1
|
Shoham S, Keren R, Lavy A, Polishchuk I, Pokroy B, Ilan M. Out of the blue: Hyperaccumulation of molybdenum in the Indo-Pacific sponge Theonella conica. SCIENCE ADVANCES 2024; 10:eadn3923. [PMID: 39018411 PMCID: PMC466961 DOI: 10.1126/sciadv.adn3923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/10/2024] [Indexed: 07/19/2024]
Abstract
Molybdenum is an essential micronutrient, but because of its toxicity at high concentrations, its accumulation in living organisms has not been widely demonstrated. In this study, we report that the marine sponge Theonella conica accumulates exceptionally high levels of molybdenum (46,793 micrograms per gram of dry weight) in a wide geographic distribution from the northern Red Sea to the reefs of Zanzibar, Indian Ocean. The element is found in various sponge body fractions and correlates to selenium. We further investigated the microbial composition of the sponge and compared it to its more studied congener, Theonella swinhoei. Our analysis illuminates the symbiotic bacterium Entotheonella sp. and its role in molybdenum accumulation. Through microscopic and analytical methods, we provide evidence of intracellular spheres within Entotheonella sp. that exhibit high molybdenum content, further unraveling the intricate mechanisms behind molybdenum accumulation in this sponge species and its significance in the broader context of molybdenum biogeochemical cycling.
Collapse
Affiliation(s)
- Shani Shoham
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ray Keren
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Adi Lavy
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Iryna Polishchuk
- Faculty of Materials Engineering and the Russell Berrie Nanotechnology Institute, Technion, Israel Institute of Technology, Haifa 32000, Israel
| | - Boaz Pokroy
- Faculty of Materials Engineering and the Russell Berrie Nanotechnology Institute, Technion, Israel Institute of Technology, Haifa 32000, Israel
| | - Micha Ilan
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
2
|
Oliveira AR, Mota C, Vilela-Alves G, Manuel RR, Pedrosa N, Fourmond V, Klymanska K, Léger C, Guigliarelli B, Romão MJ, Cardoso Pereira IA. An allosteric redox switch involved in oxygen protection in a CO 2 reductase. Nat Chem Biol 2024; 20:111-119. [PMID: 37985883 DOI: 10.1038/s41589-023-01484-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/12/2023] [Indexed: 11/22/2023]
Abstract
Metal-dependent formate dehydrogenases reduce CO2 with high efficiency and selectivity, but are usually very oxygen sensitive. An exception is Desulfovibrio vulgaris W/Sec-FdhAB, which can be handled aerobically, but the basis for this oxygen tolerance was unknown. Here we show that FdhAB activity is controlled by a redox switch based on an allosteric disulfide bond. When this bond is closed, the enzyme is in an oxygen-tolerant resting state presenting almost no catalytic activity and very low formate affinity. Opening this bond triggers large conformational changes that propagate to the active site, resulting in high activity and high formate affinity, but also higher oxygen sensitivity. We present the structure of activated FdhAB and show that activity loss is associated with partial loss of the metal sulfido ligand. The redox switch mechanism is reversible in vivo and prevents enzyme reduction by physiological formate levels, conferring a fitness advantage during O2 exposure.
Collapse
Affiliation(s)
- Ana Rita Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cristiano Mota
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade Nova de Lisboa, Caparica, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, Caparica, Portugal
| | - Guilherme Vilela-Alves
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade Nova de Lisboa, Caparica, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, Caparica, Portugal
| | - Rita Rebelo Manuel
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Neide Pedrosa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Vincent Fourmond
- Laboratory of Bioenergetics and Protein Engineering, Aix Marseille University, CNRS, BIP, Marseille, France
| | - Kateryna Klymanska
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade Nova de Lisboa, Caparica, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, Caparica, Portugal
| | - Christophe Léger
- Laboratory of Bioenergetics and Protein Engineering, Aix Marseille University, CNRS, BIP, Marseille, France
| | - Bruno Guigliarelli
- Laboratory of Bioenergetics and Protein Engineering, Aix Marseille University, CNRS, BIP, Marseille, France
| | - Maria João Romão
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade Nova de Lisboa, Caparica, Portugal.
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, Caparica, Portugal.
| | - Inês A Cardoso Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
3
|
Zhao Q, Su X, Wang Y, Liu R, Bartlam M. Structural analysis of molybdate binding protein ModA from Klebsiella pneumoniae. Biochem Biophys Res Commun 2023; 681:41-46. [PMID: 37751633 DOI: 10.1016/j.bbrc.2023.09.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/20/2023] [Indexed: 09/28/2023]
Abstract
Klebsiella pneumoniae, a facultative anaerobe, relies on acquiring molybdenum to sustain growth in anaerobic conditions, a crucial factor for the pathogen to establish infections within host environments. Molybdenum plays a critical role in pathogenesis as it forms an essential component of cofactors for molybdoenzymes. K. pneumoniae utilizes the ABC (ATP-Binding-Cassette) transporter encoded by the modABC operon for uptake of the group VI elements molybdenum and tungsten. In this study, we determined the X-ray crystal structures of both the molybdenum-free and molybdenum-bound substrate-binding protein (SBP) ModA from Klebsiella pneumoniae to 2.00 Å and 1.77 Å resolution respectively. ModA crystallizes in the space group P222 with a single monomer in one asymmetric unit. The purified protein remained soluble and specifically bound molybdate and tungstate with Kd values of 6.3 nM and 5.2 nM, respectively. Tungstate competes with molybdate by binding to ModA, resulting in enhanced antimicrobial activity. These data provide a starting point for structural and functional analyses of molybdate transport in K. pneumoniae.
Collapse
Affiliation(s)
- Qi Zhao
- College of Life Sciences, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Xiaokang Su
- College of Life Sciences, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Yanan Wang
- College of Life Sciences, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Ruihua Liu
- College of Life Sciences, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| | - Mark Bartlam
- College of Life Sciences, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China; Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, 300071, China.
| |
Collapse
|
4
|
Keum C, Hirschbiegel CM, Chakraborty S, Jin S, Jeong Y, Rotello VM. Biomimetic and bioorthogonal nanozymes for biomedical applications. NANO CONVERGENCE 2023; 10:42. [PMID: 37695365 PMCID: PMC10495311 DOI: 10.1186/s40580-023-00390-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/23/2023] [Indexed: 09/12/2023]
Abstract
Nanozymes mimic the function of enzymes, which drive essential intracellular chemical reactions that govern biological processes. They efficiently generate or degrade specific biomolecules that can initiate or inhibit biological processes, regulating cellular behaviors. Two approaches for utilizing nanozymes in intracellular chemistry have been reported. Biomimetic catalysis replicates the identical reactions of natural enzymes, and bioorthogonal catalysis enables chemistries inaccessible in cells. Various nanozymes based on nanomaterials and catalytic metals are employed to attain intended specific catalysis in cells either to mimic the enzymatic mechanism and kinetics or expand inaccessible chemistries. Each nanozyme approach has its own intrinsic advantages and limitations, making them complementary for diverse and specific applications. This review summarizes the strategies for intracellular catalysis and applications of biomimetic and bioorthogonal nanozymes, including a discussion of their limitations and future research directions.
Collapse
Affiliation(s)
- Changjoon Keum
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Cristina-Maria Hirschbiegel
- Department of Chemistry, University of Massachusetts, Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Soham Chakraborty
- Department of Chemistry, University of Massachusetts, Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Soyeong Jin
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea
| | - Youngdo Jeong
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
- Department of HY-KIST Bio-Convergence, Hanyang University, Seoul, 04763, Republic of Korea.
- Division of Bio-Medical Science and Technology, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts, Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA.
| |
Collapse
|
5
|
Cebotari D, Buils J, Garbuz O, Balan G, Marrot J, Guérineau V, Touboul D, Haouas M, Segado-Centelles M, Bo C, Gulea A, Floquet S. A new series of bioactive Mo (V)2O 2S 2-based thiosemicarbazone complexes: Solution and DFT studies, and antifungal and antioxidant activities. J Inorg Biochem 2023; 245:112258. [PMID: 37244168 DOI: 10.1016/j.jinorgbio.2023.112258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 05/29/2023]
Abstract
This paper deals with the synthesis, characterization, and studies of biological properties of a series of 5 coordination compounds based on binuclear core [Mo(V)2O2S2]2+ with thiosemicarbazones ligands bearing different substituents on the R1 position of the ligand. The complexes are first studied using MALDI-TOF mass spectrometry and NMR spectroscopy to determine their structures in solution in relation to single-crystal X-Ray diffraction data. In a second part, the antifungal and antioxidative activities are explored and the high potential of these coordination compounds compared to the uncoordinated ligands is demonstrated for these properties. Finally, DFT calculation provides important support to the solution studies by identifying the most stable isomers in each [Mo2O2S2]2+/Ligand system, while the determination of HUMO and LUMO levels is performed to explain the antioxidative properties of these systems.
Collapse
Affiliation(s)
- Diana Cebotari
- Institute Lavoisier de Versailles, CNRS UMR 8180, Univ. Versailles Saint Quentin en Yvelines, Université Paris-Saclay, 45 av. des Etats-Unis, 78035 Versailles cedex, France; State University of Moldova, 60 Alexei Mateevici str., MD-2009, Chisinau, Republic of Moldova
| | - Jordi Buils
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain; Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Tarragona, Spain
| | - Olga Garbuz
- Institute of Zoology, 1 Academiei str., MD-2028, Chisinau, Republic of Moldova
| | - Greta Balan
- State University of Medicine and Pharmacy "Nicolae Testemiţanu", 165 Ştefan cel Mare and Sfânt Street, Chişinău MD-2004, Republic of Moldova
| | - Jérôme Marrot
- Institute Lavoisier de Versailles, CNRS UMR 8180, Univ. Versailles Saint Quentin en Yvelines, Université Paris-Saclay, 45 av. des Etats-Unis, 78035 Versailles cedex, France
| | - Vincent Guérineau
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - David Touboul
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Mohamed Haouas
- Institute Lavoisier de Versailles, CNRS UMR 8180, Univ. Versailles Saint Quentin en Yvelines, Université Paris-Saclay, 45 av. des Etats-Unis, 78035 Versailles cedex, France
| | - Mireia Segado-Centelles
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Carles Bo
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.
| | - Aurelian Gulea
- State University of Moldova, 60 Alexei Mateevici str., MD-2009, Chisinau, Republic of Moldova.
| | - Sébastien Floquet
- Institute Lavoisier de Versailles, CNRS UMR 8180, Univ. Versailles Saint Quentin en Yvelines, Université Paris-Saclay, 45 av. des Etats-Unis, 78035 Versailles cedex, France.
| |
Collapse
|
6
|
Foteva V, Fisher JJ, Qiao Y, Smith R. Does the Micronutrient Molybdenum Have a Role in Gestational Complications and Placental Health? Nutrients 2023; 15:3348. [PMID: 37571285 PMCID: PMC10421405 DOI: 10.3390/nu15153348] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Molybdenum is an essential trace element for human health and survival, with molybdenum-containing enzymes catalysing multiple reactions in the metabolism of purines, aldehydes, and sulfur-containing amino acids. Recommended daily intakes vary globally, with molybdenum primarily sourced through the diet, and supplementation is not common. Although the benefits of molybdenum as an anti-diabetic and antioxidant inducer have been reported in the literature, there are conflicting data on the benefits of molybdenum for chronic diseases. Overexposure and deficiency can result in adverse health outcomes and mortality, although physiological doses remain largely unexplored in relation to human health. The lack of knowledge surrounding molybdenum intake and the role it plays in physiology is compounded during pregnancy. As pregnancy progresses, micronutrient demand increases, and diet is an established factor in programming gestational outcomes and maternal health. This review summarises the current literature concerning varied recommendations on molybdenum intake, the role of molybdenum and molybdoenzymes in physiology, and the contribution these play in gestational outcomes.
Collapse
Affiliation(s)
- Vladimira Foteva
- Mothers and Babies Research Program, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia; (J.J.F.); (R.S.)
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2308, Australia
| | - Joshua J. Fisher
- Mothers and Babies Research Program, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia; (J.J.F.); (R.S.)
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2308, Australia
| | - Yixue Qiao
- Academy of Pharmacy, Xi’an Jiaotong Liverpool University, Suzhou 215000, China;
| | - Roger Smith
- Mothers and Babies Research Program, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia; (J.J.F.); (R.S.)
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2308, Australia
| |
Collapse
|
7
|
Thompson J, Barr C, Babcock-Adams L, Bird L, La Cava E, Garber A, Hongoh Y, Liu M, Nealson KH, Okamoto A, Repeta D, Suzuki S, Tacto C, Tashjian M, Merino N. Insights into the physiological and genomic characterization of three bacterial isolates from a highly alkaline, terrestrial serpentinizing system. Front Microbiol 2023; 14:1179857. [PMID: 37520355 PMCID: PMC10373932 DOI: 10.3389/fmicb.2023.1179857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/23/2023] [Indexed: 08/01/2023] Open
Abstract
The terrestrial serpentinite-hosted ecosystem known as "The Cedars" is home to a diverse microbial community persisting under highly alkaline (pH ~ 12) and reducing (Eh < -550 mV) conditions. This extreme environment presents particular difficulties for microbial life, and efforts to isolate microorganisms from The Cedars over the past decade have remained challenging. Herein, we report the initial physiological assessment and/or full genomic characterization of three isolates: Paenibacillus sp. Cedars ('Paeni-Cedars'), Alishewanella sp. BS5-314 ('Ali-BS5-314'), and Anaerobacillus sp. CMMVII ('Anaero-CMMVII'). Paeni-Cedars is a Gram-positive, rod-shaped, mesophilic facultative anaerobe that grows between pH 7-10 (minimum pH tested was 7), temperatures 20-40°C, and 0-3% NaCl concentration. The addition of 10-20 mM CaCl2 enhanced growth, and iron reduction was observed in the following order, 2-line ferrihydrite > magnetite > serpentinite ~ chromite ~ hematite. Genome analysis identified genes for flavin-mediated iron reduction and synthesis of a bacillibactin-like, catechol-type siderophore. Ali-BS5-314 is a Gram-negative, rod-shaped, mesophilic, facultative anaerobic alkaliphile that grows between pH 10-12 and temperatures 10-40°C, with limited growth observed 1-5% NaCl. Nitrate is used as a terminal electron acceptor under anaerobic conditions, which was corroborated by genome analysis. The Ali-BS5-314 genome also includes genes for benzoate-like compound metabolism. Anaero-CMMVII remained difficult to cultivate for physiological studies; however, growth was observed between pH 9-12, with the addition of 0.01-1% yeast extract. Anaero-CMMVII is a probable oxygen-tolerant anaerobic alkaliphile with hydrogenotrophic respiration coupled with nitrate reduction, as determined by genome analysis. Based on single-copy genes, ANI, AAI and dDDH analyses, Paeni-Cedars and Ali-BS5-314 are related to other species (P. glucanolyticus and A. aestuarii, respectively), and Anaero-CMMVII represents a new species. The characterization of these three isolates demonstrate the range of ecophysiological adaptations and metabolisms present in serpentinite-hosted ecosystems, including mineral reduction, alkaliphily, and siderophore production.
Collapse
Affiliation(s)
- Jaclyn Thompson
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Casey Barr
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Lydia Babcock-Adams
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Lina Bird
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, United States
| | - Eugenio La Cava
- National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| | - Arkadiy Garber
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ, United States
| | - Yuichi Hongoh
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Mark Liu
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Kenneth H. Nealson
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Akihiro Okamoto
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido, Japan
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Daniel Repeta
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Shino Suzuki
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, Sagamihara, Kanagawa, Japan
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), JAMSTEC, Yokosuka, Kanagawa, Japan
| | - Clarissa Tacto
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Michelle Tashjian
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Nancy Merino
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| |
Collapse
|
8
|
Abstract
Living systems are built from a small subset of the atomic elements, including the bulk macronutrients (C,H,N,O,P,S) and ions (Mg,K,Na,Ca) together with a small but variable set of trace elements (micronutrients). Here, we provide a global survey of how chemical elements contribute to life. We define five classes of elements: those that are (i) essential for all life, (ii) essential for many organisms in all three domains of life, (iii) essential or beneficial for many organisms in at least one domain, (iv) beneficial to at least some species, and (v) of no known beneficial use. The ability of cells to sustain life when individual elements are absent or limiting relies on complex physiological and evolutionary mechanisms (elemental economy). This survey of elemental use across the tree of life is encapsulated in a web-based, interactive periodic table that summarizes the roles chemical elements in biology and highlights corresponding mechanisms of elemental economy.
Collapse
Affiliation(s)
- Kaleigh A Remick
- Department of Microbiology, Cornell University, New York, NY, United States
| | - John D Helmann
- Department of Microbiology, Cornell University, New York, NY, United States.
| |
Collapse
|
9
|
Yoshinari N, Kuwamura N, Kojima T, Konno T. Development of coordination chemistry with thiol-containing amino acids. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214857] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Cheng Y, Xu QY, Qian BF, Zhang CX, Jia AQ, Zhang QF. Protonation and Sulfidation of [(Me
3
tacn)MO
3
] (M=Mo, W). ChemistrySelect 2022. [DOI: 10.1002/slct.202203785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yao Cheng
- Institute of Molecular Engineering and Applied Chemistry Anhui University of Technology Ma'anshan Anhui 243002 P. R. China
| | - Qian Y. Xu
- Institute of Molecular Engineering and Applied Chemistry Anhui University of Technology Ma'anshan Anhui 243002 P. R. China
| | - Bing F. Qian
- Institute of Molecular Engineering and Applied Chemistry Anhui University of Technology Ma'anshan Anhui 243002 P. R. China
| | - Cai X. Zhang
- Institute of Molecular Engineering and Applied Chemistry Anhui University of Technology Ma'anshan Anhui 243002 P. R. China
| | - Ai Q. Jia
- Institute of Molecular Engineering and Applied Chemistry Anhui University of Technology Ma'anshan Anhui 243002 P. R. China
| | - Qian F. Zhang
- Institute of Molecular Engineering and Applied Chemistry Anhui University of Technology Ma'anshan Anhui 243002 P. R. China
| |
Collapse
|
11
|
Fuior A, Cebotari D, Garbuz O, Calancea S, Gulea A, Floquet S. Biological properties of a new class of [Mo2O2S2]-based thiosemicarbazone coordination complexes. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Chammakhi C, Boscari A, Pacoud M, Aubert G, Mhadhbi H, Brouquisse R. Nitric Oxide Metabolic Pathway in Drought-Stressed Nodules of Faba Bean ( Vicia faba L.). Int J Mol Sci 2022; 23:13057. [PMID: 36361841 PMCID: PMC9654674 DOI: 10.3390/ijms232113057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 12/24/2022] Open
Abstract
Drought is an environmental stress that strongly impacts plants. It affects all stages of growth and induces profound disturbances that influence all cellular functions. Legumes can establish a symbiosis with Rhizobium-type bacteria, whose function is to fix atmospheric nitrogen in organs called nodules and to meet plant nitrogen needs. Symbiotic nitrogen fixation (SNF) is particularly sensitive to drought. We raised the hypothesis that, in drought-stressed nodules, SNF inhibition is partly correlated to hypoxia resulting from nodule structure compaction and an increased O2 diffusion barrier, and that the nodule energy regeneration involves phytoglobin-nitric oxide (Pgb-NO) respiration. To test this hypothesis, we subjected faba bean (Vicia faba L.) plants nodulated with a Rhizobium laguerreae strain to either drought or osmotic stress. We monitored the N2-fixation activity, the energy state (ATP/ADP ratio), the expression of hypoxia marker genes (alcohol dehydrogenase and alanine aminotransferase), and the functioning of the Pgb-NO respiration in the nodules. The collected data confirmed our hypothesis and showed that (1) drought-stressed nodules were subject to more intense hypoxia than control nodules and (2) NO production increased and contributed via Pgb-NO respiration to the maintenance of the energy state of drought-stressed nodules.
Collapse
Affiliation(s)
- Chaima Chammakhi
- Sophia Agrobiotech Institute, INRAE 1355, CNRS 7254, Côte d’Azur University, 06903 Sophia Antipolis, France
- Laboratory of Legumes and Sustainable Agrosystems, Biotechnology Center of Borj-Cedria, Hammam-Lif 2050, Tunisia
- National Agronomic Institute of Tunisia, University of Carthage, Tunis 1082, Tunisia
| | - Alexandre Boscari
- Sophia Agrobiotech Institute, INRAE 1355, CNRS 7254, Côte d’Azur University, 06903 Sophia Antipolis, France
| | - Marie Pacoud
- Sophia Agrobiotech Institute, INRAE 1355, CNRS 7254, Côte d’Azur University, 06903 Sophia Antipolis, France
| | - Grégoire Aubert
- Agroecology, INRAE, Agro Institute, Bourgogne Franche-Comté University, 21065 Dijon, France
| | - Haythem Mhadhbi
- Laboratory of Legumes and Sustainable Agrosystems, Biotechnology Center of Borj-Cedria, Hammam-Lif 2050, Tunisia
| | - Renaud Brouquisse
- Sophia Agrobiotech Institute, INRAE 1355, CNRS 7254, Côte d’Azur University, 06903 Sophia Antipolis, France
| |
Collapse
|
13
|
Kalimuthu P, Harmer JR, Baldauf M, Hassan AH, Kruse T, Bernhardt PV. Catalytic electrochemistry of the bacterial Molybdoenzyme YcbX. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148579. [PMID: 35640667 DOI: 10.1016/j.bbabio.2022.148579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/02/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Molybdenum-dependent enzymes that can reduce N-hydroxylated substrates (e.g. N-hydroxyl-purines, amidoximes) are found in bacteria, plants and vertebrates. They are involved in the conversion of a wide range of N-hydroxylated organic compounds into their corresponding amines, and utilize various redox proteins (cytochrome b5, cyt b5 reductase, flavin reductase) to deliver reducing equivalents to the catalytic centre. Here we present catalytic electrochemistry of the bacterial enzyme YcbX from Escherichia coli utilizing the synthetic electron transfer mediator methyl viologen (MV2+). The electrochemically reduced form (MV+.) acts as an effective electron donor for YcbX. To immobilize YcbX on a glassy carbon electrode, a facile protein crosslinking approach was used with the crosslinker glutaraldehyde (GTA). The YcbX-modified electrode showed a catalytic response for the reduction of a broad range of N-hydroxylated substrates. The catalytic activity of YcbX was examined at different pH values exhibiting an optimum at pH 7.5 and a bell-shaped pH profile with deactivation through deprotonation (pKa1 9.1) or protonation (pKa2 6.1). Electrochemical simulation was employed to obtain new biochemical data for YcbX, in its reaction with methyl viologen and the organic substrates 6-N-hydroxylaminopurine (6-HAP) and benzamidoxime (BA).
Collapse
Affiliation(s)
- Palraj Kalimuthu
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Jeffrey R Harmer
- Centre for Advanced Imaging, University of Queensland, Brisbane 4072, Australia
| | - Milena Baldauf
- Department of Plant Biology, Technische Universitaet, Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Ahmed H Hassan
- Department of Plant Biology, Technische Universitaet, Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Tobias Kruse
- Department of Plant Biology, Technische Universitaet, Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
14
|
Soybean Oil Epoxidation Catalyzed by a Functionalized Metal–Organic Framework with Active Dioxo-Molybdenum (VI) Centers. Catal Letters 2022. [DOI: 10.1007/s10562-022-04096-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractIn this work, a functionalized gallium metal–organic framework with active dioxo-molybdenum (VI) centers was evaluated as a catalyst in the epoxidation of soybean oil using tert-butyl-hydroperoxide as an oxidizing agent. The influence of the reaction time, temperature, and concentration of the oxidizing agent was studied, and it was demonstrated that the highest epoxide selectivity was obtained at 110 °C after 4 h of reaction (29% conversion and 91% selectivity) using a soybean oil/oxidizing agent ratio of 1/2. The stability of the metal–organic framework was confirmed by infrared spectroscopy, X-ray powder diffraction, thermogravimetric analysis, scanning electron microscopy, and energy-dispersive X-ray spectroscopy EDS. The stability tests demonstrated that the catalyst could be reused in the catalytic process for the recovery of vegetable oils.
Graphical Abstract
Collapse
|
15
|
Oliveira AR, Mota C, Klymanska K, Biaso F, Romão MJ, Guigliarelli B, Pereira IC. Spectroscopic and Structural Characterization of Reduced Desulfovibrio vulgaris Hildenborough W-FdhAB Reveals Stable Metal Coordination during Catalysis. ACS Chem Biol 2022; 17:1901-1909. [PMID: 35766974 PMCID: PMC9774666 DOI: 10.1021/acschembio.2c00336] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Metal-dependent formate dehydrogenases are important enzymes due to their activity of CO2 reduction to formate. The tungsten-containing FdhAB formate dehydrogenase from Desulfovibrio vulgaris Hildenborough is a good example displaying high activity, simple composition, and a notable structural and catalytic robustness. Here, we report the first spectroscopic redox characterization of FdhAB metal centers by EPR. Titration with dithionite or formate leads to reduction of three [4Fe-4S]1+ clusters, and full reduction requires Ti(III)-citrate. The redox potentials of the four [4Fe-4S]1+ centers range between -250 and -530 mV. Two distinct WV signals were detected, WDV and WFV, which differ in only the g2-value. This difference can be explained by small variations in the twist angle of the two pyranopterins, as determined through DFT calculations of model compounds. The redox potential of WVI/V was determined to be -370 mV when reduced by dithionite and -340 mV when reduced by formate. The crystal structure of dithionite-reduced FdhAB was determined at high resolution (1.5 Å), revealing the same structural alterations as reported for the formate-reduced structure. These results corroborate a stable six-ligand W coordination in the catalytic intermediate WV state of FdhAB.
Collapse
Affiliation(s)
- Ana Rita Oliveira
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Cristiano Mota
- Associate
Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School
of Science and Technology, Universidade
NOVA de Lisboa, 2829-516 Caparica, Portugal,UCIBIO,
Applied Molecular Biosciences Unit, Departament of Chemistry, NOVA
School of Science and Technology, Universidade
NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Kateryna Klymanska
- Associate
Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School
of Science and Technology, Universidade
NOVA de Lisboa, 2829-516 Caparica, Portugal,UCIBIO,
Applied Molecular Biosciences Unit, Departament of Chemistry, NOVA
School of Science and Technology, Universidade
NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Frédéric Biaso
- Laboratoire
de Bioénergétique et Ingénierie des Protéines, Aix Marseille Univ, CNRS, BIP, Marseille 13402, France
| | - Maria João Romão
- Associate
Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School
of Science and Technology, Universidade
NOVA de Lisboa, 2829-516 Caparica, Portugal,UCIBIO,
Applied Molecular Biosciences Unit, Departament of Chemistry, NOVA
School of Science and Technology, Universidade
NOVA de Lisboa, 2829-516 Caparica, Portugal,
| | - Bruno Guigliarelli
- Laboratoire
de Bioénergétique et Ingénierie des Protéines, Aix Marseille Univ, CNRS, BIP, Marseille 13402, France,
| | - Inês Cardoso Pereira
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal,
| |
Collapse
|
16
|
Winiarska A, Hege D, Gemmecker Y, Kryściak-Czerwenka J, Seubert A, Heider J, Szaleniec M. Tungsten Enzyme Using Hydrogen as an Electron Donor to Reduce Carboxylic Acids and NAD . ACS Catal 2022; 12:8707-8717. [PMID: 35874620 PMCID: PMC9295118 DOI: 10.1021/acscatal.2c02147] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Tungsten-dependent
aldehyde oxidoreductases (AORs) catalyze the
oxidation of aldehydes to acids and are the only known enzymes reducing
non-activated acids using electron donors with low redox potentials.
We report here that AOR from Aromatoleum aromaticum (AORAa) catalyzes the reduction of organic
acids not only with low-potential Eu(II) or Ti(III) complexes but
also with H2 as an electron donor. Additionally, AORAa catalyzes the H2-dependent reduction
of NAD+ or benzyl viologen. The rate of H2-dependent
NAD+ reduction equals to 10% of that of aldehyde oxidation,
representing the highest H2 turnover rate observed among
the Mo/W enzymes. As AORAa simultaneously
catalyzes the reduction of acids and NAD+, we designed
a cascade reaction utilizing a NAD(P)H-dependent alcohol dehydrogenase
to reduce organic acids to the corresponding alcohols with H2 as the only reductant. The newly discovered W-hydrogenase side activity
of AORAa may find applications in either
NADH recycling or conversion of carboxylic acids to more useful biochemicals.
Collapse
Affiliation(s)
- Agnieszka Winiarska
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Kraków 30-239, Poland
| | - Dominik Hege
- Faculty of Biology, Philipps-Universität Marburg, Marburg D-35043, Germany
| | - Yvonne Gemmecker
- Faculty of Biology, Philipps-Universität Marburg, Marburg D-35043, Germany
| | - Joanna Kryściak-Czerwenka
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Kraków 30-239, Poland
| | - Andreas Seubert
- Faculty of Chemistry, Philipps-Universität Marburg, Marburg D-35043, Germany
| | - Johann Heider
- Faculty of Biology, Philipps-Universität Marburg, Marburg D-35043, Germany.,Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg D-35043, Germany
| | - Maciej Szaleniec
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Kraków 30-239, Poland
| |
Collapse
|
17
|
Pätsch S, Correia JV, Elvers BJ, Steuer M, Schulzke C. Inspired by Nature-Functional Analogues of Molybdenum and Tungsten-Dependent Oxidoreductases. Molecules 2022; 27:molecules27123695. [PMID: 35744820 PMCID: PMC9227248 DOI: 10.3390/molecules27123695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 11/18/2022] Open
Abstract
Throughout the previous ten years many scientists took inspiration from natural molybdenum and tungsten-dependent oxidoreductases to build functional active site analogues. These studies not only led to an ever more detailed mechanistic understanding of the biological template, but also paved the way to atypical selectivity and activity, such as catalytic hydrogen evolution. This review is aimed at representing the last decade’s progress in the research of and with molybdenum and tungsten functional model compounds. The portrayed systems, organized according to their ability to facilitate typical and artificial enzyme reactions, comprise complexes with non-innocent dithiolene ligands, resembling molybdopterin, as well as entirely non-natural nitrogen, oxygen, and/or sulfur bearing chelating donor ligands. All model compounds receive individual attention, highlighting the specific novelty that each provides for our understanding of the enzymatic mechanisms, such as oxygen atom transfer and proton-coupled electron transfer, or that each presents for exploiting new and useful catalytic capability. Overall, a shift in the application of these model compounds towards uncommon reactions is noted, the latter are comprehensively discussed.
Collapse
|
18
|
Fuior A, Cebotari D, Haouas M, Marrot J, Espallargas GM, Guérineau V, Touboul D, Rusnac RV, Gulea A, Floquet S. Synthesis, Structures, and Solution Studies of a New Class of [Mo 2O 2S 2]-Based Thiosemicarbazone Coordination Complexes. ACS OMEGA 2022; 7:16547-16560. [PMID: 35601294 PMCID: PMC9118386 DOI: 10.1021/acsomega.2c00705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/01/2022] [Indexed: 06/01/2023]
Abstract
This paper deals with the synthesis, structural studies, and behavior in solution of unprecedented coordination complexes built by the association of a panel of 14 representative thiosemicarbazone ligands with the cluster [Mo2O2S2]2+. These complexes have been thoroughly characterized both in the solid state and in solution by XRD and by NMR, respectively. In particular, HMBC 1H{15N} and 1H DOSY NMR experiments bring important elements for understanding the complexes' behavior in solution. These studies demonstrate that playing on the nature and the position of various substituents on the ligands strongly influences the coordination modes of the ligands as well as the numbers of isomers in solution, mainly 2 products for the majority of complexes and up to 5 for some of them.
Collapse
Affiliation(s)
- Arcadie Fuior
- Institut
Lavoisier de Versailles, CNRS UMR 8180, Univ. Versailles Saint Quentin en Yvelines, Université Paris-Saclay, 45 av. des Etats-Unis, 78035 Cedex Versailles, France
- State
University of Moldova, Chişinău 2009, Republic of Moldova
| | - Diana Cebotari
- Institut
Lavoisier de Versailles, CNRS UMR 8180, Univ. Versailles Saint Quentin en Yvelines, Université Paris-Saclay, 45 av. des Etats-Unis, 78035 Cedex Versailles, France
- State
University of Moldova, Chişinău 2009, Republic of Moldova
| | - Mohamed Haouas
- Institut
Lavoisier de Versailles, CNRS UMR 8180, Univ. Versailles Saint Quentin en Yvelines, Université Paris-Saclay, 45 av. des Etats-Unis, 78035 Cedex Versailles, France
| | - Jérôme Marrot
- Institut
Lavoisier de Versailles, CNRS UMR 8180, Univ. Versailles Saint Quentin en Yvelines, Université Paris-Saclay, 45 av. des Etats-Unis, 78035 Cedex Versailles, France
| | | | - Vincent Guérineau
- Institut
de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Saclay, Avenue de la Terrasse, 91198 Cedex Gif-sur-Yvette, France
| | - David Touboul
- Institut
de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Saclay, Avenue de la Terrasse, 91198 Cedex Gif-sur-Yvette, France
| | - Roman V. Rusnac
- State
University of Moldova, Chişinău 2009, Republic of Moldova
| | - Aurelian Gulea
- State
University of Moldova, Chişinău 2009, Republic of Moldova
| | - Sébastien Floquet
- Institut
Lavoisier de Versailles, CNRS UMR 8180, Univ. Versailles Saint Quentin en Yvelines, Université Paris-Saclay, 45 av. des Etats-Unis, 78035 Cedex Versailles, France
| |
Collapse
|
19
|
Fernandes C, Taurino I. Biodegradable Molybdenum (Mo) and Tungsten (W) Devices: One Step Closer towards Fully-Transient Biomedical Implants. SENSORS 2022; 22:s22083062. [PMID: 35459047 PMCID: PMC9027146 DOI: 10.3390/s22083062] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 01/03/2023]
Abstract
Close monitoring of vital physiological parameters is often key in following the evolution of certain medical conditions (e.g., diabetes, infections, post-operative status or post-traumatic injury). The allocation of trained medical staff and specialized equipment is, therefore, necessary and often translates into a clinical and economic burden on modern healthcare systems. As a growing field, transient electronics may establish fully bioresorbable medical devices capable of remote real-time monitoring of therapeutically relevant parameters. These devices could alert remote medical personnel in case of any anomaly and fully disintegrate in the body without a trace. Unfortunately, the need for a multitude of biodegradable electronic components (power supplies, wires, circuitry) in addition to the electrochemical biosensing interface has halted the arrival of fully bioresorbable electronically active medical devices. In recent years molybdenum (Mo) and tungsten (W) have drawn increasing attention as promising candidates for the fabrication of both energy-powered active (e.g., transistors and integrated circuits) and passive (e.g., resistors and capacitors) biodegradable electronic components. In this review, we discuss the latest Mo and W-based dissolvable devices for potential biomedical applications and how these soluble metals could pave the way towards next-generation fully transient implantable electronic systems.
Collapse
Affiliation(s)
- Catarina Fernandes
- Micro and Nano-Systems (MNS), Department of Electrical Engineering (Micro- and Nano Systems), Katholieke Universiteit Leuven (KU Leuven), 3000 Leuven, Belgium;
- Correspondence:
| | - Irene Taurino
- Micro and Nano-Systems (MNS), Department of Electrical Engineering (Micro- and Nano Systems), Katholieke Universiteit Leuven (KU Leuven), 3000 Leuven, Belgium;
- Semiconductor Physics, Department of Physics and Astronomy (Semiconductor Physics), Katholieke Universiteit Leuven (KU Leuven), 3000 Leuven, Belgium
| |
Collapse
|
20
|
Shin HD, Toporek Y, Mok JK, Maekawa R, Lee BD, Howard MH, DiChristina TJ. Iodate Reduction by Shewanella oneidensis Requires Genes Encoding an Extracellular Dimethylsulfoxide Reductase. Front Microbiol 2022; 13:852942. [PMID: 35495678 PMCID: PMC9048795 DOI: 10.3389/fmicb.2022.852942] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Microbial iodate (IO3 -) reduction is a major component of the iodine biogeochemical reaction network in anaerobic marine basins and radioactive iodine-contaminated subsurface environments. Alternative iodine remediation technologies include microbial reduction of IO3 - to iodide (I-) and microbial methylation of I- to volatile gases. The metal reduction pathway is required for anaerobic IO3 - respiration by the gammaproteobacterium Shewanella oneidensis. However, the terminal IO3 - reductase and additional enzymes involved in the S. oneidensis IO3 - electron transport chain have not yet been identified. In this study, gene deletion mutants deficient in four extracellular electron conduits (EECs; ΔmtrA, ΔmtrA-ΔmtrDEF, ΔmtrA-ΔdmsEF, ΔmtrA-ΔSO4360) and DMSO reductase (ΔdmsB) of S. oneidensis were constructed and examined for anaerobic IO3 - reduction activity with either 20 mM lactate or formate as an electron donor. IO3 - reduction rate experiments were conducted under anaerobic conditions in defined minimal medium amended with 250 μM IO3 - as anaerobic electron acceptor. Only the ΔmtrA mutant displayed a severe deficiency in IO3 - reduction activity with lactate as the electron donor, which suggested that the EEC-associated decaheme cytochrome was required for lactate-dependent IO3 - reduction. The ΔmtrA-ΔdmsEF triple mutant displayed a severe deficiency in IO3 - reduction activity with formate as the electron donor, whereas ΔmtrA-ΔmtrDEF and ΔmtrA-ΔSO4360 retained moderate IO3 - reduction activity, which suggested that the EEC-associated dimethylsulfoxide (DMSO) reductase membrane-spanning protein DmsE, but not MtrA, was required for formate-dependent IO3 - reduction. Furthermore, gene deletion mutant ΔdmsB (deficient in the extracellular terminal DMSO reductase protein DmsB) and wild-type cells grown with tungsten replacing molybdenum (a required co-factor for DmsA catalytic activity) in defined growth medium were unable to reduce IO3 - with either lactate or formate as the electron donor, which indicated that the DmsAB complex functions as an extracellular IO3 - terminal reductase for both electron donors. Results of this study provide complementary genetic and phenotypic evidence that the extracellular DMSO reductase complex DmsAB of S. oneidensis displays broad substrate specificity and reduces IO3 - as an alternate terminal electron acceptor.
Collapse
Affiliation(s)
- Hyun-Dong Shin
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA, United States
| | - Yael Toporek
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA, United States
| | - Jung Kee Mok
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA, United States
| | - Ruri Maekawa
- School of Materials, Chemistry and Chemical Engineering, Osaka Prefecture University, Sakai, Japan
| | - Brady D. Lee
- Savannah River National Laboratory, Environmental Sciences Section, Aiken, SC, United States
| | - M. Hope Howard
- Savannah River National Laboratory, Environmental Sciences Section, Aiken, SC, United States
| | - Thomas J. DiChristina
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA, United States
| |
Collapse
|
21
|
Huang XY, Hu DW, Zhao FJ. Molybdenum: More than an essential element. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1766-1774. [PMID: 34864981 DOI: 10.1093/jxb/erab534] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/03/2021] [Indexed: 06/13/2023]
Abstract
Molybdenum (Mo) is an essential element for almost all living organisms. After being taken up into the cells as molybdate, it is incorporated into the molybdenum cofactor, which functions as the active site of several molybdenum-requiring enzymes and thus plays crucial roles in multiple biological processes. The uptake and transport of molybdate is mainly mediated by two types of molybdate transporters. The homeostasis of Mo in plant cells is tightly controlled, and such homeostasis likely plays vital roles in plant adaptation to local environments. Recent evidence suggests that Mo is more than an essential element required for plant growth and development; it is also involved in local adaptation to coastal salinity. In this review, we summarize recent research progress on molybdate uptake and transport, molybdenum homeostasis network in plants, and discuss the potential roles of the molybdate transporter in plant adaptation to their local environment.
Collapse
Affiliation(s)
- Xin-Yuan Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Da-Wei Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
22
|
Hagel C, Blaum B, Friedrich T, Heider J. Characterisation of the redox centers of ethylbenzene dehydrogenase. J Biol Inorg Chem 2021; 27:143-154. [PMID: 34843002 PMCID: PMC8840923 DOI: 10.1007/s00775-021-01917-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/29/2021] [Indexed: 01/18/2023]
Abstract
Ethylbenzene dehydrogenase (EbDH), the initial enzyme of anaerobic ethylbenzene degradation from the beta-proteobacterium Aromatoleum aromaticum, is a soluble periplasmic molybdenum enzyme consisting of three subunits. It contains a Mo-bis-molybdopterin guanine dinucleotide (Mo-bis-MGD) cofactor and an 4Fe-4S cluster (FS0) in the α-subunit, three 4Fe-4S clusters (FS1 to FS3) and a 3Fe-4S cluster (FS4) in the β-subunit and a heme b cofactor in the γ-subunit. Ethylbenzene is hydroxylated by a water molecule in an oxygen-independent manner at the Mo-bis-MGD cofactor, which is reduced from the MoVI to the MoIV state in two subsequent one-electron steps. The electrons are then transferred via the Fe-S clusters to the heme b cofactor. In this report, we determine the midpoint redox potentials of the Mo-bis-MGD cofactor and FS1-FS4 by EPR spectroscopy, and that of the heme b cofactor by electrochemically induced redox difference spectroscopy. We obtained relatively high values of > 250 mV both for the MoVI-MoV redox couple and the heme b cofactor, whereas FS2 is only reduced at a very low redox potential, causing magnetic coupling with the neighboring FS1 and FS3. We compare the results with the data on related enzymes and interpret their significance for the function of EbDH.
Collapse
Affiliation(s)
- Corina Hagel
- Labor für Mikrobielle Biochemie and Synmikro Zentrum für Synthetische Mikrobiologie, Philipps Universität Marburg, 35043, Marburg, Germany
| | - Bärbel Blaum
- Institut für Biochemie, Albert-Ludwigs Universität, Albertstr. 21, 79104, Freiburg im Breisgau, Germany
| | - Thorsten Friedrich
- Institut für Biochemie, Albert-Ludwigs Universität, Albertstr. 21, 79104, Freiburg im Breisgau, Germany.
| | - Johann Heider
- Labor für Mikrobielle Biochemie and Synmikro Zentrum für Synthetische Mikrobiologie, Philipps Universität Marburg, 35043, Marburg, Germany.
| |
Collapse
|
23
|
Suman SG, Snæbjörnsson T, Ragnarsdóttir O, Polukeev AV, Wendt OF. Synthesis of mixed salts of the [Mo2O2(μ-S)2(SCN)6-n(L)n](4+n)− anion (n = 0–2); structures of [Mo2O2(μ-S)2(SCN)5(CH3CN)]3−, [Mo2O2(μ-S)2(CN)5]3−, and [Mo2O2(μ-S)2(CN)2(O)]2−, and probing the ligand exchange of thiocyanate and cyanide. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Dioxomolybdenum(VI) complexes with 4-benzyloxysalicylidene-N/S-alkyl thiosemicarbazones: Synthesis, structural analysis, antioxidant activity and xanthine oxidase inhibition. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
25
|
Fuior A, Hijazi A, Garbuz O, Bulimaga V, Zosim L, Cebotari D, Haouas M, Toderaş I, Gulea A, Floquet S. Screening of biological properties of Mo V2O 2S 2- and Mo V2O 4-based coordination complexes: Investigation of antibacterial, antifungal, antioxidative and antitumoral activities versus growing of Spirulina platensis biomass. J Inorg Biochem 2021; 226:111627. [PMID: 34689079 DOI: 10.1016/j.jinorgbio.2021.111627] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022]
Abstract
This paper deals with the biological potential of coordination compounds based on binuclear core [MoV2O2E2]2+ (E = O or S) coordinated with commercially available ligands such as oxalates (Ox2-), L-cysteine (L-cys2-), L-histidine (L-his-), Iminodiacetate (IDA2-), Nitrilotriacetate (HNTA2- or NTA3-) or ethylenediamine tetraacetate (EDTA4-) by means of various in vitro assays in a screening approach. Results suggest that the obtained complexes show weak antibacterial and antifungal properties while not being cytotoxic on cancerous and mammalian cells. In contrast, [Mo2O2E2(L-cys)2]2- complexes stand out as powerful antioxidant, whereas [Mo2O2E2(EDTA)]2- associating tetraphenylphosphonium counter-cations display strong antibiotic activity. Finally, some complexes have evidenced a positive activity towards the growing of spirulina platensis together with a modification of the proportions of biological components inside the cells. These findings reveal promising bioactivity of the bridged binuclear Mo(+V) cores inside complexes and encourage further research for new highly active yet non-toxic molecules for biological and biomedical applications.
Collapse
Affiliation(s)
- Arcadie Fuior
- Institut Lavoisier de Versailles, CNRS UMR 8180, Univ. Versailles Saint Quentin en Yvelines, Université Paris-Saclay, 45 av. des Etats-Unis, 78035 Versailles, Cedex, France; State University of Moldova, 60 Alexei Mateevici str., MD-2009 Chisinau, Republic of Moldova
| | - Akram Hijazi
- Institut Lavoisier de Versailles, CNRS UMR 8180, Univ. Versailles Saint Quentin en Yvelines, Université Paris-Saclay, 45 av. des Etats-Unis, 78035 Versailles, Cedex, France
| | - Olga Garbuz
- State University of Moldova, 60 Alexei Mateevici str., MD-2009 Chisinau, Republic of Moldova
| | - Valentina Bulimaga
- State University of Moldova, 60 Alexei Mateevici str., MD-2009 Chisinau, Republic of Moldova
| | - Liliana Zosim
- State University of Moldova, 60 Alexei Mateevici str., MD-2009 Chisinau, Republic of Moldova
| | - Diana Cebotari
- Institut Lavoisier de Versailles, CNRS UMR 8180, Univ. Versailles Saint Quentin en Yvelines, Université Paris-Saclay, 45 av. des Etats-Unis, 78035 Versailles, Cedex, France; State University of Moldova, 60 Alexei Mateevici str., MD-2009 Chisinau, Republic of Moldova
| | - Mohamed Haouas
- Institut Lavoisier de Versailles, CNRS UMR 8180, Univ. Versailles Saint Quentin en Yvelines, Université Paris-Saclay, 45 av. des Etats-Unis, 78035 Versailles, Cedex, France
| | - Ion Toderaş
- Institute of Zoology, 1 Academiei str., MD-2028 Chisinau, Republic of Moldova
| | - Aurelian Gulea
- State University of Moldova, 60 Alexei Mateevici str., MD-2009 Chisinau, Republic of Moldova.
| | - Sébastien Floquet
- Institut Lavoisier de Versailles, CNRS UMR 8180, Univ. Versailles Saint Quentin en Yvelines, Université Paris-Saclay, 45 av. des Etats-Unis, 78035 Versailles, Cedex, France.
| |
Collapse
|
26
|
González-Cabaleiro R, Thompson JA, Vilà-Nadal L. Looking for Options to Sustainably Fixate Nitrogen. Are Molecular Metal Oxides Catalysts a Viable Avenue? Front Chem 2021; 9:742565. [PMID: 34595154 PMCID: PMC8476845 DOI: 10.3389/fchem.2021.742565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/17/2021] [Indexed: 11/13/2022] Open
Abstract
Fast and reliable industrial production of ammonia (NH3) is fundamentally sustaining modern society. Since the early 20th Century, NH3 has been synthesized via the Haber-Bosch process, running at conditions of around 350-500°C and 100-200 times atmospheric pressure (15-20 MPa). Industrial ammonia production is currently the most energy-demanding chemical process worldwide and contributes up to 3% to the global carbon dioxide emissions. Therefore, the development of more energy-efficient pathways for ammonia production is an attractive proposition. Over the past 20 years, scientists have imagined the possibility of developing a milder synthesis of ammonia by mimicking the nitrogenase enzyme, which fixes nitrogen from the air at ambient temperatures and pressures to feed leguminous plants. To do this, we propose the use of highly reconfigurable molecular metal oxides or polyoxometalates (POMs). Our proposal is an informed design of the polyoxometalate after exploring the catabolic pathways that cyanobacteria use to fix N2 in nature, which are a different route than the one followed by the Haber-Bosch process. Meanwhile, the industrial process is a "brute force" system towards breaking the triple bond N-N, needing high pressure and high temperature to increase the rate of reaction, nature first links the protons to the N2 to later easier breaking of the triple bond at environmental temperature and pressure. Computational chemistry data on the stability of different polyoxometalates will guide us to decide the best design for a catalyst. Testing different functionalized molecular metal oxides as ammonia catalysts laboratory conditions will allow for a sustainable reactor design of small-scale production.
Collapse
Affiliation(s)
| | - Jake A Thompson
- School of Chemistry, University of Glasgow, Glasgow, United Kingdom
| | - Laia Vilà-Nadal
- School of Chemistry, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
27
|
Perli T, Borodina I, Daran JM. Engineering of molybdenum-cofactor-dependent nitrate assimilation in Yarrowia lipolytica. FEMS Yeast Res 2021; 21:6370176. [PMID: 34519821 PMCID: PMC8456426 DOI: 10.1093/femsyr/foab050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022] Open
Abstract
Engineering a new metabolic function in a microbial host can be limited by the availability of the relevant cofactor. For instance, in Yarrowia lipolytica, the expression of a functional nitrate reductase is precluded by the absence of molybdenum cofactor (Moco) biosynthesis. In this study, we demonstrated that the Ogataea parapolymorpha Moco biosynthesis pathway combined with the expression of a high affinity molybdate transporter could lead to the synthesis of Moco in Y. lipolytica. The functionality of Moco was demonstrated by expression of an active Moco-dependent nitrate assimilation pathway from the same yeast donor, O. parapolymorpha. In addition to 11 heterologous genes, fast growth on nitrate required adaptive laboratory evolution which, resulted in up to 100-fold increase in nitrate reductase activity and in up to 4-fold increase in growth rate, reaching 0.13h-1. Genome sequencing of evolved isolates revealed the presence of a limited number of non-synonymous mutations or small insertions/deletions in annotated coding sequences. This study that builds up on a previous work establishing Moco synthesis in S. cerevisiae demonstrated that the Moco pathway could be successfully transferred in very distant yeasts and, potentially, to any other genera, which would enable the expression of new enzyme families and expand the nutrient range used by industrial yeasts.
Collapse
Affiliation(s)
- Thomas Perli
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| |
Collapse
|
28
|
Maurya MR, Maurya SK, Kumar N, Gupta P. Biomimetic Oxidative Bromination by
cis
‐Dioxidotungsten(VI) Complexes of Salan Type N,N’‐Capped Linear Tetradentate Amino Bisphenol. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mannar R. Maurya
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| | - Shailendra K. Maurya
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| | - Naveen Kumar
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| | - Puneet Gupta
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| |
Collapse
|
29
|
Photo-epoxidation of (α, β)-pinene with molecular O2 catalyzed by a dioxo-molybdenum (VI)-based Metal–Organic Framework. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04518-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
Sproules S. Oxo versus Sulfido Coordination at Tungsten: A Spectroscopic and Correlated Ab Initio Electronic Structure Study. Inorg Chem 2021; 60:9057-9063. [PMID: 34096284 DOI: 10.1021/acs.inorgchem.1c01055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The tungsten ion that resides at the active site of a unique class of enzymes only found in esoteric hyperthermophilic archaea bacteria is known to possess at least one terminal chalcogenide ligand. The identity of this as either an oxo or sulfido (or both) is difficult to ascertain from structural studies; therefore, small-molecule analogues are developed to calibrate and substantiate spectroscopic signatures obtained from native proteins. The electronic structures of Tp*WECl2 (E = O, S; Tp* = hydrotris(3,5-dimethylpyrazol-1-yl)borate) have been scrutinized using electronic, electron paramagnetic resonance (EPR), and X-ray absorption spectroscopy to assess the impact of terminal chalcogen on the adjacent cis chloride ligands. Examination at the Cl K-edge provides a direct probe of the bonding and therein lability of these chloride ligands, and in conjunction with density functional theoretical and multireference calculations reveals greater bond covalency in Tp*WOCl2 compared to Tp*WSCl2. The computational model and electronic structure assignment are corroborated by the reproduction of spin-Hamiltonian parameters, whose magnitude is dominated by the sizeable spin-orbit coupling of tungsten.
Collapse
Affiliation(s)
- Stephen Sproules
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K
| |
Collapse
|
31
|
Cao M, Cai R, Zhao L, Guo M, Wang L, Wang Y, Zhang L, Wang X, Yao H, Xie C, Cong Y, Guan Y, Tao X, Wang Y, Xu S, Liu Y, Zhao Y, Chen C. Molybdenum derived from nanomaterials incorporates into molybdenum enzymes and affects their activities in vivo. NATURE NANOTECHNOLOGY 2021; 16:708-716. [PMID: 33603238 DOI: 10.1038/s41565-021-00856-w] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/19/2021] [Indexed: 05/11/2023]
Abstract
Many nanoscale biomaterials fail to reach the clinical trial stage due to a poor understanding of the fundamental principles of their in vivo behaviour. Here we describe the transport, transformation and bioavailability of MoS2 nanomaterials through a combination of in vivo experiments and molecular dynamics simulations. We show that after intravenous injection molybdenum is significantly enriched in liver sinusoid and splenic red pulp. This biodistribution is mediated by protein coronas that spontaneously form in the blood, principally with apolipoprotein E. The biotransformation of MoS2 leads to incorporation of molybdenum into molybdenum enzymes, which increases their specific activities in the liver, affecting its metabolism. Our findings reveal that nanomaterials undergo a protein corona-bridged transport-transformation-bioavailability chain in vivo, and suggest that nanomaterials consisting of essential trace elements may be converted into active biological molecules that organisms can exploit. Our results also indicate that the long-term biotransformation of nanomaterials may have an impact on liver metabolism.
Collapse
Affiliation(s)
- Mingjing Cao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rong Cai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Lina Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Mengyu Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liming Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Yucai Wang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Biomedical Engineering, Faculty of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lili Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Xiaofeng Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Haodong Yao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Chunyu Xie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Yalin Cong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Yong Guan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
| | - Xiayu Tao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
| | - Yaling Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Shaoxin Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
- The GBA National Institute for Nanotechnology Innovation, Guangdong, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- The GBA National Institute for Nanotechnology Innovation, Guangdong, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China.
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- The GBA National Institute for Nanotechnology Innovation, Guangdong, China.
| |
Collapse
|
32
|
Perli T, van der Vorm DNA, Wassink M, van den Broek M, Pronk JT, Daran JM. Engineering heterologous molybdenum-cofactor-biosynthesis and nitrate-assimilation pathways enables nitrate utilization by Saccharomyces cerevisiae. Metab Eng 2021; 65:11-29. [PMID: 33617956 DOI: 10.1016/j.ymben.2021.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/28/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023]
Abstract
Metabolic capabilities of cells are not only defined by their repertoire of enzymes and metabolites, but also by availability of enzyme cofactors. The molybdenum cofactor (Moco) is widespread among eukaryotes but absent from the industrial yeast Saccharomyces cerevisiae. No less than 50 Moco-dependent enzymes covering over 30 catalytic activities have been described to date, introduction of a functional Moco synthesis pathway offers interesting options to further broaden the biocatalytic repertoire of S. cerevisiae. In this study, we identified seven Moco biosynthesis genes in the non-conventional yeast Ogataea parapolymorpha by SpyCas9-mediated mutational analysis and expressed them in S. cerevisiae. Functionality of the heterologously expressed Moco biosynthesis pathway in S. cerevisiae was assessed by co-expressing O. parapolymorpha nitrate-assimilation enzymes, including the Moco-dependent nitrate reductase. Following two-weeks of incubation, growth of the engineered S. cerevisiae strain was observed on nitrate as sole nitrogen source. Relative to the rationally engineered strain, the evolved derivatives showed increased copy numbers of the heterologous genes, increased levels of the encoded proteins and a 5-fold higher nitrate-reductase activity in cell extracts. Growth at nM molybdate concentrations was enabled by co-expression of a Chlamydomonas reinhardtii high-affinity molybdate transporter. In serial batch cultures on nitrate-containing medium, a non-engineered S. cerevisiae strain was rapidly outcompeted by the spoilage yeast Brettanomyces bruxellensis. In contrast, an engineered and evolved nitrate-assimilating S. cerevisiae strain persisted during 35 generations of co-cultivation. This result indicates that the ability of engineered strains to use nitrate may be applicable to improve competitiveness of baker's yeast in industrial processes upon contamination with spoilage yeasts.
Collapse
Affiliation(s)
- Thomas Perli
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, the Netherlands.
| | - Daan N A van der Vorm
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, the Netherlands.
| | - Mats Wassink
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, the Netherlands.
| | - Marcel van den Broek
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, the Netherlands.
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, the Netherlands.
| | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, the Netherlands.
| |
Collapse
|
33
|
Alvarez EO, Sacchi OJ, Ratti SG. The inorganic chemicals that surround us: role of tellurium, selenium and zinc on behavioural functions in mammals. JOURNAL OF NEURORESTORATOLOGY 2021. [DOI: 10.26599/jnr.2021.9040015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Living organisms live in continuous interaction with its environment. During this process changes in one can induce adaptive responses on the other. Many factors in the environment have been studied with the notorious distinction of been rare or to be of high intensity strength in its interaction with living organisms. However, little attention has been put on some factors that have constant interaction with organisms but usually have low intensity strength, such as the case of the inorganic chemical environment that surrounds us. In this review, the interaction between the chemical element and living organisms is discussed under a theoretical model of interaction between compartments, giving attention to tellurium (Te), zinc (Zn) and selenium (Se) on some cognitive functions in human and animals. After studies in our laboratory of the phenotypic expression of the HSR (Hand Skill Relative) gene in school children community living in geographic zone rich in minerals and mines of La Rioja province, Argentine, where Te was found to be in higher non-toxic concentrations, a translational experimental model to maturing rats exposed to this trace element was made. Te was found to increase some parameters related to locomotion in an open field induced by novelty and exploratory motivation. At the same time, inhibition of lateralized responses, survival responses and social activity was also observed. Some of these changes, particularly those related to lateralization had similarity with that found previously in children of La Rioja province. Discussion of similarities and discrepancies of biologic effects between animals and humans, about the possible meaning of Te and its interaction with Zn and Se with relevance to humans was analyzed.
Collapse
|
34
|
Gretarsdottir JM, Jonsdottir S, Lewis W, Hambley TW, Suman SG. Water-Soluble α-Amino Acid Complexes of Molybdenum as Potential Antidotes for Cyanide Poisoning: Synthesis and Catalytic Studies of Threonine, Methionine, Serine, and Leucine Complexes. Inorg Chem 2020; 59:18190-18204. [PMID: 33249838 DOI: 10.1021/acs.inorgchem.0c02672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Water-soluble complexes are desirable for the aqueous detoxification of cyanide. Molybdenum complexes with α-amino acid and disulfide ligands with the formula K[(L)Mo2O2(μ-S)2(S2)] (L = leu (1), met (2), thr (3), and ser (4)) were synthesized in a reaction of [(DMF)3MoO(μ-S)2(S2)] with deprotonated α-amino acids; leu, met, thr, and ser are the carboxylate anions of l-leucine, l-methionine, l-threonine, and l-serine, respectively. Potassium salts of α-amino acids (leu (1a), met (2a), thr (3a), and ser (4a)) were prepared as precursors for complexes 1-4, respectively, by employing a nonaqueous synthesis route. The ligand exchange reaction of [Mo2O2(μ-S)2(DMF)6](I)2 with deprotonated α-amino acids afforded bis-α-amino acid complexes, [(L)2Mo2O2(μ-S)2] (6-8). A tris-α-amino acid complex, [(leu)2Mo2O2(μ-S)2(μ-leu + H)] (5; leu + H is the carboxylate anion of l-leucine with the amine protonated), formed in the reaction with leucine. 5 crystallized from methanol with a third weakly bonded leucine as a bridging bidentate carboxylate. An adduct of 8 with SCN- coordinated, 9, crystallized and was structurally characterized. Complexes 1-4 are air stable and highly water-soluble chiral molecules. Cytotoxicity studies in the A549 cell line gave IC50 values that range from 80 to 400 μM. Cyclic voltammetry traces of 1-8 show solvent-dependent irreversible electrochemical behavior. Complexes 1-4 demonstrated the ability to catalyze the reaction of thiosulfate and cyanide in vitro to exhaustively transform cyanide to thiocyanate in less than 1 h.
Collapse
Affiliation(s)
| | | | - William Lewis
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Trevor W Hambley
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sigridur G Suman
- Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavik, Iceland
| |
Collapse
|
35
|
Gulaboski R, Mirceski V. Simple voltammetric approach for characterization of two-step surface electrode mechanism in protein-film voltammetry. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04563-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
36
|
Vidovič C, Belaj F, Mösch‐Zanetti NC. Soft Scorpionate Hydridotris(2-mercapto-1-methylimidazolyl) borate) Tungsten-Oxido and -Sulfido Complexes as Acetylene Hydratase Models. Chemistry 2020; 26:12431-12444. [PMID: 32640122 PMCID: PMC7589279 DOI: 10.1002/chem.202001127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/05/2020] [Indexed: 11/08/2022]
Abstract
A series of WIV alkyne complexes with the sulfur-rich ligand hydridotris(2-mercapto-1-methylimidazolyl) borate) (TmMe ) are presented as bio-inspired models to elucidate the mechanism of the tungstoenzyme acetylene hydratase (AH). The mono- and/or bis-alkyne precursors were reacted with NaTmMe and the resulting complexes [W(CO)(C2 R2 )(TmMe )Br] (R=H 1, Me 2) oxidized to the target [WE(C2 R2 )(TmMe )Br] (E=O, R=H 4, Me 5; E=S, R=H 6, Me 7) using pyridine-N-oxide and methylthiirane. Halide abstraction with TlOTf in MeCN gave the cationic complexes [WE(C2 R2 )(MeCN)(TmMe )](OTf) (E=CO, R=H 10, Me 11; E=O, R=H 12, Me 13; E=S, R=H 14, Me 15). Without MeCN, dinuclear complexes [W2 O(μ-O)(C2 Me2 )2 (TmMe )2 ](OTf)2 (8) and [W2 (μ-S)2 (C2 Me2 )(TmMe )2 ](OTf)2 (9) could be isolated showing distinct differences between the oxido and sulfido system with the latter exhibiting only one molecule of C2 Me2 . This provides evidence that a fine balance of the softness at W is important for acetylene coordination. Upon dissolving complex 8 in acetonitrile complex 13 is reconstituted in contrast to 9. All complexes exhibit the desired stability toward water and the observed effective coordination of the scorpionate ligand avoids decomposition to disulfide, an often-occurring reaction in sulfur ligand chemistry. Hence, the data presented here point toward a mechanism with a direct coordination of acetylene in the active site and provide the basis for further model chemistry for acetylene hydratase.
Collapse
Affiliation(s)
- Carina Vidovič
- University of GrazInstitute of ChemistryDepartment of Inorganic ChemistrySchuberstraße 18010GrazAustria
| | - Ferdinand Belaj
- University of GrazInstitute of ChemistryDepartment of Inorganic ChemistrySchuberstraße 18010GrazAustria
| | - Nadia C. Mösch‐Zanetti
- University of GrazInstitute of ChemistryDepartment of Inorganic ChemistrySchuberstraße 18010GrazAustria
| |
Collapse
|
37
|
Ehweiner MA, Wiedemaier F, Belaj F, Mösch-Zanetti NC. Oxygen Atom Transfer Reactivity of Molybdenum(VI) Complexes Employing Pyrimidine- and Pyridine-2-thiolate Ligands. Inorg Chem 2020; 59:14577-14593. [PMID: 32951421 DOI: 10.1021/acs.inorgchem.0c02412] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Four dioxidomolybdenum(VI) complexes of the general structure [MoO2L2] employing the S,N-bidentate ligands pyrimidine-2-thiolate (PymS, 1), pyridine-2-thiolate (PyS, 2), 4-methylpyridine-2-thiolate (4-MePyS, 3) and 6-methylpyridine-2-thiolate (6-MePyS, 4) were synthesized and characterized by spectroscopic means and single-crystal X-ray diffraction analysis (2-4). Complexes 1-4 were reacted with PPh3 and PMe3, respectively, to investigate their oxygen atom transfer (OAT) reactivity and catalytic applicability. Reduction with PPh3 leads to symmetric molybdenum(V) dimers of the general structure [Mo2O3L4] (6-9). Kinetic studies showed that the OAT from [MoO2L2] to PPh3 is 5 times faster for the PymS system than for the PyS and 4-MePyS systems. The reaction of complexes 1-3 with PMe3 gives stable molybdenum(IV) complexes of the structure [MoOL2(PMe3)2] (10-12), while reduction of [MoO2(6-MePyS)2] (4) yields [MoO(6-MePyS)2(PMe3)] (13) with only one PMe3 coordinated to the metal center. The activity of complexes 1-4 in catalytic OAT reactions involving Me2SO and Ph2SO as oxygen donors and PPh3 as an oxygen acceptor has been investigated to assess the influence of the varied ligand frameworks on the OAT reaction rates. It was found that [MoO2(PymS)2] (1) and [MoO2(6-MePyS)2] (4) are similarly efficient catalysts, while complexes 2 and 3 are only moderately active. In the catalytic oxidation of PMe3 with Me2SO, complex 4 is the only efficient catalyst. Complexes 1-4 were also found to catalytically reduce NO3- with PPh3, although their reactivity is inhibited by further reduced species such as NO, as exemplified by the formation of the nitrosyl complex [Mo(NO)(PymS)3] (14), which was identified by single-crystal X-ray diffraction analysis. Computed ΔG⧧ values for the very first step of the OAT were found to be lower for complexes 1 and 4 than for 2 and 3, explaining the difference in catalytic reactivity between the two pairs and revealing the requirement for an electron-deficient ligand system.
Collapse
Affiliation(s)
- Madeleine A Ehweiner
- Institute of Chemistry, Inorganic Chemistry, University of Graz, Schubertstrasse 1, 8010 Graz, Austria
| | - Fabian Wiedemaier
- Institute of Chemistry, Physical and Theoretical Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Ferdinand Belaj
- Institute of Chemistry, Inorganic Chemistry, University of Graz, Schubertstrasse 1, 8010 Graz, Austria
| | - Nadia C Mösch-Zanetti
- Institute of Chemistry, Inorganic Chemistry, University of Graz, Schubertstrasse 1, 8010 Graz, Austria
| |
Collapse
|
38
|
Abstract
Tungsten is the heaviest element used in biological systems. It occurs in the active sites of several bacterial or archaeal enzymes and is ligated to an organic cofactor (metallopterin or metal binding pterin; MPT) which is referred to as tungsten cofactor (Wco). Wco-containing enzymes are found in the dimethyl sulfoxide reductase (DMSOR) and the aldehyde:ferredoxin oxidoreductase (AOR) families of MPT-containing enzymes. Some depend on Wco, such as aldehyde oxidoreductases (AORs), class II benzoyl-CoA reductases (BCRs) and acetylene hydratases (AHs), whereas others may incorporate either Wco or molybdenum cofactor (Moco), such as formate dehydrogenases, formylmethanofuran dehydrogenases or nitrate reductases. The obligately tungsten-dependent enzymes catalyze rather unusual reactions such as ones with extremely low-potential electron transfers (AOR, BCR) or an unusual hydration reaction (AH). In recent years, insights into the structure and function of many tungstoenzymes have been obtained. Though specific and unspecific ABC transporter uptake systems have been described for tungstate and molybdate, only little is known about further discriminative steps in Moco and Wco biosynthesis. In bacteria producing Moco- and Wco-containing enzymes simultaneously, paralogous isoforms of the metal insertase MoeA may be specifically involved in the molybdenum- and tungsten-insertion into MPT, and in targeting Moco or Wco to their respective apo-enzymes. Wco-containing enzymes are of emerging biotechnological interest for a number of applications such as the biocatalytic reduction of CO2, carboxylic acids and aromatic compounds, or the conversion of acetylene to acetaldehyde.
Collapse
|
39
|
Dobrzański Z, Chojnacka K, Trziszka T, Opaliński S, Bobak Ł, Konkol D, Korczyński M. The Effect of Dietary Humic Preparations on the Content of Essential and Non-Essential Chemical Elements in Hen Eggs. Animals (Basel) 2020; 10:E1252. [PMID: 32717957 PMCID: PMC7459958 DOI: 10.3390/ani10081252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 11/16/2022] Open
Abstract
This study was conducted to determine the effect of dietary supplementation with two humic preparations, Humokarbowit (HKW) and Humobentofet (HBF), on the mineral content of the albumen and egg yolk of Lohmann Brown hens. The content of macroelements (Ca, K, Mg, Na, P, S), microelements (Al, Ba, Cu, Fe, I, Mn, Si, Sr, Zn) and trace elements (Ag, As, Be, Bi, Cd, Co, Cr, Ga, Hg, Li, Mo, Ni, Pb, Rb, Sb, Se, Sn, Ti, Tl, V, W, Y and Zr) in the feed mixture (FM), albumen and yolk were presented. The material was collected from laying hens kept in a cage system in two groups, control (C) and enriched (E), with standard feed and feed enriched with humic preparations, respectively. The enriched feed mixture was characterised by a significantly higher Ag, Ba, Be, Bi, Co, Fe, Ga, Hg, K, Mg, Ni, S, Sb, Si, Zn and Zr content compared to the standard, basal mixture. Only some of these elements were found in significantly increased levels in albumen (Bi, Co, Ni, S) and yolk (Bi, Fe, K, Sb). Another noteworthy finding was a significantly lower concentration of Na in the content of eggs from the E-Group, which corresponds to the content of this important macronutrient in the feed. In addition, a significant increase in the concentration of elements such as Al, I, Li, Sr, Ti, Tl, Y, W was noted with a reduction in Cd, Cr, Hg, Mn, Rb, Sn in Group-E, which indicates a complicated egg formation processes, including biotransfer-essential and non-essential chemical elements.
Collapse
Affiliation(s)
- Zbigniew Dobrzański
- Department of Environment Hygiene and Animal Welfare, Faculty of Biology and Animal Sciences, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 38C, 51-630 Wroclaw, Poland; (Z.D.); (S.O.); (D.K.)
| | - Katarzyna Chojnacka
- Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Smoluchowskiego 25, 50-372 Wroclaw, Poland;
| | - Tadeusz Trziszka
- Department of Functional Food Products Development, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wroclaw, Poland; (T.T.); (Ł.B.)
| | - Sebastian Opaliński
- Department of Environment Hygiene and Animal Welfare, Faculty of Biology and Animal Sciences, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 38C, 51-630 Wroclaw, Poland; (Z.D.); (S.O.); (D.K.)
| | - Łukasz Bobak
- Department of Functional Food Products Development, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wroclaw, Poland; (T.T.); (Ł.B.)
| | - Damian Konkol
- Department of Environment Hygiene and Animal Welfare, Faculty of Biology and Animal Sciences, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 38C, 51-630 Wroclaw, Poland; (Z.D.); (S.O.); (D.K.)
| | - Mariusz Korczyński
- Department of Environment Hygiene and Animal Welfare, Faculty of Biology and Animal Sciences, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 38C, 51-630 Wroclaw, Poland; (Z.D.); (S.O.); (D.K.)
| |
Collapse
|
40
|
Zhou L, Wang X, Ren W, Xu Y, Zhao L, Zhang Y, Teng Y. Contribution of autochthonous diazotrophs to polycyclic aromatic hydrocarbon dissipation in contaminated soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137410. [PMID: 32120099 DOI: 10.1016/j.scitotenv.2020.137410] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/12/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
Understanding the role played by autochthonous functional microbes involved in the biotransformation of pollutants would help optimize bioremediation performance at contaminated sites. However, our knowledge of the remediation potential of indigenous diazotrophs in contaminated soils remains inadequate. Using a microcosm experiment, soil nitrogen fixation activity was manipulated by molybdenum (Mo) and tungsten (W), and their effect on the removal of polycyclic aromatic hydrocarbons (PAHs) was determined in agricultural and industrial soils. Results showed that after 42 days of incubation, PAH dissipation efficiency was significantly enhanced by 1.06-fold in 600 μg kg-1 Mo-treated agricultural soil, compared with that in the control. For the industrial soil, 1200 μg kg-1 Mo treatment significantly promoted PAH removal by 90.76% in 21 days, whereas no significant change was observed between treatments and control at the end of the incubation period. W also exerted a similar effect on PAH dissipation. The activity and gene abundance of nitrogenase were also increased under Mo/W treatments in the two soils. Spearman's correlation analysis further indicated that removal of PAHs was positively correlated with nitrogenase activity in soil, which could be due to the elevated abundances of PAH-degrading genes (PAH-RHDα) in these treatments. Our results suggest the importance of autochthonous diazotrophs in PAH-contaminated soils, which indicates a feasible and environmentally friendly biostimulation strategy of manipulating nitrogen fixation capacity.
Collapse
Affiliation(s)
- Lu Zhou
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211800, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiaomi Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Wenjie Ren
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongfeng Xu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ling Zhao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yufeng Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211800, China.
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
41
|
Leimkühler S. The biosynthesis of the molybdenum cofactors in Escherichia coli. Environ Microbiol 2020; 22:2007-2026. [PMID: 32239579 DOI: 10.1111/1462-2920.15003] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/29/2022]
Abstract
The biosynthesis of the molybdenum cofactor (Moco) is highly conserved among all kingdoms of life. In all molybdoenzymes containing Moco, the molybdenum atom is coordinated to a dithiolene group present in the pterin-based 6-alkyl side chain of molybdopterin (MPT). In general, the biosynthesis of Moco can be divided into four steps in in bacteria: (i) the starting point is the formation of the cyclic pyranopterin monophosphate (cPMP) from 5'-GTP, (ii) in the second step the two sulfur atoms are inserted into cPMP leading to the formation of MPT, (iii) in the third step the molybdenum atom is inserted into MPT to form Moco and (iv) in the fourth step bis-Mo-MPT is formed and an additional modification of Moco is possible with the attachment of a nucleotide (CMP or GMP) to the phosphate group of MPT, forming the dinucleotide variants of Moco. This review presents an update on the well-characterized Moco biosynthesis in the model organism Escherichia coli including novel discoveries from the recent years.
Collapse
Affiliation(s)
- Silke Leimkühler
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| |
Collapse
|
42
|
Duffus BR, Schrapers P, Schuth N, Mebs S, Dau H, Leimkühler S, Haumann M. Anion Binding and Oxidative Modification at the Molybdenum Cofactor of Formate Dehydrogenase from Rhodobacter capsulatus Studied by X-ray Absorption Spectroscopy. Inorg Chem 2019; 59:214-225. [PMID: 31814403 DOI: 10.1021/acs.inorgchem.9b01613] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Formate dehydrogenase (FDH) enzymes are versatile catalysts for CO2 conversion. The FDH from Rhodobacter capsulatus contains a molybdenum cofactor with the dithiolene functions of two pyranopterin guanine dinucleotide molecules, a conserved cysteine, and a sulfido group bound at Mo(VI). In this study, we focused on metal oxidation state and coordination changes in response to exposure to O2, inhibitory anions, and redox agents using X-ray absorption spectroscopy (XAS) at the Mo K-edge. Differences in the oxidative modification of the bis-molybdopterin guanine dinucleotide (bis-MGD) cofactor relative to samples prepared aerobically without inhibitor, such as variations in the relative numbers of sulfido (Mo═S) and oxo (Mo═O) bonds, were observed in the presence of azide (N3-) or cyanate (OCN-). Azide provided best protection against O2, resulting in a quantitatively sulfurated cofactor with a displaced cysteine ligand and optimized formate oxidation activity. Replacement of the cysteine ligand by a formate (HCO2-) ligand at the molybdenum in active enzyme is compatible with our XAS data. Cyanide (CN-) inactivated the enzyme by replacing the sulfido ligand at Mo(VI) with an oxo ligand. Evidence that the sulfido group may become protonated upon molybdenum reduction was obtained. Our results emphasize the role of coordination flexibility at the molybdenum center during inhibitory and catalytic processes of FDH enzymes.
Collapse
Affiliation(s)
- Benjamin R Duffus
- Institut für Biochemie und Biologie, Molekulare Enzymologie , Universität Potsdam , Karl-Liebknecht Strasse 24-25 , 14476 Potsdam , Germany
| | - Peer Schrapers
- Institut für Experimentalphysik , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| | - Nils Schuth
- Institut für Experimentalphysik , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| | - Stefan Mebs
- Institut für Experimentalphysik , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| | - Holger Dau
- Institut für Experimentalphysik , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| | - Silke Leimkühler
- Institut für Biochemie und Biologie, Molekulare Enzymologie , Universität Potsdam , Karl-Liebknecht Strasse 24-25 , 14476 Potsdam , Germany
| | - Michael Haumann
- Institut für Experimentalphysik , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| |
Collapse
|
43
|
Janeva M, Kokoskarova P, Maksimova V, Gulaboski R. Square‐wave Voltammetry of Two‐step Surface Electrode Mechanisms Coupled with Chemical Reactions – A Theoretical Overview. ELECTROANAL 2019. [DOI: 10.1002/elan.201900416] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Milkica Janeva
- Faculty of Medical SciencesGoce Delcev University Stip Macedonia
| | | | | | - Rubin Gulaboski
- Faculty of Medical SciencesGoce Delcev University Stip Macedonia
| |
Collapse
|
44
|
Amato A, Terzo S, Mulè F. Natural Compounds as Beneficial Antioxidant Agents in Neurodegenerative Disorders: A Focus on Alzheimer's Disease. Antioxidants (Basel) 2019; 8:antiox8120608. [PMID: 31801234 PMCID: PMC6943487 DOI: 10.3390/antiox8120608] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/19/2019] [Accepted: 11/27/2019] [Indexed: 12/22/2022] Open
Abstract
The positive role of nutrition in chronic neurodegenerative diseases (NDs) suggests that dietary interventions represent helpful tools for preventing NDs. In particular, diets enriched with natural compounds have become an increasingly attractive, non-invasive, and inexpensive option to support a healthy brain and to potentially treat NDs. Bioactive compounds found in vegetables or microalgae possess special properties able to counteract oxidative stress, which is involved as a triggering factor in neurodegeneration. Here, we briefly review the relevant experimental data on curcuminoids, silymarin, chlorogenic acid, and compounds derived from the microalga Aphanizomenon flos aquae (AFA) which have been demonstrated to possess encouraging beneficial effects on neurodegeneration, in particular on Alzheimer's disease models.
Collapse
Affiliation(s)
- Antonella Amato
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90127 Palermo, Italy; (S.T.); (F.M.)
- Correspondence:
| | - Simona Terzo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90127 Palermo, Italy; (S.T.); (F.M.)
- Department of Neuroscience and Cell Biology, University of Palermo, 90127 Palermo, Italy
| | - Flavia Mulè
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90127 Palermo, Italy; (S.T.); (F.M.)
| |
Collapse
|
45
|
Schneider CR, Lewis LC, Shafaat HS. The good, the neutral, and the positive: buffer identity impacts CO 2 reduction activity by nickel(ii) cyclam. Dalton Trans 2019; 48:15810-15821. [PMID: 31560360 PMCID: PMC6843992 DOI: 10.1039/c9dt03114f] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Development of new synthetic catalysts for CO2 reduction has been a central focus of chemical research efforts towards mitigating rising global carbon dioxide levels. In parallel with generating new molecular systems, characterization and benchmarking of these compounds across well-defined catalytic conditions are essential. Nickel(ii) cyclam is known to be an active catalyst for CO2 reduction to CO. The degree of selectivity and activity has been found to differ widely across electrodes used and upon modification of the ligand environment, though without a molecular-level understanding of this variation. Moreover, while proton transfer is key for catalytic activity, the effects of varying the nature of the proton donor remain unclear. In this work, a systematic investigation of the electrochemical and light-driven catalytic behaviour of nickel(ii) cyclam under different aqueous reaction conditions has been performed. The activity and selectivity are seen to vary widely depending on the nature of the buffering agent, even at a constant pH, highlighting the importance of proton transfer for catalysis. Buffer binding to the nickel center is negatively correlated with selectivity, and cationic buffers show high levels of selectivity and activity. These results are discussed in the context of molecular design principles for developing increasingly efficient and selective catalysts. Moreover, identifying these key contributors towards activity has implications for understanding the role of the conserved secondary coordination environments in naturally occurring CO2-reducing enzymes, including carbon monoxide dehydrogenase and formate dehydrogenase.
Collapse
Affiliation(s)
- Camille R Schneider
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA
| | - Luke C Lewis
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH, USA.
| | - Hannah S Shafaat
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA and Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
46
|
Eğlence-Bakır S, Sacan O, Şahin M, Yanardag R, Ülküseven B. Dioxomolybdenum(VI) complexes with 3-methoxy salicylidene-N-alkyl substituted thiosemicarbazones. Synthesis, characterization, enzyme inhibition and antioxidant activity. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.05.077] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
47
|
|
48
|
Miralles-Robledillo JM, Torregrosa-Crespo J, Martínez-Espinosa RM, Pire C. DMSO Reductase Family: Phylogenetics and Applications of Extremophiles. Int J Mol Sci 2019; 20:E3349. [PMID: 31288391 PMCID: PMC6650914 DOI: 10.3390/ijms20133349] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 11/16/2022] Open
Abstract
Dimethyl sulfoxide reductases (DMSO) are molybdoenzymes widespread in all domains of life. They catalyse not only redox reactions, but also hydroxylation/hydration and oxygen transfer processes. Although literature on DMSO is abundant, the biological significance of these enzymes in anaerobic respiration and the molecular mechanisms beyond the expression of genes coding for them are still scarce. In this review, a deep revision of the literature reported on DMSO as well as the use of bioinformatics tools and free software has been developed in order to highlight the relevance of DMSO reductases on anaerobic processes connected to different biogeochemical cycles. Special emphasis has been addressed to DMSO from extremophilic organisms and their role in nitrogen cycle. Besides, an updated overview of phylogeny of DMSOs as well as potential applications of some DMSO reductases on bioremediation approaches are also described.
Collapse
Affiliation(s)
- Jose María Miralles-Robledillo
- Departamento de Agroquímica y Bioquímica, División de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Alicante, Carretera San Vicente del Raspeig s/n-03690 San Vicente del Raspeig, Alicante, Spain
| | - Javier Torregrosa-Crespo
- Departamento de Agroquímica y Bioquímica, División de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Alicante, Carretera San Vicente del Raspeig s/n-03690 San Vicente del Raspeig, Alicante, Spain
| | - Rosa María Martínez-Espinosa
- Departamento de Agroquímica y Bioquímica, División de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Alicante, Carretera San Vicente del Raspeig s/n-03690 San Vicente del Raspeig, Alicante, Spain
| | - Carmen Pire
- Departamento de Agroquímica y Bioquímica, División de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Alicante, Carretera San Vicente del Raspeig s/n-03690 San Vicente del Raspeig, Alicante, Spain.
| |
Collapse
|
49
|
Ehweiner MA, Vidovič C, Belaj F, Mösch-Zanetti NC. Bioinspired Tungsten Complexes Employing a Thioether Scorpionate Ligand. Inorg Chem 2019; 58:8179-8187. [PMID: 31141348 DOI: 10.1021/acs.inorgchem.9b00973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The synthesis and characterization of a series of novel tungsten complexes employing the bioinspired, sulfur-rich scorpionate ligand [PhTt] (phenyltris((methylthio)methyl)borate) are reported. Starting from the previously published tungsten precursor [WBr2(CO)3(NCMe)2], a salt metathesis reaction with 1 equiv of Cs[PhTt] led to the desired complex [WBr(CO)3(PhTt)] (1), making it the first tungsten complex employing a poly(thioether)borate ligand. Surprisingly, the reaction of [WBr2(CO)3(NCMe)2] with an excess of the ligand gave complex [W(CO)2(η2-CH2SMe)(PhTt)] (2) with a bidentate (methylthio)methanide ligand as the major product. Thereby, phenyldi((methylthio)methyl)borane is formed, which was isolated and characterized by NMR spectroscopy. The bromido ligand in [WBr(CO)3(PhTt)] was further substituted by the S,N-bidentate methimazole in order to make the first coordination sphere more sulfur-rich forming [W(CO)2(mt)(PhTt)] (3). Alkyne tungsten complexes employing the sulfur-rich scorpionate ligand were accessible by reaction of [WBr2(CO)(C2R2)2(NCMe)] (R = Me, Ph) with Cs[PhTt] forming [WBr(CO)(C2R2)2(PhTt- S, S')] (R = Me 4, Ph 5), with the potentially tridentate ligand coordinated only via two sulfur atoms. In the case of 4, the higher flexibility of the bidentate coordination leads to the formation of two isomers with respect to the six-membered ring formed by the tungsten center and the two coordinated sulfur atoms of the ligand. All complexes 1-5 were characterized by single-crystal X-ray diffraction analysis.
Collapse
Affiliation(s)
- Madeleine A Ehweiner
- Institute of Chemistry, Inorganic Chemistry , University of Graz , Schubertstrasse 1 , 8010 Graz , Austria
| | - Carina Vidovič
- Institute of Chemistry, Inorganic Chemistry , University of Graz , Schubertstrasse 1 , 8010 Graz , Austria
| | - Ferdinand Belaj
- Institute of Chemistry, Inorganic Chemistry , University of Graz , Schubertstrasse 1 , 8010 Graz , Austria
| | - Nadia C Mösch-Zanetti
- Institute of Chemistry, Inorganic Chemistry , University of Graz , Schubertstrasse 1 , 8010 Graz , Austria
| |
Collapse
|
50
|
Reschke S, Duffus BR, Schrapers P, Mebs S, Teutloff C, Dau H, Haumann M, Leimkühler S. Identification of YdhV as the First Molybdoenzyme Binding a Bis-Mo-MPT Cofactor in Escherichia coli. Biochemistry 2019; 58:2228-2242. [PMID: 30945846 DOI: 10.1021/acs.biochem.9b00078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The oxidoreductase YdhV in Escherichia coli has been predicted to belong to the family of molybdenum/tungsten cofactor (Moco/Wco)-containing enzymes. In this study, we characterized the YdhV protein in detail, which shares amino acid sequence homology with a tungsten-containing benzoyl-CoA reductase binding the bis-W-MPT (for metal-binding pterin) cofactor. The cofactor was identified to be of a bis-Mo-MPT type with no guanine nucleotides present, which represents a form of Moco that has not been found previously in any molybdoenzyme. Our studies showed that YdhV has a preference for bis-Mo-MPT over bis-W-MPT to be inserted into the enzyme. In-depth characterization of YdhV by X-ray absorption and electron paramagnetic resonance spectroscopies revealed that the bis-Mo-MPT cofactor in YdhV is redox active. The bis-Mo-MPT and bis-W-MPT cofactors include metal centers that bind the four sulfurs from the two dithiolene groups in addition to a cysteine and likely a sulfido ligand. The unexpected presence of a bis-Mo-MPT cofactor opens an additional route for cofactor biosynthesis in E. coli and expands the canon of the structurally highly versatile molybdenum and tungsten cofactors.
Collapse
Affiliation(s)
- Stefan Reschke
- Institute of Biochemistry and Biology , University of Potsdam , Karl-Liebknecht-Strasse 24 , 14476 Potsdam , Germany
| | - Benjamin R Duffus
- Institute of Biochemistry and Biology , University of Potsdam , Karl-Liebknecht-Strasse 24 , 14476 Potsdam , Germany
| | | | | | - Christian Teutloff
- Institute of Experimental Physics, EPR Spectroscopy of Biological Systems , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| | | | | | - Silke Leimkühler
- Institute of Biochemistry and Biology , University of Potsdam , Karl-Liebknecht-Strasse 24 , 14476 Potsdam , Germany
| |
Collapse
|