1
|
Fernández-Naveira Á, Veiga MC, Kennes C. Selective anaerobic fermentation of syngas into either C 2-C 6 organic acids or ethanol and higher alcohols. BIORESOURCE TECHNOLOGY 2019; 280:387-395. [PMID: 30780099 DOI: 10.1016/j.biortech.2019.02.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
Clostridium carboxidivorans produces alcohols from C1 gases (CO, CO2), converting them first into fatty acids, and subsequently into alcohols. This research identified conditions that allow to selectively produce either fatty acids or alcohols. The conversion of gases into acids and then into alcohols is catalysed by metalloenzymes, stimulated by specific trace metals. Therefore, different bioreactors were set-up, either with or without addition of tungsten (W) or selenium (Se) and at different pHs. Combining the presence of those trace metals with a low pH (5.0) allowed to accumulate high amounts of alcohols as major end products (8038 mg/L total alcohols; 3027 mg/L total acids). Instead, maintaining a higher pH (6.2), in the absence of those trace metals, allowed to selectively produce organic acids (9577 mg/L) and almost no alcohols (676 mg/L). Omitting W, but not Se, at high pH (6.2), led to a still higher concentration of acids (11303 mg/L).
Collapse
Affiliation(s)
- Ánxela Fernández-Naveira
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research (CICA), University of La Coruña, Rúa da Fraga 10, E-15008 La Coruña, Spain
| | - María C Veiga
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research (CICA), University of La Coruña, Rúa da Fraga 10, E-15008 La Coruña, Spain
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research (CICA), University of La Coruña, Rúa da Fraga 10, E-15008 La Coruña, Spain.
| |
Collapse
|
2
|
Paul SS, Selim M, Saha A, Mukherjea KK. Synthesis and structural characterization of dioxomolybdenum and dioxotungsten hydroxamato complexes and their function in the protection of radiation induced DNA damage. Dalton Trans 2014; 43:2835-48. [PMID: 24336831 DOI: 10.1039/c3dt52434e] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The synthesis and structural characterization of two novel dioxomolybdenum(VI) (1) and dioxotungsten(VI) (2) complexes with 2-phenylacetylhydroxamic acid (PAHH) [M(O)2(PAH)2] [M = Mo, W] have been accomplished. The dioxomolybdenum(VI) and dioxotungsten(VI) moiety is coordinated by the hydroxamate group (-CONHO(-)) of the 2-phenylacetylhydroxamate (PAH) ligand in a bi-dentate fashion. In both the complexes the PAHH ligand is coordinated through oxygen atoms forming a five membered chelate. The hydrogen atom of N-H of the hydroxamate group is engaged in intermolecular H-bonding with the carbonyl oxygen of another coordinated hydroxamate ligand, thereby forming an extended 1D chain. The ligand as well as both the complexes exhibit the ability to protect from radiation induced damage both in CTDNA as well as in pUC19 plasmid DNA. As the damage to DNA is caused by the radicals generated during radiolysis, its scavenging imparts protection from the damage to DNA. To understand the mechanism of protection, binding affinities of the ligand and the complex with DNA were determined using absorption and emission spectral studies and viscosity measurements, whereby the results indicate that both the complexes and the hydroxamate ligand interact with calf thymus DNA in the minor groove. The intrinsic binding constants, obtained from UV-vis studies, are 7.2 × 10(3) M(-1), 5.2 × 10(4) M(-1) and 1.2 × 10(4) M(-1) for the ligand and complexes 1 and 2 respectively. The Stern-Volmer quenching constants obtained from a luminescence study for both the complexes are 5.6 × 10(4) M(-1) and 1.6 × 10(4) M(-1) respectively. The dioxomolybdenum(VI) complex is found to be a more potent radioprotector compared to the dioxotungsten(VI) complex and the ligand. Radical scavenging chemical studies suggest that the complexes have a greater ability to scavenge both the hydroxyl as well as the superoxide radicals compared to the ligand. The free radical scavenging ability of the ligand and the complexes was further established by EPR spectroscopy using a stable free radical, the DPPH, as a probe. The experimental results of DNA binding are further supported by molecular docking studies.
Collapse
Affiliation(s)
- Shiv Shankar Paul
- Department of Chemistry, Jadavpur University, Calcutta, Kolkata-700032, India.
| | | | | | | |
Collapse
|
3
|
Pushie MJ, Cotelesage JJ, George GN. Molybdenum and tungsten oxygen transferases – structural and functional diversity within a common active site motif. Metallomics 2014; 6:15-24. [DOI: 10.1039/c3mt00177f] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
4
|
Zhu X, Tan X. Metalloproteins/metalloenzymes for the synthesis of acetyl-CoA in the Wood-Ljungdahl pathway. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/s11426-009-0082-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Abstract
Acetogens utilize the acetyl-CoA Wood-Ljungdahl pathway as a terminal electron-accepting, energy-conserving, CO(2)-fixing process. The decades of research to resolve the enzymology of this pathway (1) preceded studies demonstrating that acetogens not only harbor a novel CO(2)-fixing pathway, but are also ecologically important, and (2) overshadowed the novel microbiological discoveries of acetogens and acetogenesis. The first acetogen to be isolated, Clostridium aceticum, was reported by Klaas Tammo Wieringa in 1936, but was subsequently lost. The second acetogen to be isolated, Clostridium thermoaceticum, was isolated by Francis Ephraim Fontaine and co-workers in 1942. C. thermoaceticum became the most extensively studied acetogen and was used to resolve the enzymology of the acetyl-CoA pathway in the laboratories of Harland Goff Wood and Lars Gerhard Ljungdahl. Although acetogenesis initially intrigued few scientists, this novel process fostered several scientific milestones, including the first (14)C-tracer studies in biology and the discovery that tungsten is a biologically active metal. The acetyl-CoA pathway is now recognized as a fundamental component of the global carbon cycle and essential to the metabolic potentials of many different prokaryotes. The acetyl-CoA pathway and variants thereof appear to be important to primary production in certain habitats and may have been the first autotrophic process on earth and important to the evolution of life. The purpose of this article is to (1) pay tribute to those who discovered acetogens and acetogenesis, and to those who resolved the acetyl-CoA pathway, and (2) highlight the ecology and physiology of acetogens within the framework of their scientific roots.
Collapse
Affiliation(s)
- Harold L Drake
- Department of Ecological Microbiology, University of Bayreuth, 95440 Bayreuth, Germany.
| | | | | |
Collapse
|
6
|
Role of mammalian cytosolic molybdenum Fe-S flavin hydroxylases in hepatic injury. Life Sci 2008; 82:780-8. [PMID: 18313080 DOI: 10.1016/j.lfs.2008.01.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 10/19/2007] [Accepted: 01/18/2008] [Indexed: 11/23/2022]
Abstract
The study was designed to investigate the role of molybdenum iron-sulfur flavin hydroxylases in the pathogenesis of liver injuries induced by structurally and mechanistically diverse hepatotoxicants. While carbon tetrachloride (CCl4), thioacetamide (TAA) and chloroform (CHCl3) inflict liver damage by producing free radicals, acetaminophen (AAP) and bromobenzene (BB) exert their effects by severe glutathione depletion. Appropriate doses of these compounds were administered to induce liver injury in rats. The activities of the Mo-Fe-S flavin hydroxylases were measured and correlated with the biochemical markers of hepatic injury. The activity levels of the anti-oxidative enzymes and glutathione redox cycling enzymes were also determined. The treatment of rats with the hepatotoxins that inflict liver injury by generating free radicals (CCl4, TAA, CHCl3) had elevated activity levels of hepatic Mo-Fe-S flavin hydroxylases (p<0.05). Specific inhibition of these hydroxylases by their common inhibitor, sodium tungstate, suppresses biochemical and oxidative stress markers of hepatic tissue damage. On the contrary, Mo-Fe-S flavin hydroxylases did not show any change in animals receiving AAP and BB. Correspondingly, sodium tungstate could not attenuate damage in AAP and BB treated groups of rats. The study concludes that Mo-Fe-S hydroxylases contribute to the hepatic injury inflicted by free radical generating agents and does not play any role in hepatic injury produced by glutathione depleting agents. The study has implication in understanding human liver diseases caused by a variety of agents, and to investigate the efficacy of the inhibitors of Mo-Fe-S flavin hydroxylases as potential therapeutic agents.
Collapse
|
7
|
Andreesen JR, Makdessi K. Tungsten, the surprisingly positively acting heavy metal element for prokaryotes. Ann N Y Acad Sci 2007; 1125:215-29. [PMID: 18096847 DOI: 10.1196/annals.1419.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The history and changing function of tungsten as the heaviest element in biological systems is given. It starts from an inhibitory element/anion, especially for the iron molybdenum-cofactor (FeMoCo)-containing enzyme nitrogenase involved in dinitrogen fixation, as well as for the many "metal binding pterin" (MPT)-, also known as tricyclic pyranopterin- containing classic molybdoenzymes, such as the sulfite oxidase and the xanthine dehydrogenase family of enzymes. They are generally involved in the transformation of a variety of carbon-, nitrogen- and sulfur-containing compounds. But tungstate can serve as a potential positively acting element for some enzymes of the dimethyl sulfoxide (DMSO) reductase family, especially for CO(2)-reducing formate dehydrogenases (FDHs), formylmethanofuran dehydrogenases and acetylene hydratase (catalyzing only an addition of water, but no redox reaction). Tungsten even becomes an essential element for nearly all enzymes of the aldehyde oxidoreductase (AOR) family. Due to the close chemical and physical similarities between molybdate and tungstate, the latter was thought to be only unselectively cotransported or cometabolized with other tetrahedral anions, such as molybdate and also sulfate. However, it has now become clear that it can also be very selectively transported compared to molybdate into some prokaryotic cells by two very selective ABC-type of transporters that contain a binding protein TupA or WtpA. Both proteins exhibit an extremely high affinity for tungstate (K(D) < 1 nM) and can even discriminate between tungstate and molybdate. By that process, tungsten finally becomes selectively incorporated into the few enzymes noted above.
Collapse
Affiliation(s)
- Jan R Andreesen
- Institute of Biology/Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany.
| | | |
Collapse
|
8
|
Morozkina EV, Nosikov AN, Zvyagilskaya RA, L'vov NP. Isolation, Purification, and Characterization of Nitrate Reductase from a Salt-Tolerant Rhodotorula glutinis Yeast Strain Grown in the Presence of Tungsten. BIOCHEMISTRY (MOSCOW) 2005; 70:809-14. [PMID: 16097946 DOI: 10.1007/s10541-005-0188-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The salt-tolerant Rhodotorula glutinis yeast strain grew in medium containing nitrate, 1 mM tungsten, and trace amounts of molybdenum (as impurities from the reagents used). Isolation of electrophoretically homogenous preparation of nitrate reductase from the Rh. glutinis cells grown under these growth conditions is described. The isolated nitrate reductase is a molybdenum-containing homodimer with molecular mass of 130 kD, containing 0.177 mol of Mo per mol of the enzyme. The activity of the enzyme is maximal at pH 7.0 and 35-45 degrees C and is inhibited by low concentrations of azide and cyanide. The enzyme is almost insensitive to 1 mM tungsten.
Collapse
Affiliation(s)
- E V Morozkina
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, 119071, Russia.
| | | | | | | |
Collapse
|
9
|
Makdessi K, Andreesen JR, Pich A. Tungstate Uptake by a highly specific ABC transporter in Eubacterium acidaminophilum. J Biol Chem 2001; 276:24557-64. [PMID: 11292832 DOI: 10.1074/jbc.m101293200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Gram-positive anaerobe Eubacterium acidaminophilum contains at least two tungsten-dependent enzymes: viologen-dependent formate dehydrogenase and aldehyde dehydrogenase. (185)W-Labeled tungstate was taken up by this organism with a maximum rate of 0.53 pmol min(-)1 mg(-)1 of protein at 36 degrees C. The uptake was not affected by equimolar amounts of molybdate. The genes tupABC coding for an ABC transporter specific for tungstate were cloned in the downstream region of genes encoding a tungsten-containing formate dehydrogenase. The substrate-binding protein, TupA, of this putative transporter was overexpressed in Escherichia coli, and its binding properties toward oxyanions were determined by a native polyacrylamide gel retardation assay. Only tungstate induced a shift of TupA mobility, suggesting that only this anion was specifically bound by TupA. If molybdate and sulfate were added in high molar excess (>1000-fold), they were also slightly bound by TupA. The K(d) value for tungstate was determined to be 0.5 microm. The genes encoding the tungstate-specific ABC transporter exhibited highest similarities to putative transporters from Methanobacterium thermoautotrophicum, Haloferax volcanii, Vibrio cholerae, and Campylobacter jejuni. These five transporters represent a separate phylogenetic group of oxyanion ABC transporters as evident from analysis of the deduced amino acid sequences of the binding proteins. Downstream of the tupABC genes, the genes moeA, moeA-1, moaA, and a truncated moaC have been identified by sequence comparison of the deduced amino acid sequences. They should participate in the biosynthesis of the pterin cofactor that is present in molybdenum- and tungsten-containing enzymes except nitrogenase.
Collapse
Affiliation(s)
- K Makdessi
- Institut für Mikrobiologie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06120 Halle, Germany
| | | | | |
Collapse
|
10
|
Affiliation(s)
- Michael K. Johnson
- Department of Chemistry and Department of Biochemistry & Molecular Biology, and Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia 30602, and Division of Chemistry, California Institute of Technology, Pasadena, California 91125
| | | | | |
Collapse
|
11
|
|
12
|
Bertram PA, Schmitz RA, Linder D, Thauer RK. Tungstate can substitute for molybdate in sustaining growth of Methanobacterium thermoautotrophicum. Identification and characterization of a tungsten isoenzyme of formylmethanofuran dehydrogenase. Arch Microbiol 1994; 161:220-8. [PMID: 8161283 DOI: 10.1007/bf00248696] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Methanobacterium thermoautotrophicum (strain Marburg) was found to grow on media supplemented with tungstate rather than with molybdate. The Archaeon then synthesized a tungsten iron-sulfur isoenzyme of formylmethanofuran dehydrogenase. The isoenzyme was purified to apparent homogeneity and shown to be composed of four different subunits of apparent molecular masses 65 kDa, 53 kDa, 31 kDa, and 15 kDa and to contain per mol 0.4 mol tungsten, < 0.05 mol molybdenum, 8 mol non-heme iron, 8 mol acid-labile sulfur and molybdopterin guanine dinucleotide. Its molecular and catalytic properties were significantly different from those of the molybdenum isoenzyme characterized previously. The two isoenzymes also differed in their metal specificity: the active molybdenum isoenzyme was only synthesized when molybdenum was available during growth whereas the active tungsten isoenzyme was also generated during growth of the cells on molybdate medium. Under the latter conditions the tungsten isoenzyme was synthesized containing molybdenum rather than tungsten.
Collapse
Affiliation(s)
- P A Bertram
- Max-Planck-Institut für Terrestrische Mikrobiologie, Marburg, Germany
| | | | | | | |
Collapse
|
13
|
Bertram PA, Karrasch M, Schmitz RA, Böcher R, Albracht SP, Thauer RK. Formylmethanofuran dehydrogenases from methanogenic Archaea. Substrate specificity, EPR properties and reversible inactivation by cyanide of the molybdenum or tungsten iron-sulfur proteins. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 220:477-84. [PMID: 8125106 DOI: 10.1111/j.1432-1033.1994.tb18646.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Formylmethanofuran dehydrogenases, which are found in methanogenic Archaea, are molybdenum or tungsten iron-sulfur proteins containing a pterin cofactor. We report here on differences in substrate specificity, EPR properties and susceptibility towards cyanide inactivation of the enzymes from Methanosarcina barkeri, Methanobacterium thermoautotrophicum and Methanobacterium wolfei. The molybdenum enzyme from M. barkeri (relative activity with N-formylmethanofuran = 100%) was found to catalyze, albeit at considerably reduced apparent Vmax, the dehydrogenation of N-furfurylformamide (11%), N-methylformamide (0.2%), formamide (0.1%) and formate (1%). The molybdenum enzyme from M. wolfei could only use N-furfurylformamide (1%) and formate (3%) as pseudosubstrates. The molybdenum enzyme from M. thermoautotrophicum and the tungsten enzymes from M. thermoautotrophicum and M. wolfei were specific for N-formylmethanofuran. The molybdenum formylmethanofuran dehydrogenases exhibited at 77 K two rhombic EPR signals, designated FMDred and FMDox, both derived from Mo as shown by isotopic substitution with 97Mo. The FMDred signal was only displayed by the active enzyme in the reduced form and was lost upon enzyme oxidation; the FMDox signal was displayed by an inactive form and was not quenched by O2. The tungsten isoenzymes were EPR silent. The molybdenum formylmethanofuran dehydrogenases were found to be inactivated by cyanide whereas the tungsten isoenzymes, under the same conditions, were not inactivated. Inactivation was associated with a characteristic change in the molybdenum-derived EPR signal. Reactivation was possible in the presence of sulfide.
Collapse
Affiliation(s)
- P A Bertram
- Max-Planck-Institut für Terrestrische Mikrobiologie, Philipps-Universität Marburg, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Schmitz RA, Albracht SP, Thauer RK. Properties of the tungsten-substituted molybdenum formylmethanofuran dehydrogenase from Methanobacterium wolfei. FEBS Lett 1992; 309:78-81. [PMID: 1324851 DOI: 10.1016/0014-5793(92)80743-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In Methanobacterium wolfei two formylmethanofuran dehydrogenases are present, one of which is a molybdenum- and the other a tungsten enzyme. We report here that also the 'molybdenum' enzyme contained tungsten when the archaeon was grown on molybdenum-deprived medium supplemented with tungstate (1 microM). Unexpectedly the tungsten-substituted molybdenum enzyme was catalytically active and displayed a rhombic EPR signal which was attributed to tungsten by the characteristic 183W splitting.
Collapse
Affiliation(s)
- R A Schmitz
- Laboratorium für Mikrobiologie, Fachbereichs Biologie, Phillipps-Universität, Marburg, Germany
| | | | | |
Collapse
|
15
|
Schmitz RA, Richter M, Linder D, Thauer RK. A tungsten-containing active formylmethanofuran dehydrogenase in the thermophilic archaeon Methanobacterium wolfei. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 207:559-65. [PMID: 1633810 DOI: 10.1111/j.1432-1033.1992.tb17082.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Methanobacterium wolfei is a thermophilic methanogenic archaeon which requires tungsten or molybdenum for growth. We have found that the organism contains two formylmethanofuran dehydrogenases, one of which is a tungsten enzyme. Indirect evidence indicates that the other formylmethanofuran dehydrogenase is a molybdenum enzyme. The tungsten enzyme was purified and characterized. The native enzyme had an apparent molecular mass of 130 kDa. SDS/PAGE revealed a composition of three subunits of apparent molecular mass 35, 51 and 64 kDa, the N-terminal amino acid sequences of two of which were determined. 0.3-0.4 mol tungsten/mol enzyme was found but no molybdenum. The pterin cofactor was identified as molybdopterin guanine dinucleotide. The purified enzyme exhibited a specific activity of 8.3 mumol.min-1.mg protein-1 and an apparent Km for formylmethanofuran and methylviologen of 13 microM and 0.4 mM, respectively. The optimum temperature for activity was 65 degrees C. At 40-60 degrees C, the rate increased with a Q10 of 1.9; the activation energy of the reaction was 45 kJ/mol. The enzyme was found to require potassium ions for thermostability. The oxygen-sensitive enzyme was not inactivated by cyanide.
Collapse
Affiliation(s)
- R A Schmitz
- Laboratorium für Mikrobiologie, Philipps-Universität Marburg, Federal Republic of Germany
| | | | | | | |
Collapse
|
16
|
Koenig K, Andreesen JR. Xanthine dehydrogenase and 2-furoyl-coenzyme A dehydrogenase from Pseudomonas putida Fu1: two molybdenum-containing dehydrogenases of novel structural composition. J Bacteriol 1990; 172:5999-6009. [PMID: 2170335 PMCID: PMC526922 DOI: 10.1128/jb.172.10.5999-6009.1990] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The constitutive xanthine dehydrogenase and the inducible 2-furoyl-coenzyme A (CoA) dehydrogenase could be labeled with [185W]tungstate. This labeling was used as a reporter to purify both labile proteins. The radioactivity cochromatographed predominantly with the residual enzymatic activity of both enzymes during the first purification steps. Both radioactive proteins were separated and purified to homogeneity. Antibodies raised against the larger protein also exhibited cross-reactivity toward the second smaller protein and removed xanthine dehydrogenase and 2-furoyl-CoA dehydrogenase activity up to 80 and 60% from the supernatant of cell extracts, respectively. With use of cell extract, Western immunoblots showed only two bands which correlated exactly with the activity stains for both enzymes after native polyacrylamide gel electrophoresis. Molybdate was absolutely required for incorporation of 185W, formation of cross-reacting material, and enzymatic activity. The latter parameters showed a perfect correlation. This evidence proves that the radioactive proteins were actually xanthine dehydrogenase and 2-furoyl-CoA dehydrogenase. The apparent molecular weight of the native xanthine dehydrogenase was about 300,000, and that of 2-furoyl-CoA dehydrogenase was 150,000. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of both enzymes revealed two protein bands corresponding to molecular weights of 55,000 and 25,000. The xanthine dehydrogenase contained at least 1.6 mol of molybdenum, 0.9 ml of cytochrome b, 5.8 mol of iron, and 2.4 mol of labile sulfur per mol of enzyme. The composition of the 2-furoyl-CoA dehydrogenase seemed to be similar, although the stoichiometry was not determined. The oxidation of furfuryl alcohol to furfural and further to 2-furoic acid by Pseudomonas putida Fu1 was catalyzed by two different dehydrogenases.
Collapse
Affiliation(s)
- K Koenig
- Institut für Mikrobiologie, Universität Göttingen, Federal Republic of Germany
| | | |
Collapse
|
17
|
Colonna S, Manfredi A, Annunziata R, Spadoni M. Catalytic asymmetric weitz-scheffer epoxidation promoted by bovine serum albumin. Part II. Tetrahedron 1987. [DOI: 10.1016/s0040-4020(01)86797-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Purification and properties of NADP-dependent formate dehydrogenase from Clostridium thermoaceticum, a tungsten-selenium-iron protein. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(18)33062-x] [Citation(s) in RCA: 204] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
19
|
Rice C, Benson C, McAuliffe C, Hill W. The coordination chemistry of molybdenum and tungsten. Part XVI. Oxomolybdenum(V) and oxotungsten(V) complexes containing neutral monodentate and anionic bidentate Schiff base ligands. Inorganica Chim Acta 1982. [DOI: 10.1016/s0020-1693(00)87304-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
20
|
Prins RA, Cliné-Theil W, Malestein A, Counotte GH. Inhibition of nitrate reduction in some rumen bacteria by tungstate. Appl Environ Microbiol 1980; 40:163-5. [PMID: 7190809 PMCID: PMC291540 DOI: 10.1128/aem.40.1.163-165.1980] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Tungstate prevented the formation of active nitrate reductase in growing rumen bacteria capable of nitrate reduction, but did not directly inhibit the enzyme activity of all strains tested.
Collapse
|
21
|
Uotila L, Koivusalo M. Purification of formaldehyde and formate dehydrogenases from pea seeds by affinity chromatography and S-formylglutathione as the intermediate of formaldehyde metabolism. Arch Biochem Biophys 1979; 196:33-45. [PMID: 574372 DOI: 10.1016/0003-9861(79)90548-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Wagner R, Andreesen JR. Selenium requirement for active xanthine dehydrogenase from Clostridium acidiurici and Clostridium cylindrosporum. Arch Microbiol 1979; 121:255-60. [PMID: 518233 DOI: 10.1007/bf00425064] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The xanthine dehydrogenase of Clostridium acidiurici and C. cylindrosporum was assayed with methyl viologen as acceptor. In C. acidiurici the basal activity level was about 0.3 mumol/min x mg of protein. Cells grown on uric acid in the presence of 10(-7) M selenite showed a 14-fold increase in xanthine dehydrogenase activity, which decreased with higher selenite concentrations (10(-5) M). The supplementation with 10(-7) M molybdate or tungstate was without effect. High concentrations of tungstate decreased the xanthine dehydrogenase if selenite was also present. In comparison, high concentrations of molybdate affected only a small decrease in activity level at the optimal concentration for selenite and relieved to some degree the inhibitory effect of 10(-5) M selenite. With hypoxanthine and xanthine as substrates for growth again only the addition of selenite was necessary to show a similar increase in xanthine dehydrogenase activity. C. acidiurici could be grown in a mineral medium. Both xanthine dehydrogenase and formate dehydrogenase exhibited the highest level of activity if selenite and tungstate were present in that medium. In C. cyclindrosporum the basal activity level of xanthine dehydrogenase was about 0.95 mumol/min x mg of protein. The addition of 10(-7) M selenite to the growth medium increased the activity level about 3-fold, but the highest level (3.7 U/mg) was reached if 10(-7) M molybdate was also added. The presence of tungstate resulted in a decreased enzyme activity.
Collapse
|
23
|
Imhoff D, Andreesen JR. Nicotinic acid hydroxylase fromClostridium barkeri:Selenium-dependent formation of active enzyme. FEMS Microbiol Lett 1979. [DOI: 10.1111/j.1574-6968.1979.tb03269.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
24
|
The chemistry of molybdenum and tungsten. Part XIV. Oxomlybdenum(V) complexes of quinolines. Inorganica Chim Acta 1979. [DOI: 10.1016/s0020-1693(00)89445-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Ochiai EI. Principles in the selection of inorganic elements by organisms--application to molybdenum enzymes. Biosystems 1978; 10:329-37. [PMID: 570859 DOI: 10.1016/0303-2647(78)90016-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
26
|
Scherer PA, Thauer RK. Purification and properties of reduced ferredoxin: CO2 oxidoreductase from Clostridium pasteurianum, a molybdenum iron-sulfur-protein. EUROPEAN JOURNAL OF BIOCHEMISTRY 1978; 85:125-35. [PMID: 639811 DOI: 10.1111/j.1432-1033.1978.tb12220.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
McAuliffe C, McCullough F, Werfalli A. The chemistry of molybdenum and tungsten. Part XII. Molybdenum(V) and tungsten(V) complexes of nitrogen-sulphur chelating ligands. Facile amine deprotonations. Inorganica Chim Acta 1978. [DOI: 10.1016/s0020-1693(00)89627-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Sykes A. Substitution and redox reactions of molybdenum species in aqueous solution and possible relevance to the function of molybdenum in enzymes. ACTA ACUST UNITED AC 1977. [DOI: 10.1016/0022-5088(77)90062-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|