1
|
Takahashi K, Lee Y, Fago A, Bautista NM, Storz JF, Kawamoto A, Kurisu G, Nishizawa T, Tame JRH. The unique allosteric property of crocodilian haemoglobin elucidated by cryo-EM. Nat Commun 2024; 15:6505. [PMID: 39090102 PMCID: PMC11294572 DOI: 10.1038/s41467-024-49947-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
The principal effect controlling the oxygen affinity of vertebrate haemoglobins (Hbs) is the allosteric switch between R and T forms with relatively high and low oxygen affinity respectively. Uniquely among jawed vertebrates, crocodilians possess Hb that shows a profound drop in oxygen affinity in the presence of bicarbonate ions. This allows them to stay underwater for extended periods by consuming almost all the oxygen present in the blood-stream, as metabolism releases carbon dioxide, whose conversion to bicarbonate and hydrogen ions is catalysed by carbonic anhydrase. Despite the apparent universal utility of bicarbonate as an allosteric regulator of Hb, this property evolved only in crocodilians. We report here the molecular structures of both human and a crocodilian Hb in the deoxy and liganded states, solved by cryo-electron microscopy. We reveal the precise interactions between two bicarbonate ions and the crocodilian protein at symmetry-related sites found only in the T state. No other known effector of vertebrate Hbs binds anywhere near these sites.
Collapse
Affiliation(s)
- Katsuya Takahashi
- Graduate School of Medical Life Science, Yokohama City University, Suehiro 1-7-29, Yokohama, 230-0045, Japan
| | - Yongchan Lee
- Graduate School of Medical Life Science, Yokohama City University, Suehiro 1-7-29, Yokohama, 230-0045, Japan
| | - Angela Fago
- Department of Biology, Aarhus University, C. F. Møllers Alle 3, Aarhus, DK-8000, Aarhus C, Denmark
| | - Naim M Bautista
- School of Biological Sciences, University of Nebraska, 1104 T St., Lincoln, NE 68588-0118, NE, USA
| | - Jay F Storz
- School of Biological Sciences, University of Nebraska, 1104 T St., Lincoln, NE 68588-0118, NE, USA
| | - Akihiro Kawamoto
- Institute for Protein Research, Osaka University, 3-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Genji Kurisu
- Institute for Protein Research, Osaka University, 3-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomohiro Nishizawa
- Graduate School of Medical Life Science, Yokohama City University, Suehiro 1-7-29, Yokohama, 230-0045, Japan.
| | - Jeremy R H Tame
- Graduate School of Medical Life Science, Yokohama City University, Suehiro 1-7-29, Yokohama, 230-0045, Japan.
| |
Collapse
|
2
|
Sharon EM, Henderson LW, Clemmer DE. Resolving Hidden Solution Conformations of Hemoglobin Using IMS-IMS on a Cyclic Instrument. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1559-1568. [PMID: 37418419 PMCID: PMC10916761 DOI: 10.1021/jasms.3c00032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Ion mobility spectrometry-mass spectrometry (IMS-MS) experiments on a cyclic IMS instrument were used to examine heterogeneous distributions of structures found in the 15+ to 18+ charge states of the hemoglobin tetramer (Hb). The resolving power of IMS measurements is known to increase with increasing drift-region length. This effect is not significant for Hb charge states as peaks were shown to broaden with increasing drift-region length. This observation suggests that multiple structures with similar cross sections may be present. To examine this hypothesis, selections of drift time distributions were isolated and subsequently reinjected into the mobility region for additional separation. These IMS-IMS experiments demonstrate that selected regions separate further upon additional passes around the drift cell, consistent with the idea that initial resolving power was limited due to the presence of many closely related conformations. Additional variable temperature electrospray ionization (vT-ESI) experiments were conducted to study how changing the solution temperature affects solution conformations. Some features in these IMS-IMS studies were observed to change similarly with solution temperature compared to features in the single IMS distribution. Other features changed differently in the selected mobility data, indicating that solution structures that were obscured upon IMS analysis because of the complex heterogeneity of the original distribution are discernible after reducing the number of conformers that are analyzed by further IMS analysis. These results illustrate that the combination of vT-ESI with IMS-IMS is useful for resolving and exploring conformer distributions and stabilities in systems that exhibit a large degree of structural heterogeneity.
Collapse
Affiliation(s)
- Edie M Sharon
- Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana 47405, United States
| | - Lucas W Henderson
- Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana 47405, United States
| | - David E Clemmer
- Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana 47405, United States
| |
Collapse
|
3
|
Balasco N, Paladino A, Graziano G, D'Abramo M, Vitagliano L. Atomic-Level View of the Functional Transition in Vertebrate Hemoglobins: The Case of Antarctic Fish Hbs. J Chem Inf Model 2022; 62:3874-3884. [PMID: 35930673 PMCID: PMC9400108 DOI: 10.1021/acs.jcim.2c00727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tetrameric hemoglobins (Hbs) are prototypal systems for studies aimed at unveiling basic structure-function relationships as well as investigating the molecular/structural basis of adaptation of living organisms to extreme conditions. However, a chronological analysis of decade-long studies conducted on Hbs is illuminating on the difficulties associated with the attempts of gaining functional insights from static structures. Here, we applied molecular dynamics (MD) simulations to explore the functional transition from the T to the R state of the hemoglobin of the Antarctic fish Trematomus bernacchii (HbTb). Our study clearly demonstrates the ability of the MD technique to accurately describe the transition of HbTb from the T to R-like states, as shown by a number of global and local structural indicators. A comparative analysis of the structural states that HbTb assumes in the simulations with those detected in previous MD analyses conducted on HbA (human Hb) highlights interesting analogies (similarity of the transition pathway) and differences (distinct population of intermediate states). In particular, the ability of HbTb to significantly populate intermediate states along the functional pathway explains the observed propensity of this protein to assume these structures in the crystalline state. It also explains some functional data reported on the protein that indicate the occurrence of other functional states in addition to the canonical R and T ones. These findings are in line with the emerging idea that the classical two-state view underlying tetrameric Hb functionality is probably an oversimplification and that other structural states play important roles in these proteins. The ability of MD simulations to accurately describe the functional pathway in tetrameric Hbs suggests that this approach may be effectively applied to unravel the molecular and structural basis of Hbs exhibiting peculiar functional properties as a consequence of the environmental adaptation of the host organism.
Collapse
Affiliation(s)
- Nicole Balasco
- Institute of Molecular Biology and Pathology, CNR c/o Dep. Chemistry, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy
| | - Antonella Paladino
- Institute of Biostructures and Bioimaging, CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Giuseppe Graziano
- Department of Science and Technology, University of Sannio, via Francesco de Sanctis snc, Benevento 82100, Italy
| | - Marco D'Abramo
- Department of Chemistry, University of Rome Sapienza, P.le A.Moro 5, 00185 Rome, Italy
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
4
|
Balasco N, Alba J, D'Abramo M, Vitagliano L. Quaternary Structure Transitions of Human Hemoglobin: An Atomic-Level View of the Functional Intermediate States. J Chem Inf Model 2021; 61:3988-3999. [PMID: 34375114 PMCID: PMC9473481 DOI: 10.1021/acs.jcim.1c00315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Human hemoglobin (HbA) is one of the prototypal systems used to investigate structure-function relationships in proteins. Indeed, HbA has been used to develop the basic concepts of protein allostery, although the atomic-level mechanism underlying the HbA functionality is still highly debated. This is due to the fact that most of the three-dimensional structural information collected over the decades refers to the endpoints of HbA functional transition with little data available for the intermediate states. Here, we report molecular dynamics (MD) simulations by focusing on the relevance of the intermediate states of the protein functional transition unraveled by the crystallographic studies carried out on vertebrate Hbs. Fully atomistic simulations of the HbA T-state indicate that the protein undergoes a spontaneous transition toward the R-state. The inspection of the trajectory structures indicates that the protein significantly populates the intermediate HL-(C) state previously unraveled by crystallography. In the structural transition, it also assumes the intermediate states crystallographically detected in Antarctic fish Hbs. This finding suggests that HbA and Antarctic fish Hbs, in addition to the endpoints of the transitions, also share a similar deoxygenation pathway despite a distace of hundreds of millions of years in the evolution scale. Finally, using the essential dynamic sampling methodology, we gained some insights into the reverse R to T transition that is not spontaneously observed in classic MD simulations.
Collapse
Affiliation(s)
- Nicole Balasco
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Josephine Alba
- Department of Chemistry, University of Rome Sapienza, P.le A.Moro 5, 00185 Rome, Italy
| | - Marco D'Abramo
- Department of Chemistry, University of Rome Sapienza, P.le A.Moro 5, 00185 Rome, Italy
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, 80134 Naples, Italy
| |
Collapse
|
5
|
Biophysical reviews 'meet the editor series'-Jeremy R. H. Tame. Biophys Rev 2021; 13:295-301. [PMID: 34178167 DOI: 10.1007/s12551-021-00798-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 10/21/2022] Open
|
6
|
Shibayama N. Allosteric transitions in hemoglobin revisited. Biochim Biophys Acta Gen Subj 2020; 1864:129335. [DOI: 10.1016/j.bbagen.2019.03.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/27/2019] [Accepted: 03/30/2019] [Indexed: 12/19/2022]
|
7
|
Lal J, Maccarini M, Fouquet P, Ho NT, Ho C, Makowski L. Modulation of hemoglobin dynamics by an allosteric effector. Protein Sci 2017; 26:505-514. [PMID: 27977887 PMCID: PMC5326564 DOI: 10.1002/pro.3099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 12/03/2016] [Accepted: 12/07/2016] [Indexed: 11/24/2022]
Abstract
Hemoglobin (Hb) is an extensively studied paradigm of proteins that alter their function in response to allosteric effectors. Models of its action have been used as prototypes for structure‐function relationships in many proteins, and models for the molecular basis of its function have been deeply studied and extensively argued. Recent reports suggest that dynamics may play an important role in its function. Relatively little is known about the slow, correlated motions of hemoglobin subunits in various structural states because experimental and computational strategies for their characterization are challenging. Allosteric effectors such as inositol hexaphosphate (IHP) bind to both deoxy‐Hb and HbCO, albeit at different sites, leading to a lowered oxygen affinity. The manner in which these effectors impact oxygen binding is unclear and may involve changes in structure, dynamics or both. Here we use neutron spin echo measurements accompanied by wide‐angle X‐ray scattering to show that binding of IHP to HbCO results in an increase in the rate of coordinated motions of Hb subunits relative to one another with little if any change in large scale structure. This increase of large‐scale dynamics seems to be coupled with a decrease in the average magnitude of higher frequency modes of individual residues. These observations indicate that enhanced dynamic motions contribute to the functional changes induced by IHP and suggest that they may be responsible for the lowered oxygen affinity triggered by these effectors.
Collapse
Affiliation(s)
- Jyotsana Lal
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois, 60439
| | - Marco Maccarini
- Institut Laue-Langevin, CS 20156, 38042 Grenoble Cedex 9, France
| | - Peter Fouquet
- Institut Laue-Langevin, CS 20156, 38042 Grenoble Cedex 9, France
| | - Nancy T Ho
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213
| | - Chien Ho
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213
| | - Lee Makowski
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois, 60439.,Department of Bioengineering, Northeastern University, Boston, Massachusetts, 02115
| |
Collapse
|
8
|
Abstract
Allostery is a ubiquitous biological regulatory process in which distant binding sites within a protein or enzyme are functionally and thermodynamically coupled. Allosteric interactions play essential roles in many enzymological mechanisms, often facilitating formation of enzyme-substrate complexes and/or product release. Thus, elucidating the forces that drive allostery is critical to understanding the complex transformations of biomolecules. Currently, a number of models exist to describe allosteric behavior, taking into account energetics as well as conformational rearrangements and fluctuations. In the following Review, we discuss the use of solution NMR techniques designed to probe allosteric mechanisms in enzymes. NMR spectroscopy is unequaled in its ability to detect structural and dynamical changes in biomolecules, and the case studies presented herein demonstrate the range of insights to be gained from this valuable method. We also provide a detailed technical discussion of several specialized NMR experiments that are ideally suited for the study of enzymatic allostery.
Collapse
Affiliation(s)
- George P. Lisi
- Department of Chemistry, Yale University, New Haven, CT 06520
| | - J. Patrick Loria
- Department of Chemistry, Yale University, New Haven, CT 06520
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520
| |
Collapse
|
9
|
Shibayama N, Sugiyama K, Tame JRH, Park SY. Capturing the Hemoglobin Allosteric Transition in a Single Crystal Form. J Am Chem Soc 2014; 136:5097-105. [DOI: 10.1021/ja500380e] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Naoya Shibayama
- Division
of Biophysics, Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Kanako Sugiyama
- Drug
Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama, 230-0045, Japan
| | - Jeremy R. H. Tame
- Drug
Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama, 230-0045, Japan
| | - Sam-Yong Park
- Drug
Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama, 230-0045, Japan
| |
Collapse
|
10
|
How does hemoglobin generate such diverse functionality of physiological relevance? BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1873-84. [PMID: 23643742 DOI: 10.1016/j.bbapap.2013.04.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 04/22/2013] [Accepted: 04/23/2013] [Indexed: 11/24/2022]
Abstract
The absolute values of the O2-affinities (P50, Klow, and Khigh) of hemoglobin (Hb) are regulated neither by changes in the static T-/R-quaternary and associated tertiary structures nor the ligation states. They are pre-determined and regulated by the extrinsic environmental factors such as pH, buffers, and heterotropic effectors. The effect and role of O2 on Hb are reversibly to drive the structural allosteric equilibrium between the T(deoxy)- and R(oxy)-Hb toward R(oxy)-Hb (the structural allostery). R(oxy)-Hb has a higher O2-affinity (Khigh) relative to that (Klow) of the T(deoxy)-Hb (Khigh>Klow) under any fixed environmental conditions. The apparent O2-affinity of Hb is high, as the globin matrix interferes with the dissociation process of O2, forcing the dissociated O2 geminately to re-bind to the heme Fe. This artificially increases [oxy-Hb] and concomitantly decreases [deoxy-Hb], leading to the apparent increases of the O2-affinity of Hb. The effector-linked high-frequency thermal fluctuations of the globin matrix act as a gating mechanism to modulate such physical, energetic, and kinetic barriers to enhance the dissociation process of O2, resulted in increases in [deoxy-Hb] and concomitant decrease in [oxy-Hb], leading to apparent reductions of the O2-affinity of Hb (the entropic allostery). The heme in Hb is simply a low-affinity O2-trap, the coordination structure of which is not altered by static T-/R-quaternary and associated tertiary structural changes of Hb. Thus, heterotrophic effectors are the signal molecule, which acts as a functional link between these two allosteries and generates the diverse functionality of Hb of physiological relevance. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.
Collapse
|
11
|
Noguchi H, Campbell KL, Ho C, Unzai S, Park SY, Tame JRH. Structures of haemoglobin from woolly mammoth in liganded and unliganded states. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:1441-9. [PMID: 23090393 DOI: 10.1107/s0907444912029459] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 06/28/2012] [Indexed: 11/11/2022]
Abstract
The haemoglobin (Hb) of the extinct woolly mammoth has been recreated using recombinant genes expressed in Escherichia coli. The globin gene sequences were previously determined using DNA recovered from frozen cadavers. Although highly similar to the Hb of existing elephants, the woolly mammoth protein shows rather different responses to chloride ions and temperature. In particular, the heat of oxygenation is found to be much lower in mammoth Hb, which appears to be an adaptation to the harsh high-latitude climates of the Pleistocene Ice Ages and has been linked to heightened sensitivity of the mammoth protein to protons, chloride ions and organic phosphates relative to that of Asian elephants. To elucidate the structural basis for the altered homotropic and heterotropic effects, the crystal structures of mammoth Hb have been determined in the deoxy, carbonmonoxy and aquo-met forms. These models, which are the first structures of Hb from an extinct species, show many features reminiscent of human Hb, but underline how the delicate control of oxygen affinity relies on much more than simple overall quaternary-structure changes.
Collapse
Affiliation(s)
- Hiroki Noguchi
- Protein Design Laboratory, Yokohama City University, Suehiro 1-7-29, Yokohama 230-0045, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Makowski L, Bardhan J, Gore D, Lal J, Mandava S, Park S, Rodi DJ, Ho NT, Ho C, Fischetti RF. WAXS studies of the structural diversity of hemoglobin in solution. J Mol Biol 2011; 408:909-21. [PMID: 21420976 DOI: 10.1016/j.jmb.2011.02.062] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 02/20/2011] [Accepted: 02/28/2011] [Indexed: 10/18/2022]
Abstract
Specific ligation states of hemoglobin are, when crystallized, capable of taking on multiple quaternary structures. The relationship between these structures, captured in crystal lattices, and hemoglobin structure in solution remains uncertain. Wide-angle X-ray solution scattering (WAXS) is a sensitive probe of protein structure in solution that can distinguish among similar structures and has the potential to contribute to these issues. We used WAXS to assess the relationships among the structures of human and bovine hemoglobins in different liganded forms in solution. WAXS data readily distinguished among the various forms of hemoglobins. WAXS patterns confirm some of the relationships among hemoglobin structures that have been defined through crystallography and NMR and extend others. For instance, methemoglobin A in solution is, as expected, nearly indistinguishable from HbCO A. Interestingly, for bovine hemoglobin, the differences between deoxy-Hb, methemoglobin and HbCO are smaller than the corresponding differences in human hemoglobin. WAXS data were also used to assess the spatial extent of structural fluctuations of various hemoglobins in solution. Dynamics has been implicated in allosteric control of hemoglobin, and increased dynamics has been associated with lowered oxygen affinity. Consistent with that notion, WAXS patterns indicate that deoxy-Hb A exhibits substantially larger structural fluctuations than HbCO A. Comparisons between the observed WAXS patterns and those predicted on the basis of atomic coordinate sets suggest that the structures of Hb in different liganded forms exhibit clear differences from known crystal structures.
Collapse
Affiliation(s)
- L Makowski
- Department of Electrical and Computer Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Merlino A, Vergara A, Sica F, Aschi M, Amadei A, Di Nola A, Mazzarella L. Free-Energy Profile for CO Binding to Separated Chains of Human and Trematomus newnesi Hemoglobin: Insights from Molecular Dynamics Simulations and Perturbed Matrix Method. J Phys Chem B 2010; 114:7002-8. [DOI: 10.1021/jp908525s] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Antonello Merlino
- Dipartimento di Chimica, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy, Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Naples, Italy, Dipartimento di Chimica, Ingegneria Chimica e Materiali, University of L’Aquila, Via Vetoio, I-67010, L’Aquila, Italy, Dipartimento di Scienze e Tecnologie Chimiche, University of Rome “Tor Vergata”, Via della Ricerca scientifica 1, I-00133 Roma, Italy, and Dipartimento di Chimica,
| | - Alessandro Vergara
- Dipartimento di Chimica, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy, Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Naples, Italy, Dipartimento di Chimica, Ingegneria Chimica e Materiali, University of L’Aquila, Via Vetoio, I-67010, L’Aquila, Italy, Dipartimento di Scienze e Tecnologie Chimiche, University of Rome “Tor Vergata”, Via della Ricerca scientifica 1, I-00133 Roma, Italy, and Dipartimento di Chimica,
| | - Filomena Sica
- Dipartimento di Chimica, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy, Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Naples, Italy, Dipartimento di Chimica, Ingegneria Chimica e Materiali, University of L’Aquila, Via Vetoio, I-67010, L’Aquila, Italy, Dipartimento di Scienze e Tecnologie Chimiche, University of Rome “Tor Vergata”, Via della Ricerca scientifica 1, I-00133 Roma, Italy, and Dipartimento di Chimica,
| | - Massimiliano Aschi
- Dipartimento di Chimica, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy, Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Naples, Italy, Dipartimento di Chimica, Ingegneria Chimica e Materiali, University of L’Aquila, Via Vetoio, I-67010, L’Aquila, Italy, Dipartimento di Scienze e Tecnologie Chimiche, University of Rome “Tor Vergata”, Via della Ricerca scientifica 1, I-00133 Roma, Italy, and Dipartimento di Chimica,
| | - Andrea Amadei
- Dipartimento di Chimica, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy, Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Naples, Italy, Dipartimento di Chimica, Ingegneria Chimica e Materiali, University of L’Aquila, Via Vetoio, I-67010, L’Aquila, Italy, Dipartimento di Scienze e Tecnologie Chimiche, University of Rome “Tor Vergata”, Via della Ricerca scientifica 1, I-00133 Roma, Italy, and Dipartimento di Chimica,
| | - Alfredo Di Nola
- Dipartimento di Chimica, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy, Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Naples, Italy, Dipartimento di Chimica, Ingegneria Chimica e Materiali, University of L’Aquila, Via Vetoio, I-67010, L’Aquila, Italy, Dipartimento di Scienze e Tecnologie Chimiche, University of Rome “Tor Vergata”, Via della Ricerca scientifica 1, I-00133 Roma, Italy, and Dipartimento di Chimica,
| | - Lelio Mazzarella
- Dipartimento di Chimica, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy, Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Naples, Italy, Dipartimento di Chimica, Ingegneria Chimica e Materiali, University of L’Aquila, Via Vetoio, I-67010, L’Aquila, Italy, Dipartimento di Scienze e Tecnologie Chimiche, University of Rome “Tor Vergata”, Via della Ricerca scientifica 1, I-00133 Roma, Italy, and Dipartimento di Chimica,
| |
Collapse
|
14
|
Lal J, Fouquet P, Maccarini M, Makowski L. Neutron spin-echo studies of hemoglobin and myoglobin: multiscale internal dynamics. J Mol Biol 2010; 397:423-35. [PMID: 20096701 DOI: 10.1016/j.jmb.2010.01.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 01/11/2010] [Accepted: 01/14/2010] [Indexed: 11/17/2022]
Abstract
Neutron spin-echo spectroscopy was used to study structural fluctuations that occur in hemoglobin (Hb) and myoglobin (Mb) in solution. Using neutron spin-echo data up to a very high momentum transfer q ( approximately 0.62 A(-)(1)), we characterized the internal dynamics of these proteins at the levels of dynamic pair correlation function and self-correlation function in the time range of several picoseconds to a few nanoseconds. In the same protein solution, data transition from pair correlation motion to self-correlation motion as the momentum transfer q increases. At low q, coherent scattering dominates; at high q, observations are largely due to incoherent scattering. The low q data were interpreted in terms of an effective diffusion coefficient; on the other hand, the high q data were interpreted in terms of mean square displacements. Comparison of data from the two homologous proteins collected at different temperatures and protein concentrations was used to assess the contributions made by translational and rotational diffusion and internal modes of motion to the data. The temperature dependence of decay times can be attributed to changes in the viscosity and temperature of the solvent, as predicted by the Stokes-Einstein relationship. This is true for contributions from both diffusive and internal modes of motion, indicating an intimate relationship between the internal dynamics of the proteins and the viscosity of the solvent. Viscosity change associated with protein concentration can account for changes in diffusion observed at different concentrations, but is apparently not the only factor involved in the changes in internal dynamics observed with change in protein concentration. Data collected at high q indicate that internal modes in Mb are generally faster than those in Hb, perhaps due to the greater surface-to-volume ratio of Mb and the fact that surface groups tend to exhibit faster motion than buried groups. Comparison of data from Hb and data from Mb at low q indicates an unexpectedly rapid motion of Hb alphabeta dimers relative to one another. Dynamic motion of subunits is increasingly perceived as important to the allosteric behavior of Hb. Our data demonstrate that this motion is highly sensitive to protein concentration, temperature, and solvent viscosity, indicating that great care needs to be exercised in interpreting its effect on protein function.
Collapse
Affiliation(s)
- Jyotsana Lal
- Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | | | | | | |
Collapse
|
15
|
Vitagliano L, Vergara A, Bonomi G, Merlino A, Verde C, Prisco GD, Howes BD, Smulevich G, Mazzarella L. Spectroscopic and Crystallographic Characterization of a Tetrameric Hemoglobin Oxidation Reveals Structural Features of the Functional Intermediate Relaxed/Tense State. J Am Chem Soc 2008; 130:10527-35. [DOI: 10.1021/ja803363p] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Luigi Vitagliano
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Naples, Italy, Department of Chemistry, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy, Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, I-80131 Naples, Italy, and Department of Chemistry, University of Florence, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy
| | - Alessandro Vergara
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Naples, Italy, Department of Chemistry, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy, Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, I-80131 Naples, Italy, and Department of Chemistry, University of Florence, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy
| | - Giovanna Bonomi
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Naples, Italy, Department of Chemistry, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy, Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, I-80131 Naples, Italy, and Department of Chemistry, University of Florence, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy
| | - Antonello Merlino
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Naples, Italy, Department of Chemistry, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy, Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, I-80131 Naples, Italy, and Department of Chemistry, University of Florence, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy
| | - Cinzia Verde
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Naples, Italy, Department of Chemistry, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy, Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, I-80131 Naples, Italy, and Department of Chemistry, University of Florence, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy
| | - Guido di Prisco
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Naples, Italy, Department of Chemistry, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy, Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, I-80131 Naples, Italy, and Department of Chemistry, University of Florence, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy
| | - Barry D. Howes
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Naples, Italy, Department of Chemistry, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy, Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, I-80131 Naples, Italy, and Department of Chemistry, University of Florence, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy
| | - Giulietta Smulevich
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Naples, Italy, Department of Chemistry, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy, Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, I-80131 Naples, Italy, and Department of Chemistry, University of Florence, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy
| | - Lelio Mazzarella
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Naples, Italy, Department of Chemistry, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy, Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, I-80131 Naples, Italy, and Department of Chemistry, University of Florence, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
16
|
Yonetani T, Laberge M. Protein dynamics explain the allosteric behaviors of hemoglobin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:1146-58. [PMID: 18519045 DOI: 10.1016/j.bbapap.2008.04.025] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 03/18/2008] [Accepted: 04/22/2008] [Indexed: 11/26/2022]
Abstract
Bohr, Hasselbalch, and Krogh discovered homotropic and heterotropic allosteric behaviors of hemoglobin (Hb) in 1903/1904. A chronological description since then of selected principal models of the allosteric mechanism of Hb, such as the Adair scheme, the MWC two-state concerted model, the KNF induced-fit sequential model, the Perutz stereochemical model, the tertiary two-state model, and the global allostery model (an expanded MWC models), is concisely presented, followed by analysis and discussion of their limitations and deficiencies. The determination of X-ray crystallographic structures of deoxy- and ligated-Hb and the structure-based stereochemical model by Perutz are an epoch-making event in this history. However, his assignment of low-affinity deoxy- and high-affinity oxy-quaternary structures of Hb to the T- and R-states, respectively, though apparently reasonable, and as well as his hypothesis that the T-/R-quaternary structural transition regulates the oxygen-affinity, have created confusions and side-tracked studies of Hb on the structure-function relationship. The differences in static molecular structures of Hb between T(deoxy)- and R(oxy)-quaternary states reported in detail by Perutz and others are ligation-linked structural changes, but not related to the control/regulation of the oxygen-affinity. The oxygen-affinity (K(T) and K(R)) of Hb has been shown to be regulated by the heterotropic effector-linked tertiary structural changes without involving the T/R-quaternary changes. However, a recent high-resolution crystallographic analysis of Hb with different oxygen-affinities shows that static molecular structures of Hb determined by crystallography can neither identify the nature of the T(low-affinity) functional state nor decipher the mechanism by which Hb stores free energy in the T(low-affinity) functional state. Molecular dynamics simulations show that fluctuations of helices of oxy-Hb are increased upon de-oxygenation and/or binding 2,3-biphosphoglycerate. These are known to lower the oxygen-affinity of Hb. It is proposed that the coordination mode of the heme Fe with proximal and distal His is modulated by these helical fluctuations, resulting in the modulation of the oxygen-affinity of Hb. Therefore, it is proposed that the oxygen-affinity of Hb is regulated by pentanary (the 5th-order time-dependent or dynamic) tertiary structural changes rather than the T-/R-quaternary structural transitions in Hb. Homotropic and heterotropic allosteric effects of Hb are oxygen- and effector-linked, conformational entropy-driven entropy-enthalpy compensation phenomena and not much to do with static structural changes. The dynamic allostery model, which integrates these observations, provides the structural basis for the global allostery model (an expanded MWC model).
Collapse
Affiliation(s)
- Takashi Yonetani
- Department of Biochemistry and Biophysics and the Johnson Research Foundation, University of Pennsylvania, Philadelphia, Pennsylvania 19194-6059, USA.
| | | |
Collapse
|
17
|
Park SY, Yokoyama T, Shibayama N, Shiro Y, Tame JRH. 1.25 Å Resolution Crystal Structures of Human Haemoglobin in the Oxy, Deoxy and Carbonmonoxy Forms. J Mol Biol 2006; 360:690-701. [PMID: 16765986 DOI: 10.1016/j.jmb.2006.05.036] [Citation(s) in RCA: 232] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Revised: 05/08/2006] [Accepted: 05/16/2006] [Indexed: 11/29/2022]
Abstract
The most recent refinement of the crystallographic structure of oxyhaemoglobin (oxyHb) was completed in 1983, and differences between this real-space refined model and later R state models have been interpreted as evidence of crystallisation artefacts, or numerous sub-states. We have refined models of deoxy, oxy and carbonmonoxy Hb to 1.25 A resolution each, and compare them with other Hb structures. It is shown that the older structures reflect the software used in refinement, and many differences with newer structures are unlikely to be physiologically relevant. The improved accuracy of our models clarifies the disagreement between NMR and X-ray studies of oxyHb, the NMR experiments suggesting a hydrogen bond to exist between the distal histidine and oxygen ligand of both the alpha and beta-subunits. The high-resolution crystal structure also reveals a hydrogen bond in both subunit types, but with subtly different geometry which may explain the very different behaviour when this residue is mutated to glycine in alpha or beta globin. We also propose a new set of relatively fixed residues to act as a frame of reference; this set contains a similar number of atoms to the well-known "BGH" frame yet shows a much smaller rmsd value between R and T state models of HbA.
Collapse
Affiliation(s)
- Sam-Yong Park
- Protein Design Laboratory, Yokohama City University, Suehiro 1-7-29, Tsurumi, Yokohama 230-0045, Japan.
| | | | | | | | | |
Collapse
|
18
|
Sankaranarayanan R, Biswal BK, Vijayan M. A new relaxed state in horse methemoglobin characterized by crystallographic studies. Proteins 2006; 60:547-51. [PMID: 15887226 DOI: 10.1002/prot.20510] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A new relaxed state has been characterized in the crystals of horse methemoglobin grown at neutral pH at low ionic concentration and their low humidity variants. The crystals provide an example for improvement in X-ray diffraction quality with reduced solvent content. Only the classical R state has been so far observed in liganded horse hemoglobin. The state characterized in the present study lies in between the R state and the R2 state characterized earlier in liganded human hemoglobin. The results presented here, along with those of earlier studies, suggest that relaxed and tense hemoglobin can access ensembles of states.
Collapse
Affiliation(s)
- R Sankaranarayanan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | | | |
Collapse
|
19
|
Yokoyama T, Neya S, Tsuneshige A, Yonetani T, Park SY, Tame JRH. R-state haemoglobin with low oxygen affinity: crystal structures of deoxy human and carbonmonoxy horse haemoglobin bound to the effector molecule L35. J Mol Biol 2005; 356:790-801. [PMID: 16403522 DOI: 10.1016/j.jmb.2005.12.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 12/05/2005] [Accepted: 12/06/2005] [Indexed: 11/30/2022]
Abstract
Although detailed crystal structures of haemoglobin (Hb) provide a clear understanding of the basic allosteric mechanism of the protein, and how this in turn controls oxygen affinity, recent experiments with artificial effector molecules have shown a far greater control of oxygen binding than with natural heterotropic effectors. Contrary to the established text-book view, these non-physiological compounds are able to reduce oxygen affinity very strongly without switching the protein to the T (tense) state. In an earlier paper we showed that bezafibrate (BZF) binds to a surface pocket on the alpha subunits of R state Hb, strongly reducing the oxygen affinity of this protein conformation. Here we report the crystallisation of Hb with L35, a related compound, and show that this binds to the central cavity of both R and T state Hb. The mechanism by which L35 reduces oxygen affinity is discussed, in relation to spectroscopic studies of effector binding.
Collapse
Affiliation(s)
- Takeshi Yokoyama
- Protein Design Laboratory, Graduate School of Integrated Science, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama, 230-0045, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Lukin JA, Ho C. The Structure−Function Relationship of Hemoglobin in Solution at Atomic Resolution. Chem Rev 2004; 104:1219-30. [PMID: 15008621 DOI: 10.1021/cr940325w] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jonathan A Lukin
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | |
Collapse
|
21
|
Shimizu S. Estimating hydration changes upon biomolecular reactions from osmotic stress, high pressure, and preferential hydration experiments. Proc Natl Acad Sci U S A 2004; 101:1195-9. [PMID: 14732698 PMCID: PMC337029 DOI: 10.1073/pnas.0305836101] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
How do we estimate, from thermodynamic measurements, the number of water molecules adsorbed or released from biomolecules as a result of a biochemical process such as binding and allosteric effects? Volumetric and osmotic stress analyses are established methods for estimating water numbers; however, these techniques often yield conflicting results. In contrast, Kirkwood-Buff theory offers a novel way to calculate excess hydration number from volumetric data, provides a quantitative condition to gauge the accuracy of osmotic stress analysis, and clarifies the relationship between osmotic and volumetric analyses. I have applied Kirkwood-Buff theory to calculate water numbers for two processes: (i) the allosteric transition of hemoglobin and (ii) the binding of camphor to cytochrome P450. I show that osmotic stress analysis may overestimate hydration number changes for these processes.
Collapse
Affiliation(s)
- Seishi Shimizu
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5YW, United Kingdom.
| |
Collapse
|
22
|
Lukin JA, Kontaxis G, Simplaceanu V, Yuan Y, Bax A, Ho C. Quaternary structure of hemoglobin in solution. Proc Natl Acad Sci U S A 2003; 100:517-20. [PMID: 12525687 PMCID: PMC141027 DOI: 10.1073/pnas.232715799] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2002] [Indexed: 11/18/2022] Open
Abstract
Many important proteins perform their physiological functions under allosteric control, whereby the binding of a ligand at a specific site influences the binding affinity at a different site. Allosteric regulation usually involves a switch in protein conformation upon ligand binding. The energies of the corresponding structures are comparable, and, therefore, the possibility that a structure determined by x-ray diffraction in the crystalline state is influenced by its intermolecular contacts, and thus differs from the solution structure, cannot be excluded. Here, we demonstrate that the quaternary structure of tetrameric human normal adult carbonmonoxy-hemoglobin can readily be determined in solution at near-physiological conditions of pH, ionic strength, and temperature by NMR measurement of (15)N-(1)H residual dipolar couplings in weakly oriented samples. The structure is found to be a dynamic intermediate between two previously solved crystal structures, known as the R and R2 states. Exchange broadening at the subunit interface points to a rapid equilibrium between different structures that presumably include the crystallographically observed states.
Collapse
Affiliation(s)
- Jonathan A Lukin
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|
23
|
Salvay AG, Colombo MF, Raúl Grigera J. Hydration effects on the structural properties and haem–haem interaction in haemoglobin. Phys Chem Chem Phys 2003. [DOI: 10.1039/b209560b] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Decanniere K, Transue TR, Desmyter A, Maes D, Muyldermans S, Wyns L. Degenerate interfaces in antigen-antibody complexes. J Mol Biol 2001; 313:473-8. [PMID: 11676532 DOI: 10.1006/jmbi.2001.5075] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In most of the work dealing with the analysis of protein-protein interfaces, a single X-ray structure is available or selected, and implicitly it is assumed that this structure corresponds to the optimal complex for this pair of proteins. However, we have found a degenerate interface in a high-affinity antibody-antigen complex: the two independent complexes of the camel variable domain antibody fragment cAb-Lys3 and its antigen hen egg white lysozyme present in the asymmetric unit of our crystals show a difference in relative orientation between antibody and antigen, leading to important differences at the protein-protein interface. A third cAb-Lys3-hen lysozyme complex in a different crystal form adopts yet another relative orientation. Our results show that protein-protein interface characteristics can vary significantly between different specimens of the same high-affinity antibody-protein antigen complex. Consideration should be given to this type of observation when trying to establish general protein-protein interface characteristics.
Collapse
Affiliation(s)
- K Decanniere
- Vrije Universiteit Brussel Dienst Ultrastructuur, Vlaams Instituut voor Biotechnologie, Paardenstraat 65, B-1640 St.-Genesius Rode, Belgium.
| | | | | | | | | | | |
Collapse
|
25
|
Kidd RD, Baker HM, Mathews AJ, Brittain T, Baker EN. Oligomerization and ligand binding in a homotetrameric hemoglobin: two high-resolution crystal structures of hemoglobin Bart's (gamma(4)), a marker for alpha-thalassemia. Protein Sci 2001; 10:1739-49. [PMID: 11514664 PMCID: PMC2253191 DOI: 10.1110/ps.11701] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Hemoglobin (Hb) Bart's is present in the red blood cells of millions of people worldwide who suffer from alpha-thalassemia. alpha-Thalassemia is a disease in which there is a deletion of one or more of the four alpha-chain genes, and excess gamma and beta chains spontaneously form homotetramers. The gamma(4) homotetrameric protein known as Hb Bart's is a stable species that exhibits neither a Bohr effect nor heme-heme cooperativity. Although Hb Bart's has a higher O(2) affinity than either adult (alpha(2)beta(2)) or fetal (alpha(2)gamma(2)) Hbs, it has a lower affinity for O(2) than HbH (beta(4)). To better understand the association and ligand binding properties of the gamma(4) tetramer, we have solved the structure of Hb Bart's in two different oxidation and ligation states. The crystal structure of ferrous carbonmonoxy (CO) Hb Bart's was determined by molecular replacement and refined at 1.7 A resolution (R = 21.1%, R(free) = 24.4%), and that of ferric azide (N(3)(-)) Hb Bart's was similarly determined at 1.86 A resolution (R = 18.4%, R(free) = 22.0%). In the carbonmonoxy-Hb structure, the CO ligand is bound at an angle of 140 degrees, and with an unusually long Fe-C bond of 2.25 A. This geometry is attributed to repulsion from the distal His63 at the low pH of crystallization (4.5). In contrast, azide is bound to the oxidized heme iron in the methemoglobin crystals at an angle of 112 degrees, in a perfect orientation to accept a hydrogen bond from His63. Compared to the three known quaternary structures of human Hb (T, R, and R2), both structures most closely resemble the R state. Comparisons with the structures of adult Hb and HbH explain the association and dissociation behaviour of Hb homotetramers relative to the heterotetrameric Hbs.
Collapse
Affiliation(s)
- R D Kidd
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | | | |
Collapse
|
26
|
Metzler DE, Metzler CM, Sauke DJ. How Macromolecules Associate. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50010-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Lukin JA, Simplaceanu V, Zou M, Ho NT, Ho C. NMR reveals hydrogen bonds between oxygen and distal histidines in oxyhemoglobin. Proc Natl Acad Sci U S A 2000; 97:10354-8. [PMID: 10962034 PMCID: PMC27028 DOI: 10.1073/pnas.190254697] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Compared with free heme, the proteins hemoglobin (Hb) and myoglobin (Mb) exhibit greatly enhanced affinity for oxygen relative to carbon monoxide. This physiologically vital property has been attributed to either steric hindrance of CO or stabilization of O(2) binding by a hydrogen bond with the distal histidine. We report here the first direct evidence of such a hydrogen bond in both alpha- and beta-chains of oxyhemoglobin, as revealed by heteronuclear NMR spectra of chain-selectively labeled samples. Using these spectra, we have assigned the imidazole ring (1)H and (15)N chemical shifts of the proximal and distal histidines in both carbonmonoxy- and oxy-Hb. Because of their proximity to the heme, these chemical shifts are extremely sensitive to the heme pocket conformation. Comparison of the measured chemical shifts with values predicted from x-ray structures suggests differences between the solution and crystal structures of oxy-Hb. The chemical shift discrepancies could be accounted for by very small displacements of the proximal and distal histidines. This suggests that NMR could be used to obtain very high-resolution heme pocket structures of Hb, Mb, and other heme proteins.
Collapse
Affiliation(s)
- J A Lukin
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213-2683, USA
| | | | | | | | | |
Collapse
|
28
|
Brennan L, Turner DL, Messias AC, Teodoro ML, LeGall J, Santos H, Xavier AV. Structural basis for the network of functional cooperativities in cytochrome c(3) from Desulfovibrio gigas: solution structures of the oxidised and reduced states. J Mol Biol 2000; 298:61-82. [PMID: 10756105 DOI: 10.1006/jmbi.2000.3652] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytochrome c(3) is a 14 kDa tetrahaem protein that plays a central role in the bioenergetic metabolism of Desulfovibrio spp. This involves an energy transduction mechanism made possible by a complex network of functional cooperativities between redox and redox/protolytic centres (the redox-Bohr effect), which enables cytochrome c(3) to work as a proton activator. The three-dimensional structures of the oxidised and reduced Desulfovibrio gigas cytochrome c(3) in solution were solved using 2D (1)H-NMR data. The reduced protein structures were calculated using INDYANA, an extended version of DYANA that allows automatic calibration of NOE data. The oxidised protein structure, which includes four paramagnetic centres, was solved using the program PARADYANA, which also includes the structural paramagnetic parameters. In this case, initial structures were used to correct the upper and lower volume restraints for paramagnetic leakage, and angle restraints derived from (13)C Fermi contact shifts of haem moiety substituents were used for the axial histidine ligands. Despite the reduction of the NOE intensities by paramagnetic relaxation, the final family of structures is of similar precision and accuracy to that obtained for the reduced form. Comparison of the two structures shows that, although the global folds of the two families of structures are similar, significant localised differences occur upon change of redox state, some of which could not be detected by comparison with the X-ray structure of the oxidised state: (1) there is a redox-linked concerted rearrangement of Lys80 and Lys90 that results in the stabilisation of haem moieties II and III when both molecules are oxidised or both are reduced, in agreement with the previously measured positive redox cooperativity between these two haem moieties. This cooperativity regulates electron transfer, enabling a two-electron step adapted to the function of cytochromes c(3) as the coupling partner of hydrogenase; and (2) the movement of haem I propionate 13 towards the interior of the protein upon reduction explains the positive redox-Bohr effect, establishing the structural basis for the redox-linked proton activation mechanism necessary for energy conservation, driving ATP synthesis.
Collapse
Affiliation(s)
- L Brennan
- Department of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK
| | | | | | | | | | | | | |
Collapse
|