1
|
Bartelt LC, Switonski PM, Adamek G, Longo F, Carvalho J, Duvick LA, Jarrah SI, McLoughlin HS, Scoles DR, Pulst SM, Orr HT, Hull C, Lowe CB, La Spada AR. Dysregulation of zebrin-II cell subtypes in the cerebellum is a shared feature across polyglutamine ataxia mouse models and patients. Sci Transl Med 2024; 16:eadn5449. [PMID: 39504355 DOI: 10.1126/scitranslmed.adn5449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/12/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024]
Abstract
Spinocerebellar ataxia type 7 (SCA7) is a genetic neurodegenerative disorder caused by a CAG-polyglutamine repeat expansion. Purkinje cells (PCs) are central to the pathology of ataxias, but their low abundance in the cerebellum underrepresents their transcriptomes in sequencing assays. To address this issue, we developed a PC enrichment protocol and sequenced individual nuclei from mice and patients with SCA7. Single-nucleus RNA sequencing in SCA7-266Q mice revealed dysregulation of cell identity genes affecting glia and PCs. Specifically, genes marking zebrin-II PC subtypes accounted for the highest proportion of DEGs in symptomatic SCA7-266Q mice. These transcriptomic changes in SCA7-266Q mice were associated with increased numbers of inhibitory synapses as quantified by immunohistochemistry and reduced spiking of PCs in acute brain slices. Dysregulation of zebrin-II cell subtypes was the predominant signal in PCs of SCA7-266Q mice and was associated with the loss of zebrin-II striping in the cerebellum at motor symptom onset. We furthermore demonstrated zebrin-II stripe degradation in additional mouse models of polyglutamine ataxia and observed decreased zebrin-II expression in the cerebella of patients with SCA7. Our results suggest that a breakdown of zebrin subtype regulation is a shared pathological feature of polyglutamine ataxias.
Collapse
Affiliation(s)
- Luke C Bartelt
- University Program in Genetics & Genomics, Duke University Medical Center, Durham, NC 27710, USA
- Departments of Pathology & Laboratory Medicine, Neurology, Biological Chemistry, and Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92697, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Pawel M Switonski
- Department of Neuronal Cell Biology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Grażyna Adamek
- Department of Neuronal Cell Biology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Fabiana Longo
- Departments of Pathology & Laboratory Medicine, Neurology, Biological Chemistry, and Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Juliana Carvalho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Lisa A Duvick
- Institute for Translational Neuroscience, and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sabrina I Jarrah
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Daniel R Scoles
- Department of Neurology, University of Utah, Salt Lake City, UT 84132, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, Salt Lake City, UT 84132, USA
| | - Harry T Orr
- Institute for Translational Neuroscience, and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Court Hull
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Craig B Lowe
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Albert R La Spada
- Departments of Pathology & Laboratory Medicine, Neurology, Biological Chemistry, and Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92697, USA
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
- UCI Center for Neurotherapeutics, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
2
|
Skeens A, Markle JM, Petipas G, Frey SL, Legleiter J. Divalent cations promote huntingtin fibril formation on endoplasmic reticulum derived and model membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184339. [PMID: 38763270 DOI: 10.1016/j.bbamem.2024.184339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 04/24/2024] [Accepted: 05/12/2024] [Indexed: 05/21/2024]
Abstract
Huntington's Disease (HD) is caused by an abnormal expansion of the polyglutamine (polyQ) domain within the first exon of the huntingtin protein (htt). This expansion promotes disease-related htt aggregation into amyloid fibrils and the formation of proteinaceous inclusion bodies within neurons. Fibril formation is a complex heterogenous process involving an array of aggregate species such as oligomers, protofibrils, and fibrils. In HD, structural abnormalities of membranes of several organelles develop. In particular, the accumulation of htt fibrils near the endoplasmic reticulum (ER) impinges upon the membrane, resulting in ER damage, altered dynamics, and leakage of Ca2+. Here, the aggregation of htt at a bilayer interface assembled from ER-derived liposomes was investigated, and fibril formation directly on these membranes was enhanced. Based on these observations, simplified model systems were used to investigate mechanisms associated with htt aggregation on ER membranes. As the ER-derived liposome fractions contained residual Ca2+, the role of divalent cations was also investigated. In the absence of lipids, divalent cations had minimal impact on htt structure and aggregation. However, the presence of Ca2+ or Mg2+ played a key role in promoting fibril formation on lipid membranes despite reduced htt insertion into and association with lipid interfaces, suggesting that the ability of divalent cations to promote fibril formation on membranes is mediated by induced changes to the lipid membrane physicochemical properties. With enhanced concentrations of intracellular calcium being a hallmark of HD, the ability of divalent cations to influence htt aggregation at lipid membranes may play a role in aggregation events that lead to organelle abnormalities associated with disease.
Collapse
Affiliation(s)
- Adam Skeens
- The C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, Morgantown, WV 26506, USA
| | - Jordyn M Markle
- The Department of Chemistry, Gettysburg College, 300 N. Washington Street, Gettysburg, PA 17325, USA
| | - Gabriella Petipas
- The C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, Morgantown, WV 26506, USA
| | - Shelli L Frey
- The Department of Chemistry, Gettysburg College, 300 N. Washington Street, Gettysburg, PA 17325, USA.
| | - Justin Legleiter
- The C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, Morgantown, WV 26506, USA; Rockefeller Neurosciences Institutes, West Virginia University, 1 Medical Center Dr., P.O. Box 9303, Morgantown, WV 26505, USA; Department of Neuroscience, West Virginia University, 1 Medical Center Dr., P.O. Box 9303, Morgantown, WV 26505, USA.
| |
Collapse
|
3
|
Martin DDO, Sanders SS. Let's get fat: emergence of S-acylation as a therapeutic target in Huntington disease. Biochem Soc Trans 2024; 52:1385-1392. [PMID: 38695682 DOI: 10.1042/bst20231290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 06/27/2024]
Abstract
Protein mislocalization is a key initial step in neurodegeneration, regardless of etiology, and has been linked to changes in the dynamic addition of saturated fatty acids to proteins, a process known as S-acylation. With the advent of new techniques to study S-acylation and the recent discovery of new enzymes that facilitate protein deacylation, novel small molecules are emerging as potential new therapeutic treatments. Huntington disease (HD) is a devastating, fatal neurodegenerative disease characterized by motor, cognitive, and psychiatric deficits caused by a CAG repeat expansion in the HTT gene. The protein that is mutated in HD, huntingtin, is less S-acylated which is associated with mutant HTT aggregation and cytotoxicity. Recent exciting findings indicate that restoring S-acylation in HD models using small molecule inhibitors of the deacylation enzymes is protective. Herein, we set out to describe the known roles of S-acylation in HD and how it can be targeted for therapeutic design.
Collapse
Affiliation(s)
- Dale D O Martin
- NeurdyPhagy Lab, Department of Biology, Faculty of Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Shaun S Sanders
- NeuroPalm Lab, Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
4
|
Shafie A, Ashour AA, Anwar S, Anjum F, Hassan MI. Exploring molecular mechanisms, therapeutic strategies, and clinical manifestations of Huntington's disease. Arch Pharm Res 2024; 47:571-595. [PMID: 38764004 DOI: 10.1007/s12272-024-01499-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/02/2024] [Indexed: 05/21/2024]
Abstract
Huntington's disease (HD) is a paradigm of a genetic neurodegenerative disorder characterized by the expansion of CAG repeats in the HTT gene. This extensive review investigates the molecular complexities of HD by highlighting the pathogenic mechanisms initiated by the mutant huntingtin protein. Adverse outcomes of HD include mitochondrial dysfunction, compromised protein clearance, and disruption of intracellular signaling, consequently contributing to the gradual deterioration of neurons. Numerous therapeutic strategies, particularly precision medicine, are currently used for HD management. Antisense oligonucleotides, such as Tominersen, play a leading role in targeting and modulating the expression of mutant huntingtin. Despite the promise of these therapies, challenges persist, particularly in improving delivery systems and the necessity for long-term safety assessments. Considering the future landscape, the review delineates promising directions for HD research and treatment. Innovations such as Clustered regularly interspaced short palindromic repeats associated system therapies (CRISPR)-based genome editing and emerging neuroprotective approaches present unprecedented opportunities for intervention. Collaborative interdisciplinary endeavors and a more insightful understanding of HD pathogenesis are on the verge of reshaping the therapeutic landscape. As we navigate the intricate landscape of HD, this review serves as a guide for unraveling the intricacies of this disease and progressing toward transformative treatments.
Collapse
Affiliation(s)
- Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, PO Box 11099, 21944, Taif, Saudi Arabia
| | - Amal Adnan Ashour
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, PO Box 11099, 21944, Taif, Saudi Arabia
| | - Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, PO Box 11099, 21944, Taif, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
5
|
Lobato AG, Ortiz-Vega N, Zhu Y, Neupane D, Meier KK, Zhai RG. Copper enhances aggregational toxicity of mutant huntingtin in a Drosophila model of Huntington's Disease. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166928. [PMID: 38660915 PMCID: PMC11046041 DOI: 10.1016/j.bbadis.2023.166928] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 04/26/2024]
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder with clinical presentations of moderate to severe cognitive, motor, and psychiatric disturbances. HD is caused by the trinucleotide repeat expansion of CAG of the huntingtin (HTT) gene. The mutant HTT protein containing pathological polyglutamine (polyQ) extension is prone to misfolding and aggregation in the brain. It has previously been observed that copper and iron concentrations are increased in the striata of post-mortem human HD brains. Although it has been shown that the accumulation of mutant HTT protein can interact with copper, the underlying HD progressive phenotypes due to copper overload remains elusive. Here, in a Drosophila model of HD, we showed that copper induces dose-dependent aggregational toxicity and enhancement of Htt-induced neurodegeneration. Specifically, we found that copper increases mutant Htt aggregation, enhances the accumulation of Thioflavin S positive β-amyloid structures within Htt aggregates, and consequently alters autophagy in the brain. Administration of copper chelator D-penicillamine (DPA) through feeding significantly decreases β-amyloid aggregates in the HD pathological model. These findings reveal a direct role of copper in potentiating mutant Htt protein-induced aggregational toxicity, and further indicate the potential impact of environmental copper exposure in the disease onset and progression of HD.
Collapse
Affiliation(s)
- Amanda G Lobato
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA; Graduate Program in Human Genetics and Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Natalie Ortiz-Vega
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA; Graduate Program in Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Yi Zhu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Deepa Neupane
- Graduate Program in Chemistry, University of Miami, Coral Gables, Florida, USA; Department of Chemistry, University of Miami, Coral Gables, Florida, USA
| | - Katlyn K Meier
- Department of Chemistry, University of Miami, Coral Gables, Florida, USA
| | - R Grace Zhai
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
6
|
Binda CS, Lelos MJ, Rosser AE, Massey TH. Using gene or cell therapies to treat Huntington's disease. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:193-215. [PMID: 39341655 DOI: 10.1016/b978-0-323-90120-8.00014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Huntington's disease is caused by a CAG repeat expansion in the first exon of the HTT gene, leading to the production of gain-of-toxic-function mutant huntingtin protein species and consequent transcriptional dysregulation and disrupted cell metabolism. The brunt of the disease process is borne by the striatum from the earliest disease stages, with striatal atrophy beginning approximately a decade prior to the onset of neurologic signs. Although the expanded CAG repeat in the HTT gene is necessary and sufficient to cause HD, other genes can influence the age at onset of symptoms and how they progress. Many of these modifier genes have roles in DNA repair and are likely to modulate the stability of the CAG repeat in somatic cells. Currently, there are no disease-modifying treatments for HD that can be prescribed to patients and few symptomatic treatments, but there is a lot of interest in therapeutics that can target the pathogenic pathways at the DNA and RNA levels, some of which have reached the stage of human studies. In contrast, cell therapies aim to replace key neural cells lost to the disease process and/or to support the host vulnerable striatum by direct delivery of cells to the brain. Ultimately it may be possible to combine gene and cell therapies to both slow disease processes and provide some level of neural repair. In this chapter we consider the current status of these therapeutic strategies along with their prospects and challenges.
Collapse
Affiliation(s)
- Caroline S Binda
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom; UK Dementia Research Institute at Cardiff, Cardiff University, Cardiff, United Kingdom
| | - Mariah J Lelos
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Anne E Rosser
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom; BRAIN Unit, Neuroscience and Mental Health Research Institute, Cardiff, United Kingdom.
| | - Thomas H Massey
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom; UK Dementia Research Institute at Cardiff, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
7
|
Monzon AM, Arrías PN, Elofsson A, Mier P, Andrade-Navarro MA, Bevilacqua M, Clementel D, Bateman A, Hirsh L, Fornasari MS, Parisi G, Piovesan D, Kajava AV, Tosatto SCE. A STRP-ed definition of Structured Tandem Repeats in Proteins. J Struct Biol 2023; 215:108023. [PMID: 37652396 DOI: 10.1016/j.jsb.2023.108023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/31/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Tandem Repeat Proteins (TRPs) are a class of proteins with repetitive amino acid sequences that have been studied extensively for over two decades. Different features at the level of sequence, structure, function and evolution have been attributed to them by various authors. And yet many of its salient features appear only when looking at specific subclasses of protein tandem repeats. Here, we attempt to rationalize the existing knowledge on Tandem Repeat Proteins (TRPs) by pointing out several dichotomies. The emerging picture is more nuanced than generally assumed and allows us to draw some boundaries of what is not a "proper" TRP. We conclude with an operational definition of a specific subset, which we have denominated STRPs (Structural Tandem Repeat Proteins), which separates a subclass of tandem repeats with distinctive features from several other less well-defined types of repeats. We believe that this definition will help researchers in the field to better characterize the biological meaning of this large yet largely understudied group of proteins.
Collapse
Affiliation(s)
- Alexander Miguel Monzon
- Dept. of Information Engineering, University of Padova, via Giovanni Gradenigo 6/B, 35131 Padova, Italy
| | - Paula Nazarena Arrías
- Dept. of Biomedical Sciences, University of Padova, via U. Bassi 58/b, 35121 Padova, Italy
| | - Arne Elofsson
- Dept. of Biochemistry and Biophysics and Science for Life Laboratory, Stockholm University, Tomtebodavägen 23, 171 21 Solna, Sweden
| | - Pablo Mier
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University of Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Miguel A Andrade-Navarro
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University of Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Martina Bevilacqua
- Dept. of Biomedical Sciences, University of Padova, via U. Bassi 58/b, 35121 Padova, Italy
| | - Damiano Clementel
- Dept. of Biomedical Sciences, University of Padova, via U. Bassi 58/b, 35121 Padova, Italy
| | - Alex Bateman
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Layla Hirsh
- Dept. of Engineering, Faculty of Science and Engineering, Pontifical Catholic University of Peru, Av. Universitaria 1801 San Miguel, Lima 32, Lima, Peru
| | - Maria Silvina Fornasari
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Bernal, Buenos Aires, Argentina
| | - Gustavo Parisi
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Bernal, Buenos Aires, Argentina
| | - Damiano Piovesan
- Dept. of Biomedical Sciences, University of Padova, via U. Bassi 58/b, 35121 Padova, Italy
| | - Andrey V Kajava
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), UMR 5237 CNRS, Université Montpellier, 1919 Route de Mende, Cedex 5, 34293 Montpellier, France
| | - Silvio C E Tosatto
- Dept. of Biomedical Sciences, University of Padova, via U. Bassi 58/b, 35121 Padova, Italy.
| |
Collapse
|
8
|
Zhang H, Wu S, Itzhaki LS, Perrett S. Interaction between huntingtin exon 1 and HEAT repeat structure probed by chimeric model proteins. Protein Sci 2023; 32:e4810. [PMID: 37853955 PMCID: PMC10659953 DOI: 10.1002/pro.4810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/11/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
Huntington disease (HD) is associated with aggregation of huntingtin (HTT) protein containing over 35 continuous Q residues within the N-terminal exon 1 encoded region. The C-terminal of the HTT protein consists mainly of HEAT repeat structure which serves as a scaffold for multiple cellular activities. Structural and biochemical analysis of the intact HTT protein has been hampered by its huge size (~300 kDa) and most in vitro studies to date have focused on the properties of the exon 1 region. To explore the interaction between HTT exon 1 and the HEAT repeat structure, we constructed chimeric proteins containing the N-terminal HTT exon 1 region and the HEAT repeat protein PR65/A. The results indicate that HTT exon 1 slightly destabilizes the downstream HEAT repeat structure and endows the HEAT repeat structure with more conformational flexibility. Wild-type and pathological lengths of polyQ did not show differences in the interaction between HTT exon 1 and the HEAT repeats. With the C-terminal fusion of PR65/A, HTT exon 1 containing pathological lengths of polyQ could still form amyloid fibrils, but the higher-order architecture of fibrils and kinetics of fibril formation were affected by the C-terminal fusion of HEAT repeats. This indicates that interaction between HTT exon 1 and HEAT repeat structure is compatible with both normal function of HTT protein and the pathogenesis of HD, and this study provides a potential model for further exploration.
Collapse
Affiliation(s)
- Hong Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in BiomacromoleculesInstitute of Biophysics, Chinese Academy of SciencesBeijingChina
- University of the Chinese Academy of SciencesBeijingChina
- Institute of Basic Medical Sciences, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Si Wu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in BiomacromoleculesInstitute of Biophysics, Chinese Academy of SciencesBeijingChina
- University of the Chinese Academy of SciencesBeijingChina
| | | | - Sarah Perrett
- National Laboratory of Biomacromolecules, CAS Center for Excellence in BiomacromoleculesInstitute of Biophysics, Chinese Academy of SciencesBeijingChina
- University of the Chinese Academy of SciencesBeijingChina
| |
Collapse
|
9
|
Ratovitski T, Kamath SV, O'Meally RN, Gosala K, Holland CD, Jiang M, Cole RN, Ross CA. Arginine methylation of RNA-binding proteins is impaired in Huntington's disease. Hum Mol Genet 2023; 32:3006-3025. [PMID: 37535888 PMCID: PMC10549789 DOI: 10.1093/hmg/ddad125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a CAG repeat expansion in the HD gene, coding for huntingtin protein (HTT). Mechanisms of HD cellular pathogenesis remain undefined and likely involve disruptions in many cellular processes and functions presumably mediated by abnormal protein interactions of mutant HTT. We previously found HTT interaction with several protein arginine methyl-transferase (PRMT) enzymes. Protein arginine methylation mediated by PRMT enzymes is an important post-translational modification with an emerging role in neurodegeneration. We found that normal (but not mutant) HTT can facilitate the activity of PRMTs in vitro and the formation of arginine methylation complexes. These interactions appear to be disrupted in HD neurons. This suggests an additional functional role for HTT/PRMT interactions, not limited to substrate/enzyme relationship, which may result in global changes in arginine protein methylation in HD. Our quantitative analysis of striatal precursor neuron proteome indicated that arginine protein methylation is significantly altered in HD. We identified a cluster highly enriched in RNA-binding proteins with reduced arginine methylation, which is essential to their function in RNA processing and splicing. We found that several of these proteins interact with HTT, and their RNA-binding and localization are affected in HD cells likely due to a compromised arginine methylation and/or abnormal interactions with mutant HTT. These studies reveal a potential new mechanism for disruption of RNA processing in HD, involving a direct interaction of HTT with methyl-transferase enzymes and modulation of their activity and highlighting methylation of arginine as potential new therapeutic target for HD.
Collapse
Affiliation(s)
- Tamara Ratovitski
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Siddhi V Kamath
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Robert N O'Meally
- Department of Biological Chemistry, Mass Spectrometry and Proteomics Facility, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Keerthana Gosala
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Chloe D Holland
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Mali Jiang
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Robert N Cole
- Department of Biological Chemistry, Mass Spectrometry and Proteomics Facility, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Christopher A Ross
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University, Baltimore, MD 21287, USA
- Departments of Neurology, Neuroscience and Pharmacology, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
10
|
Liu L, Tong H, Sun Y, Chen X, Yang T, Zhou G, Li XJ, Li S. Huntingtin Interacting Proteins and Pathological Implications. Int J Mol Sci 2023; 24:13060. [PMID: 37685866 PMCID: PMC10488016 DOI: 10.3390/ijms241713060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/08/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Huntington's disease (HD) is caused by an expansion of a CAG repeat in the gene that encodes the huntingtin protein (HTT). The exact function of HTT is still not fully understood, and previous studies have mainly focused on identifying proteins that interact with HTT to gain insights into its function. Numerous HTT-interacting proteins have been discovered, shedding light on the functions and structure of HTT. Most of these proteins interact with the N-terminal region of HTT. Among the various HTT-interacting proteins, huntingtin-associated protein 1 (HAP1) and HTT-interacting protein 1 (HIP1) have been extensively studied. Recent research has uncovered differences in the distribution of HAP1 in monkey and human brains compared with mice. This finding suggests that there may be species-specific variations in the regulation and function of HTT-interacting proteins. Understanding these differences could provide crucial insights into the development of HD. In this review, we will focus on the recent advancements in the study of HTT-interacting proteins, with particular attention to the differential distributions of HTT and HAP1 in larger animal models.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shihua Li
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of Central Nervous System Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510623, China; (L.L.); (H.T.); (Y.S.); (X.C.); (T.Y.); (G.Z.); (X.-J.L.)
| |
Collapse
|
11
|
Yadav M, Yadav A, Bhardwaj A, Dhull CS, Sachdeva S, Yadav R, Tanwar M. A rare optineurin mutation in an Indian family with coexistence of JOAG and PCG. Indian J Ophthalmol 2023; 71:3016-3023. [PMID: 37530275 PMCID: PMC10538844 DOI: 10.4103/ijo.ijo_3383_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/11/2023] [Accepted: 05/29/2023] [Indexed: 08/03/2023] Open
Abstract
Purpose This study focused on the genetic screening of Myocilin (MYOC), Cytochrome P450 family 1 subfamily B member 1 (CYP1B1), Optineurin (OPTN), and SIX homeobox 6 (SIX6) genes in a family with coexistence of primary congenital glaucoma (PCG) and juvenile open-angle glaucoma (JOAG). Methods Sanger sequencing was used to examine the coding region of all four genes. Six different online available algorithms were used for the pathogenicity prediction of missense variant. Structural analysis was done using Garnier-Osguthorpe-Robson (GOR), PyMol, ChimeraX, and Molecular Dynamic (MD) Simulations (using Graphics Processing Unit (GPU)-enabled Desmond module of Schrödinger). Results There were a total of three sequence variants within the family. All seven algorithms determined that a single mutation, G538E, in the OPTN gene is pathogenic. The loops connecting the strands became more flexible, as predicted structurally and functionally by pathogenic mutations. Mutations create perturbations and conformational rearrangements in proteins, hence impairing their functioning. Conclusion In this study, we describe a North Indian family in which members were having JOAG and PCG due to a rare homozygous/heterozygous mutation in OPTN. The coexistence of two types of glaucoma within a single pedigree suggests that certain OPTN mutations may be responsible for the onset of different glaucoma phenotypes.
Collapse
Affiliation(s)
- Manoj Yadav
- Department of Genetics, Maharshi Dayanand University, Rohtak, Harayana, India
| | - Anshu Yadav
- Department of Genetics, Maharshi Dayanand University, Rohtak, Harayana, India
| | - Aarti Bhardwaj
- Department of Genetics, Maharshi Dayanand University, Rohtak, Harayana, India
| | - Chand Singh Dhull
- Regional Institute of Ophthalmology, Pt. B.D. Sharma University of Health Sciences, Rohtak, Haryana, India
| | - Sumit Sachdeva
- Regional Institute of Ophthalmology, Pt. B.D. Sharma University of Health Sciences, Rohtak, Haryana, India
| | - Ritu Yadav
- Department of Genetics, Maharshi Dayanand University, Rohtak, Harayana, India
| | - Mukesh Tanwar
- Department of Genetics, Maharshi Dayanand University, Rohtak, Harayana, India
| |
Collapse
|
12
|
Gaffke L, Rintz E, Pierzynowska K, Węgrzyn G. Actin Cytoskeleton Polymerization and Focal Adhesion as Important Factors in the Pathomechanism and Potential Targets of Mucopolysaccharidosis Treatment. Cells 2023; 12:1782. [PMID: 37443816 PMCID: PMC10341097 DOI: 10.3390/cells12131782] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/24/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
The main approach used in the current therapy of mucopolysaccharidosis (MPS) is to reduce the levels of glycosaminoglycans (GAGs) in cells, the deposits considered to be the main cause of the disease. Previous studies have revealed significant differences in the expression of genes encoding proteins involved in many processes, like those related to actin filaments, in MPS cells. Since the regulation of actin filaments is essential for the intracellular transport of specific molecules, the process which may affect the course of MPSs, the aim of this study was to evaluate the changes that occur in the actin cytoskeleton and focal adhesion in cells derived from patients with this disease, as well as in the MPS I mouse model, and to assess whether they could be potential therapeutic targets for different MPS types. Western-blotting, flow cytometry and transcriptomic analyses were employed to address these issues. The levels of the key proteins involved in the studied processes, before and after specific treatment, were assessed. We have also analyzed transcripts whose levels were significantly altered in MPS cells. We identified genes whose expressions were changed in the majority of MPS types and those with particularly highly altered expression. For the first time, significant changes in the expression of genes involved in the actin cytoskeleton structure/functions were revealed which may be considered as an additional element in the pathogenesis of MPSs. Our results suggest the possibility of using the actin cytoskeleton as a potential target in therapeutic approaches for this disease.
Collapse
Affiliation(s)
- Lidia Gaffke
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (E.R.); (K.P.); (G.W.)
| | | | | | | |
Collapse
|
13
|
Bartelt LC, Switonski PM, Adamek G, Carvalho J, Duvick LA, Jarrah SI, McLoughlin HS, Scoles DR, Pulst SM, Orr HT, Hull C, Lowe CB, La Spada AR. Purkinje-Enriched snRNA-seq in SCA7 Cerebellum Reveals Zebrin Identity Loss as a Central Feature of Polyglutamine Ataxias. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.19.533345. [PMID: 37214832 PMCID: PMC10197555 DOI: 10.1101/2023.03.19.533345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Spinocerebellar ataxia type 7 (SCA7) is an inherited neurodegenerative disorder caused by a CAG-polyglutamine repeat expansion. SCA7 patients display a striking loss of Purkinje cell (PC) neurons with disease progression; however, PCs are rare, making them difficult to characterize. We developed a PC nuclei enrichment protocol and applied it to single-nucleus RNA-seq of a SCA7 knock-in mouse model. Our results unify prior observations into a central mechanism of cell identity loss, impacting both glia and PCs, driving accumulation of inhibitory synapses and altered PC spiking. Zebrin-II subtype dysregulation is the predominant signal in PCs, leading to complete loss of zebrin-II striping at motor symptom onset in SCA7 mice. We show this zebrin-II subtype degradation is shared across Polyglutamine Ataxia mouse models and SCA7 patients. It has been speculated that PC subtype organization is critical for cerebellar function, and our results suggest that a breakdown of zebrin-II parasagittal striping is pathological.
Collapse
Affiliation(s)
- Luke C. Bartelt
- University Program in Genetics & Genomics, Duke University Medical Center, Durham, NC 27710, USA
- Departments of Pathology & Laboratory Medicine, Neurology, Biological Chemistry, and Neurobiology & Behavior, University of California, Irvine; Irvine, CA 92697, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Pawel M. Switonski
- Department of Medical Biotechnology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Grażyna Adamek
- Department of Medical Biotechnology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Juliana Carvalho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Lisa A. Duvick
- Institute for Translational Neuroscience, and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sabrina I. Jarrah
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Daniel R. Scoles
- Department of Neurology, University of Utah, Salt Lake City, UT 84132, USA
| | - Stefan M. Pulst
- Department of Neurology, University of Utah, Salt Lake City, UT 84132, USA
| | - Harry T. Orr
- Institute for Translational Neuroscience, and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Court Hull
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Craig B. Lowe
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Albert R. La Spada
- Departments of Pathology & Laboratory Medicine, Neurology, Biological Chemistry, and Neurobiology & Behavior, University of California, Irvine; Irvine, CA 92697, USA
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
- UCI Center for Neurotherapeutics, University of California, Irvine; Irvine, CA 92697, USA
| |
Collapse
|
14
|
Rayens NT, Cook KJ, McKinley SA, Payne CK. Palmitate-mediated disruption of the endoplasmic reticulum decreases intracellular vesicle motility. Biophys J 2023; 122:1355-1363. [PMID: 36869590 PMCID: PMC10111363 DOI: 10.1016/j.bpj.2023.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/02/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023] Open
Abstract
Essential cellular processes such as metabolism, protein synthesis, and autophagy require the intracellular transport of membrane-bound vesicles. The importance of the cytoskeleton and associated molecular motors for transport is well documented. Recent research has suggested that the endoplasmic reticulum (ER) may also play a role in vesicle transport through a tethering of vesicles to the ER. We use single-particle tracking fluorescence microscopy and a Bayesian change-point algorithm to characterize vesicle motility in response to the disruption of the ER, actin, and microtubules. This high-throughput change-point algorithm allows us to efficiently analyze thousands of trajectory segments. We find that palmitate-mediated disruption of the ER leads to a significant decrease in vesicle motility. A comparison with the disruption of actin and microtubules shows that disruption of the ER has a significant impact on vesicle motility, greater than the disruption of actin. Vesicle motility was dependent on cellular region, with greater motility in the cell periphery than the perinuclear region, possibly due to regional differences in actin and the ER. Overall, these results suggest that the ER is an important factor in vesicle transport.
Collapse
Affiliation(s)
- Nathan T Rayens
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina
| | - Keisha J Cook
- School of Mathematical and Statistical Sciences, Clemson University, Clemson, South Carolina
| | - Scott A McKinley
- Department of Mathematics, Tulane University, New Orleans, Louisiana
| | - Christine K Payne
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina.
| |
Collapse
|
15
|
Krzystek TJ, White JA, Rathnayake R, Thurston L, Hoffmar-Glennon H, Li Y, Gunawardena S. HTT (huntingtin) and RAB7 co-migrate retrogradely on a signaling LAMP1-containing late endosome during axonal injury. Autophagy 2023; 19:1199-1220. [PMID: 36048753 PMCID: PMC10012955 DOI: 10.1080/15548627.2022.2119351] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 12/09/2022] Open
Abstract
ABBREVIATIONS Atg5: Autophagy-related 5; Atg8a: Autophagy-related 8a; AL: autolysosome; AP: autophagosome; BAF1: bafilomycin A1; BDNF: brain derived neurotrophic factor; BMP: bone morphogenetic protein; Cyt-c-p: Cytochrome c proximal; CQ: chloroquine; DCTN1: dynactin 1; Dhc: dynein heavy chain; EE: early endosome; DYNC1I1: dynein cytoplasmic 1 intermediate chain 1; HD: Huntington disease; HIP1/Hip1: huntingtin interacting protein 1; HTT/htt: huntingtin; iNeuron: iPSC-derived human neurons; IP: immunoprecipitation; Khc: kinesin heavy chain; KIF5C: kinesin family member 5C; LAMP1/Lamp1: lysosomal associated membrane protein 1; LE: late endosome; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAP3K12/DLK: mitogen-activated protein kinase kinase kinase 12; MAPK8/JNK/bsk: mitogen-activated protein kinase 8/basket; MAPK8IP3/JIP3: mitogen-activated protein kinase 8 interacting protein 3; NGF: nerve growth factor; NMJ: neuromuscular junction; NTRK1/TRKA: neurotrophic receptor tyrosine kinase 1; NRTK2/TRKB: neurotrophic receptor tyrosine kinase 2; nuf: nuclear fallout; PG: phagophore; PtdIns3P: phosphatidylinositol-3-phosphate; puc: puckered; ref(2)P: refractory to sigma P; Rilpl: Rab interacting lysosomal protein like; Rip11: Rab11 interacting protein; RTN1: reticulon 1; syd: sunday driver; SYP: synaptophysin; SYT1/Syt1: synaptotagmin 1; STX17/Syx17: syntaxin 17; tkv: thickveins; VF: vesicle fraction; wit: wishful thinking; wnd: wallenda.
Collapse
Affiliation(s)
- Thomas J. Krzystek
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Joseph A. White
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Rasika Rathnayake
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Layne Thurston
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Hayley Hoffmar-Glennon
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Yichen Li
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Shermali Gunawardena
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| |
Collapse
|
16
|
Kim HN, Park HJ, Lin Y, Cho T, Ryu KS, Won HS, Jin HE, Kim JH, Baek SH, Lee YH, Seo MD. Coiled-coil structure mediated inhibition of the cytotoxic huntingtin amyloid fibrils by an IP3 receptor fragment. Int J Biol Macromol 2023; 232:123412. [PMID: 36706883 DOI: 10.1016/j.ijbiomac.2023.123412] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/05/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023]
Abstract
Disruption of cellular homeostasis by the aggregation of polyglutamine (polyQ) in the huntingtin protein (Htt) leads Huntington's disease (HD). Effective drugs for treating HD have not been developed, as the molecular mechanism underlying HD pathogenesis remains unclear. To develop strategies for inhibiting HD pathogenesis, the intermolecular interaction of Htt with IP3 receptor 1 (IP3R1) was investigated. Peptide (termed ICT60) corresponding to a coiled-coil motif in the C-terminus of IP3R1 was designed. Several biophysical approaches revealed the strong and specific binding of ICT60 to the N-terminal part of HttEx1. ICT60 inhibited not only amyloid formation by HttEx1, but also the cytotoxicity and cell-penetration ability of the amyloid fibrils of HttEx1. The importance of coiled-coil structure was verified by charge-manipulated variants. The coiled-coil structures of ICT60-KK and -EE were partially and largely disrupted, respectively. ICT60 wild-type and -KK inhibited amyloid formation by HttEx1-46Q, whereas ICT60-EE did not block amyloidogenesis. Similarly, the cytotoxicity and cell-penetration ability of the amyloid fibrils of HttEx1-46Q were efficiently inhibited by ICT60 wild-type and ICT60-KK, but not by ICT60-EE. We propose a mechanical model explaining how an IP3 receptor-inspired molecule can modulate cytotoxic amyloid formation by Htt, providing a molecular basis for developing therapeutics to treat HD.
Collapse
Affiliation(s)
- Ha-Neul Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, Gyeonggi 16499, Republic of Korea; Department of Molecular Science and Technology, Ajou University, Suwon, Gyeonggi 16499, Republic of Korea
| | - Hye-Jin Park
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, Gyeonggi 16499, Republic of Korea
| | - Yuxi Lin
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Ochang, Chungbuk 28119, Republic of Korea
| | - Taehwan Cho
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, Gyeonggi 16499, Republic of Korea; Department of Molecular Science and Technology, Ajou University, Suwon, Gyeonggi 16499, Republic of Korea
| | - Kyoung-Seok Ryu
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Ochang, Chungbuk 28119, Republic of Korea
| | - Hyung-Sik Won
- BK21 Project Team, Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk 27478, Republic of Korea
| | - Hyo-Eon Jin
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, Gyeonggi 16499, Republic of Korea
| | - Ji-Hun Kim
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28160, Republic of Korea
| | - Seung-Hoon Baek
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, Gyeonggi 16499, Republic of Korea.
| | - Young-Ho Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Ochang, Chungbuk 28119, Republic of Korea.
| | - Min-Duk Seo
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, Gyeonggi 16499, Republic of Korea; Department of Molecular Science and Technology, Ajou University, Suwon, Gyeonggi 16499, Republic of Korea.
| |
Collapse
|
17
|
Reyes-Ortiz AM, Abud EM, Burns MS, Wu J, Hernandez SJ, McClure N, Wang KQ, Schulz CJ, Miramontes R, Lau A, Michael N, Miyoshi E, Van Vactor D, Reidling JC, Blurton-Jones M, Swarup V, Poon WW, Lim RG, Thompson LM. Single-nuclei transcriptome analysis of Huntington disease iPSC and mouse astrocytes implicates maturation and functional deficits. iScience 2023; 26:105732. [PMID: 36590162 PMCID: PMC9800269 DOI: 10.1016/j.isci.2022.105732] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/13/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Huntington disease (HD) is a neurodegenerative disorder caused by expanded CAG repeats in the huntingtin gene that alters cellular homeostasis, particularly in the striatum and cortex. Astrocyte signaling that establishes and maintains neuronal functions are often altered under pathological conditions. We performed single-nuclei RNA-sequencing on human HD patient-induced pluripotent stem cell (iPSC)-derived astrocytes and on striatal and cortical tissue from R6/2 HD mice to investigate high-resolution HD astrocyte cell state transitions. We observed altered maturation and glutamate signaling in HD human and mouse astrocytes. Human HD astrocytes also showed upregulated actin-mediated signaling, suggesting that some states may be cell-autonomous and human specific. In both species, astrogliogenesis transcription factors may drive HD astrocyte maturation deficits, which are supported by rescued climbing deficits in HD drosophila with NFIA knockdown. Thus, dysregulated HD astrocyte states may induce dysfunctional astrocytic properties, in part due to maturation deficits influenced by astrogliogenesis transcription factor dysregulation.
Collapse
Affiliation(s)
- Andrea M. Reyes-Ortiz
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92617, USA
| | - Edsel M. Abud
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92617, USA
| | - Mara S. Burns
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92617, USA
| | - Jie Wu
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92617, USA
| | - Sarah J. Hernandez
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92617, USA
| | - Nicolette McClure
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92617, USA
| | - Keona Q. Wang
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92617, USA
| | - Corey J. Schulz
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92617, USA
| | - Ricardo Miramontes
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92617, USA
| | - Alice Lau
- Department of Psychiatry & Human Behavior, University of California, Irvine, Irvine, CA 92617, USA
| | - Neethu Michael
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92617, USA
| | - Emily Miyoshi
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92617, USA
| | - David Van Vactor
- Harvard Medical School, Department of Cell Biology, Boston, MA 02115, USA
| | - John C. Reidling
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92617, USA
| | - Mathew Blurton-Jones
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92617, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92617, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92617, USA
| | - Vivek Swarup
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92617, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92617, USA
| | - Wayne W. Poon
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92617, USA
| | - Ryan G. Lim
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92617, USA
| | - Leslie M. Thompson
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92617, USA
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92617, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92617, USA
- Department of Psychiatry & Human Behavior, University of California, Irvine, Irvine, CA 92617, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92617, USA
| |
Collapse
|
18
|
Gharaba S, Paz O, Feld L, Abashidze A, Weinrab M, Muchtar N, Baransi A, Shalem A, Sprecher U, Wolf L, Wolfenson H, Weil M. Perturbed actin cap as a new personalized biomarker in primary fibroblasts of Huntington's disease patients. Front Cell Dev Biol 2023; 11:1013721. [PMID: 36743412 PMCID: PMC9889876 DOI: 10.3389/fcell.2023.1013721] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023] Open
Abstract
Primary fibroblasts from patient's skin biopsies are directly isolated without any alteration in the genome, retaining in culture conditions their endogenous cellular characteristics and biochemical properties. The aim of this study was to identify a distinctive cell phenotype for potential drug evaluation in fibroblasts from Huntington's Disease (HD) patients, using image-based high content analysis. We show that HD fibroblasts have a distinctive nuclear morphology associated with a nuclear actin cap deficiency. This in turn affects cell motility in a similar manner to fibroblasts from Hutchinson-Gilford progeria syndrome (HGPS) patients used as known actin cap deficient cells. Moreover, treatment of the HD cells with either Latrunculin B, used to disrupt actin cap formation, or the antioxidant agent Mitoquinone, used to improve mitochondrial activity, show expected opposite effects on actin cap associated morphological features and cell motility. Deep data analysis allows strong cluster classification within HD cells according to patients' disease severity score which is distinct from HGPS and matching controls supporting that actin cap is a biomarker in HD patients' cells correlated with HD severity status that could be modulated by pharmacological agents as tool for personalized drug evaluation.
Collapse
Affiliation(s)
- Saja Gharaba
- Laboratory for Personalized Medicine and Neurodegenerative Diseases, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Omri Paz
- Laboratory for Personalized Medicine and Neurodegenerative Diseases, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Lea Feld
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion—Israel Institute of Technology, Haifa, Israel
| | - Anastasia Abashidze
- The Blavatnik Center for Drug Discovery, Tel Aviv University, Tel Aviv, Israel
| | - Maydan Weinrab
- Laboratory for Personalized Medicine and Neurodegenerative Diseases, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Noam Muchtar
- Laboratory for Personalized Medicine and Neurodegenerative Diseases, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Adam Baransi
- Laboratory for Personalized Medicine and Neurodegenerative Diseases, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Aviv Shalem
- Laboratory for Personalized Medicine and Neurodegenerative Diseases, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
- The Blavatnik School of Computer Sciences, Tel Aviv University, Tel Aviv, Israel
- School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Uri Sprecher
- Laboratory for Personalized Medicine and Neurodegenerative Diseases, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Lior Wolf
- The Blavatnik School of Computer Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Haguy Wolfenson
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion—Israel Institute of Technology, Haifa, Israel
| | - Miguel Weil
- Laboratory for Personalized Medicine and Neurodegenerative Diseases, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
19
|
Lemarié FL, Sanders SS, Nguyen Y, Martin DDO, Hayden MR. Full-length huntingtin is palmitoylated at multiple sites and post-translationally myristoylated following caspase-cleavage. Front Physiol 2023; 14:1086112. [PMID: 36711022 PMCID: PMC9880554 DOI: 10.3389/fphys.2023.1086112] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
Introduction: Huntington disease is an autosomal dominant neurodegenerative disorder which is caused by a CAG repeat expansion in the HTT gene that codes for an elongated polyglutamine tract in the huntingtin (HTT) protein. Huntingtin is subjected to multiple post-translational modifications which regulate its cellular functions and degradation. We have previously identified a palmitoylation site at cysteine 214 (C214), catalyzed by the enzymes ZDHHC17 and ZDHHC13. Reduced palmitoylation level of mutant huntingtin is linked to toxicity and loss of function. Moreover, we have described N-terminal myristoylation by the N-myristoyltransferases of a short fragment of huntingtin (HTT553-586) at glycine 553 (G553) following proteolysis at aspartate 552 (D552). Results: Here, we show that huntingtin is palmitoylated at numerous cysteines: C105, C433, C3134 and C3144. In addition, we confirm that full-length huntingtin is cleaved at D552 and post-translationally myristoylated at G553. Importantly, blocking caspase cleavage at the critical and pathogenic aspartate 586 (D586) significantly increases posttranslational myristoylation of huntingtin. In turn, myristoylation of huntingtin promotes the co-interaction between C-terminal and N-terminal huntingtin fragments, which is also protective. Discussion: This suggests that the protective effect of inhibiting caspase-cleavage at D586 may be mediated through post-translational myristoylation of huntingtin at G553.
Collapse
|
20
|
Taghian T, Gallagher J, Batcho E, Pullan C, Kuchel T, Denney T, Perumal R, Moore S, Muirhead R, Herde P, Johns D, Christou C, Taylor A, Passler T, Pulaparthi S, Hall E, Chandra S, O’Neill CA, Gray-Edwards H. Brain Alterations in Aged OVT73 Sheep Model of Huntington's Disease: An MRI Based Approach. J Huntingtons Dis 2022; 11:391-406. [PMID: 36189602 PMCID: PMC9837686 DOI: 10.3233/jhd-220526] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Huntington's disease (HD) is a fatal neurodegenerative autosomal dominant disorder with prevalence of 1 : 20000 that has no effective treatment to date. Translatability of candidate therapeutics could be enhanced by additional testing in large animal models because of similarities in brain anatomy, size, and immunophysiology. These features enable realistic pre-clinical studies of biodistribution, efficacy, and toxicity. OBJECTIVE AND METHODS Here we non-invasively characterized alterations in brain white matter microstructure, neurochemistry, neurological status, and mutant Huntingtin protein (mHTT) levels in cerebrospinal fluid (CSF) of aged OVT73 HD sheep. RESULTS Similar to HD patients, CSF mHTT differentiates HD from normal sheep. Our results are indicative of a decline in neurological status, and alterations in brain white matter diffusion and spectroscopy metric that are more severe in aged female HD sheep. Longitudinal analysis of aged female HD sheep suggests that the decline is detectable over the course of a year. In line with reports of HD human studies, white matter alterations in corpus callosum correlates with a decline in gait of HD sheep. Moreover, alterations in the occipital cortex white matter correlates with a decline in clinical rating score. In addition, the marker of energy metabolism in striatum of aged HD sheep, shows a correlation with decline of clinical rating score and eye coordination. CONCLUSION This data suggests that OVT73 HD sheep can serve as a pre-manifest large animal model of HD providing a platform for pre-clinical testing of HD therapeutics and non-invasive tracking of the efficacy of the therapy.
Collapse
Affiliation(s)
- Toloo Taghian
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA,
Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jillian Gallagher
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Erin Batcho
- Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, USA
| | - Caitlin Pullan
- South Australian Health and Medical Research Institute, Gillies Plains, SA, Australia
| | - Tim Kuchel
- South Australian Health and Medical Research Institute, Gillies Plains, SA, Australia
| | - Thomas Denney
- Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, USA
| | - Raj Perumal
- South Australian Health and Medical Research Institute, Gillies Plains, SA, Australia
| | - Shamika Moore
- South Australian Health and Medical Research Institute, Gillies Plains, SA, Australia
| | - Robb Muirhead
- South Australian Health and Medical Research Institute, Gillies Plains, SA, Australia
| | - Paul Herde
- South Australian Health and Medical Research Institute, Gillies Plains, SA, Australia
| | - Daniel Johns
- South Australian Health and Medical Research Institute, Gillies Plains, SA, Australia
| | - Chris Christou
- South Australian Health and Medical Research Institute, Gillies Plains, SA, Australia
| | - Amanda Taylor
- Department of Clinical Sciences, Auburn University, Auburn, AL, USA
| | - Thomas Passler
- Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, USA
| | - Sanjana Pulaparthi
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Erin Hall
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sundeep Chandra
- Sana Biotechnology, South San Francisco, CA, USA,Bio Marin Pharmaceutical Inc., San Rafael, CA, USA
| | | | - Heather Gray-Edwards
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA,
Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA,Correspondence to: Heather L. Gray-Edwards, DVM, PhD, University of Massachusetts Medical School, Department of Radiology and Horae Gene Therapy Center, 368 Plantation Street, ASC6-2055, Worcester, MA 01605, USA. Tel.: +1 508 856 4051; Fax: +1 508 856 1552; E-mail:
| |
Collapse
|
21
|
Afzal O, Dalhat MH, Altamimi ASA, Rasool R, Alzarea SI, Almalki WH, Murtaza BN, Iftikhar S, Nadeem S, Nadeem MS, Kazmi I. Green Tea Catechins Attenuate Neurodegenerative Diseases and Cognitive Deficits. Molecules 2022; 27:7604. [PMID: 36364431 PMCID: PMC9655201 DOI: 10.3390/molecules27217604] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 08/12/2023] Open
Abstract
Neurodegenerative diseases exert an overwhelming socioeconomic burden all around the globe. They are mainly characterized by modified protein accumulation that might trigger various biological responses, including oxidative stress, inflammation, regulation of signaling pathways, and excitotoxicity. These disorders have been widely studied during the last decade in the hopes of developing symptom-oriented therapeutics. However, no definitive cure has yet been discovered. Tea is one of the world's most popular beverages. The same plant, Camellia Sinensis (L.).O. Kuntze, is used to make green, black, and oolong teas. Green tea has been most thoroughly studied because of its anti-cancer, anti-obesity, antidiabetic, anti-inflammatory, and neuroprotective properties. The beneficial effect of consumption of tea on neurodegenerative disorders has been reported in several human interventional and observational studies. The polyphenolic compounds found in green tea, known as catechins, have been demonstrated to have many therapeutic effects. They can help in preventing and, somehow, treating neurodegenerative diseases. Catechins show anti-inflammatory as well as antioxidant effects via blocking cytokines' excessive production and inflammatory pathways, as well as chelating metal ions and free radical scavenging. They may inhibit tau protein phosphorylation, amyloid beta aggregation, and release of apoptotic proteins. They can also lower alpha-synuclein levels and boost dopamine levels. All these factors have the potential to affect neurodegenerative disorders. This review will examine catechins' neuroprotective effects by highlighting their biological, pharmacological, antioxidant, and metal chelation abilities, with a focus on their ability to activate diverse cellular pathways in the brain. This review also points out the mechanisms of catechins in various neurodegenerative and cognitive diseases, including Alzheimer's, Parkinson's, multiple sclerosis, and cognitive deficit.
Collapse
Affiliation(s)
- Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mahmood Hassan Dalhat
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdulmalik S. A. Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Rabia Rasool
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Aljouf, Sakaka 72341, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Bibi Nazia Murtaza
- Department of Zoology, Abbottabad University of Science and Technology (AUST), Abbottabad 22310, Pakistan
| | - Saima Iftikhar
- School of Biological Sciences, University of the Punjab, Lahore 54000, Pakistan
| | - Shamaila Nadeem
- Department of Zoology, Kinnaird College for Women, 93-Jail Road Lahore, Lahore 54000, Pakistan
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
22
|
Koshevaya YS, Kusakin AV, Buchinskaia NV, Pechnikova VV, Serebryakova EA, Koroteev AL, Glotov AS, Glotov OS. Description of the First Registered Case of Lopes-Maciel-Rodan Syndrome in Russia. Int J Mol Sci 2022; 23:ijms232012437. [PMID: 36293294 PMCID: PMC9604141 DOI: 10.3390/ijms232012437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Lopes−Maciel−Rodan syndrome (LOMARS) is an extremely rare disorder, with only a few cases reported worldwide. LOMARS is caused by a compound heterozygous mutation in the HTT gene. Little is known about LOMARS pathogenesis and clinical manifestations. Whole exome sequencing (WES) was performed to achieve a definitive molecular diagnosis of the disorder. All NGS-identified variants underwent the Sanger confirmation. In addition, a literature review on genetic variations in the HTT gene was conducted. The paper reports a case of LOMARS in a pediatric patient in Russia. A preterm girl of non-consanguineous parents demonstrated severe psychomotor developmental delays in her first 12 months. By the age of 6 years, she failed to develop speech but was able to understand everyday phrases and perform simple commands. Autism-like behaviors, stereotypies, and bruxism were noted during the examination. WES revealed two undescribed variants of unknown clinical significance in the HTT gene, presumably associated with the patient’s phenotype (c.2350C>T and c.8440C>A). Medical re-examination of parents revealed that the patient inherited these variants from her father and mother. Lopes−Maciel−Rodan syndrome was diagnosed based on overlapping clinical findings and the follow-up genetic examination of parents. Our finding expands the number of reported LOMARS cases and provides new insights into the genetic basis of the disease.
Collapse
Affiliation(s)
- Yuliya S. Koshevaya
- Saint-Petersburg State Medical Diagnostic Center (Genetic Medical Center), 353912 St. Petersburg, Russia
- CerbaLab Ltd., 199106 St. Petersburg, Russia
| | - Aleksey V. Kusakin
- Pediatric Research and Clinical Center for Infectious Diseases, 197022 St. Petersburg, Russia
- Applied Genomics Laboratory, SCAMT Institute, ITMO University, 197101 St. Petersburg, Russia
- Correspondence:
| | - Natalia V. Buchinskaia
- Saint-Petersburg State Medical Diagnostic Center (Genetic Medical Center), 353912 St. Petersburg, Russia
| | - Valentina V. Pechnikova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia
| | - Elena A. Serebryakova
- Saint-Petersburg State Medical Diagnostic Center (Genetic Medical Center), 353912 St. Petersburg, Russia
- Department of Genomic Medicine, D.O.Ott Research Institute of Obstetrics, Gynaecology and Reproductology, 199034 St. Petersburg, Russia
| | - Alexander L. Koroteev
- Saint-Petersburg State Medical Diagnostic Center (Genetic Medical Center), 353912 St. Petersburg, Russia
| | - Andrey S. Glotov
- Department of Genomic Medicine, D.O.Ott Research Institute of Obstetrics, Gynaecology and Reproductology, 199034 St. Petersburg, Russia
| | - Oleg S. Glotov
- Pediatric Research and Clinical Center for Infectious Diseases, 197022 St. Petersburg, Russia
- Department of Genomic Medicine, D.O.Ott Research Institute of Obstetrics, Gynaecology and Reproductology, 199034 St. Petersburg, Russia
| |
Collapse
|
23
|
Chen X, Sun Y, Chen L, Chen XS, Pan M, Zhang Y, Wang Q, Yang W, Yin P, He D, Guo X, Yang S, Zeng Y, Yan S, Li XJ, Li S. Differential expression and roles of Huntingtin and Huntingtin-associated protein 1 in the mouse and primate brains. Cell Mol Life Sci 2022; 79:554. [PMID: 36251080 DOI: 10.1007/s00018-022-04577-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/12/2022] [Accepted: 09/27/2022] [Indexed: 11/03/2022]
Abstract
Huntingtin-associated protein 1 (HAP1) is the first identified protein whose function is affected by its abnormal interaction with mutant huntingtin (mHTT), which causes Huntington disease. However, the expression patterns of Hap1 and Htt in the rodent brain are not correlated. Here we found that the primate HAP1, unlike the rodent Hap1, is correlatively expressed with HTT in the primate brains. CRISPR/Cas9 targeting revealed that HAP1 deficiency in the developing human neurons did not affect neuronal differentiation and gene expression as seen in the mouse neurons. However, deletion of HAP1 exacerbated neurotoxicity of mutant HTT in the organotypic brain slices of adult monkeys. These findings demonstrate differential HAP1 expression and function in the mouse and primate brains, and suggest that interaction of HAP1 with mutant HTT may be involved in mutant HTT-mediated neurotoxicity in adult primate neurons.
Collapse
Affiliation(s)
- Xingxing Chen
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, 430000, Hubei, China.,Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Yize Sun
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Laiqiang Chen
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Xiu-Sheng Chen
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Mingtian Pan
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Yiran Zhang
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Qi Wang
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Weili Yang
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Peng Yin
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Dajian He
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Xiangyu Guo
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Su Yang
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Yan Zeng
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, 430000, Hubei, China
| | - Sen Yan
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
| | - Shihua Li
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
24
|
Irfan Z, Khanam S, Karmakar V, Firdous SM, El Khier BSIA, Khan I, Rehman MU, Khan A. Pathogenesis of Huntington's Disease: An Emphasis on Molecular Pathways and Prevention by Natural Remedies. Brain Sci 2022; 12:1389. [PMID: 36291322 PMCID: PMC9599635 DOI: 10.3390/brainsci12101389] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/25/2022] [Accepted: 10/03/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Huntington's disease is an inherited autosomal dominant trait neuro-degenerative disorder caused by changes (mutations) of a gene called huntingtin (htt) that is located on the short arm (p) of chromosome 4, CAG expansion mutation. It is characterized by unusual movements, cognitive and psychiatric disorders. OBJECTIVE This review was undertaken to apprehend biological pathways of Huntington's disease (HD) pathogenesis and its management by nature-derived products. Natural products can be lucrative for the management of HD as it shows protection against HD in pre-clinical trials. Advanced research is still required to assess the therapeutic effectiveness of the known organic products and their isolated compounds in HD experimental models. SUMMARY Degeneration of neurons in Huntington's disease is distinguished by progressive loss of motor coordination and muscle function. This is due to the expansion of CAG trinucleotide in the first exon of the htt gene responsible for neuronal death and neuronal network degeneration in the brain. It is believed that the factors such as molecular genetics, oxidative stress, excitotoxicity, mitochondrial dysfunction, neuroglia dysfunction, protein aggregation, and altered UPS leads to HD. The defensive effect of the natural product provides therapeutic efficacy against HD. Recent reports on natural drugs have enlightened the protective role against HD via antioxidant, anti-inflammatory, antiapoptotic, and neurofunctional regulation.
Collapse
Affiliation(s)
- Zainab Irfan
- Department of Pharmaceutical Technology, Brainware University, Kolkata 700125, West Bengal, India
| | - Sofia Khanam
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Howrah 711316, West Bengal, India
| | - Varnita Karmakar
- Department of Pharmacology, Eminent College of Pharmaceutical Technology, Barasat 700126, West Bengal, India
| | - Sayeed Mohammed Firdous
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Howrah 711316, West Bengal, India
| | | | - Ilyas Khan
- Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Muneeb U. Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
25
|
Seefelder M, Klein FAC, Landwehrmeyer B, Fernández-Busnadiego R, Kochanek S. Huntingtin and Its Partner Huntingtin-Associated Protein 40: Structural and Functional Considerations in Health and Disease. J Huntingtons Dis 2022; 11:227-242. [PMID: 35871360 PMCID: PMC9484127 DOI: 10.3233/jhd-220543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Since the discovery of the mutation causing Huntington’s disease (HD) in 1993, it has been debated whether an expanded polyglutamine (polyQ) stretch affects the properties of the huntingtin (HTT) protein and thus contributes to the pathological mechanisms responsible for HD. Here we review the current knowledge about the structure of HTT, alone (apo-HTT) or in a complex with Huntingtin-Associated Protein 40 (HAP40), the influence of polyQ-length variation on apo-HTT and the HTT-HAP40 complex, and the biology of HAP40. Phylogenetic analyses suggest that HAP40 performs essential functions. Highlighting the relevance of its interaction with HTT, HAP40 is one of the most abundant partners copurifying with HTT and is rapidly degraded, when HTT levels are reduced. As the levels of both proteins decrease during disease progression, HAP40 could also be a biomarker for HD. Whether declining HAP40 levels contribute to disease etiology is an open question. Structural studies have shown that the conformation of apo-HTT is less constrained but resembles that adopted in the HTT-HAP40 complex, which is exceptionally stable because of extensive interactions between HAP40 and the three domains of HTT. The complex— and to some extent apo-HTT— resists fragmentation after limited proteolysis. Unresolved regions of apo-HTT, constituting about 25% of the protein, are the main sites of post-translational modifications and likely have major regulatory functions. PolyQ elongation does not substantially alter the structure of HTT, alone or when associated with HAP40. Particularly, polyQ above the disease length threshold does not induce drastic conformational changes in full-length HTT. Therefore, models of HD pathogenesis stating that polyQ expansion drastically alters HTT properties should be reconsidered.
Collapse
Affiliation(s)
| | | | | | - Rubén Fernández-Busnadiego
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | | |
Collapse
|
26
|
Xu S, Li G, Ye X, Chen D, Chen Z, Xu Z, Daniele M, Tambone S, Ceccacci A, Tomei L, Ye L, Yu Y, Solbach A, Farmer SM, Stimming EF, McAllister G, Marchionini DM, Zhang S. HAP40 is a conserved central regulator of Huntingtin and a potential modulator of Huntington's disease pathogenesis. PLoS Genet 2022; 18:e1010302. [PMID: 35853002 PMCID: PMC9295956 DOI: 10.1371/journal.pgen.1010302] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/18/2022] [Indexed: 11/19/2022] Open
Abstract
Perturbation of huntingtin (HTT)'s physiological function is one postulated pathogenic factor in Huntington's disease (HD). However, little is known how HTT is regulated in vivo. In a proteomic study, we isolated a novel ~40kDa protein as a strong binding partner of Drosophila HTT and demonstrated it was the functional ortholog of HAP40, an HTT associated protein shown recently to modulate HTT's conformation but with unclear physiological and pathologic roles. We showed that in both flies and human cells, HAP40 maintained conserved physical and functional interactions with HTT. Additionally, loss of HAP40 resulted in similar phenotypes as HTT knockout. More strikingly, HAP40 strongly affected HTT's stability, as depletion of HAP40 significantly reduced the levels of endogenous HTT protein while HAP40 overexpression markedly extended its half-life. Conversely, in the absence of HTT, the majority of HAP40 protein were degraded, likely through the proteasome. Further, the affinity between HTT and HAP40 was not significantly affected by polyglutamine expansion in HTT, and contrary to an early report, there were no abnormal accumulations of endogenous HAP40 protein in HD cells from mouse HD models or human patients. Lastly, when tested in Drosophila models of HD, HAP40 partially modulated the neurodegeneration induced by full-length mutant HTT while showed no apparent effect on the toxicity of mutant HTT exon 1 fragment. Together, our study uncovers a conserved mechanism governing the stability and in vivo functions of HTT and demonstrates that HAP40 is a central and positive regulator of endogenous HTT. Further, our results support that mutant HTT is toxic regardless of the presence of its partner HAP40, and implicate HAP40 as a potential modulator of HD pathogenesis through its multiplex effect on HTT's function, stability and the potency of mutant HTT's toxicity.
Collapse
Affiliation(s)
- Shiyu Xu
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| | - Gang Li
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| | - Xin Ye
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| | - Dongsheng Chen
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| | - Zhihua Chen
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| | - Zhen Xu
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| | - Moretti Daniele
- Department of Translational and Discovery Research, IRBM SpA, Pomezia (RM), Italy
| | - Sara Tambone
- Department of Translational and Discovery Research, IRBM SpA, Pomezia (RM), Italy
| | - Alessandra Ceccacci
- Department of Translational and Discovery Research, IRBM SpA, Pomezia (RM), Italy
| | - Licia Tomei
- Department of Translational and Discovery Research, IRBM SpA, Pomezia (RM), Italy
| | - Lili Ye
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| | - Yue Yu
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
- Programs in Genetics and Epigenetics and Neuroscience, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS), Houston, Texas, United States of America
| | - Amanda Solbach
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
- Programs in Genetics and Epigenetics and Neuroscience, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS), Houston, Texas, United States of America
| | - Stephen M. Farmer
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
- Program in Biochemistry and Cell Biology, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS), Houston, Texas, United States of America
| | - Erin Furr Stimming
- Department of Neurology, HDSA Center of Excellence, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| | - George McAllister
- CHDI Management/CHDI Foundation, 350 Seventh Ave, New York, New York, United States of America
| | - Deanna M. Marchionini
- CHDI Management/CHDI Foundation, 350 Seventh Ave, New York, New York, United States of America
| | - Sheng Zhang
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
- Programs in Genetics and Epigenetics and Neuroscience, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS), Houston, Texas, United States of America
- Department of Neurobiology and Anatomy, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| |
Collapse
|
27
|
Molecular Pathophysiological Mechanisms in Huntington's Disease. Biomedicines 2022; 10:biomedicines10061432. [PMID: 35740453 PMCID: PMC9219859 DOI: 10.3390/biomedicines10061432] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/11/2022] Open
Abstract
Huntington’s disease is an inherited neurodegenerative disease described 150 years ago by George Huntington. The genetic defect was identified in 1993 to be an expanded CAG repeat on exon 1 of the huntingtin gene located on chromosome 4. In the following almost 30 years, a considerable amount of research, using mainly animal models or in vitro experiments, has tried to unravel the complex molecular cascades through which the transcription of the mutant protein leads to neuronal loss, especially in the medium spiny neurons of the striatum, and identified excitotoxicity, transcriptional dysregulation, mitochondrial dysfunction, oxidative stress, impaired proteostasis, altered axonal trafficking and reduced availability of trophic factors to be crucial contributors. This review discusses the pathogenic cascades described in the literature through which mutant huntingtin leads to neuronal demise. However, due to the ubiquitous presence of huntingtin, astrocytes are also dysfunctional, and neuroinflammation may additionally contribute to Huntington’s disease pathology. The quest for therapies to delay the onset and reduce the rate of Huntington’s disease progression is ongoing, but is based on findings from basic research.
Collapse
|
28
|
Vagiona AC, Mier P, Petrakis S, Andrade-Navarro MA. Analysis of Huntington's Disease Modifiers Using the Hyperbolic Mapping of the Protein Interaction Network. Int J Mol Sci 2022; 23:5853. [PMID: 35628660 PMCID: PMC9144261 DOI: 10.3390/ijms23105853] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 02/05/2023] Open
Abstract
Huntington's disease (HD) is caused by the production of a mutant huntingtin (HTT) with an abnormally long poly-glutamine (polyQ) tract, forming aggregates and inclusions in neurons. Previous work by us and others has shown that an increase or decrease in polyQ-triggered aggregates can be passive simply due to the interaction of proteins with the aggregates. To search for proteins with active (functional) effects, which might be more effective in finding therapies and mechanisms of HD, we selected among the proteins that interact with HTT a total of 49 pairs of proteins that, while being paralogous to each other (and thus expected to have similar passive interaction with HTT), are located in different regions of the protein interaction network (suggesting participation in different pathways or complexes). Three of these 49 pairs contained members with opposite effects on HD, according to the literature. The negative members of the three pairs, MID1, IKBKG, and IKBKB, interact with PPP2CA and TUBB, which are known negative factors in HD, as well as with HSP90AA1 and RPS3. The positive members of the three pairs interact with HSPA9. Our results provide potential HD modifiers of functional relevance and reveal the dynamic aspect of paralog evolution within the interaction network.
Collapse
Affiliation(s)
- Aimilia-Christina Vagiona
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University, Hans-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany; (A.-C.V.); (P.M.)
| | - Pablo Mier
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University, Hans-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany; (A.-C.V.); (P.M.)
| | - Spyros Petrakis
- Institute of Applied Biosciences/Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece;
| | - Miguel A. Andrade-Navarro
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University, Hans-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany; (A.-C.V.); (P.M.)
| |
Collapse
|
29
|
Ratovitski T, Jiang M, O'Meally RN, Rauniyar P, Chighladze E, Faragó A, Kamath SV, Jin J, Shevelkin AV, Cole RN, Ross CA. Interaction of huntingtin with PRMTs and its subsequent arginine methylation affects HTT solubility, phase transition behavior and neuronal toxicity. Hum Mol Genet 2022; 31:1651-1672. [PMID: 34888656 PMCID: PMC9122652 DOI: 10.1093/hmg/ddab351] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/16/2021] [Accepted: 12/02/2021] [Indexed: 11/12/2022] Open
Abstract
Huntington's disease (HD) is an incurable neurodegenerative disorder caused by a CAG expansion in the huntingtin gene (HTT). Post-translational modifications of huntingtin protein (HTT), such as phosphorylation, acetylation and ubiquitination, have been implicated in HD pathogenesis. Arginine methylation/dimethylation is an important modification with an emerging role in neurodegeneration; however, arginine methylation of HTT remains largely unexplored. Here we report nearly two dozen novel arginine methylation/dimethylation sites on the endogenous HTT from human and mouse brain and human cells suggested by mass spectrometry with data-dependent acquisition. Targeted quantitative mass spectrometry identified differential arginine methylation at specific sites in HD patient-derived striatal precursor cell lines compared to normal controls. We found that HTT can interact with several type I protein arginine methyltransferases (PRMTs) via its N-terminal domain. Using a combination of in vitro methylation and cell-based experiments, we identified PRMT4 (CARM1) and PRMT6 as major enzymes methylating HTT at specific arginines. Alterations of these methylation sites had a profound effect on biochemical properties of HTT rendering it less soluble in cells and affected its liquid-liquid phase separation and phase transition patterns in vitro. We found that expanded HTT 1-586 fragment can form liquid-like assemblies, which converted into solid-like assemblies when the R200/205 methylation sites were altered. Methyl-null alterations increased HTT toxicity to neuronal cells, while overexpression of PRMT 4 and 6 was beneficial for neuronal survival. Thus, arginine methylation pathways that involve specific HTT-modifying PRMT enzymes and modulate HTT biochemical and toxic properties could provide targets for HD-modifying therapies.
Collapse
Affiliation(s)
- Tamara Ratovitski
- To whom correspondence should be addressed at: or Christopher Ross, Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 9-123, 600 North Wolfe Street, Baltimore, MD 21287, USA. Fax: +1 4106140013; ,
| | | | | | | | - Ekaterine Chighladze
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Anikó Faragó
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Siddhi V Kamath
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jing Jin
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Alexey V Shevelkin
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Robert N Cole
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Christopher A Ross
- To whom correspondence should be addressed at: or Christopher Ross, Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 9-123, 600 North Wolfe Street, Baltimore, MD 21287, USA. Fax: +1 4106140013; ,
| |
Collapse
|
30
|
Greco TM, Secker C, Ramos ES, Federspiel JD, Liu JP, Perez AM, Al-Ramahi I, Cantle JP, Carroll JB, Botas J, Zeitlin SO, Wanker EE, Cristea IM. Dynamics of huntingtin protein interactions in the striatum identifies candidate modifiers of Huntington disease. Cell Syst 2022; 13:304-320.e5. [PMID: 35148841 PMCID: PMC9317655 DOI: 10.1016/j.cels.2022.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/18/2021] [Accepted: 01/24/2022] [Indexed: 12/13/2022]
Abstract
Huntington disease (HD) is a monogenic neurodegenerative disorder with one causative gene, huntingtin (HTT). Yet, HD pathobiology is multifactorial, suggesting that cellular factors influence disease progression. Here, we define HTT protein-protein interactions (PPIs) perturbed by the mutant protein with expanded polyglutamine in the mouse striatum, a brain region with selective HD vulnerability. Using metabolically labeled tissues and immunoaffinity purification-mass spectrometry, we establish that polyglutamine-dependent modulation of HTT PPI abundances and relative stability starts at an early stage of pathogenesis in a Q140 HD mouse model. We identify direct and indirect PPIs that are also genetic disease modifiers using in-cell two-hybrid and behavioral assays in HD human cell and Drosophila models, respectively. Validated, disease-relevant mHTT-dependent interactions encompass mediators of synaptic neurotransmission (SNAREs and glutamate receptors) and lysosomal acidification (V-ATPase). Our study provides a resource for understanding mHTT-dependent dysfunction in cortico-striatal cellular networks, partly through impaired synaptic communication and endosomal-lysosomal system. A record of this paper's Transparent Peer Review process is included in the supplemental information.
Collapse
Affiliation(s)
- Todd M Greco
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ, USA
| | - Christopher Secker
- Neuroproteomics, Max Delbrück Centre for Molecular Medicine, Berlin, Germany
| | - Eduardo Silva Ramos
- Neuroproteomics, Max Delbrück Centre for Molecular Medicine, Berlin, Germany
| | - Joel D Federspiel
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ, USA
| | - Jeh-Ping Liu
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Alma M Perez
- Jan and Dan Duncan Neurological Research Institute, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ismael Al-Ramahi
- Jan and Dan Duncan Neurological Research Institute, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey P Cantle
- Department of Psychology, Western Washington University, Bellingham, WA, USA
| | - Jeffrey B Carroll
- Department of Psychology, Western Washington University, Bellingham, WA, USA
| | - Juan Botas
- Jan and Dan Duncan Neurological Research Institute, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Scott O Zeitlin
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Erich E Wanker
- Neuroproteomics, Max Delbrück Centre for Molecular Medicine, Berlin, Germany
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ, USA.
| |
Collapse
|
31
|
Prichard KL, O'Brien NS, Murcia SR, Baker JR, McCluskey A. Role of Clathrin and Dynamin in Clathrin Mediated Endocytosis/Synaptic Vesicle Recycling and Implications in Neurological Diseases. Front Cell Neurosci 2022; 15:754110. [PMID: 35115907 PMCID: PMC8805674 DOI: 10.3389/fncel.2021.754110] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/10/2021] [Indexed: 12/17/2022] Open
Abstract
Endocytosis is a process essential to the health and well-being of cell. It is required for the internalisation and sorting of “cargo”—the macromolecules, proteins, receptors and lipids of cell signalling. Clathrin mediated endocytosis (CME) is one of the key processes required for cellular well-being and signalling pathway activation. CME is key role to the recycling of synaptic vesicles [synaptic vesicle recycling (SVR)] in the brain, it is pivotal to signalling across synapses enabling intracellular communication in the sensory and nervous systems. In this review we provide an overview of the general process of CME with a particular focus on two key proteins: clathrin and dynamin that have a central role to play in ensuing successful completion of CME. We examine these two proteins as they are the two endocytotic proteins for which small molecule inhibitors, often of known mechanism of action, have been identified. Inhibition of CME offers the potential to develop therapeutic interventions into conditions involving defects in CME. This review will discuss the roles and the current scope of inhibitors of clathrin and dynamin, providing an insight into how further developments could affect neurological disease treatments.
Collapse
|
32
|
Serranilla M, Woodin MA. Striatal Chloride Dysregulation and Impaired GABAergic Signaling Due to Cation-Chloride Cotransporter Dysfunction in Huntington’s Disease. Front Cell Neurosci 2022; 15:817013. [PMID: 35095429 PMCID: PMC8795088 DOI: 10.3389/fncel.2021.817013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
Intracellular chloride (Cl–) levels in mature neurons must be tightly regulated for the maintenance of fast synaptic inhibition. In the mature central nervous system (CNS), synaptic inhibition is primarily mediated by gamma-amino butyric acid (GABA), which binds to Cl– permeable GABAA receptors (GABAARs). The intracellular Cl– concentration is primarily maintained by the antagonistic actions of two cation-chloride cotransporters (CCCs): Cl–-importing Na+-K+-Cl– co-transporter-1 (NKCC1) and Cl– -exporting K+-Cl– co-transporter-2 (KCC2). In mature neurons in the healthy brain, KCC2 expression is higher than NKCC1, leading to lower levels of intracellular Cl–, and Cl– influx upon GABAAR activation. However, in neurons of the immature brain or in neurological disorders such as epilepsy and traumatic brain injury, impaired KCC2 function and/or enhanced NKCC1 expression lead to intracellular Cl– accumulation and GABA-mediated excitation. In Huntington’s disease (HD), KCC2- and NKCC1-mediated Cl–-regulation are also altered, which leads to GABA-mediated excitation and contributes to the development of cognitive and motor impairments. This review summarizes the role of Cl– (dys)regulation in the healthy and HD brain, with a focus on the basal ganglia (BG) circuitry and CCCs as potential therapeutic targets in the treatment of HD.
Collapse
|
33
|
Centrosome as Center for Proteolytic Activity and Dysfunctions Associated with Pathogenesis of Human Disease. THE CENTROSOME AND ITS FUNCTIONS AND DYSFUNCTIONS 2022; 235:37-42. [DOI: 10.1007/978-3-031-20848-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Decreased Interactions between Calmodulin and a Mutant Huntingtin Model Might Reduce the Cytotoxic Level of Intracellular Ca 2+: A Molecular Dynamics Study. Int J Mol Sci 2021; 22:ijms22169025. [PMID: 34445734 PMCID: PMC8396531 DOI: 10.3390/ijms22169025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 12/19/2022] Open
Abstract
Mutant huntingtin (m-HTT) proteins and calmodulin (CaM) co-localize in the cerebral cortex with significant effects on the intracellular calcium levels by altering the specific calcium-mediated signals. Furthermore, the mutant huntingtin proteins show great affinity for CaM that can lead to a further stabilization of the mutant huntingtin aggregates. In this context, the present study focuses on describing the interactions between CaM and two huntingtin mutants from a biophysical point of view, by using classical Molecular Dynamics techniques. The huntingtin models consist of a wild-type structure, one mutant with 45 glutamine residues and the second mutant with nine additional key-point mutations from glutamine residues into proline residues (9P(EM) model). Our docking scores and binding free energy calculations show higher binding affinities of all HTT models for the C-lobe end of the CaM protein. In terms of dynamic evolution, the 9P(EM) model triggered great structural changes into the CaM protein’s structure and shows the highest fluctuation rates due to its structural transitions at the helical level from α-helices to turns and random coils. Moreover, our proposed 9P(EM) model suggests much lower interaction energies when compared to the 45Qs-HTT mutant model, this finding being in good agreement with the 9P(EM)’s antagonistic effect hypothesis on highly toxic protein–protein interactions.
Collapse
|
35
|
Huang B, Seefelder M, Buck E, Engler T, Lindenberg KS, Klein F, Landwehrmeyer GB, Kochanek S. HAP40 protein levels are huntingtin-dependent and decrease in Huntington disease. Neurobiol Dis 2021; 158:105476. [PMID: 34390835 DOI: 10.1016/j.nbd.2021.105476] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/08/2021] [Accepted: 08/09/2021] [Indexed: 12/01/2022] Open
Abstract
The huntingtin-associated protein 40 (HAP40) is an abundant interactor of huntingtin (HTT). In complexes of these proteins, HAP40 tightly binds to HTT in a cleft formed by two larger domains rich in HEAT repeats, and a smaller bridge domain connecting the two. We show that HAP40 steady-state protein levels are directly dependent on HTT (both normal and mutant HTT) and that HAP40 is strongly stabilized by the interaction with HTT resulting in an at least 5-fold increase in HAP40's half-life when bound to HTT. Cellular HAP40 protein levels were reduced in primary fibroblasts and lymphoblasts of Huntington Disease (HD) patients and in brain tissue of a full-length HTT mouse model of HD, concomitant with decreased soluble HTT levels in these cell types. This data and our previous demonstration of coevolution between HTT and HAP40 and evolutionary conservation of their interaction suggest that HAP40 is an obligate interaction partner of HTT. Our observation of reduced HAP40 levels in HD invites further studies, whether HAP40 loss-of-function contributes to the pathophysiology of HD.
Collapse
Affiliation(s)
- Bin Huang
- Department of Gene Therapy, Ulm University, 89081 Ulm, Germany
| | | | - Eva Buck
- Department of Neurology, Ulm University, 89081 Ulm, Germany
| | - Tatjana Engler
- Department of Gene Therapy, Ulm University, 89081 Ulm, Germany
| | | | - Fabrice Klein
- Department of Neurology, Ulm University, 89081 Ulm, Germany
| | | | - Stefan Kochanek
- Department of Gene Therapy, Ulm University, 89081 Ulm, Germany.
| |
Collapse
|
36
|
Therapeutic Effects of Catechins in Less Common Neurological and Neurodegenerative Disorders. Nutrients 2021; 13:nu13072232. [PMID: 34209677 PMCID: PMC8308206 DOI: 10.3390/nu13072232] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/18/2022] Open
Abstract
In recent years, neurological and neurodegenerative disorders research has focused on altered molecular mechanisms in search of potential pharmacological targets, e.g., imbalances in mechanisms of response to oxidative stress, inflammation, apoptosis, autophagy, proliferation, differentiation, migration, and neuronal plasticity, which occur in less common neurological and neurodegenerative pathologies (Huntington disease, multiple sclerosis, fetal alcohol spectrum disorders, and Down syndrome). Here, we assess the effects of different catechins (particularly of epigalocatechin-3-gallate, EGCG) on these disorders, as well as their use in attenuating age-related cognitive decline in healthy individuals. Antioxidant and free radical scavenging properties of EGCG -due to their phenolic hydroxyl groups-, as well as its immunomodulatory, neuritogenic, and autophagic characteristics, makes this catechin a promising tool against neuroinflammation and microglia activation, common in these pathologies. Although EGCG promotes the inhibition of protein aggregation in experimental Huntington disease studies and improves the clinical severity in multiple sclerosis in animal models, its efficacy in humans remains controversial. EGCG may normalize DYRK1A (involved in neural plasticity) overproduction in Down syndrome, improving behavioral and neural phenotypes. In neurological pathologies caused by environmental agents, such as FASD, EGCG enhances antioxidant defense and regulates placental angiogenesis and neurodevelopmental processes. As demonstrated in animal models, catechins attenuate age-related cognitive decline, which results in improvements in long-term outcomes and working memory, reduction of hippocampal neuroinflammation, and enhancement of neuronal plasticity; however, further studies are needed. Catechins are valuable compounds for treating and preventing certain neurodegenerative and neurological diseases of genetic and environmental origin. However, the use of different doses of green tea extracts and EGCG makes it difficult to reach consistent conclusions for different populations.
Collapse
|
37
|
Tomczyk M, Glaser T, Slominska EM, Ulrich H, Smolenski RT. Purine Nucleotides Metabolism and Signaling in Huntington's Disease: Search for a Target for Novel Therapies. Int J Mol Sci 2021; 22:ijms22126545. [PMID: 34207177 PMCID: PMC8234552 DOI: 10.3390/ijms22126545] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 12/18/2022] Open
Abstract
Huntington’s disease (HD) is a multi-system disorder that is caused by expanded CAG repeats within the exon-1 of the huntingtin (HTT) gene that translate to the polyglutamine stretch in the HTT protein. HTT interacts with the proteins involved in gene transcription, endocytosis, and metabolism. HTT may also directly or indirectly affect purine metabolism and signaling. We aimed to review existing data and discuss the modulation of the purinergic system as a new therapeutic target in HD. Impaired intracellular nucleotide metabolism in the HD affected system (CNS, skeletal muscle and heart) may lead to extracellular accumulation of purine metabolites, its unusual catabolism, and modulation of purinergic signaling. The mechanisms of observed changes might be different in affected systems. Based on collected findings, compounds leading to purine and ATP pool reconstruction as well as purinergic receptor activity modulators, i.e., P2X7 receptor antagonists, may be applied for HD treatment.
Collapse
Affiliation(s)
- Marta Tomczyk
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland;
- Correspondence: (M.T.); (R.T.S.)
| | - Talita Glaser
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil; (T.G.); (H.U.)
| | - Ewa M. Slominska
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland;
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil; (T.G.); (H.U.)
| | - Ryszard T. Smolenski
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland;
- Correspondence: (M.T.); (R.T.S.)
| |
Collapse
|
38
|
Barron JC, Hurley EP, Parsons MP. Huntingtin and the Synapse. Front Cell Neurosci 2021; 15:689332. [PMID: 34211373 PMCID: PMC8239291 DOI: 10.3389/fncel.2021.689332] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022] Open
Abstract
Huntington disease (HD) is a monogenic disease that results in a combination of motor, psychiatric and cognitive symptoms. HD is caused by a CAG trinucleotide repeat expansion in the huntingtin (HTT) gene, which results in the production of a pathogenic mutant HTT protein (mHTT). Although there is no cure at present for HD, a number of RNA-targeting therapies have recently entered clinical trials which aim to lower mHTT production through the use of antisense oligonucleotides (ASOs) and RNAi. However, many of these treatment strategies are non-selective in that they cannot differentiate between non-pathogenic wild type HTT (wtHTT) and the mHTT variant. As HD patients are already born with decreased levels of wtHTT, these genetic therapies may result in critically low levels of wtHTT. The consequence of wtHTT reduction in the adult brain is currently under debate, and here we argue that wtHTT loss is not well-tolerated at the synaptic level. Synaptic dysfunction is an extremely sensitive measure of subsequent cell death, and is known to precede neurodegeneration in numerous brain diseases including HD. The present review focuses on the prominent role of wtHTT at the synapse and considers the consequences of wtHTT loss on both pre- and postsynaptic function. We discuss how wtHTT is implicated in virtually all major facets of synaptic neurotransmission including anterograde and retrograde transport of proteins to/from terminal buttons and dendrites, neurotransmitter release, endocytic vesicle recycling, and postsynaptic receptor localization and recycling. We conclude that wtHTT presence is essential for proper synaptic function.
Collapse
Affiliation(s)
- Jessica C Barron
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, NL, Canada
| | - Emily P Hurley
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, NL, Canada
| | - Matthew P Parsons
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, NL, Canada
| |
Collapse
|
39
|
Sap KA, Guler AT, Bury A, Dekkers D, Demmers JAA, Reits EA. Identification of Full-Length Wild-Type and Mutant Huntingtin Interacting Proteins by Crosslinking Immunoprecipitation in Mice Brain Cortex. J Huntingtons Dis 2021; 10:335-347. [PMID: 34151850 PMCID: PMC8609692 DOI: 10.3233/jhd-210476] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Huntington’s disease is a neurodegenerative disorder caused by a CAG expansion in the huntingtin gene, resulting in a polyglutamine expansion in the ubiquitously expressed mutant huntingtin protein. Objective: Here we set out to identify proteins interacting with the full-length wild-type and mutant huntingtin protein in the mice cortex brain region to understand affected biological processes in Huntington’s disease pathology. Methods: Full-length huntingtin with 20 and 140 polyQ repeats were formaldehyde-crosslinked and isolated via their N-terminal Flag-tag from 2-month-old mice brain cortex. Interacting proteins were identified and quantified by label-free liquid chromatography-mass spectrometry (LC-MS/MS). Results: We identified 30 interactors specific for wild-type huntingtin, 14 interactors specific for mutant huntingtin and 14 shared interactors that interacted with both wild-type and mutant huntingtin, including known interactors such as F8a1/Hap40. Syt1, Ykt6, and Snap47, involved in vesicle transport and exocytosis, were among the proteins that interacted specifically with wild-type huntingtin. Various other proteins involved in energy metabolism and mitochondria were also found to associate predominantly with wild-type huntingtin, whereas mutant huntingtin interacted with proteins involved in translation including Mapk3, Eif3h and Eef1a2. Conclusion: Here we identified both shared and specific interactors of wild-type and mutant huntingtin, which are involved in different biological processes including exocytosis, vesicle transport, translation and metabolism. These findings contribute to the understanding of the roles that wild-type and mutant huntingtin play in a variety of cellular processes both in healthy conditions and Huntington’s disease pathology.
Collapse
Affiliation(s)
- Karen A Sap
- Department of Medical Biology, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Arzu Tugce Guler
- Department of Medical Biology, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Aleksandra Bury
- Department of Medical Biology, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Dick Dekkers
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jeroen A A Demmers
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Eric A Reits
- Department of Medical Biology, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| |
Collapse
|
40
|
Seefelder M, Kochanek S. A meta-analysis of transcriptomic profiles of Huntington's disease patients. PLoS One 2021; 16:e0253037. [PMID: 34111223 PMCID: PMC8191979 DOI: 10.1371/journal.pone.0253037] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/27/2021] [Indexed: 12/22/2022] Open
Abstract
Description of robust transcriptomic alterations in Huntington’s disease is essential to identify targets for biochemical studies and drug development. We analysed publicly available transcriptome data from the brain and blood of 220 HD patients and 241 healthy controls and identified 737 and 661 genes with robustly altered mRNA levels in the brain and blood of HD patients, respectively. In the brain, a subnetwork of 320 genes strongly correlated with HD and was enriched in transport-related genes. Bioinformatical analysis of this subnetwork highlighted CDC42, PAK1, YWHAH, NFY, DLX1, HMGN3, and PRMT3. Moreover, we found that CREB1 can regulate 78.0% of genes whose mRNA levels correlated with HD in the blood of patients. Alterations in protein transport, metabolism, transcriptional regulation, and CDC42-mediated functions are likely central features of HD. Further our data substantiate the role of transcriptional regulators that have not been reported in the context of HD (e.g. DLX1, HMGN3 and PRMT3) and strongly suggest dysregulation of NFY and its target genes across tissues. A large proportion of the identified genes such as CDC42 were also altered in Parkinson’s (PD) and Alzheimer’s disease (AD). The observed dysregulation of CDC42 and YWHAH in samples from HD, AD and PD patients indicates that those genes and their upstream regulators may be interesting therapeutic targets.
Collapse
Affiliation(s)
- Manuel Seefelder
- Department of Gene Therapy, Ulm University, Ulm, Germany
- * E-mail:
| | | |
Collapse
|
41
|
Kim H, Seong J. Fluorescent Protein-Based Autophagy Biosensors. MATERIALS 2021; 14:ma14113019. [PMID: 34199451 PMCID: PMC8199620 DOI: 10.3390/ma14113019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 11/16/2022]
Abstract
Autophagy is an essential cellular process of self-degradation for dysfunctional or unnecessary cytosolic constituents and organelles. Dysregulation of autophagy is thus involved in various diseases such as neurodegenerative diseases. To investigate the complex process of autophagy, various biochemical, chemical assays, and imaging methods have been developed. Here we introduce various methods to study autophagy, in particular focusing on the review of designs, principles, and limitations of the fluorescent protein (FP)-based autophagy biosensors. Different physicochemical properties of FPs, such as pH-sensitivity, stability, brightness, spectral profile, and fluorescence resonance energy transfer (FRET), are considered to design autophagy biosensors. These FP-based biosensors allow for sensitive detection and real-time monitoring of autophagy progression in live cells with high spatiotemporal resolution. We also discuss future directions utilizing an optobiochemical strategy to investigate the in-depth mechanisms of autophagy. These cutting-edge technologies will further help us to develop the treatment strategies of autophagy-related diseases.
Collapse
Affiliation(s)
- Heejung Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
- Department of Converging Science and Technology, Kyung Hee University, Seoul 02453, Korea
| | - Jihye Seong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
- Department of Converging Science and Technology, Kyung Hee University, Seoul 02453, Korea
- Correspondence:
| |
Collapse
|
42
|
Wagner SA, Szczesniak PP, Voigt A, Gräf JF, Beli P. Proteomic analysis of tyrosine phosphorylation induced by exogenous expression of oncogenic kinase fusions identified in lung adenocarcinoma. Proteomics 2021; 21:e2000283. [PMID: 33768672 DOI: 10.1002/pmic.202000283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 11/11/2022]
Abstract
Kinase fusions are considered oncogenic drivers in numerous types of cancer. In lung adenocarcinoma 5-10% of patients harbor kinase fusions. The most frequently detected kinase fusion involves the Anaplastic Lymphoma Kinase (ALK) and Echinoderm Microtubule-associated protein-Like 4 (EML4). In addition, oncogenic kinase fusions involving the tyrosine kinases RET and ROS1 are found in smaller subsets of patients. In this study, we employed quantitative mass spectrometry-based phosphoproteomics to define the cellular tyrosine phosphorylation patterns induced by different oncogenic kinase fusions identified in patients with lung adenocarcinoma. We show that exogenous expression of the kinase fusions in HEK 293T cells leads to widespread tyrosine phosphorylation. Direct comparison of different kinase fusions demonstrates that the kinase part and not the fusion partner primarily defines the phosphorylation pattern. The tyrosine phosphorylation patterns differed between ALK, ROS1, and RET fusions, suggesting that oncogenic signaling induced by these kinases involves the modulation of different cellular processes.
Collapse
Affiliation(s)
- Sebastian A Wagner
- Department of Medicine, Hematology/Oncology, Goethe University School of Medicine, Frankfurt, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Pawel P Szczesniak
- Department of Medicine, Hematology/Oncology, Goethe University School of Medicine, Frankfurt, Germany
| | - Andrea Voigt
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Justus F Gräf
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Petra Beli
- Institute of Molecular Biology (IMB), Mainz, Germany.,Institute of Developmental Biology and Neurobiology (IDN), Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
43
|
Iuliano M, Seeley C, Sapp E, Jones EL, Martin C, Li X, DiFiglia M, Kegel-Gleason KB. Disposition of Proteins and Lipids in Synaptic Membrane Compartments Is Altered in Q175/Q7 Huntington's Disease Mouse Striatum. Front Synaptic Neurosci 2021; 13:618391. [PMID: 33815086 PMCID: PMC8013775 DOI: 10.3389/fnsyn.2021.618391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/24/2021] [Indexed: 12/14/2022] Open
Abstract
Dysfunction at synapses is thought to be an early change contributing to cognitive, psychiatric and motor disturbances in Huntington's disease (HD). In neurons, mutant Huntingtin collects in aggregates and distributes to the same sites as wild-type Huntingtin including on membranes and in synapses. In this study, we investigated the biochemical integrity of synapses in HD mouse striatum. We performed subcellular fractionation of striatal tissue from 2 and 6-month old knock-in Q175/Q7 HD and Q7/Q7 mice. Compared to striata of Q7/Q7 mice, proteins including GLUT3, Na+/K+ ATPase, NMDAR 2b, PSD95, and VGLUT1 had altered distribution in Q175/Q7 HD striata of 6-month old mice but not 2-month old mice. These proteins are found on plasma membranes and pre- and postsynaptic membranes supporting hypotheses that functional changes at synapses contribute to cognitive and behavioral symptoms of HD. Lipidomic analysis of mouse fractions indicated that compared to those of wild-type, fractions 1 and 2 of 6 months Q175/Q7 HD had altered levels of two species of PIP2, a phospholipid involved in synaptic signaling, increased levels of cholesterol ester and decreased cardiolipin species. At 2 months, increased levels of species of acylcarnitine, phosphatidic acid and sphingomyelin were measured. EM analysis showed that the contents of fractions 1 and 2 of Q7/Q7 and Q175/Q7 HD striata had a mix of isolated synaptic vesicles, vesicle filled axon terminals singly or in clusters, and ER and endosome-like membranes. However, those of Q175/Q7 striata contained significantly fewer and larger clumps of particles compared to those of Q7/Q7. Human HD postmortem putamen showed differences from control putamen in subcellular distribution of two proteins (Calnexin and GLUT3). Our biochemical, lipidomic and EM analysis show that the presence of the HD mutation conferred age dependent disruption of localization of synaptic proteins and lipids important for synaptic function. Our data demonstrate concrete biochemical changes suggesting altered integrity of synaptic compartments in HD mice that may mirror changes in HD patients and presage cognitive and psychiatric changes that occur in premanifest HD.
Collapse
|
44
|
Dysregulation of PGC-1α-Dependent Transcriptional Programs in Neurological and Developmental Disorders: Therapeutic Challenges and Opportunities. Cells 2021. [DOI: 10.3390/cells10020352
expr 820281011 + 880698691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Substantial evidence indicates that mitochondrial impairment contributes to neuronal dysfunction and vulnerability in disease states, leading investigators to propose that the enhancement of mitochondrial function should be considered a strategy for neuroprotection. However, multiple attempts to improve mitochondrial function have failed to impact disease progression, suggesting that the biology underlying the normal regulation of mitochondrial pathways in neurons, and its dysfunction in disease, is more complex than initially thought. Here, we present the proteins and associated pathways involved in the transcriptional regulation of nuclear-encoded genes for mitochondrial function, with a focus on the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1α). We highlight PGC-1α’s roles in neuronal and non-neuronal cell types and discuss evidence for the dysregulation of PGC-1α-dependent pathways in Huntington’s Disease, Parkinson’s Disease, and developmental disorders, emphasizing the relationship between disease-specific cellular vulnerability and cell-type-specific patterns of PGC-1α expression. Finally, we discuss the challenges inherent to therapeutic targeting of PGC-1α-related transcriptional programs, considering the roles for neuron-enriched transcriptional coactivators in co-regulating mitochondrial and synaptic genes. This information will provide novel insights into the unique aspects of transcriptional regulation of mitochondrial function in neurons and the opportunities for therapeutic targeting of transcriptional pathways for neuroprotection.
Collapse
|
45
|
Kastano K, Mier P, Andrade-Navarro MA. The Role of Low Complexity Regions in Protein Interaction Modes: An Illustration in Huntingtin. Int J Mol Sci 2021; 22:1727. [PMID: 33572172 PMCID: PMC7915032 DOI: 10.3390/ijms22041727] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/25/2021] [Accepted: 02/04/2021] [Indexed: 12/11/2022] Open
Abstract
Low complexity regions (LCRs) are very frequent in protein sequences, generally having a lower propensity to form structured domains and tending to be much less evolutionarily conserved than globular domains. Their higher abundance in eukaryotes and in species with more cellular types agrees with a growing number of reports on their function in protein interactions regulated by post-translational modifications. LCRs facilitate the increase of regulatory and network complexity required with the emergence of organisms with more complex tissue distribution and development. Although the low conservation and structural flexibility of LCRs complicate their study, evolutionary studies of proteins across species have been used to evaluate their significance and function. To investigate how to apply this evolutionary approach to the study of LCR function in protein-protein interactions, we performed a detailed analysis for Huntingtin (HTT), a large protein that is a hub for interaction with hundreds of proteins, has a variety of LCRs, and for which partial structural information (in complex with HAP40) is available. We hypothesize that proteins RASA1, SYN2, and KAT2B may compete with HAP40 for their attachment to the core of HTT using similar LCRs. Our results illustrate how evolution might favor the interplay of LCRs with domains, and the possibility of detecting multiple modes of LCR-mediated protein-protein interactions with a large hub such as HTT when enough protein interaction data is available.
Collapse
Affiliation(s)
| | | | - Miguel A. Andrade-Navarro
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University of Mainz, 55128 Mainz, Germany; (K.K.); (P.M.)
| |
Collapse
|
46
|
Dysregulation of PGC-1α-Dependent Transcriptional Programs in Neurological and Developmental Disorders: Therapeutic Challenges and Opportunities. Cells 2021; 10:cells10020352. [PMID: 33572179 PMCID: PMC7915819 DOI: 10.3390/cells10020352] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 02/08/2023] Open
Abstract
Substantial evidence indicates that mitochondrial impairment contributes to neuronal dysfunction and vulnerability in disease states, leading investigators to propose that the enhancement of mitochondrial function should be considered a strategy for neuroprotection. However, multiple attempts to improve mitochondrial function have failed to impact disease progression, suggesting that the biology underlying the normal regulation of mitochondrial pathways in neurons, and its dysfunction in disease, is more complex than initially thought. Here, we present the proteins and associated pathways involved in the transcriptional regulation of nuclear-encoded genes for mitochondrial function, with a focus on the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1α). We highlight PGC-1α's roles in neuronal and non-neuronal cell types and discuss evidence for the dysregulation of PGC-1α-dependent pathways in Huntington's Disease, Parkinson's Disease, and developmental disorders, emphasizing the relationship between disease-specific cellular vulnerability and cell-type-specific patterns of PGC-1α expression. Finally, we discuss the challenges inherent to therapeutic targeting of PGC-1α-related transcriptional programs, considering the roles for neuron-enriched transcriptional coactivators in co-regulating mitochondrial and synaptic genes. This information will provide novel insights into the unique aspects of transcriptional regulation of mitochondrial function in neurons and the opportunities for therapeutic targeting of transcriptional pathways for neuroprotection.
Collapse
|
47
|
Optineurin deletion disrupts metabotropic glutamate receptor 5-mediated regulation of ERK1/2, GSK3β/ZBTB16, mTOR/ULK1 signaling in autophagy. Biochem Pharmacol 2021; 185:114427. [PMID: 33513340 DOI: 10.1016/j.bcp.2021.114427] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 12/18/2022]
Abstract
Optineurin (OPTN) is a multifunctional protein that mediates a network of cellular processes regulating membrane trafficking, inflammatory responses and autophagy. The OPTN-rich interactome includes Group I metabotropic glutamate receptors (mGluR1 and 5), members of the Gαq/11 protein receptor family. Recent evidence has shown that mGluR5, in addition to its canonical Gαq/11 protein-coupled signaling, regulates autophagic machinery via mTOR/ULK1 and GSK3β/ZBTB16 pathways in both Alzheimer's and Huntington's disease mouse models. Despite its potential involvement, the role of OPTN in mediating mGluR5 downstream signaling cascades remains largely unknown. Here, we employed a CRISPR/Cas9 OPTN-deficient STHdhQ7/Q7 striatal cell line and global OPTN knockout mice to investigate whether Optn gene deletion alters both mGluR5 canonical and noncanonical signaling. We find that OPTN is required for mGluR5-activated Ca2+ flux and ERK1/2 signaling following receptor activation in STHdhQ7/Q7 cells and acute hippocampal slices. Deletion of OPTN impairs both GSK3β/ZBTB16 and mTOR/ULK1 autophagic signaling in STHdhQ7/Q7 cells. Furthermore, mGluR5-dependent regulation of GSK3β/ZBTB16 and mTOR/ULK1 autophagic signaling is impaired in hippocampal slices of OPTN knockout mice. Overall, we show that the crosstalk between OPTN and mGluR5 can have major implication on receptor signaling and therefore potentially contribute to the pathophysiology of neurodegenerative diseases.
Collapse
|
48
|
Butėnaitė A, Strumila R, Lengvenytė A, Pakutkaitė IK, Morkūnienė A, Matulevičienė A, Dlugauskas E, Utkus A. Significant Association Between Huntingtin Gene Mutation and Prevalence of Hopelessness, Depression and Anxiety Symptoms. Acta Med Litu 2021; 28:77-85. [PMID: 34393630 PMCID: PMC8311852 DOI: 10.15388/amed.2020.28.1.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 11/22/2022] Open
Abstract
SUMMARY BACKGROUND In Huntington's disease psychiatric symptoms may manifest prior to motor dysfunction. Such symptoms negatively impact people's quality of life and can worsen the course of the primary disease. The aim of the present study was to assess and compare depression, anxiety and hopelessness rates in individuals with and without an abnormal expansion of CAG repeats in the huntingtin (HTT) gene and healthy controls. MATERIALS AND METHODS Study involved 31 individuals referred for genetic testing for Huntington's disease and a control group of 41. Depressive and anxiety symptoms were assessed using Beck Hopelessness Scale (BHS) and Hospital Anxiety and Depression Scale (HADS). Results between groups were compared using the Mann-Whitney U test. Two-sided Bonferroni corrected p-value was set at ≤0.017. RESULTS Individuals with HTT gene mutation ("gene mutation positive", GMP) (N=20) scored higher on the HADS depression subscale (5.90 ± 4.52 vs 1.36 ± 1.91; p ≤ 0.017) than those without HTT gene mutation ("gene mutation negative", GMN) (N=11). GMP and control groups scored higher than the GMN group on the BHS (5.65 ± 3.91 vs 2.09 ± 1.64 and 5.27 ± 4.11 vs 2.09 ± 1.64, respectively; p ≤ 0.017). No differences in anxiety levels were found. CONCLUSIONS Depressive symptoms and hopelessness were more prevalent in individuals with HTT gene mutation than in individuals who were tested but had no said mutation. Such results emphasise the importance of timely diagnosis and treatment of psychiatric comorbidities in individuals affected by Huntington's disease.
Collapse
Affiliation(s)
- Adelė Butėnaitė
- Psychiatric Clinic, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Robertas Strumila
- Psychiatric Clinic, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Aistė Lengvenytė
- Psychiatric Clinic, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | | | - Aušra Morkūnienė
- Centre for Medical Genetics, Vilnius University Hospital Santaros Klinikos, Vilnius, LithuaniaDepartment of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Aušra Matulevičienė
- Centre for Medical Genetics, Vilnius University Hospital Santaros Klinikos, Vilnius, LithuaniaDepartment of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University,
Vilnius, Lithuania
| | - Edgaras Dlugauskas
- Psychiatric Clinic, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, LithuaniaVilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Algirdas Utkus
- Centre for Medical Genetics, Vilnius University Hospital Santaros Klinikos, Vilnius, LithuaniaDepartment of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
49
|
Jung R, Lee Y, Barker D, Correia K, Shin B, Loupe J, Collins RL, Lucente D, Ruliera J, Gillis T, Mysore JS, Rodan L, Picker J, Lee JM, Howland D, Lee R, Kwak S, MacDonald ME, Gusella JF, Seong IS. Mutations causing Lopes-Maciel-Rodan syndrome are huntingtin hypomorphs. Hum Mol Genet 2021; 30:135-148. [PMID: 33432339 DOI: 10.1093/hmg/ddaa283] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 11/18/2020] [Accepted: 12/24/2020] [Indexed: 12/31/2022] Open
Abstract
Huntington's disease pathogenesis involves a genetic gain-of-function toxicity mechanism triggered by the expanded HTT CAG repeat. Current therapeutic efforts aim to suppress expression of total or mutant huntingtin, though the relationship of huntingtin's normal activities to the gain-of-function mechanism and what the effects of huntingtin-lowering might be are unclear. Here, we have re-investigated a rare family segregating two presumed HTT loss-of-function (LoF) variants associated with the developmental disorder, Lopes-Maciel-Rodan syndrome (LOMARS), using whole-genome sequencing of DNA from cell lines, in conjunction with analysis of mRNA and protein expression. Our findings correct the muddled annotation of these HTT variants, reaffirm they are the genetic cause of the LOMARS phenotype and demonstrate that each variant is a huntingtin hypomorphic mutation. The NM_002111.8: c.4469+1G>A splice donor variant results in aberrant (exon 34) splicing and severely reduced mRNA, whereas, surprisingly, the NM_002111.8: c.8157T>A NP_002102.4: Phe2719Leu missense variant results in abnormally rapid turnover of the Leu2719 huntingtin protein. Thus, although rare and subject to an as yet unknown LoF intolerance at the population level, bona fide HTT LoF variants can be transmitted by normal individuals leading to severe consequences in compound heterozygotes due to huntingtin deficiency.
Collapse
Affiliation(s)
- Roy Jung
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Yejin Lee
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Douglas Barker
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Kevin Correia
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Baehyun Shin
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Jacob Loupe
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Ryan L Collins
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Medical and Population Genetics Program, The Broad Institute of M.I.T. and Harvard, Cambridge, MA, 02142, USA.,Program in Bioinformatics and Integrative Genomics, Division of Medical Sciences, Harvard Medical School, Boston, MA 02114, USA
| | - Diane Lucente
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Jayla Ruliera
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Tammy Gillis
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Jayalakshmi S Mysore
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Lance Rodan
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Neurology, Boston Children's Hospital, Harvard Medical School, MA 02115, USA
| | - Jonathan Picker
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Child and Adolescent Psychiatry, Boston Children's Hospital, Harvard Medical School, MA 02115, USA
| | - Jong-Min Lee
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - David Howland
- CHDI Management/CHDI Foundation Inc., Princeton, NJ 08540, USA
| | - Ramee Lee
- CHDI Management/CHDI Foundation Inc., Princeton, NJ 08540, USA
| | - Seung Kwak
- CHDI Management/CHDI Foundation Inc., Princeton, NJ 08540, USA
| | - Marcy E MacDonald
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02114, USA.,Medical and Population Genetics Program, The Broad Institute of M.I.T. and Harvard, Cambridge, MA, 02142, USA
| | - James F Gusella
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Medical and Population Genetics Program, The Broad Institute of M.I.T. and Harvard, Cambridge, MA, 02142, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Ihn Sik Seong
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
50
|
Kumar MJV, Shah D, Giridharan M, Yadav N, Manjithaya R, Clement JP. Spatiotemporal analysis of soluble aggregates and autophagy markers in the R6/2 mouse model. Sci Rep 2021; 11:96. [PMID: 33420088 PMCID: PMC7794371 DOI: 10.1038/s41598-020-78850-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/17/2020] [Indexed: 01/29/2023] Open
Abstract
Maintenance of cellular proteostasis is vital for post-mitotic cells like neurons to sustain normal physiological function and homeostasis, defects in which are established hallmarks of several age-related conditions like AD, PD, HD, and ALS. The Spatio-temporal accumulation of aggregated proteins in the form of inclusion bodies/plaques is one of the major characteristics of many neurodegenerative diseases, including Huntington's disease (HD). Toxic accumulation of HUNTINGTIN (HTT) aggregates in neurons bring about the aberrant phenotypes of HD, including severe motor dysfunction, dementia, and cognitive impairment at the organismal level, in an age-dependent manner. In several cellular and animal models, aggrephagy induction has been shown to clear aggregate-prone proteins like HTT and ameliorate disease pathology by conferring neuroprotection. In this study, we used the mouse model of HD, R6/2, to understand the pathogenicity of mHTT aggregates, primarily focusing on autophagy dysfunction. We report that basal autophagy is not altered in R6/2 mice, whilst being functional at a steady-state level in neurons. Moreover, we tested the efficacy of a known autophagy modulator, Nilotinib (Tasigna™), presently in clinical trials for PD, and HD, in curbing mHTT aggregate growth and their potential clearance, which was ineffective in both inducing autophagy and rescuing the pathological phenotypes in R6/2 mice.
Collapse
Affiliation(s)
- M J Vijay Kumar
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Devanshi Shah
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Mridhula Giridharan
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Niraj Yadav
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Ravi Manjithaya
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India.
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India.
| | - James P Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India.
| |
Collapse
|