmental potential and quality of in vitro obtained porcine blastocysts due to the both decreased ΔΨm and ROS level. Our findings may contribute to better understanding of the mechanism of HHP-mediated modifications of energy metabolism and oxidative stress during in vitro development of pig embryos.
Collapse
|
36
|
Somkuti J, Adányi M, Smeller L. Self-crowding influences the temperature - pressure stability of the human telomere G-quadruplex. Biophys Chem 2019; 254:106248. [PMID: 31470349 DOI: 10.1016/j.bpc.2019.106248] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 01/22/2023]
Abstract
We measured the effect of crowded environment on G-quadruplex structures, formed by guanine rich DNA sequences. Fluorescence and infrared spectroscopy were used to determine the temperature stability of G-quadruplex structure formed by the human telomere sequence. We determined the T-p phase diagram of Htel aptamer up to 1 GPa at different self-crowding conditions. The unfolding volume change was determined from the pressure induced shift of the unfolding temperature of the quadruplex form. The unfolding volume change decreased in magnitude, and even its sign changed from negative (-19 ml/mol) to positive (7 ml/mol) under self-crowded conditions. The possible explanations are the appearance of the parallel GQ structure at high concentration or the fact that the volume decrease caused by the released central K+ ion during the unfolding is less significant in crowded environment.
Collapse
Affiliation(s)
- J Somkuti
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - M Adányi
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - L Smeller
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
37
|
Beck Erlach M, Kalbitzer HR, Winter R, Kremer W. The pressure and temperature perturbation approach reveals a whole variety of conformational substates of amyloidogenic hIAPP monitored by 2D NMR spectroscopy. Biophys Chem 2019; 254:106239. [PMID: 31442763 DOI: 10.1016/j.bpc.2019.106239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/26/2019] [Accepted: 07/26/2019] [Indexed: 11/15/2022]
Abstract
The intrinsically disordered human islet amyloid polypeptide (hIAPP) is a 37 amino acid peptide hormone that is secreted by pancreatic beta cells along with glucagon and insulin. The glucose metabolism of humans is regulated by a balanced ratio of insulin and hIAPP. The disturbance of this balance can result in the development of type-2 diabetes mellitus (T2DM), whose pathogeny is associated by self-assembly induced aggregation and amyloid deposits of hIAPP into nanofibrils. Here, we report pressure- and temperature-induced changes of NMR chemical shifts of monomeric hIAPP in bulk solution to elucidate the contribution of conformational substates in a residue-specific manner in their role as molecular determinants for the initial self-assembly. The comparison with a similar peptide, the Alzheimer peptide Aβ(1-40), which is leading to self-assembly induced aggregation and amyloid deposits as well, reveals that in both peptides highly homologous areas exist (Q10-L16 and N21-L27 in hIAPP and Q15-A21 and S26-I32 in Aβ). The N-terminal area of hIAPP around amino acid residues 3-20 displays large differences in pressure sensitivity compared to Aβ, pinpointing to a different structural ensemble in this sequence element which is of helical origin in hIAPP. Knowledge of the structural nature of the highly amyloidogenic hIAPP and the differences with respect to the conformational ensemble of Aβ(1-40) will help to identify molecular determinants of self-assembly as well as cross-seeded assembly initiated aggregation and help facilitate the rational design of drugs for therapeutic use.
Collapse
Affiliation(s)
- Markus Beck Erlach
- Institute of Biophysics and Physical Biochemistry, Center for Magnetic Resonance in Chemistry and Biomedicine, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Hans Robert Kalbitzer
- Institute of Biophysics and Physical Biochemistry, Center for Magnetic Resonance in Chemistry and Biomedicine, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Roland Winter
- Physical Chemistry I- Biophysical Chemistry, Technical University Dortmund, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany
| | - Werner Kremer
- Institute of Biophysics and Physical Biochemistry, Center for Magnetic Resonance in Chemistry and Biomedicine, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany.
| |
Collapse
|
38
|
Cao Y, Mezzenga R. Food protein amyloid fibrils: Origin, structure, formation, characterization, applications and health implications. Adv Colloid Interface Sci 2019; 269:334-356. [PMID: 31128463 DOI: 10.1016/j.cis.2019.05.002] [Citation(s) in RCA: 261] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 01/27/2023]
Abstract
Amyloid fibrils have traditionally been considered only as pathological aggregates in human neurodegenerative diseases, but it is increasingly becoming clear that the propensity to form amyloid fibrils is a generic property for all proteins, including food proteins. Differently from the pathological amyloid fibrils, those derived from food proteins can be used as advanced materials in biomedicine, tissue engineering, environmental science, nanotechnology, material science as well as in food science, owing to a combination of highly desirable feature such as extreme aspect ratios, outstanding stiffness and a broad availability of functional groups on their surfaces. In food science, protein fibrillization is progressively recognized as an appealing strategy to broaden and improve food protein functionality. This review article discusses the various classes of reported food protein amyloid fibrils and their formation conditions. It furthermore considers amyloid fibrils in a broad context, from their structural characterization to their forming mechanisms and ensued physical properties, emphasizing their applications in food-related fields. Finally, the biological fate and the potential toxicity mechanisms of food amyloid fibrils are discussed, and an experimental protocol for their health safety validation is proposed in the concluding part of the review.
Collapse
Affiliation(s)
- Yiping Cao
- Food and Soft Materials, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 9, Zurich 8092, Switzerland
| | - Raffaele Mezzenga
- Food and Soft Materials, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 9, Zurich 8092, Switzerland.
| |
Collapse
|
39
|
Pattni V, Heyden M. Pressure Effects on Protein Hydration Water Thermodynamics. J Phys Chem B 2019; 123:6014-6022. [DOI: 10.1021/acs.jpcb.9b04094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Viren Pattni
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Matthias Heyden
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
40
|
Liu YF, Oey I, Bremer P, Carne A, Silcock P. Modifying the Functional Properties of Egg Proteins Using Novel Processing Techniques: A Review. Compr Rev Food Sci Food Saf 2019; 18:986-1002. [PMID: 33337008 DOI: 10.1111/1541-4337.12464] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 05/12/2019] [Accepted: 05/14/2019] [Indexed: 11/30/2022]
Abstract
Egg proteins can be used in a wide range of food products, owing to their excellent foaming, emulsifying, and gelling properties. Another important functional property is the susceptibility of egg proteins to enzymatic hydrolysis, as protein digestion is closely related to its nutritional value. These functional properties of egg proteins are likely to be changed during food processing. Conventional thermal processing can easily induce protein denaturation and aggregation and consequently reduce the functionality of egg proteins due to the presence of heat-labile proteins. Accordingly, there is interest from the food industry in seeking novel nonthermal or low-thermal techniques that sustain protein functionality. To understand how novel processing techniques, including high hydrostatic pressure, pulsed electric fields, ionizing radiation, ultraviolet light, pulsed light, ultrasound, ozone, and high pressure homogenization, affect protein functionality, this review introduces the mechanisms involved in protein structure modification and describes the structure-functionality relationships. Novel techniques differ in their mechanisms of protein structure modification and some have been shown to improve protein functionality for particular treatment conditions and product forms. Although there is considerable industrial potential for the use of novel techniques, further studies are required to make them a practical reality, as the processing of egg proteins often involves other influencing factors, such as different pH and the presence of other food additives (for example, salts, sugar, and polysaccharides).
Collapse
Affiliation(s)
- Ya-Fei Liu
- Dept. of Food Science, Univ. of Otago, Dunedin, New Zealand.,Dept. of Biochemistry, Univ. of Otago, Dunedin, New Zealand
| | - Indrawati Oey
- Dept. of Food Science, Univ. of Otago, Dunedin, New Zealand.,Riddet Inst., Palmerston North, New Zealand
| | - Phil Bremer
- Dept. of Food Science, Univ. of Otago, Dunedin, New Zealand
| | - Alan Carne
- Dept. of Biochemistry, Univ. of Otago, Dunedin, New Zealand
| | - Pat Silcock
- Dept. of Food Science, Univ. of Otago, Dunedin, New Zealand
| |
Collapse
|
41
|
Al-Ayoubi SR, Schummel PH, Cisse A, Seydel T, Peters J, Winter R. Osmolytes modify protein dynamics and function of tetrameric lactate dehydrogenase upon pressurization. Phys Chem Chem Phys 2019; 21:12806-12817. [PMID: 31165827 DOI: 10.1039/c9cp02310k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We present a study of the combined effects of natural cosolvents (TMAO, glycine, urea) and pressure on the activity of the tetrameric enzyme lactate dehydrogenase (LDH). To this end, high-pressure stopped-flow methodology in concert with fast UV/Vis spectroscopic detection of product formation was applied. To reveal possible pressure effects on the stability and dynamics of the enzyme, FTIR spectroscopic and neutron scattering measurements were carried out. In neat buffer solution, the catalytic turnover number of the enzyme, kcat, increases up to 1000 bar, the pressure range where dissociation of the tetrameric species to dimers sets in. Accordingly, we obtain a negative activation volume, ΔV# = -45.3 mL mol-1. Further, the enzyme substrate complex has a larger volume compared to the enzyme and substrate in the unbound state. The neutron scattering data show that changes in the fast internal dynamics of the enzyme are not responsible for the increase of kcat upon compression. Whereas the magnitude of kcat is similar in the presence of the osmolytes, the pressure of deactivation is modulated by the addition of cosolvents. TMAO and glycine increase the pressure of deactivation, and in accordance with the observed stabilizing effect both cosolvents exhibit against denaturation and/or dissociation of proteins. While urea does not markedly affect the magnitude of the Michaelis constant, KM, both 1 M TMAO and 1 M glycine exhibit smaller KM values of about 0.07 mM and 0.05 mM below about 1 kbar. Such positive effect on the substrate affinity could be rationalized by the effect the two cosolutes impose on the thermodynamic activities of the reactants, which reflect changes in water-mediated intermolecular interactions. Our data show that the intracellular milieu, i.e., the solution conditions that have evolved, may be sufficient to maintain enzymatic activity under extreme environmental conditions, including the whole pressure range encountered on Earth.
Collapse
Affiliation(s)
- Samy R Al-Ayoubi
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany.
| | | | | | | | | | | |
Collapse
|
42
|
Levin A, Cinar S, Paulus M, Nase J, Winter R, Czeslik C. Analyzing protein-ligand and protein-interface interactions using high pressure. Biophys Chem 2019; 252:106194. [PMID: 31177023 DOI: 10.1016/j.bpc.2019.106194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 01/06/2023]
Abstract
All protein function is based on interactions with the environment. Proteins can bind molecules for their transport, their catalytic conversion, or for signal transduction. They can bind to each other, and they adsorb at interfaces, such as lipid membranes or material surfaces. An experimental characterization is needed to understand the underlying mechanisms, but also to make use of proteins in biotechnology or biomedicine. When protein interactions are studied under high pressure, volume changes are revealed that directly describe spatial contributions to these interactions. Moreover, the strength of protein interactions with ligands or interfaces can be tuned in a smooth way by pressure modulation, which can be utilized in the design of drugs and bio-responsive interfaces. In this short review, selected studies of protein-ligand and protein-interface interactions are presented that were carried out under high pressure. Furthermore, a perspective on bio-responsive interfaces is given where protein-ligand binding is applied to create functional interfacial structures.
Collapse
Affiliation(s)
- Artem Levin
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany
| | - Süleyman Cinar
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany
| | - Michael Paulus
- Technische Universität Dortmund, Fakultät Physik/Delta, D-44221 Dortmund, Germany
| | - Julia Nase
- Technische Universität Dortmund, Fakultät Physik/Delta, D-44221 Dortmund, Germany
| | - Roland Winter
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany
| | - Claus Czeslik
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany.
| |
Collapse
|
43
|
Winter R. Interrogating the Structural Dynamics and Energetics of Biomolecular Systems with Pressure Modulation. Annu Rev Biophys 2019; 48:441-463. [DOI: 10.1146/annurev-biophys-052118-115601] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
High hydrostatic pressure affects the structure, dynamics, and stability of biomolecular systems and is a key parameter in the context of the exploration of the origin and the physical limits of life. This review lays out the conceptual framework for exploring the conformational fluctuations, dynamical properties, and activity of biomolecular systems using pressure perturbation. Complementary pressure-jump relaxation studies are useful tools to study the kinetics and mechanisms of biomolecular phase transitions and structural transformations, such as membrane fusion or protein and nucleic acid folding. Finally, the advantages of using pressure to explore biomolecular assemblies and modulate enzymatic reactions are discussed.
Collapse
Affiliation(s)
- Roland Winter
- Faculty of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44227 Dortmund, Germany
| |
Collapse
|
44
|
Espinosa YR, Caffarena ER, Grigera JR. The role of hydrophobicity in the cold denaturation of proteins under high pressure: A study on apomyoglobin. J Chem Phys 2019; 150:075102. [PMID: 30795674 DOI: 10.1063/1.5080942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
An exciting debate arises when microscopic mechanisms involved in the denaturation of proteins at high pressures are explained. In particular, the issue emerges when the hydrophobic effect is invoked, given that hydrophobicity cannot elucidate by itself the volume changes measured during protein unfolding. In this work, we study by the use of molecular dynamics simulations and essential dynamics analysis the relation between the solvation dynamics, volume, and water structure when apomyoglobin is subjected to a hydrostatic pressure regime. Accordingly, the mechanism of cold denaturation of proteins under high-pressure can be related to the disruption of the hydrogen-bond network of water favoring the coexistence of two states, low-density and high-density water, which directly implies in the formation of a molten globule once the threshold of 200 MPa has been overcome.
Collapse
Affiliation(s)
- Yanis R Espinosa
- Instituto de Física de Líquidos y Sistemas Biológicos (CONICET-UNLP), Calle 59 Nro 789, B1900BTE La Plata, Argentina
| | - Ernesto R Caffarena
- Programa de Computação Científica (PROCC), Fundação Oswaldo Cruz, Manguinhos, CEP 21040-360 Rio de Janeiro, Brazil
| | - J Raúl Grigera
- CEQUINOR, Universidad de La Plata and CONICET, 47 y 115, B1900 La Plata, Argentina
| |
Collapse
|
45
|
Fast pressure-jump all-atom simulations and experiments reveal site-specific protein dehydration-folding dynamics. Proc Natl Acad Sci U S A 2019; 116:5356-5361. [PMID: 30837309 DOI: 10.1073/pnas.1814927116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As theory and experiment have shown, protein dehydration is a major contributor to protein folding. Dehydration upon folding can be characterized directly by all-atom simulations of fast pressure drops, which create desolvated pockets inside the nascent hydrophobic core. Here, we study pressure-drop refolding of three λ-repressor fragment (λ6-85) mutants computationally and experimentally. The three mutants report on tertiary structure formation via different fluorescent helix-helix contact pairs. All-atom simulations of pressure drops capture refolding and unfolding of all three mutants by a similar mechanism, thus validating the nonperturbative nature of the fluorescent contact probes. Analysis of simulated interprobe distances shows that the α-helix 1-3 pair distance displays a slower characteristic time scale than the 1-2 or 3-2 pair distance. To see whether slow packing of α-helices 1 and 3 is reflected in the rate-limiting folding step, fast pressure-drop relaxation experiments captured refolding on a millisecond time scale. These experiments reveal that refolding monitored by 1-3 contact formation indeed is much slower than when monitored by 1-2 or 3-2 contact formation. Unlike the case of the two-state folder [three-α-helix bundle (α3D)], whose drying and core formation proceed in concert, λ6-85 repeatedly dries and rewets different local tertiary contacts before finally forming a solvent-excluded core, explaining the non-two-state behavior observed during refolding in molecular dynamics simulations. This work demonstrates that proteins can explore desolvated pockets and dry globular states numerous times before reaching the native conformation.
Collapse
|
46
|
Torrent J, Martin D, Igel-Egalon A, Béringue V, Rezaei H. High-Pressure Response of Amyloid Folds. Viruses 2019; 11:v11030202. [PMID: 30823361 PMCID: PMC6466028 DOI: 10.3390/v11030202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 12/22/2022] Open
Abstract
The abnormal protein aggregates in progressive neurodegenerative disorders, such as Alzheimer’s, Parkinson’s and prion diseases, adopt a generic structural form called amyloid fibrils. The precise amyloid fold can differ between patients and these differences are related to distinct neuropathological phenotypes of the diseases. A key focus in current research is the molecular mechanism governing such structural diversity, known as amyloid polymorphism. In this review, we focus on our recent work on recombinant prion protein (recPrP) and the use of pressure as a variable for perturbing protein structure. We suggest that the amyloid polymorphism is based on volumetric features. Accordingly, pressure is the thermodynamic parameter that fits best to exploit volume differences within the states of a chemical reaction, since it shifts the equilibrium constant to the state that has the smaller volume. In this context, there are analogies with the process of correct protein folding, the high pressure-induced effects of which have been studied for more than a century and which provides a valuable source of inspiration. We present a short overview of this background and review our recent results regarding the folding, misfolding, and aggregation-disaggregation of recPrP under pressure. We present preliminary experiments aimed at identifying how prion protein fibril diversity is related to the quaternary structure by using pressure and varying protein sequences. Finally, we consider outstanding questions and testable mechanistic hypotheses regarding the multiplicity of states in the amyloid fold.
Collapse
Affiliation(s)
- Joan Torrent
- MMDN, Univ. Montpellier, EPHE, INSERM, U1198, F-34095 Montpellier, France.
| | - Davy Martin
- Institut National de la Recherche Agronomique, UR892, Virologie Immunologie Moléculaires, F-78350 Jouy-en-Josas, France.
| | - Angélique Igel-Egalon
- Institut National de la Recherche Agronomique, UR892, Virologie Immunologie Moléculaires, F-78350 Jouy-en-Josas, France.
| | - Vincent Béringue
- Institut National de la Recherche Agronomique, UR892, Virologie Immunologie Moléculaires, F-78350 Jouy-en-Josas, France.
| | - Human Rezaei
- Institut National de la Recherche Agronomique, UR892, Virologie Immunologie Moléculaires, F-78350 Jouy-en-Josas, France.
| |
Collapse
|
47
|
Pressure Reveals Unique Conformational Features in Prion Protein Fibril Diversity. Sci Rep 2019; 9:2802. [PMID: 30808892 PMCID: PMC6391531 DOI: 10.1038/s41598-019-39261-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/10/2019] [Indexed: 11/08/2022] Open
Abstract
The prion protein (PrP) misfolds and assembles into a wide spectrum of self-propagating quaternary structures, designated PrPSc. These various PrP superstructures can be functionally different, conferring clinically distinctive symptomatology, neuropathology and infectious character to the associated prion diseases. However, a satisfying molecular basis of PrP structural diversity is lacking in the literature. To provide mechanistic insights into the etiology of PrP polymorphism, we have engineered a set of 6 variants of the human protein and obtained PrP amyloid fibrils. We show that pressure induces dissociation of the fibrils, albeit with different kinetics. In addition, by focusing on the generic properties of amyloid fibrils, such as the thioflavin T binding capacities and the PK-resistance, we reveal an unprecedented structure-barostability phenomenological relationship. We propose that the structural diversity of PrP fibrils encompass a multiplicity of packing defects (water-excluded cavities) in their hydrophobic cores, and that the resultant sensitivity to pressure should be considered as a general molecular criterion to accurately define fibril morphotypes. We anticipate that our insights into sequence-dependent fibrillation and conformational stability will shed light on the highly-nuanced prion strain phenomenon and open the opportunity to explain different PrP conformations in terms of volumetric physics.
Collapse
|
48
|
Engstler J, Giovambattista N. Comparative Study of the Effects of Temperature and Pressure on the Water-Mediated Interactions between Apolar Nanoscale Solutes. J Phys Chem B 2019; 123:1116-1128. [PMID: 30592598 DOI: 10.1021/acs.jpcb.8b10296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We perform molecular dynamics simulations to study the effects of temperature and pressure on the water-mediated interaction (WMI) between two nanoscale (apolar) graphene plates at 240 ≤ T ≤ 400 K and -100 ≤ P ≤ 1200 MPa. These are thermodynamic conditions relevant to, for example, cooling-, heating-, compression-, and decompression-induced protein denaturation. We find that at all ( T, P) studied, the potential of mean force between the graphene plates, as a function of plate separation r, exhibits local minima at specific plate separations r = r n that can accommodate n water layers ( n = 0,1,2,3). In particular, our results show that isobaric cooling and isothermal compression have a similar effect on WMI between the plates; both processes tend to suppress the attraction and ultimate collapse of the graphene plates by kinetically trapping the plates at the metastable states with r = r n ( n > 0). In addition, isobaric heating and isothermal decompression also have a similar effect; both processes tend to reduce the range and strength of the interactions between the graphene plates. Interestingly, at low temperatures, the WMI between the plates is affected by crystallization. However, crystallization depends deeply on the water model considered, SPC/E and TIP4P/2005 water models, with the crystallization occurring at different ( T, P) conditions, into different forms of ice.
Collapse
Affiliation(s)
- Justin Engstler
- Department of Physics , Brooklyn College of the City University of New York , Brooklyn , New York 11210 , United States
| | - Nicolas Giovambattista
- Department of Physics , Brooklyn College of the City University of New York , Brooklyn , New York 11210 , United States.,Ph.D. Programs in Chemistry and Physics , The Graduate Center of the City University of New York , New York , New York 10016 , United States
| |
Collapse
|
49
|
Konno S, Doi K, Ishimori K. Uncovering dehydration in cytochrome c refolding from urea- and guanidine hydrochloride-denatured unfolded state by high pressure spectroscopy. Biophys Physicobiol 2019; 16:18-27. [PMID: 30775200 PMCID: PMC6373425 DOI: 10.2142/biophysico.16.0_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 12/16/2018] [Indexed: 12/01/2022] Open
Abstract
To investigate the dehydration associated with protein folding, the partial molar volume changes for protein unfolding (ΔVu) in cytochrome c (Cyt c) were determined using high pressure absorption spectroscopy. ΔVu values for the unfolding to urea- and guanidine hydrochloride (GdnHCl)-denatured Cyt c were estimated to be 56±5 and 29±1 mL mol−1, respectively. Considering that the volume change for hydration of hydrophobic groups is positive and that Cyt c has a covalently bonded heme, a positive ΔVu reflects the primary contribution of the hydration of heme. Because of the marked tendency of guanidium ions to interact with hydrophobic groups, a smaller number of water molecules were hydrated with hydrophobic groups in GdnHCl-denatured Cyt c than in urea-denatured Cyt c, resulting in the smaller positive ΔVu. On the other hand, urea is a relatively weak denaturant and urea-denatured Cyt c is not completely hydrated, which retains the partially folded structures. To unfold such partial structures, we introduced a mutation near the heme binding site, His26, to Gln, resulting in a negatively shifted ΔVu (4±2 mL mol−1) in urea-denatured Cyt c. The formation of the more solvated and less structured state in the urea-denatured mutant enhanced hydration to the hydrophilic groups in the unfolding process. Therefore, we confirmed the hydration of amino acid residues in the protein unfolding of Cyt c by estimating ΔVu, which allows us to discuss the hydrated structures in the denatured states of proteins.
Collapse
Affiliation(s)
- Shohei Konno
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Kentaro Doi
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Koichiro Ishimori
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan.,Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
50
|
Abstract
The discovery of microbial communities in extreme conditions that would seem hostile to life leads to the question of how the molecules making up these microbes can maintain their structure and function. While microbes that live under extremes of temperature have been heavily studied, those that live under extremes of pressure, or "piezophiles", are now increasingly being studied because of advances in sample collection and high-pressure cells for biochemical and biophysical measurements. Here, adaptations of enzymes in piezophiles against the effects of pressure are discussed in light of recent experimental and computational studies. However, while concepts from studies of enzymes from temperature extremophiles can provide frameworks for understanding adaptations by piezophile enzymes, the effects of temperature and pressure on proteins differ in significant ways. Thus, the state of the knowledge of adaptation in piezophile enzymes is still in its infancy and many more experiments and computational studies on different enzymes from a variety of piezophiles are needed.
Collapse
Affiliation(s)
- Toshiko Ichiye
- Department of Chemistry, Georgetown University, Washington, DC, 20057, United States
| |
Collapse
|