1
|
Elumalai S, Karunakaran U, Moon JS, Won KC. NADPH Oxidase (NOX) Targeting in Diabetes: A Special Emphasis on Pancreatic β-Cell Dysfunction. Cells 2021; 10:cells10071573. [PMID: 34206537 PMCID: PMC8307876 DOI: 10.3390/cells10071573] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 12/24/2022] Open
Abstract
In type 2 diabetes, metabolic stress has a negative impact on pancreatic β-cell function and survival (T2D). Although the pathogenesis of metabolic stress is complex, an imbalance in redox homeostasis causes abnormal tissue damage and β-cell death due to low endogenous antioxidant expression levels in β-cells. Under diabetogenic conditions, the susceptibility of β-cells to oxidative damage by NADPH oxidase has been related to contributing to β-cell dysfunction. Here, we consider recent insights into how the redox response becomes deregulated under diabetic conditions by NADPH oxidase, as well as the therapeutic benefits of NOX inhibitors, which may provide clues for understanding the pathomechanisms and developing strategies aimed at the treatment or prevention of metabolic stress associated with β-cell failure.
Collapse
Affiliation(s)
- Suma Elumalai
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu 42415, Korea; (S.E.); (U.K.)
| | - Udayakumar Karunakaran
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu 42415, Korea; (S.E.); (U.K.)
| | - Jun-Sung Moon
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu 42415, Korea; (S.E.); (U.K.)
- Department of Internal Medicine, Yeungnam Universtiy College of Medicine, Daegu 42415, Korea
- Correspondence: (J.-S.M.); (K.-C.W.); Tel.: +82-53-620-3825 (J.-S.W.); +82-53-620-3846 (K.-C.W.)
| | - Kyu-Chang Won
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu 42415, Korea; (S.E.); (U.K.)
- Department of Internal Medicine, Yeungnam Universtiy College of Medicine, Daegu 42415, Korea
- Correspondence: (J.-S.M.); (K.-C.W.); Tel.: +82-53-620-3825 (J.-S.W.); +82-53-620-3846 (K.-C.W.)
| |
Collapse
|
2
|
Hussein NH, Amin NS, El Tayebi HM. GPI-AP: Unraveling a New Class of Malignancy Mediators and Potential Immunotherapy Targets. Front Oncol 2020; 10:537311. [PMID: 33344222 PMCID: PMC7746843 DOI: 10.3389/fonc.2020.537311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 10/19/2020] [Indexed: 12/22/2022] Open
Abstract
With millions of cases diagnosed annually and high economic burden to cover expensive costs, cancer is one of the most difficult diseases to treat due to late diagnosis and severe adverse effects from conventional therapy. This creates an urgent need to find new targets for early diagnosis and therapy. Progress in research revealed the key steps of carcinogenesis. They are called cancer hallmarks. Zooming in, cancer hallmarks are characterized by ligands binding to their cognate receptor and so triggering signaling cascade within cell to make response for stimulus. Accordingly, understanding membrane topology is vital. In this review, we shall discuss one type of transmembrane proteins: Glycosylphosphatidylinositol-Anchored Proteins (GPI-APs), with specific emphasis on those involved in tumor cells by evading immune surveillance and future applications for diagnosis and immune targeted therapy.
Collapse
|
3
|
Loureiro CA, Pinto FR, Barros P, Matos P, Jordan P. A SYK/SHC1 pathway regulates the amount of CFTR in the plasma membrane. Cell Mol Life Sci 2020; 77:4997-5015. [PMID: 31974654 PMCID: PMC11105000 DOI: 10.1007/s00018-020-03448-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/06/2019] [Accepted: 01/02/2020] [Indexed: 11/24/2022]
Abstract
Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause the recessive genetic disease cystic fibrosis, where the chloride transport across the apical membrane of epithelial cells mediated by the CFTR protein is impaired. CFTR protein trafficking to the plasma membrane (PM) is the result of a complex interplay between the secretory and membrane recycling pathways that control the number of channels present at the membrane. In addition, the ion transport activity of CFTR at the PM is modulated through post-translational protein modifications. Previously we described that spleen tyrosine kinase (SYK) phosphorylates a specific tyrosine residue in the nucleotide-binding domain 1 domain and this modification can regulate the PM abundance of CFTR. Here we identified the underlying biochemical mechanism using peptide pull-down assays followed by mass spectrometry. We identified in bronchial epithelial cells that the adaptor protein SHC1 recognizes tyrosine-phosphorylated CFTR through its phosphotyrosine-binding domain and that the formation of a complex between SHC1 and CFTR is induced at the PM in the presence of activated SYK. The depletion of endogenous SHC1 expression was sufficient to promote an increase in CFTR at the PM of these cells. The results identify a SYK/SHC1 pathway that regulates the PM levels of CFTR channels, contributing to a better understanding of how CFTR-mediated chloride secretion is regulated.
Collapse
Affiliation(s)
- Cláudia Almeida Loureiro
- Department of Human Genetics, National Health Institute 'Dr. Ricardo Jorge', Avenida Padre Cruz, 1649-016, Lisbon, Portugal
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Francisco R Pinto
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Patrícia Barros
- Department of Human Genetics, National Health Institute 'Dr. Ricardo Jorge', Avenida Padre Cruz, 1649-016, Lisbon, Portugal
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Paulo Matos
- Department of Human Genetics, National Health Institute 'Dr. Ricardo Jorge', Avenida Padre Cruz, 1649-016, Lisbon, Portugal
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Peter Jordan
- Department of Human Genetics, National Health Institute 'Dr. Ricardo Jorge', Avenida Padre Cruz, 1649-016, Lisbon, Portugal.
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
4
|
Vigorelli V, Resta J, Bianchessi V, Lauri A, Bassetti B, Agrifoglio M, Pesce M, Polvani G, Bonalumi G, Cavallotti L, Alamanni F, Genovese S, Pompilio G, Vinci MC. Abnormal DNA Methylation Induced by Hyperglycemia Reduces CXCR 4 Gene Expression in CD 34 + Stem Cells. J Am Heart Assoc 2020; 8:e010012. [PMID: 31018749 PMCID: PMC6512087 DOI: 10.1161/jaha.118.010012] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background CD 34+ stem/progenitor cells are involved in vascular homeostasis and in neovascularization of ischemic tissues. The number of circulating CD 34+ stem cells is a predictive biomarker of adverse cardiovascular outcomes in diabetic patients. Here, we provide evidence that hyperglycemia can be "memorized" by the stem cells through epigenetic changes that contribute to onset and maintenance of their dysfunction in diabetes mellitus. Methods and Results Cord-blood-derived CD 34+ stem cells exposed to high glucose displayed increased reactive oxygen species production, overexpression of p66shc gene, and downregulation of antioxidant genes catalase and manganese superoxide dismutase when compared with normoglycemic cells. This altered oxidative state was associated with impaired migration ability toward stromal-cell-derived factor 1 alpha and reduced protein and mRNA expression of the C-X-C chemokine receptor type 4 ( CXCR 4) receptor. The methylation analysis by bisulfite Sanger sequencing of the CXCR 4 promoter revealed a significant increase in DNA methylation density in high-glucose CD 34+ stem cells that negatively correlated with mRNA expression (Pearson r=-0.76; P=0.004). Consistently, we found, by chromatin immunoprecipitation assay, a more transcriptionally inactive chromatin conformation and reduced RNA polymerase II engagement on the CXCR 4 promoter. Notably, alteration of CXCR 4 DNA methylation, as well as transcriptional and functional defects, persisted in high-glucose CD 34+ stem cells despite recovery in normoglycemic conditions. Importantly, such an epigenetic modification was thoroughly confirmed in bone marrow CD 34+ stem cells isolated from sternal biopsies of diabetic patients undergoing coronary bypass surgery. Conclusions CD 34+ stem cells "memorize" the hyperglycemic environment in the form of epigenetic modifications that collude to alter CXCR 4 receptor expression and migration.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Francesco Alamanni
- 1 IRCCS Centro Cardiologico Monzino Milan Italy.,3 Department of Clinical Sciences and Community Health Università degli Studi di Milano Milan Italy
| | | | - Giulio Pompilio
- 1 IRCCS Centro Cardiologico Monzino Milan Italy.,3 Department of Clinical Sciences and Community Health Università degli Studi di Milano Milan Italy
| | | |
Collapse
|
5
|
MicroRNAs in Cancer Treatment-Induced Cardiotoxicity. Cancers (Basel) 2020; 12:cancers12030704. [PMID: 32192047 PMCID: PMC7140035 DOI: 10.3390/cancers12030704] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 12/20/2022] Open
Abstract
Cancer treatment has made significant progress in the cure of different types of tumors. Nevertheless, its clinical use is limited by unwanted cardiotoxicity. Aside from the conventional chemotherapy approaches, even the most newly developed, i.e., molecularly targeted therapy and immunotherapy, exhibit a similar frequency and severity of toxicities that range from subclinical ventricular dysfunction to severe cardiomyopathy and, ultimately, congestive heart failure. Specific mechanisms leading to cardiotoxicity still remain to be elucidated. For instance, oxidative stress and DNA damage are considered key players in mediating cardiotoxicity in different treatments. microRNAs (miRNAs) act as key regulators in cell proliferation, cell death, apoptosis, and cell differentiation. Their dysregulation has been associated with adverse cardiac remodeling and toxicity. This review provides an overview of the cardiotoxicity induced by different oncologic treatments and potential miRNAs involved in this effect that could be used as possible therapeutic targets.
Collapse
|
6
|
Pibiri M. Liver regeneration in aged mice: new insights. Aging (Albany NY) 2019; 10:1801-1824. [PMID: 30157472 PMCID: PMC6128415 DOI: 10.18632/aging.101524] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 08/10/2018] [Indexed: 02/06/2023]
Abstract
The regenerative capacity of the liver after resection is reduced with aging. Recent studies on rodents revealed that both intracellular and extracellular factors are involved in the impairment of liver mass recovery during aging. Among the intracellular factors, age-dependent decrease of BubR1 (budding uninhibited by benzimidazole-related 1), YAP (Yes-associated protein) and SIRT1 (Sirtuin-1) have been associated to dampening of tissue reconstitution and inhibition of cell cycle genes following partial hepatectomy. Extra-cellular factors, such as age-dependent changes in hepatic stellate cells affect liver regeneration through inhibition of progenitor cells and reduction of liver perfusion. Furthermore, chronic release of pro-inflammatory proteins by senescent cells (SASP) affects cell proliferation suggesting that senescent cell clearance might improve tissue regeneration. Accordingly, young plasma restores liver regeneration in aged animals through autophagy re-establishment. This review will discuss how intracellular and extracellular factors cooperate to guarantee a proper liver regeneration and the possible causes of its impairment during aging. The possibility that an improvement of the liver regenerative capacity in elderly might be achieved through elimination of senescent cells via autophagy or by administration of direct mitogenic agents devoid of cytotoxicity will also be entertained.
Collapse
Affiliation(s)
- Monica Pibiri
- Department of Biomedical Sciences, Oncology and Molecular Pathology Unit, University of Cagliari, Cagliari 09124, Italy
| |
Collapse
|
7
|
P66Shc Deletion Ameliorates Oxidative Stress and Cardiac Dysfunction in Pressure Overload-Induced Heart Failure. J Card Fail 2019; 26:243-253. [PMID: 31536807 DOI: 10.1016/j.cardfail.2019.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 01/27/2023]
Abstract
OBJECTIVE p66Shc is a redox enzyme that plays an important role in the response of oxidative stress and the p53-dependent apoptosis. The expression level of p66Shc has a negative correlation with the resistance of oxidative stress in vivo and in vitro. We aim to demonstrate the function of p66Shc in pressure overload-induced heart failure. METHODS AND RESULTS The pressure overload-induced heart failure was induced in mice by transverse aortic constriction (TAC). Cardiac dysfunction was shown by transthoracic echocardiography. Western blot was used to check the protein levels of phosphodiesterase type 5 (PDE5) and ventricular oxidative stress markers. Superoxide dismutase (SOD) mimetic M40401 and PDE5 inhibitor sildenafil were used in the treatment of mice. The deletion of p66Shc attenuated cardiac dysfunction and oxidative stress in pressure overload-induced heart failure. p66Shc deletion also decreased the expression of ventricular oxidative stress markers and enhanced PKG signaling by promoting the expression of PDE5. M40401 and sildenafil attenuated the TAC-induced cardiac dysfunction and oxidative stress in p66Shc overexpression mice. CONCLUSIONS Our findings suggest that p66Shc participates in the regulation of cardiac dysfunction and oxidative stress in TAC-derived pressure overload-induced heart failure in mice, and SOD and PDE5 are molecules downstream of p66Shc in this regulatory process.
Collapse
|
8
|
Modulation of Obesity and Insulin Resistance by the Redox Enzyme and Adaptor Protein p66 Shc. Int J Mol Sci 2019; 20:ijms20040985. [PMID: 30813483 PMCID: PMC6412263 DOI: 10.3390/ijms20040985] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/15/2019] [Accepted: 02/21/2019] [Indexed: 12/27/2022] Open
Abstract
Initially reported as a longevity-related protein, the 66 kDa isoform of the mammalian Shc1 locus has been implicated in several metabolic pathways, being able to act both as an adaptor protein and as a redox enzyme capable of generating reactive oxygen species (ROS) when it localizes to the mitochondrion. Ablation of p66Shc has been shown to be protective against obesity and the insurgence of insulin resistance, but not all the studies available in the literature agree on these points. This review will focus in particular on the role of p66Shc in the modulation of glucose homeostasis, obesity, body temperature, and respiration/energy expenditure. In view of the obesity and diabetes epidemic, p66Shc may represent a promising therapeutic target with enormous implications for human health.
Collapse
|
9
|
Role of miR-200c in Myogenic Differentiation Impairment via p66Shc: Implication in Skeletal Muscle Regeneration of Dystrophic mdx Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4814696. [PMID: 29636844 PMCID: PMC5831318 DOI: 10.1155/2018/4814696] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/18/2017] [Accepted: 12/25/2017] [Indexed: 11/18/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a genetic disease associated with mutations of Dystrophin gene that regulate myofiber integrity and muscle degeneration, characterized by oxidative stress increase. We previously published that reactive oxygen species (ROS) induce miR-200c that is responsible for apoptosis and senescence. Moreover, we demonstrated that miR-200c increases ROS production and phosphorylates p66Shc in Ser-36. p66Shc plays an important role in muscle differentiation; we previously showed that p66Shc−/− muscle satellite cells display lower oxidative stress levels and higher proliferation rate and differentiated faster than wild-type (wt) cells. Moreover, myogenic conversion, induced by MyoD overexpression, is more efficient in p66Shc−/− fibroblasts compared to wt cells. Herein, we report that miR-200c overexpression in cultured myoblasts impairs skeletal muscle differentiation. Further, its overexpression in differentiated myotubes decreases differentiation indexes. Moreover, anti-miR-200c treatment ameliorates myogenic differentiation. In keeping, we found that miR-200c and p66Shc Ser-36 phosphorylation increase in mdx muscles. In conclusion, miR-200c inhibits muscle differentiation, whereas its inhibition ameliorates differentiation and its expression levels are increased in mdx mice and in differentiated human myoblasts of DMD. Therefore, miR-200c might be responsible for muscle wasting and myotube loss, most probably via a p66Shc-dependent mechanism in a pathological disease such as DMD.
Collapse
|
10
|
Wright KD, Staruschenko A, Sorokin A. Role of adaptor protein p66Shc in renal pathologies. Am J Physiol Renal Physiol 2017; 314:F143-F153. [PMID: 28978535 DOI: 10.1152/ajprenal.00414.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
p66Shc is one of the three adaptor proteins encoded by the Shc1 gene, which are expressed in many organs, including the kidney. Recent studies shed new light on several key questions concerning the signaling mechanisms mediated by p66Shc. The central goal of this review article is to summarize recent findings on p66Shc and the role it plays in kidney physiology and pathology. This article provides a review of the various mechanisms whereby p66Shc has been shown to function within the kidney through a wide range of actions. The mitochondrial and cytoplasmic signaling of p66Shc, as it relates to production of reactive oxygen species (ROS) and renal pathologies, is further discussed.
Collapse
Affiliation(s)
- Kevin D Wright
- Cardiovascular Center, Medical College of Wisconsin , Milwaukee, Wisconsin.,Department of Medicine, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Alexander Staruschenko
- Cardiovascular Center, Medical College of Wisconsin , Milwaukee, Wisconsin.,Department of Physiology, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Andrey Sorokin
- Cardiovascular Center, Medical College of Wisconsin , Milwaukee, Wisconsin.,Department of Medicine, Medical College of Wisconsin , Milwaukee, Wisconsin
| |
Collapse
|
11
|
Bonsi L, Pierdomenico L, Biscardi M, Marchionni C, Gavazzi S, Fossati V, Ghinassi B, Alviano F, Rondelli D, Franchina M, Bagnara GP, Grossi A. Constitutive and Stimulated Production of Vegf by Human Megakaryoblastic Cell Lines: Effect on Proliferation and Signaling Pathway. Int J Immunopathol Pharmacol 2016; 18:445-55. [PMID: 16164827 DOI: 10.1177/039463200501800305] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Release of vascular endothelial growth factor (VEGF) and other candidate angiogenic factors such as basic fibroblast growth factor and transforming growth factor β, may play a role in sustaining neoplastic cell proliferation and tumor growth. We evaluated VEGF expression and synthesis in the two erythro-megakaryocytic cell lines B1647, HEL and one megakaryocyte cell line MO7 expressing erythroid markers. In this study RT-PCR was performed to evaluate VEGF expression and that of its receptor KDR; VEGF production was assayed by Elisa test and western blot analysis; sensitivity to VEGF was tested by thymidine incorporation. VEGF and its receptor KDR were expressed in B1647 and HEL, both as mRNAs and as proteins, while only KDR transcript was found in MO7 cells. Only B1647 and HEL cells showed a strong spontaneous proliferating activity. In fact, measurable amounts of VEGF were present in the unstimulated cell medium, thus suggesting an autocrine production of VEGF by B1647 and HEL cells, but not by MO7, which was inhibited in mRNA-silencing conditions. This production could not be further boosted by other growth factors, whereas it was inhibited by TGF-β1. Finally, analysis of She signal transduction proteins following stimulation with VEGF indicated that only p46 was tyrosine phosphorylated. These data indicate that leukemic cells may be capable of autocrine production of VEGF which, in turn, maintains cell proliferation, possibly mediated by She p46 phosphorylation.
Collapse
Affiliation(s)
- L Bonsi
- Department of Histology, Embryology and Applied Biology, University of Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Bhat SS, Anand D, Khanday FA. p66Shc as a switch in bringing about contrasting responses in cell growth: implications on cell proliferation and apoptosis. Mol Cancer 2015; 14:76. [PMID: 25890053 PMCID: PMC4421994 DOI: 10.1186/s12943-015-0354-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 03/29/2015] [Indexed: 01/19/2023] Open
Abstract
p66Shc, a member of the ShcA (Src homologous- collagen homologue) adaptor protein family, is one of the three isoforms of this family along with p46Shc and p52Shc. p66Shc, a 66 kDa protein is different from the other isoforms of the ShcA family. p66Shc is the longest isoform of the ShcA family. p66Shc has an additional CH domain at the N-terminal, called the CH2 domain, which is not not present in the other isoforms. This CH2 domain contains a very crucial S36 residue which is phosphorylated in response to oxidative stress and plays a role in apoptosis. Whereas p52Shc and p46Shc are ubiquitously expressed, p66Shc shows constrained expression. This adaptor protein has been shown to be involved in mediating and executing the post effects of oxidative stress and increasing body of evidence is pinpointing to its role in carcinogenesis as well. It shows proto-oncogenic as well as pro-apoptotic properties. This multitasking protein is involved in regulating different networks of cell signaling. On one hand it shows an increased expression profile in different cancers, has a positive role in cell proliferation and migration, whereas on the other hand it promotes apoptosis under oxidative stress conditions by acting as a sensor of ROS (Reactive Oxygen Species). This paradoxical role of p66Shc could be attributed to its involvement in ROS production, as ROS is known to both induce cell proliferation as well as apoptosis. p66Shc by regulating intracellular ROS levels plays a crucial role in regulating longevity and cell senescence. These multi-faceted properties of p66Shc make it a perfect candidate protein for further studies in various cancers and aging related diseases. p66Shc can be targeted in terms of it being used as a possible therapeutic target in various diseases. This review focuses on p66Shc and highlights its role in promoting apoptosis via different cell signaling networks, its role in cell proliferation, along with its presence and role in different forms of cancers.
Collapse
Affiliation(s)
- Sahar S Bhat
- Department Of Biotechnology, University of Kashmir, Srinagar, 190006, Kashmir, India.
| | - Deepak Anand
- Department of Life Sciences, King Fahad University of Petroleum and Minerals, Bld: 7, Room: 129, Dhahran, 31261, Kingdom of Saudi Arabia.
| | - Firdous A Khanday
- Department of Life Sciences, King Fahad University of Petroleum and Minerals, Bld: 7, Room: 129, Dhahran, 31261, Kingdom of Saudi Arabia.
| |
Collapse
|
13
|
Priami C, De Michele G, Cotelli F, Cellerino A, Giorgio M, Pelicci PG, Migliaccio E. Modelling the p53/p66Shc Aging Pathway in the Shortest Living Vertebrate Nothobranchius Furzeri. Aging Dis 2015; 6:95-108. [PMID: 25821638 DOI: 10.14336/ad.2014.0228] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 02/28/2014] [Indexed: 12/23/2022] Open
Abstract
Oxidative stress induced by reactive oxygen species (ROS) increases during lifespan and is involved in aging processes. The p66Shc adaptor protein is a master regulator of oxidative stress response in mammals. Ablation of p66Shc enhances oxidative stress resistance both in vitro and in vivo. Most importantly, it has been demonstrated that its deletion retards aging in mice. Recently, new insights in the molecular mechanisms involving p66Shc and the p53 tumor suppressor genes were given: a specific p66Shc/p53 transcriptional regulation pathway was uncovered as determinant in oxidative stress response and, likely, in aging. p53, in a p66Shc-dependent manner, negatively downregulates the expression of 200 genes which are involved in the G2/M transition of mitotic cell cycle and are downregulated during physiological aging. p66Shc modulates the response of p53 by activating a p53 isoform (p44/p53, also named Delta40p53). Based on these latest results, several developments are expected in the future, as the generation of animal models to study aging and the evaluation of the use of the p53/p66Shc target genes as biomarkers in aging related diseases. The aim of this review is to investigate the conservation of the p66Shc and p53 role in oxidative stress between fish and mammals. We propose to approach this study trough a new model organism, the annual fish Nothobranchius furzeri, that has been demonstrated to develop typical signs of aging, like in mammals, including senescence, neurodegeneration, metabolic disorders and cancer.
Collapse
Affiliation(s)
- Chiara Priami
- 1European Institute of Oncology, Via Ripamonti 435, 20141 Milan, Italy. ; 3Dipartimento di Bioscienze, University of Milan, Italy
| | - Giulia De Michele
- 1European Institute of Oncology, Via Ripamonti 435, 20141 Milan, Italy
| | | | | | - Marco Giorgio
- 1European Institute of Oncology, Via Ripamonti 435, 20141 Milan, Italy
| | - Pier Giuseppe Pelicci
- 1European Institute of Oncology, Via Ripamonti 435, 20141 Milan, Italy. ; 2Dipartimento di Medicina, Chirurgia e Odontoiatria, University of Milan, Italy
| | - Enrica Migliaccio
- 1European Institute of Oncology, Via Ripamonti 435, 20141 Milan, Italy
| |
Collapse
|
14
|
Coco S, Truini A, Alama A, Dal Bello MG, Venè R, Garuti A, Carminati E, Rijavec E, Genova C, Barletta G, Sini C, Ballestrero A, Boccardo F, Grossi F. Afatinib resistance in non-small cell lung cancer involves the PI3K/AKT and MAPK/ERK signalling pathways and epithelial-to-mesenchymal transition. Target Oncol 2014; 10:393-404. [PMID: 25341405 DOI: 10.1007/s11523-014-0344-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 10/13/2014] [Indexed: 12/22/2022]
Abstract
The epidermal growth factor receptor (EGFR) signalling is one of the most deregulated pathways in non-small cell lung cancer (NSCLC). Recently, the development of novel irreversible tyrosine kinase inhibitors (TKI), such as afatinib, has significantly improved the survival of advanced NSCLC patients harbouring activated EGFR mutations. However, treatment with TKI is not always curative due to the development of resistance. In the present study, we investigated the sensitivity to afatinib in two NSCLC EGFR mutated cell lines (NCI-H1650 and NCI-H1975) by expression profile analysis of 92 genes involved in the EGF pathway. Thereafter, the established afatinib resistant clones were evaluated at different biological levels: genomic, by array comparative genomic hybridisation (aCGH) and deep sequencing; transcriptomic, by quantitative polymerase chain reaction (qPCR) and proteomic, by Western blot and immunofluorescence. The baseline gene expression of the two cell lines revealed that NCI-H1650, the less afatinib-responsive cell, showed activation of two main EGFR downstream pathways such as PI3K/AKT and PLCγ/PKC axes. Analysis of the afatinib-resistant cells showed PI3K/AKT and MAPK/ERK pathways activation together with a biological switch from an epithelial-to-mesenchymal phenotype might confer afatinib-resistant properties to this cell line. Our data suggest that the activation of EGFR-dependent downstream pathways might be involved in the occurrence of resistance to afatinib assuming that the EGFR mutational status should not be exclusively considered when selecting TKI treatments. In particular, the epithelial-to-mesenchymal transition might provide a new basis for understanding afatinib resistance.
Collapse
Affiliation(s)
- Simona Coco
- Lung Cancer Unit, IRCCS AOU San Martino-IST, L.go R. Benzi 10, 16132, Genoa, Italy,
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Shi Y, Lüscher TF, Camici GG. Dual role of endothelial nitric oxide synthase in oxidized LDL-induced, p66Shc-mediated oxidative stress in cultured human endothelial cells. PLoS One 2014; 9:e107787. [PMID: 25247687 PMCID: PMC4172699 DOI: 10.1371/journal.pone.0107787] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 08/21/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The aging gene p66Shc, is an important mediator of oxidative stress-induced vascular dysfunction and disease. In cultured human aortic endothelial cells (HAEC), p66Shc deletion increases endothelial nitric oxide synthase (eNOS) expression and nitric oxide (NO) bioavailability via protein kinase B. However, the putative role of the NO pathway on p66Shc activation remains unclear. This study was designed to elucidate the regulatory role of the eNOS/NO pathway on p66Shc activation. METHODS AND RESULTS Incubation of HAEC with oxidized low density lipoprotein (oxLDL) led to phosphorylation of p66Shc at Ser-36, resulting in an enhanced production of superoxide anion (O2-). In the absence of oxLDL, inhibition of eNOS by small interfering RNA or L-NAME, induced p66Shc phosphorylation, suggesting that basal NO production inhibits O2- production. oxLDL-induced, p66Shc-mediated O2- was prevented by eNOS inhibition, suggesting that when cells are stimulated with oxLDL eNOS is a source of reactive oxygen species. Endogenous or exogenous NO donors, prevented p66Shc activation and reduced O2- production. Treatment with tetrahydrobiopterin, an eNOS cofactor, restored eNOS uncoupling, prevented p66Shc activation, and reduced O2- generation. However, late treatment with tetrahydropterin did not yield the same result suggesting that eNOS uncoupling is the primary source of reactive oxygen species. CONCLUSIONS The present study reports that in primary cultured HAEC treated with oxLDL, p66Shc-mediated oxidative stress is derived from eNOS uncoupling. This finding contributes novel information on the mechanisms of p66Shc activation and its dual interaction with eNOS underscoring the importance eNOS uncoupling as a putative antioxidant therapeutical target in endothelial dysfunction as observed in cardiovascular disease.
Collapse
Affiliation(s)
- Yi Shi
- Cardiology, University Heart Center, University Hospital Zürich and Center for Molecular Cardiology, Campus Schlieren, University of Zurich, Zurich, Switzerland
- Center for Integrative Human Physiology (ZHIP), University of Zurich, Zurich, Switzerland
- Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Thomas F. Lüscher
- Cardiology, University Heart Center, University Hospital Zürich and Center for Molecular Cardiology, Campus Schlieren, University of Zurich, Zurich, Switzerland
- Center for Integrative Human Physiology (ZHIP), University of Zurich, Zurich, Switzerland
| | - Giovanni G. Camici
- Cardiology, University Heart Center, University Hospital Zürich and Center for Molecular Cardiology, Campus Schlieren, University of Zurich, Zurich, Switzerland
- Center for Integrative Human Physiology (ZHIP), University of Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
Abstract
Although constitutive activation of Janus kinase 3 (Jak3) leads to different cancers, the mechanism of trans-molecular regulation of Jak3 activation is not known. Previously we reported that Jak3 interactions with adapter protein p52ShcA (Shc) facilitate mucosal homeostasis. In this study, we characterize the structural determinants that regulate the interactions between Jak3 and Shc and demonstrate the trans-molecular mechanism of regulation of Jak3 activation by Shc. We show that Jak3 autophosphorylation was the rate-limiting step during Jak3 trans-phosphorylation of Shc where Jak3 directly phosphorylated two tyrosine residues in Src homology 2 (SH2) domain and one tyrosine residue each in calponin homology 1 (CH1) domain and phosphotyrosine interaction domain (PID) of Shc. Direct interactions between mutants of Jak3 and Shc showed that although FERM domain of Jak3 was sufficient for binding to Shc, CH1 and PID domains of Shc were responsible for binding to Jak3. Functionally Jak3 was autophosphorylated under IL-2 stimulation in epithelial cells. However, Shc recruited tyrosine phosphatases SHP2 and PTP1B to Jak3 and thereby dephosphorylated Jak3. Thus we not only characterize Jak3 interaction with Shc, but also demonstrate the molecular mechanism of intracellular regulation of Jak3 activation where Jak3 interactions with Shc acted as regulators of Jak3 dephosphorylation through direct interactions of Shc with both Jak3 and tyrosine phosphatases.
Collapse
Affiliation(s)
- Jayshree Mishra
- From the Department of Pharmaceutical Sciences, Irma Lerma Rangel (ILR) College of Pharmacy Texas A&M Health Science Center, Kingsville, Texas 78363
| | - Narendra Kumar
- From the Department of Pharmaceutical Sciences, Irma Lerma Rangel (ILR) College of Pharmacy Texas A&M Health Science Center, Kingsville, Texas 78363
| |
Collapse
|
17
|
Yang SK, Xiao L, Li J, Liu F, Sun L. Oxidative stress, a common molecular pathway for kidney disease: Role of the redox enzyme p66Shc. Ren Fail 2013; 36:313-20. [DOI: 10.3109/0886022x.2013.846867] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
18
|
The p66Shc gene paves the way for healthspan: Evolutionary and mechanistic perspectives. Neurosci Biobehav Rev 2013; 37:790-802. [DOI: 10.1016/j.neubiorev.2013.03.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 03/04/2013] [Accepted: 03/11/2013] [Indexed: 12/23/2022]
|
19
|
Tzschoppe A, Doerr H, Rascher W, Goecke T, Beckmann M, Schild R, Struwe E, Geisel J, Jung H, Dötsch J. DNA methylation of the p66Shc promoter is decreased in placental tissue from women delivering intrauterine growth restricted neonates. Prenat Diagn 2013; 33:484-91. [PMID: 23529764 DOI: 10.1002/pd.4096] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE The adaptor protein p66Shc generates mitochondrial reactive oxygen species and translates oxidative signals into apoptosis. We aimed to analyze potential alterations in total methylation and in p66Shc activation in placental tissues from women delivering intrauterine growth restricted neonates (IUGR) versus appropriate for gestational age (AGA) and small for gestational age (SGA) neonates. METHOD DNA methylation of the p66Shc promoter and of long interspersed nuclear elements (LINE-1), as a marker for total methylation, was quantified by automatic pyrosequencing in 15 IUGR, 25 AGA and 15 SGA placentas. Placental gene expression of p66Shc was determined by TaqMan real-time polymerase chain reaction. RESULTS No significant difference was found for LINE-1 methylation between IUGR, AGA and SGA newborns. DNA methylation of the p66Shc promoter was significantly decreased in the IUGR compared with the AGA group (p < 0.0001) and the SGA group (p < 0.0001). However, analysis of placental p66Shc gene expression did not show a significant difference between the three groups. CONCLUSION It remains speculative if the decreased p66Shc promoter methylation might play a role in the pathophysiology of endothelial dysfunction and cardiovascular disease after IUGR.
Collapse
Affiliation(s)
- Anja Tzschoppe
- Pediatrics, University of Erlangen-Nuremberg, Erlangen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Hou X, Tang Z, Liu H, Wang N, Ju H, Li K. Discovery of MicroRNAs associated with myogenesis by deep sequencing of serial developmental skeletal muscles in pigs. PLoS One 2012; 7:e52123. [PMID: 23284895 PMCID: PMC3528764 DOI: 10.1371/journal.pone.0052123] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 11/15/2012] [Indexed: 01/20/2023] Open
Abstract
MicroRNAs (miRNAs) are short, single-stranded non-coding RNAs that repress their target genes by binding their 3′ UTRs. These RNAs play critical roles in myogenesis. To gain knowledge about miRNAs involved in the regulation of myogenesis, porcine longissimus muscles were collected from 18 developmental stages (33-, 40-, 45-, 50-, 55-, 60-, 65-, 70-, 75-, 80-, 85-, 90-, 95-, 100- and 105-day post-gestation fetuses, 0 and 10-day postnatal piglets and adult pigs) to identify miRNAs using Solexa sequencing technology. We detected 197 known miRNAs and 78 novel miRNAs according to comparison with known miRNAs in the miRBase (release 17.0) database. Moreover, variations in sequence length and single nucleotide polymorphisms were also observed in 110 known miRNAs. Expression analysis of the 11 most abundant miRNAs were conducted using quantitative PCR (qPCR) in eleven tissues (longissimus muscles, leg muscles, heart, liver, spleen, lung, kidney, stomach, small intestine and colon), and the results revealed that ssc-miR-378, ssc-miR-1 and ssc-miR-206 were abundantly expressed in skeletal muscles. During skeletal muscle development, the expression level of ssc-miR-378 was low at 33 days post-coitus (dpc), increased at 65 and 90 dpc, peaked at postnatal day 0, and finally declined and maintained a comparatively stable level. This expression profile suggested that ssc-miR-378 was a new candidate miRNA for myogenesis and participated in skeletal muscle development in pigs. Target prediction and KEGG pathway analysis suggested that bone morphogenetic protein 2 (BMP2) and mitogen-activated protein kinase 1 (MAPK1), both of which were relevant to proliferation and differentiation, might be the potential targets of miR-378. Luciferase activities of report vectors containing the 3′UTR of porcine BMP2 or MAPK1 were downregulated by miR-378, which suggested that miR-378 probably regulated myogenesis though the regulation of these two genes.
Collapse
Affiliation(s)
- Xinhua Hou
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Zhonglin Tang
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
- * E-mail: (ZT); (HL)
| | - Honglin Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China
- * E-mail: (ZT); (HL)
| | - Ning Wang
- College of Animal Science and Technology, Northeast Agricultural University, Haerbin, P.R. China
| | - Huiming Ju
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Kui Li
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| |
Collapse
|
22
|
Abstract
Shc (Src homology and collagen homology) proteins are considered prototypical signalling adaptors in mammalian cells. Consisting of four unique members, ShcA, B, C and D, and multiple splice isoforms, the family is represented in nearly every cell type in the body, where it engages in an array of fundamental processes to transduce environmental stimuli. Two decades of investigation have begun to illuminate the mechanisms of the flagship ShcA protein, whereas much remains to be learned about the newest discovery, ShcD. It is clear, however, that the distinctive modular architecture of Shc proteins, their promiscuous phosphotyrosine-based interactions with a multitude of membrane receptors, involvement in central cascades including MAPK (mitogen-activated protein kinase) and Akt, and unconventional contributions to oxidative stress and apoptosis all require intricate regulation, and underlie diverse physiological function. From early cardiovascular development and neuronal differentiation to lifespan determination and tumorigenesis, Shc adaptors have proven to be more ubiquitous, versatile and dynamic than their structures alone suggest.
Collapse
|
23
|
Sone K, Mori M, Mori N. Selective upregulation of p66-Shc gene expression in the liver and brain of aged rats. Arch Gerontol Geriatr 2012; 55:744-8. [DOI: 10.1016/j.archger.2011.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 11/02/2011] [Accepted: 11/04/2011] [Indexed: 01/23/2023]
|
24
|
Spescha RD, Shi Y, Wegener S, Keller S, Weber B, Wyss MM, Lauinger N, Tabatabai G, Paneni F, Cosentino F, Hock C, Weller M, Nitsch RM, Lüscher TF, Camici GG. Deletion of the ageing gene p66(Shc) reduces early stroke size following ischaemia/reperfusion brain injury. Eur Heart J 2012; 34:96-103. [PMID: 23008506 DOI: 10.1093/eurheartj/ehs331] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIMS Stroke is a leading cause of morbidity and mortality, and its incidence increases with age. Both in animals and in humans, oxidative stress appears to play an important role in ischaemic stroke, with or without reperfusion. The adaptor protein p66(Shc) is a key regulator of reactive oxygen species (ROS) production and a mediator of ischaemia/reperfusion damage in ex vivo hearts. Hence, we hypothesized that p66(Shc) may be involved in ischaemia/reperfusion brain damage. To this end, we investigated whether genetic deletion of p66(Shc) protects from ischaemia/reperfusion brain injury. METHODS AND RESULTS Transient middle cerebral artery occlusion (MCAO) was performed to induce ischaemia/reperfusion brain injury in wild-type (Wt) and p66(Shc) knockout mice (p66(Shc-/-)), followed by 24 h of reperfusion. Cerebral blood flow and blood pressure measurements revealed comparable haemodynamics in both experimental groups. Neuronal nuclear antigen immunohistochemical staining showed a significantly reduced stroke size in p66(Shc-/-) when compared with Wt mice (P < 0.05, n = 7-8). In line with this, p66(Shc-/-) mice exhibited a less impaired neurological function and a decreased production of free radicals locally and systemically (P < 0.05, n = 4-5). Following MCAO, protein levels of gp91phox nicotinamide adenine dinucleotide phosphate oxidase subunit were increased in brain homogenates of Wt (P < 0.05, n = 4), but not of p66(Shc-/-) mice. Further, reperfusion injury in Wt mice induced p66(Shc) protein in the basilar and middle cerebral artery, but not in brain tissue, suggesting a predominant involvement of vascular p66(Shc). CONCLUSION In the present study, we show that the deletion of the ageing gene p66(Shc) protects mice from ischaemia/reperfusion brain injury through a blunted production of free radicals. The ROS mediator p66(Shc) may represent a novel therapeutical target for the treatment of ischaemic stroke.
Collapse
Affiliation(s)
- Remo D Spescha
- Cardiovascular Research, Institute of Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The average lifespan of humans is increasing, and with it the percentage of people entering the 65 and older age group is growing rapidly and will continue to do so in the next 20 years. Within this age group, cardiovascular disease will remain the leading cause of death, and the cost associated with treatment will continue to increase. Aging is an inevitable part of life and unfortunately poses the largest risk factor for cardiovascular disease. Although numerous studies in the cardiovascular field have considered both young and aged humans, there are still many unanswered questions as to how the genetic pathways that regulate aging in model organisms influence cardiovascular aging. Likewise, in the molecular biology of aging field, few studies fully assess the role of these aging pathways in cardiovascular health. Fortunately, this gap is beginning to close, and these two fields are merging together. We provide an overview of some of the key genes involved in regulating lifespan and health span, including sirtuins, AMP-activated protein kinase, mammalian target of rapamycin, and insulin-like growth factor 1 and their roles regulating cardiovascular health. We then discuss a series of review articles that will appear in succession and provide a more comprehensive analysis of studies carried out linking genes of aging and cardiovascular health, and perspectives of future directions of these two intimately linked fields.
Collapse
Affiliation(s)
- Brian J North
- Glenn Laboratories for the Biological Mechanisms of Aging, Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
26
|
Translocaciones cromosómicas en los sarcomas de partes blandas: de la biología molecular a la aplicación clínica. An Pediatr (Barc) 2012; 76:103.e1-7. [DOI: 10.1016/j.anpedi.2011.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 09/07/2011] [Indexed: 11/18/2022] Open
|
27
|
Borkowska A, Sielicka-Dudzin A, Herman-Antosiewicz A, Wozniak M, Fedeli D, Falcioni G, Antosiewicz J. Diallyl trisulfide-induced prostate cancer cell death is associated with Akt/PKB dephosphorylation mediated by P-p66shc. Eur J Nutr 2011; 51:817-25. [PMID: 22020565 PMCID: PMC3456917 DOI: 10.1007/s00394-011-0260-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 10/07/2011] [Indexed: 01/01/2023]
Abstract
Purpose P66Shc, an isoform of adaptor proteins, is known to mediate various signals including those leading to apoptosis or cell proliferation. Previously, we have shown that diallyl trisulfide (DATS)-induced prostate cancer cell death was mediated by increased ROS formation. In this study, we investigated the role of p66Shc protein and its serine 36 phosphorylation in DATS induced decrease in prostate cancer cell viability (PC-3). Methods PC-3 prostate cancer cells were used in this study. Stable cell lines expressing p66ShcS36A or an empty vector have been obtained. Cell viability, concentration of ROS, changes in P-p66Shc and P-Akt and DNA damage were determined. Results We observed that DATS treatment increased p66Shc phosphorylation at serine 36. Importantly, the phosphorylation was abolished by JNK inhibitor SP600125. Cells expressing plasmid-encoded variant of p66ShcS36A showed much higher resistance to DATS-induced cells death. In addition to that, we observed that DATS-induced ROS formation was completely abolished in cells expressing the p66ShcS36A variant. Interestingly, SP600125 proved to prevent DATS-induced Akt inactivation. In order to confirm that the observed effect is related to phosphorylation of p66Shc, we performed experiments on a stable cell line expressing p66ShcS36A. In such cells, DATS-induced Akt dephosphorylation was significantly reduced. On the other hand, hydrogen peroxide induced Akt activation in PC-3 cells, which was abrogated in cells expressing p66ShcS36A. Conclusions Our results uncover a novel signaling pathway with p66Shc being indispensable for DATS-induced inactivation of Akt due to hypophosphorylation.
Collapse
Affiliation(s)
- Andzelika Borkowska
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| | | | | | | | | | | | | |
Collapse
|
28
|
STAGSTED JAN. Journey beyond immunology. Regulation of receptor internalization by major histocompatibility complex class I (MHC-I) and effect of peptides derived from MHC-I. APMIS 2011. [DOI: 10.1111/j.1600-0463.1998.tb05657.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
29
|
Shi Y, Cosentino F, Camici GG, Akhmedov A, Vanhoutte PM, Tanner FC, Lüscher TF. Oxidized Low-Density Lipoprotein Activates p66
Shc
via Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1, Protein Kinase C-β, and c-Jun N-Terminal Kinase Kinase in Human Endothelial Cells. Arterioscler Thromb Vasc Biol 2011; 31:2090-7. [DOI: 10.1161/atvbaha.111.229260] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Objective—
Deletion of the mitochondrial gene p66
Shc
protects from endothelial dysfunction and atherosclerotic plaque formation in mice fed a high-fat diet. However, the molecular mechanisms underlying this beneficial effect have not yet been delineated. The present study was designed to elucidate the proatherogenic mechanisms by which p66
Shc
mediates oxidized low-density lipoprotein (oxLDL) uptake by the endothelium, a critical step in plaque formation.
Methods and Results—
Incubation of human aortic endothelial cells with oxLDL led to phosphorylation of p66
Shc
at Ser36. Inhibition of lectin-like oxLDL receptor-1 prevented p66
Shc
phosphorylation, confirming that this effect is mediated by lectin-like oxLDL receptor-1. OxLDL also increased phosphorylation of protein kinase C β
2
(PKCβ
2
) at both Thr641 and Ser660, as well as c-Jun N-terminal kinase (JNK). Furthermore, inhibition of PKCβ
2
prevented the activation of JNK, suggesting that PKCβ2 is upstream of JNK. Finally, p66
Shc
silencing blunted oxLDL-induced O
2
−.
production, underscoring the critical role of p66
Shc
in oxLDL-induced oxidative stress in endothelial cells.
Conclusion—
In this study we provide the molecular mechanisms mediating the previously observed atherogenic properties of p66
Shc
. Taken together, our data set the stage for the design of novel therapeutic tools to retard atherogenesis through the inhibition of p66
Shc
.
Collapse
Affiliation(s)
- Yi Shi
- From the Cardiovascular Research, Institute of Physiology, and Center for Integrative Human Physiology, University of Zürich, Switzerland (Y.S., F.C., G.G.C., A.A., F.C.T., T.F.L.); Department of Cardiology, Cardiovascular Center, University Hospital, Zürich, Switzerland (F.C., F.C.T., T.F.L.); Cardiology, Department of Clinical and Molecular Medicine, University La Sapienza of Rome, Sant'Andrea Hospital, Rome, Italy (F.C.); Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong
| | - Francesco Cosentino
- From the Cardiovascular Research, Institute of Physiology, and Center for Integrative Human Physiology, University of Zürich, Switzerland (Y.S., F.C., G.G.C., A.A., F.C.T., T.F.L.); Department of Cardiology, Cardiovascular Center, University Hospital, Zürich, Switzerland (F.C., F.C.T., T.F.L.); Cardiology, Department of Clinical and Molecular Medicine, University La Sapienza of Rome, Sant'Andrea Hospital, Rome, Italy (F.C.); Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong
| | - Giovanni G. Camici
- From the Cardiovascular Research, Institute of Physiology, and Center for Integrative Human Physiology, University of Zürich, Switzerland (Y.S., F.C., G.G.C., A.A., F.C.T., T.F.L.); Department of Cardiology, Cardiovascular Center, University Hospital, Zürich, Switzerland (F.C., F.C.T., T.F.L.); Cardiology, Department of Clinical and Molecular Medicine, University La Sapienza of Rome, Sant'Andrea Hospital, Rome, Italy (F.C.); Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong
| | - Alexander Akhmedov
- From the Cardiovascular Research, Institute of Physiology, and Center for Integrative Human Physiology, University of Zürich, Switzerland (Y.S., F.C., G.G.C., A.A., F.C.T., T.F.L.); Department of Cardiology, Cardiovascular Center, University Hospital, Zürich, Switzerland (F.C., F.C.T., T.F.L.); Cardiology, Department of Clinical and Molecular Medicine, University La Sapienza of Rome, Sant'Andrea Hospital, Rome, Italy (F.C.); Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong
| | - Paul M. Vanhoutte
- From the Cardiovascular Research, Institute of Physiology, and Center for Integrative Human Physiology, University of Zürich, Switzerland (Y.S., F.C., G.G.C., A.A., F.C.T., T.F.L.); Department of Cardiology, Cardiovascular Center, University Hospital, Zürich, Switzerland (F.C., F.C.T., T.F.L.); Cardiology, Department of Clinical and Molecular Medicine, University La Sapienza of Rome, Sant'Andrea Hospital, Rome, Italy (F.C.); Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong
| | - Felix C. Tanner
- From the Cardiovascular Research, Institute of Physiology, and Center for Integrative Human Physiology, University of Zürich, Switzerland (Y.S., F.C., G.G.C., A.A., F.C.T., T.F.L.); Department of Cardiology, Cardiovascular Center, University Hospital, Zürich, Switzerland (F.C., F.C.T., T.F.L.); Cardiology, Department of Clinical and Molecular Medicine, University La Sapienza of Rome, Sant'Andrea Hospital, Rome, Italy (F.C.); Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong
| | - Thomas F. Lüscher
- From the Cardiovascular Research, Institute of Physiology, and Center for Integrative Human Physiology, University of Zürich, Switzerland (Y.S., F.C., G.G.C., A.A., F.C.T., T.F.L.); Department of Cardiology, Cardiovascular Center, University Hospital, Zürich, Switzerland (F.C., F.C.T., T.F.L.); Cardiology, Department of Clinical and Molecular Medicine, University La Sapienza of Rome, Sant'Andrea Hospital, Rome, Italy (F.C.); Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong
| |
Collapse
|
30
|
Natalicchio A, Tortosa F, Perrini S, Laviola L, Giorgino F. p66Shc, a multifaceted protein linking Erk signalling, glucose metabolism, and oxidative stress. Arch Physiol Biochem 2011; 117:116-24. [PMID: 21506908 DOI: 10.3109/13813455.2011.562513] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
p66Shc, a 66 kDa proto-oncogene Src collagen homologue (Shc) adaptor protein, is classically known as a signalling protein implicated in receptor tyrosine kinase signal transduction. The p66Shc isoform exerts a physiologically relevant, inhibitory signalling effect on the Erk pathway in skeletal muscle myoblasts, which is necessary for actin cytoskeleton polymerization and normal glucose transport responses. More recently, p66Shc has been also identified as a sensor of oxidative stress-induced apoptosis and as a longevity protein in mammals, actions which require Ser36 phosphorylation of the protein and consequent accumulation of intracellular reactive oxygen species. Oxidative stress plays a key role in dysfunction of several organs and tissues, and this is of interest in metabolic diseases such as type 2 diabetes. Thus changes in p66Shc expression and/or function may play an important role in the pathogenesis of type 2 diabetes and potentially serve as an effective target for its treatment.
Collapse
Affiliation(s)
- Annalisa Natalicchio
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari School of Medicine, Bari, Italy
| | | | | | | | | |
Collapse
|
31
|
Vanderlaan RD, Hardy WR, Kabir MG, Pasculescu A, Jones N, deTombe PP, Backx PH, Pawson T. The ShcA phosphotyrosine docking protein uses distinct mechanisms to regulate myocyte and global heart function. Circ Res 2010; 108:184-93. [PMID: 21148430 DOI: 10.1161/circresaha.110.233924] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RATIONALE Although tyrosine kinases (TKs) are important for cardiac function, their relevant downstream targets in the adult heart are unknown. The ShcA docking protein binds specific phosphotyrosine (pTyr) sites on activated TKs through its N-terminal pTyr-binding (PTB) and C-terminal SH2 domains and stimulates downstream pathways through motifs such as pTyr sites in its central CH1 region. Therefore, ShcA could be a potential hub for downstream TK signaling in the myocardium. OBJECTIVE To define the role of ShcA, a TK scaffold, in the adult heart using a myocardial-specific knockout of murine ShcA (ShcA CKO) and domain knock-in models. METHODS AND RESULTS ShcA CKO mice developed a dilated cardiomyopathy phenotype involving impaired systolic function with enhanced cardiomyocyte contractility. This uncoupling of global heart and intrinsic myocyte functions was associated with altered collagen and extracellular matrix compliance properties, suggesting disruption of mechanical coupling. In vivo dissection of ShcA signaling properties revealed that selective inactivation of the PTB domain in the myocardium had effects resembling those seen in ShcA CKO mice, whereas disruption of the SH2 domain caused a less severe cardiac phenotype. Downstream signaling through the CH1 pTyr sites was dispensable for baseline cardiac function but necessary to prevent adverse remodeling after hemodynamic overload. CONCLUSIONS These data demonstrate a requirement for TK-ShcA PTB domain signaling to maintain cardiac function. In addition, analysis of the SH2 domain and CH1 pTyr sites reveals that ShcA mediates pTyr signaling in the adult heart through multiple distinct signaling elements that control myocardial functions and response to stresses.
Collapse
Affiliation(s)
- Rachel D Vanderlaan
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
32
|
p66(Shc) has a pivotal function in impaired liver regeneration in aged mice by a redox-dependent mechanism. J Transl Med 2010; 90:1718-26. [PMID: 20567235 DOI: 10.1038/labinvest.2010.119] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Liver regeneration involves complicated processes and is affected by various patho-physiological conditions. This study was designed to examine the molecular mechanisms underlying the aging-associated impairment of liver regeneration. Male C57BL/6J mice were used as young and aged mice (<10 weeks and >20 months old, respectively). These mice were subjected to 70% partial hepatectomy (PH). Liver regeneration and liver injury/stresses were evaluated chronologically after PH. Post-hepatectomy liver regeneration was markedly impaired in aged mice. Though the extent of hepatocyte proliferation in the regenerating liver was similar in aged and young mice, cell growth was absent in aged mice. Oxidative stress (OS) was observed immediately after hepatectomy, followed by marked apoptosis in aged mice. Signaling molecules regarding cell proliferation (mitogen-activated protein kinase, STAT3, p46/52(Shc)) and anti-oxidation (catalase, superoxide dismutase, Ref-1, glutathione peroxidase) were expressed/activated after hepatectomy in livers of both aged and young mice. Akt was not activated in aged-mouse liver, but its expression was similar to that in young mice. p66(Shc), known as an age-/oxidant-associated protein, was strongly phosphorylated. By knocking down p66(Shc), the impairment of liver regeneration was normalized. OS immediately after hepatectomy induced subsequent liver injury (apoptosis), and deletion of p66(Shc) suppressed both OS and hepatocyte apoptosis in the regenerating liver of aged mice. Though we need additional data in other animal models to fully understand the mechanism, p66(Shc) may have a pivotal function in the impairment of liver regeneration in aged mice by triggering OS and subsequent apoptosis. This data may provide a clue to understanding the mechanism underlying the association between aging and the impairment of liver regeneration.
Collapse
|
33
|
Sun L, Xiao L, Nie J, Liu FY, Ling GH, Zhu XJ, Tang WB, Chen WC, Xia YC, Zhan M, Ma MM, Peng YM, Liu H, Liu YH, Kanwar YS. p66Shc mediates high-glucose and angiotensin II-induced oxidative stress renal tubular injury via mitochondrial-dependent apoptotic pathway. Am J Physiol Renal Physiol 2010; 299:F1014-25. [PMID: 20739391 DOI: 10.1152/ajprenal.00414.2010] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
p66Shc, a promoter of apoptosis, modulates oxidative stress response and cellular survival, but its role in the progression of diabetic nephropathy is relatively unknown. In this study, mechanisms by which p66Shc modulates high-glucose (HG)- or angiotensin (ANG) II-induced mitochondrial dysfunction were investigated in renal proximal tubular cells (HK-2 cells). Expression of p66Shc and its phosphorylated form (p-p66Shc, serine residue 36) and apoptosis were notably increased in renal tubules of diabetic mice, suggesting an increased reactive oxygen species production. In vitro, HG and ANG II led to an increased expression of total and p-p66Shc in HK-2 cells. These changes were accompanied with increased production of mitochondrial H(2)O(2), reduced mitochondrial membrane potential, increased translocation of mitochondrial cytochrome c from mitochondria into cytosol, upregulation of the expression of caspase-9, and ultimately reduced cell survival. Overexpression of a dominant-negative Ser36 mutant p66Shc (p66ShcS36A) or treatment of p66Shc- or PKC-β-short interfering RNAs partially reversed these changes. Treatment of HK-2 cells with HG and ANG II also increased the protein-protein association between p-p66Shc and Pin1, an isomerase, in the cytosol, and with cytochrome c in the mitochondria. These interactions were partially disrupted with the treatment of PKC-β inhibitor or Pin1-short interfering RNA. These data suggest that p66Shc mediates HG- and ANG II-induced mitochondrial dysfunctions via PKC-β and Pin1-dependent pathways in renal tubular cells.
Collapse
Affiliation(s)
- Lin Sun
- Dept. of Nephrology, 2nd Xiangya Hospital, Central South Univ., No. 139 Renmin Middle Rd., Changsha, Hunan 410011.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Guo J, Cong L, Rybin VO, Gertsberg Z, Steinberg SF. Protein kinase C-{delta} regulates the subcellular localization of Shc in H2O2-treated cardiomyocytes. Am J Physiol Cell Physiol 2010; 299:C770-8. [PMID: 20686066 DOI: 10.1152/ajpcell.00170.2010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein kinase C-δ (PKCδ) exerts important cardiac actions as a lipid-regulated kinase. There is limited evidence that PKCδ also might exert an additional kinase-independent action as a regulator of the subcellular compartmentalization of binding partners such as Shc (Src homologous and collagen), a family of adapter proteins that play key roles in growth regulation and oxidative stress responses. This study shows that native PKCδ forms complexes with endogenous Shc proteins in H(2)O(2)-treated cardiomyocytes; H(2)O(2) treatment also leads to the accumulation of PKCδ and Shc in a detergent-insoluble cytoskeletal fraction and in mitochondria. H(2)O(2)-dependent recruitment of Shc isoforms to cytoskeletal and mitochondrial fractions is amplified by wild-type-PKCδ overexpression, consistent with the notion that PKCδ acts as a signal-regulated scaffold to anchor Shc in specific subcellular compartments. However, overexpression studies with kinase-dead (KD)-PKCδ-K376R (an ATP-binding mutant of PKCδ that lacks catalytic activity) are less informative, since KD-PKCδ-K376R aberrantly localizes as a constitutively tyrosine-phosphorylated enzyme to detergent-insoluble and mitochondrial fractions of resting cardiomyocytes; relatively little KD-PKCδ-K376R remains in the cytosolic fraction. The aberrant localization and tyrosine phosphorylation patterns for KD-PKCδ-K376R do not phenocopy the properties of native PKCδ, even in cells chronically treated with GF109203X to inhibit PKCδ activity. Hence, while KD-PKCδ-K376R overexpression increases Shc localization to the detergent-insoluble and mitochondrial fractions, the significance of these results is uncertain. Our studies suggest that experiments using KD-PKCδ-K376R overexpression as a strategy to competitively inhibit the kinase-dependent actions of native PKCδ or to expose the kinase-independent scaffolding functions of PKCδ should be interpreted with caution.
Collapse
Affiliation(s)
- Jianfen Guo
- Department of Pharmacology, College of Physicians and Surgeons, Columbia Univ., 630 West 168 St., New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
35
|
Hsieh MY, Yang S, Raymond-Stinz MA, Edwards JS, Wilson BS. Spatio-temporal modeling of signaling protein recruitment to EGFR. BMC SYSTEMS BIOLOGY 2010; 4:57. [PMID: 20459599 PMCID: PMC2877007 DOI: 10.1186/1752-0509-4-57] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 05/06/2010] [Indexed: 12/31/2022]
Abstract
Background A stochastic simulator was implemented to study EGFR signal initiation in 3D with single molecule detail. The model considers previously unexplored contributions to receptor-adaptor coupling, such as receptor clustering and diffusive properties of both receptors and binding partners. The agent-based and rule-based approach permits consideration of combinatorial complexity, a problem associated with multiple phosphorylation sites and the potential for simultaneous binding of adaptors. Results The model was used to simulate recruitment of four different signaling molecules (Grb2, PLCγ1, Stat5, Shc) to the phosphorylated EGFR tail, with rules based on coarse-grained prediction of spatial constraints. Parameters were derived in part from quantitative immunoblotting, immunoprecipitation and electron microscopy data. Results demonstrate that receptor clustering increases the efficiency of individual adaptor retainment on activated EGFR, an effect that is overridden if crowding is imposed by receptor overexpression. Simultaneous docking of multiple proteins is highly dependent on receptor-adaptor stability and independent of clustering. Conclusions Overall, we propose that receptor density, reaction kinetics and membrane spatial organization all contribute to signaling efficiency and influence the carcinogenesis process.
Collapse
Affiliation(s)
- Ming-yu Hsieh
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | | | | | | | | |
Collapse
|
36
|
Kippenberger S, Hofmann M, Zöller N, Thaçi D, Müller J, Kaufmann R, Bernd A. Ligation of beta4 integrins activates PKB/Akt and ERK1/2 by distinct pathways-relevance of the keratin filament. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:940-50. [PMID: 20307589 DOI: 10.1016/j.bbamcr.2010.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 03/10/2010] [Accepted: 03/12/2010] [Indexed: 11/28/2022]
Abstract
In normal epithelial cells hemidesmosomes mediate stable adhesion to the underlying basement membrane. In carcinoma cells a functional and spatial dissociation of the hemidesmosomal complex is observed stimulating the hypothesis that the beta4 integrin may trigger essential signalling cascades determining cell fate. In the present study we dissected the signalling pathways giving rise to PKB/Akt and ERK1/2 activation in response to beta4 ligation by 3E1. It was found that the activation of PKB/Akt is sensitive towards alterations of the keratin filament as demonstrated by using KEB-7 cells that carry a keratin mutation typical for epidermolysis bullosa simplex. Similar results were achieved by chemically induced keratin aggregations. Of note, the signalling to ERK1/2 was not affected. ERK1/2 activation utilizes an EGF-R transactivation mechanism as shown by dominant-negative expression experiments and also by treatment with a specific inhibitor (AG1478). Downstream from the EGF-R the activation of ERK1/2 takes the prototypical signalling cascade via Shc, Ras and Raf-1 as demonstrated by dominant-negative expression experiments. Taken together our data define a new model of beta4-dependent PKB/Akt and ERK1/2 activation demonstrating the keratin filament as a structure necessary in signal transmission.
Collapse
Affiliation(s)
- Stefan Kippenberger
- Department of Dermatology and Venerology, University of Frankfurt Medical School, D-60590 Frankfurt/Main, Germany.
| | | | | | | | | | | | | |
Collapse
|
37
|
Cicenas J, Küng W, Eppenberger U, Eppenberger-Castori S. Increased Level of Phosphorylated ShcA Measured by Chemiluminescence-Linked Immunoassay Is a Predictor of Good Prognosis in Primary Breast Cancer Expressing Low Levels of Estrogen Receptor. Cancers (Basel) 2010; 2:153-64. [PMID: 24281038 PMCID: PMC3827597 DOI: 10.3390/cancers2010153] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 02/23/2010] [Accepted: 03/05/2010] [Indexed: 11/17/2022] Open
Abstract
The SH2 domain-containing adaptor protein ShcA is a proto-oncogene involved in growth factor receptor signaling. The role of phosphorylated ShcA is to link receptor tyrosine kinases with the SH2-containing adaptor protein Grb2, thus facilitating signal transduction from receptor tyrosine kinases to Ras, leading to MAPK activation. The present study was designed to investigate the prognostic significance of phosphorylated ShcA in primary breast cancer and its association in the interactions between the ER and ErbB2 pathways. Using a two-site chemiluminescence-linked immunosorbent assay, we detected the quantitative expression levels of total tyrosine- and threonine-phosphorylated ShcA in cytosol fractions obtained from fresh frozen tissue samples of 153 selected primary breast cancer patients. ShcA phosphorylation was not associated with nodal status, estrogen receptor (ER) status or grading. High levels of both tyrosine (pYShcA) and serine (pSShcA) phosphorylated ShcA correlated with good prognosis (p < 0.01), with respect to both disease-free (DFS) and overall survival (OS). In addition, pShcA levels were found to correlate with threonine-phosphorylated ErbB2 and inversely with phosphorylated Akt (pAkt), as well as ErbB2 and ER expression levels. Our findings demonstrate that ShcA activation in primary breast cancer patients correlates with low levels of ER, and is associated with good prognosis.
Collapse
Affiliation(s)
- Jonas Cicenas
- Stiftung Tumorbank Basel, Basel, Switzerland; E-Mail: (U.E.)
- Molecular Tumor Biology, Department of Research, Universitätsspital, Basel, Switzerland; E-Mail: (W.K.)
| | - Willy Küng
- Molecular Tumor Biology, Department of Research, Universitätsspital, Basel, Switzerland; E-Mail: (W.K.)
| | - Urs Eppenberger
- Stiftung Tumorbank Basel, Basel, Switzerland; E-Mail: (U.E.)
| | - Serenella Eppenberger-Castori
- Stiftung Tumorbank Basel, Basel, Switzerland; E-Mail: (U.E.)
- Molecular Pathology, Institut für Pathologie, Universitätsspital, Basel, Switzerland; E-Mail: (S.E.)
| |
Collapse
|
38
|
Kumar A, Hoffman TA, Dericco J, Naqvi A, Jain MK, Irani K. Transcriptional repression of Kruppel like factor-2 by the adaptor protein p66shc. FASEB J 2009; 23:4344-52. [PMID: 19696221 DOI: 10.1096/fj.09-138743] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The adaptor protein p66shc promotes cellular oxidative stress and apoptosis. Here, we demonstrate a novel mechanistic relationship between p66shc and the kruppel like factor-2 (KLF2) transcription factor and show that this relationship has biological relevance to p66shc-regulated cellular oxidant level, as well as KLF2-induced target gene expression. Genetic knockout of p66shc in mouse embryonic fibroblasts (MEFs) stimulates activity of the core KLF2 promoter and increases KLF2 mRNA and protein expression. Similarly, shRNA-induced knockdown of p66shc increases KLF2-promoter activity in HeLa cells. The increase in KLF2-promoter activity in p66shc-knockout MEFs is dependent on a myocyte enhancing factor-2A (MEF2A)-binding sequence in the core KLF2 promoter. Short-hairpin RNA-induced knockdown of p66shc in endothelial cells also stimulates KLF2 mRNA and protein expression, as well as expression of the endothelial KLF2 target gene thrombomodulin. MEF2A protein and mRNA are more abundant in p66shc-knockout MEFs, resulting in greater occupancy of the KLF2 promoter by MEF2A. In endothelial cells, the increase in KLF2 and thrombomodulin protein by shRNA-induced decrease in p66shc expression is partly abrogated by knockdown of MEF2A. Finally, knockdown of KLF2 abolishes the decrease in the cellular reactive oxygen species hydrogen peroxide observed with knockdown of p66shc, and KLF2 overexpression suppresses cellular hydrogen peroxide levels, independent of p66shc expression. These findings illustrate a novel mechanism by which p66shc promotes cellular oxidative stress, through suppression of MEF2A expression and consequent repression of KLF2 transcription.
Collapse
Affiliation(s)
- Ajay Kumar
- Cardiovascular Institute, University of Pittsburgh Medical Center, 623S Scaife Hall, 200 Lothrop St., Pittsburgh, PA 15213, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Watanabe M, Tsukiyama T, Hatakeyama S. TRIM31 interacts with p52(Shc) and inhibits Src-induced anchorage-independent growth. Biochem Biophys Res Commun 2009; 388:422-7. [PMID: 19665990 DOI: 10.1016/j.bbrc.2009.08.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 08/05/2009] [Indexed: 10/20/2022]
Abstract
Tripartite motif-containing protein (TRIM) family proteins are involved in a broad range of biological processes and, consistently, their alterations result in diverse pathological conditions such as genetic diseases, viral infection and cancer development. In this study, we found that one of the TRIM family proteins, TRIM31, is highly expressed in the gastrointestinal tract and interacts with p52(Shc), one of the signal transducers. We also found by a binding assay that almost the whole region other than the RING domain is required for the binding to p52(Shc) but found by pulse-chase analysis that overexpression of TRIM31 does not affect the stability of p52(Shc). Moreover, we found that overexpression of TRIM31 suppresses anchorage-independent cell growth induced by the active form of c-Src. These results suggest that TRIM31 attenuates c-Src signaling via p52(Shc) under anchorage-independent growth conditions and is potentially associated with growth activity of cells in the gastrointestinal tract.
Collapse
Affiliation(s)
- Masashi Watanabe
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | | | | |
Collapse
|
40
|
Camici GG, Cosentino F, Tanner FC, Lüscher TF. The role of p66Shc deletion in age-associated arterial dysfunction and disease states. J Appl Physiol (1985) 2008; 105:1628-31. [DOI: 10.1152/japplphysiol.90579.2008] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Accumulation of oxidative stress with age is hypothesized to be the primary causative mediator of age-associated diseases. Among different tissues, aging vessels are known to accumulate oxidative damage and undergo functional impairment. Oxidative stress affects the availability and/or balance of key regulators of vascular homeostasis and favors the development of cardiovascular disease. Reactive oxygen species are generated by different intracellular molecular pathways principally located in the cytoplasm and in the mitochondria. The mitochondrial enzyme p66Shc is an adaptor protein and plays an important role as a redox enzyme implicated in mitochondrial eactive oxygen species generation and translation of oxidative signals into apoptosis. Mice lacking p66Shc−/− gene display reduced production of intracellular oxidants and a 30% prolonged life span. For this reasons, a series of studies conceived to elucidate the function of p66Shc and its possible implication in age-associated cardiovascular diseases have been carried out. Indeed, p66Shc−/− mice have been shown to be protected from age-dependent endothelial dysfunction as well as age-related risk factors such as diabetes and hypercholesterolemia. This review focuses on delineating the role of the p66Shc adaptor protein and its potential implication in the pathophysiology of aging and age-related cardiovascular disease.
Collapse
|
41
|
Xi G, Shen X, Clemmons DR. p66shc negatively regulates insulin-like growth factor I signal transduction via inhibition of p52shc binding to Src homology 2 domain-containing protein tyrosine phosphatase substrate-1 leading to impaired growth factor receptor-bound protein-2 membrane recruitment. Mol Endocrinol 2008; 22:2162-75. [PMID: 18606861 DOI: 10.1210/me.2008-0079] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Our previous studies have indicated an essential role of p52shc in mediating IGF-I activation of MAPK in smooth muscle cells (SMC). However, the role of the p66 isoform of shc in IGF-I signal transduction is unclear. In the current study, two approaches were employed to investigate the role of p66shc in mediating IGF-I signaling. Knockdown p66shc by small interfering RNA enhanced IGF-I-stimulated p52shc tyrosine phosphorylation and growth factor receptor-bound protein-2 (Grb2) association, resulting in increased IGF-I-dependent MAPK activation. This was associated with enhanced IGF-I-stimulated cell proliferation. In contrast, knockdown of p66shc did not affect IGF-I-stimulated IGF-I receptor tyrosine phosphorylation. Overexpression of p66shc impaired IGF-I-stimulated p52shc tyrosine phosphorylation and p52shc-Grb2 association. In addition, IGF-I-dependent MAPK activation was also impaired, and SMC proliferation in response to IGF-I was inhibited. IGF-I-dependent cell migration was enhanced by p66shc knockdown and attenuated by p66shc overexpression. Mechanistic studies indicated that p66shc inhibited IGF-I signal transduction via competitively inhibiting the binding of Src homology 2 domain-containing protein tyrosine phosphatase-2 (SHP-2) to SHP substrate-1 (SHPS-1), leading to the disruption of SHPS-1/SHP-2/Src/p52shc complex formation, an event that has been shown previously to be essential for p52shc phosphorylation and Grb2 recruitment. These findings indicate that p66shc functions to negatively regulate the formation of a signaling complex that is required for p52shc activation in response to IGF-I, thus leading to attenuation of IGF-I-stimulated cell proliferation and migration.
Collapse
Affiliation(s)
- Gang Xi
- Department of Medicine, University of North Carolina, School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
42
|
Gertz M, Fischer F, Wolters D, Steegborn C. Activation of the lifespan regulator p66Shc through reversible disulfide bond formation. Proc Natl Acad Sci U S A 2008; 105:5705-9. [PMID: 18413607 PMCID: PMC2311372 DOI: 10.1073/pnas.0800691105] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Indexed: 11/18/2022] Open
Abstract
Cell fate and organismal lifespan are controlled by a complex signaling network whose dysfunction can cause a variety of aging-related diseases. An important protection against these failures is cellular apoptosis, which can be induced by p66(Shc) in response to cellular stress. The precise mechanisms of p66(Shc) action and regulation and the function of the p66(Shc)-specific N terminus remain to be identified. Here, we show that the p66(Shc) N terminus forms a redox module responsible for apoptosis initiation, and that this module can be activated through reversible tetramerization by forming two disulfide bonds. Glutathione and thioredoxins can reduce and inactivate p66(Shc), resulting in a thiol-based redox sensor system that initiates apoptosis once cellular protection systems cannot cope anymore with cellular stress.
Collapse
Affiliation(s)
| | - Frank Fischer
- Analytical Chemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44801 Bochum, Germany
| | - Dirk Wolters
- Analytical Chemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44801 Bochum, Germany
| | | |
Collapse
|
43
|
Haga S, Terui K, Fukai M, Oikawa Y, Irani K, Furukawa H, Todo S, Ozaki M. Preventing hypoxia/reoxygenation damage to hepatocytes by p66(shc) ablation: up-regulation of anti-oxidant and anti-apoptotic proteins. J Hepatol 2008; 48:422-32. [PMID: 18191273 DOI: 10.1016/j.jhep.2007.11.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 11/07/2007] [Accepted: 11/07/2007] [Indexed: 12/30/2022]
Abstract
BACKGROUND/AIMS Ischemia/reperfusion damage to the liver remains a serious concern in many clinical situations. Major mechanisms for this certainly include oxidative stress. METHODS The effects of ablating the p66 isoform of ShcA (p66(shc)) on hypoxia/reoxygenation (H/R)-induced oxidative stress and cell injury in hepatocytes were investigated. RESULTS Immediately after reoxygenation, AML12 cells were clearly under oxidative stress; many cells underwent apoptosis. However, knockdown of p66(shc) by specific RNAi markedly decreased cellular oxidative stress and H/R-induced apoptosis, as well as conferring resistance to H(2)O(2) insult. These data suggest that prevention of apoptosis conferred by ablation of p66(shc) results from changed ROS-scavenging, but not inhibition of ROS generation. These data were also confirmed in fibroblasts from p66(shc) knockout mice. Anti-oxidant molecules, such as MnSOD and Ref-1 and the anti-apoptotic molecule Bcl-xL were up-regulated, and pro-apoptotic FLICE was down-regulated, by ablation of p66(shc). Interestingly, catalase expression was not affected in p66(shc)-knockdown-AML12 cells although it is a major target in other cell types. CONCLUSIONS Our findings suggest that in hepatocytes, ablation of p66(shc) is cytoprotective against H/R-induced oxidative stress, with MnSOD and Ref-1 playing critical roles, and with up-regulation of Bcl-xL and down-regulation of FLICE contributing jointly to preventing cells from undergoing oxidant-induced apoptosis.
Collapse
Affiliation(s)
- Sanae Haga
- Department of Surgery, Hokkaido University School of Medicine, Sapporo, Hokkaido, Japan
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Cosentino F, Francia P, Camici GG, Pelicci PG, Lüscher TF, Volpe M. Final common molecular pathways of aging and cardiovascular disease: role of the p66Shc protein. Arterioscler Thromb Vasc Biol 2007; 28:622-8. [PMID: 18162611 DOI: 10.1161/atvbaha.107.156059] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oxidative stress affects the availability of key-regulators of vascular homeostasis and controls a number of signaling pathways relevant to myocardial and vascular disease. Reactive oxygen species are generated by different intracellular molecular pathways principally located in mitochondria. The notion that mice carrying a targeted mutation of the p66(Shc) gene display prolonged lifespan, reduced production of intracellular oxidants, and increased resistance to oxidative stress-induced apoptosis prompted a series of studies aimed at defining the biochemical function of p66(Shc) and its possible implication in cardiovascular diseases. Indeed, p66(Shc-/-) mice are protected against vascular, cardiac, and renal impairment attributable to hypercholesterolemia, aging, diabetes, and ischemia/reperfusion. The present review focuses on the biochemical and physiological function of the p66(Shc) adaptor protein as well as on the mechanisms linking p66(Shc)-associated generation of free radicals to the pathophysiology of aging and cardiovascular disease. On the whole, the evidence so far reported and here discussed supports the concept that pharmacological modulation of p66(Shc) expression and activity may be a novel and effective target for the treatment of atherosclerotic vascular disease as well as myocardial adaptation to hypertrophic, inflammatory and neuro-hormonal stimuli in the overloaded heart.
Collapse
Affiliation(s)
- Francesco Cosentino
- Cardiology and Cardiovascular Research, University Hospital, Zürich, Institute of Physiology, University of Zürich, and Center for Integrative Human Physiology (ZIHP), Switzerland
| | | | | | | | | | | |
Collapse
|
45
|
Kraut-Cohen J, Muller WJ, Elson A. Protein-tyrosine phosphatase epsilon regulates Shc signaling in a kinase-specific manner: increasing coherence in tyrosine phosphatase signaling. J Biol Chem 2007; 283:4612-21. [PMID: 18093973 DOI: 10.1074/jbc.m708822200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Individual protein tyrosine kinases and phosphatases target multiple substrates; this may generate conflicting signals, possibly within a single pathway. Protein-tyrosine phosphatase epsilon (PTPepsilon) performs two potentially opposing roles: in Neu-induced mammary tumors, PTPepsilon activates Src downstream of Neu, whereas in other systems PTPepsilon can indirectly down-regulate MAP kinase signaling. We now show that the latter effect is mediated at least in part via the adaptor protein Shc. PTPepsilon binds and dephosphorylates Shc in vivo, reducing the association of Shc with Grb2 and inhibiting downstream ERK activation. PTPepsilon binds Shc in a phosphotyrosine-independent manner mediated by the Shc PTB domain and aided by a sequence of 10 N-terminal residues in PTPepsilon. Surprisingly, PTPepsilon dephosphorylates Shc in a kinase-dependent manner; PTPepsilon targets Shc in the presence of Src but not in the presence of Neu. Using a series of point mutants of Shc and Neu, we show that Neu protects Shc from dephosphorylation by binding the PTB domain of Shc, most likely competing against PTPepsilon for binding the same domain. In agreement, PTPepsilon dephosphorylates Shc in mouse embryo fibroblasts but not in Neu-induced mammary tumor cells. We conclude that in the context of Neu-induced mammary tumor cells, Neu prevents PTPepsilon from targeting Shc and from reducing its promitogenic signal while phosphorylating PTPepsilon and directing it to activate Src in support of mitogenesis. In so doing, Neu contributes to the coherence of the promitogenic role of PTPepsilon in this system.
Collapse
Affiliation(s)
- Judith Kraut-Cohen
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
46
|
Jin W, Yun C, Jeong J, Park Y, Lee HD, Kim SJ. c-Src is required for tropomyosin receptor kinase C (TrkC)-induced activation of the phosphatidylinositol 3-kinase (PI3K)-AKT pathway. J Biol Chem 2007; 283:1391-1400. [PMID: 17991742 DOI: 10.1074/jbc.m705052200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
TrkC mediates many aspects of growth and development in the central nervous system. TrkC is expressed in a variety of non-neuronal tissues as well as human cancers. TrkC overexpression may drive tumorigenesis, invasion, and metastatic capability in cancer cells. However, relatively little is known about whether TrkC activity is also essential to maintain the malignant properties in human tumors. TrkC expression leads to the constitutive activation of two major effector pathways, namely the Ras-MAP kinase (MAPK) mitogenic pathway and the phosphatidylinositol 3-kinase (PI3K)-AKT pathway mediating cell survival. However, it remains unclear how TrkC activates Ras-Erk1/2 and/or PI3K-Akt cascades. Here we define some aspects of the molecular mechanisms regulating TrkC-dependent Ras-Erk1/2 and PI3K/Akt activation. We show that endogenous TrkC associated with c-Src in human and mouse cancer cells which express TrkC. TrkC-c-Src complexes were also detected in primary human breast cancer tissues. Suppression of c-Src by RNA interference in highly metastatic 4T1 mammary cancer cells, which express endogenous TrkC, resulted in markedly decreased expression of cyclin D1 and suppression of activation of Ras-Erk1/2 and PI3K-Akt. Moreover, inhibition of c-Src expression almost completely blocks colony formation of 4T1 cells in soft agar. Furthermore, in c-Src-deficient SYF cells, TrkC failed to activate the PI3K-Atk pathway, but not the Ras-Erk1/2 pathway. Therefore these data indicate that TrkC induces the PI3K-Akt cascade through the activation of c-Src.
Collapse
Affiliation(s)
- Wook Jin
- Laboratory of Cell Regulation and Carcinogenesis, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon 406-840, Korea
| | - Chohee Yun
- Department of Pediatrics, Case Western Reserve University, The Ireland Cancer Center, Cleveland, Ohio 44106
| | - Joon Jeong
- Yongdong Severance Hospital, Yonsei University, Kangnam, Seoul 135-720, Korea
| | - Yangho Park
- BRM Institute, Kangnam, Seoul 135-822, Korea
| | - Hy-De Lee
- Yongdong Severance Hospital, Yonsei University, Kangnam, Seoul 135-720, Korea
| | - Seong-Jin Kim
- Laboratory of Cell Regulation and Carcinogenesis, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon 406-840, Korea; Department of Pediatrics, Case Western Reserve University, The Ireland Cancer Center, Cleveland, Ohio 44106.
| |
Collapse
|
47
|
Venezia V, Nizzari M, Carlo P, Corsaro A, Florio T, Russo C. Amyloid precursor protein and presenilin involvement in cell signaling. NEURODEGENER DIS 2007; 4:101-11. [PMID: 17596704 DOI: 10.1159/000101834] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
To date the most relevant role for the amyloid precursor protein (APP) and for the presenilins (PSs) on Alzheimer's disease (AD) genesis is linked to the 'amyloid hypothesis', which considers an aberrant formation of amyloid-beta peptides the cause of neurodegeneration. In this view, APP is merely a substrate, cleaved by the gamma-secretase complex to form toxic amyloid peptides, PSs are key players in gamma-secretase complex, and corollary or secondary events are Tau-linked pathology and gliosis. A second theory, complementary to the amyloid hypothesis, proposes that APP and PSs may modulate a yet unclear cell signal, the disruption of which may induce cell-cycle abnormalities, neuronal death, eventually amyloid formation and finally dementia. This hypothesis is supported by the presence of a complex network of proteins, with a clear relevance for signal transduction mechanisms, which interact with APP or PSs. In this scenario, the C-terminal domain of APP has a pivotal role due to the presence of the 682YENPTY687 motif that represents the docking site for multiple interacting proteins involved in cell signaling. In this review we discuss the significance of novel findings related to cell signaling events modulated by APP and PSs for AD development.
Collapse
Affiliation(s)
- Valentina Venezia
- Department of Oncology, Biology and Genetics, University of Genova, Genova, Italy
| | | | | | | | | | | |
Collapse
|
48
|
Camici GG, Schiavoni M, Francia P, Bachschmid M, Martin-Padura I, Hersberger M, Tanner FC, Pelicci P, Volpe M, Anversa P, Lüscher TF, Cosentino F. Genetic deletion of p66(Shc) adaptor protein prevents hyperglycemia-induced endothelial dysfunction and oxidative stress. Proc Natl Acad Sci U S A 2007; 104:5217-22. [PMID: 17360381 PMCID: PMC1829289 DOI: 10.1073/pnas.0609656104] [Citation(s) in RCA: 194] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Increased production of reactive oxygen species (ROS) and loss of endothelial NO bioavailability are key features of vascular disease in diabetes mellitus. The p66(Shc) adaptor protein controls cellular responses to oxidative stress. Mice lacking p66(Shc) (p66(Shc-/-)) have increased resistance to ROS and prolonged life span. The present work was designed to investigate hyperglycemia-associated changes in endothelial function in a model of insulin-dependent diabetes mellitus p66(Shc-/-) mouse. p66(Shc-/-) and wild-type (WT) mice were injected with citrate buffer (control) or made diabetic by an i.p. injection of 200 mg of streptozotocin per kg of body weight. Streptozotocin-treated p66(Shc-/-) and WT mice showed a similar increase in blood glucose. However, significant differences arose with respect to endothelial dysfunction and oxidative stress. WT diabetic mice displayed marked impairment of endothelium-dependent relaxations, increased peroxynitrite (ONOO(-)) generation, nitrotyrosine expression, and lipid peroxidation as measured in the aortic tissue. In contrast, p66(Shc-/-) diabetic mice did not develop these high-glucose-mediated abnormalities. Furthermore, protein expression of the antioxidant enzyme heme oxygenase 1 and endothelial NO synthase were up-regulated in p66(Shc-/-) but not in WT mice. We report that p66(Shc-/-) mice are resistant to hyperglycemia-induced, ROS-dependent endothelial dysfunction. These data suggest that p66(Shc) adaptor protein is part of a signal transduction pathway relevant to hyperglycemia vascular damage and, hence, may represent a novel therapeutic target against diabetic vascular complications.
Collapse
Affiliation(s)
- Giovanni G. Camici
- *Cardiology and Cardiovascular Research, University Hospital, Zürich, Institute of Physiology, University of Zürich, CH-8057 Zürich, Switzerland
| | - Marzia Schiavoni
- *Cardiology and Cardiovascular Research, University Hospital, Zürich, Institute of Physiology, University of Zürich, CH-8057 Zürich, Switzerland
| | - Pietro Francia
- Division of Cardiology, Second Faculty of Medicine, University La Sapienza, 00189 Rome, Italy
| | - Markus Bachschmid
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Ines Martin-Padura
- Department of Experimental Oncology, European Institute of Oncology, 20141 Milan, Italy
| | - Martin Hersberger
- Institute of Clinical Chemistry, University Hospital, CH-8057 Zürich, Switzerland
| | - Felix C. Tanner
- *Cardiology and Cardiovascular Research, University Hospital, Zürich, Institute of Physiology, University of Zürich, CH-8057 Zürich, Switzerland
| | - PierGiuseppe Pelicci
- Department of Experimental Oncology, European Institute of Oncology, 20141 Milan, Italy
| | - Massimo Volpe
- Division of Cardiology, Second Faculty of Medicine, University La Sapienza, 00189 Rome, Italy
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Piero Anversa
- **New York Medical College, Cardiovascular Research Institute, Valhalla, NY 10595; and
| | - Thomas F. Lüscher
- *Cardiology and Cardiovascular Research, University Hospital, Zürich, Institute of Physiology, University of Zürich, CH-8057 Zürich, Switzerland
| | - Francesco Cosentino
- *Cardiology and Cardiovascular Research, University Hospital, Zürich, Institute of Physiology, University of Zürich, CH-8057 Zürich, Switzerland
- Division of Cardiology, Second Faculty of Medicine, University La Sapienza, 00189 Rome, Italy
- To whom correspondence should be addressed at:
Cardiology and Cardiovascular Research, University of Zürich-Irchel, Winterthurerstrasse, 190, CH-8057 Zürich, Switzerland. E-mail:
| |
Collapse
|
49
|
Morris PN, Dunmore BJ, Brindle NPJ. Mutant Tie2 causing venous malformation signals through Shc. Biochem Biophys Res Commun 2006; 346:335-8. [PMID: 16756945 DOI: 10.1016/j.bbrc.2006.05.128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Accepted: 05/20/2006] [Indexed: 10/24/2022]
Abstract
Tie2 is a receptor tyrosine kinase expressed predominantly in endothelial cells. A missense mutation in the intracellular domain of Tie2 resulting in an arginine to tryptophan substitution causes an inherited form of vascular dysmorphogenesis, venous malformation (VM). The signalling pathways activated by mutant Tie2 and responsible for formation and maintenance of the abnormal vessels in VM are not known. In this study, we have sought to define these pathways by identifying phosphoproteins interacting with mutant Tie2 expressed in endothelial cells. We find R849W Tie2 is constitutively active in endothelium and recruits and phosphorylates a 52 kDa protein. This protein is identified as p52 ShcA. We show endothelial cells expressing VM-mutant Tie2 are protected from cell death and expression of dominant-negative ShcA inhibits the anti-apoptotic activity of the mutant receptor. Suppression of this pro-survival signalling could be a therapeutic option for inducing regression of lesional vessels.
Collapse
Affiliation(s)
- Paul N Morris
- Department of Plastic, Maxillofacial and Burns Surgery, Hutt Valley Hospital, Wellington 6009, New Zealand
| | | | | |
Collapse
|
50
|
Trinei M, Berniakovich I, Pelicci PG, Giorgio M. Mitochondrial DNA copy number is regulated by cellular proliferation: a role for Ras and p66(Shc). BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:624-30. [PMID: 16829231 DOI: 10.1016/j.bbabio.2006.05.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2005] [Revised: 05/03/2006] [Accepted: 05/15/2006] [Indexed: 11/22/2022]
Abstract
The abundance of mitochondria is regulated by biogenesis and division. These processes are controlled by cellular factors, given that, for example, mitochondria have to replicate their DNA prior to cell division. However, the mechanisms that allow a synchronization of cell proliferation with mitochondrial genome replication are still obscure. We report here our investigations on the role of proliferation and the contribution of Ras and p66Shc in the regulation of mitochondrial DNA copy number. Ras proteins mediate a variety of receptor-transduced mitogenic signals and appear to play an essential role in the cellular response to growth factors. P66Shc is a genetic determinant of life span in mammals and has been implicated in the regulation of receptor signaling and various mitochondrial functions. First, we confirmed previous reports showing that mitochondrial DNA is replicated during a specific phase of the cell cycle (the pre-S phase) and provided novel evidences that this process is regulated by mitogenic growth factors. Second, we showed that mitochondrial DNA replication is activated following Ras-induced cellular hyper-proliferation. Finally, we showed that p66Shc expression induces mitochondrial DNA replication, both in vitro and in vivo. We suggest that mitochondria are target of intracellular signaling pathways leading to proliferation, involving Ras and p66Shc, which might function to integrate cellular bio-energetic requirements and the inheritance of mitochondrial DNA in a cell cycle-dependent manner.
Collapse
Affiliation(s)
- Mirella Trinei
- European Institute of Oncology, Via Ripamonti 435 Milan, Italy.
| | | | | | | |
Collapse
|