1
|
Forterre P. The Last Universal Common Ancestor of Ribosome-Encoding Organisms: Portrait of LUCA. J Mol Evol 2024; 92:550-583. [PMID: 39158619 DOI: 10.1007/s00239-024-10186-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/25/2024] [Indexed: 08/20/2024]
Abstract
The existence of LUCA in the distant past is the logical consequence of the binary mechanism of cell division. The biosphere in which LUCA and contemporaries were living was the product of a long cellular evolution from the origin of life to the second age of the RNA world. A parsimonious scenario suggests that the molecular fabric of LUCA was much simpler than those of modern organisms, explaining why the evolutionary tempo was faster at the time of LUCA than it was during the diversification of the three domains. Although LUCA was possibly equipped with a RNA genome and most likely lacked an ATP synthase, it was already able to perform basic metabolic functions and to produce efficient proteins. However, the proteome of LUCA and its inferred metabolism remains to be correctly explored by in-depth phylogenomic analyses and updated datasets. LUCA was probably a mesophile or a moderate thermophile since phylogenetic analyses indicate that it lacked reverse gyrase, an enzyme systematically present in all hyperthermophiles. The debate about the position of Eukarya in the tree of life, either sister group to Archaea or descendants of Archaea, has important implications to draw the portrait of LUCA. In the second alternative, one can a priori exclude the presence of specific eukaryotic features in LUCA. In contrast, if Archaea and Eukarya are sister group, some eukaryotic features, such as the spliceosome, might have been present in LUCA and later lost in Archaea and Bacteria. The nature of the LUCA virome is another matter of debate. I suggest here that DNA viruses only originated during the diversification of the three domains from an RNA-based LUCA to explain the odd distribution pattern of DNA viruses in the tree of life.
Collapse
|
2
|
Fu Z, MacKinnon R. Structure of the flotillin complex in a native membrane environment. Proc Natl Acad Sci U S A 2024; 121:e2409334121. [PMID: 38985763 PMCID: PMC11260169 DOI: 10.1073/pnas.2409334121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/30/2024] [Indexed: 07/12/2024] Open
Abstract
In this study, we used cryoelectron microscopy to determine the structures of the Flotillin protein complex, part of the Stomatin, Prohibitin, Flotillin, and HflK/C (SPFH) superfamily, from cell-derived vesicles without detergents. It forms a right-handed helical barrel consisting of 22 pairs of Flotillin1 and Flotillin2 subunits, with a diameter of 32 nm at its wider end and 19 nm at its narrower end. Oligomerization is stabilized by the C terminus, which forms two helical layers linked by a β-strand, and coiled-coil domains that enable strong charge-charge intersubunit interactions. Flotillin interacts with membranes at both ends; through its SPFH1 domains at the wide end and the C terminus at the narrow end, facilitated by hydrophobic interactions and lipidation. The inward tilting of the SPFH domain, likely triggered by phosphorylation, suggests its role in membrane curvature induction, which could be connected to its proposed role in clathrin-independent endocytosis. The structure suggests a shared architecture across the family of SPFH proteins and will promote further research into Flotillin's roles in cell biology.
Collapse
Affiliation(s)
- Ziao Fu
- Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University, New York, NY10065
- HHMI, The Rockefeller University, New York, NY10065
| | - Roderick MacKinnon
- Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University, New York, NY10065
- HHMI, The Rockefeller University, New York, NY10065
| |
Collapse
|
3
|
McCurry MD, D'Agostino GD, Walsh JT, Bisanz JE, Zalosnik I, Dong X, Morris DJ, Korzenik JR, Edlow AG, Balskus EP, Turnbaugh PJ, Huh JR, Devlin AS. Gut bacteria convert glucocorticoids into progestins in the presence of hydrogen gas. Cell 2024; 187:2952-2968.e13. [PMID: 38795705 PMCID: PMC11179439 DOI: 10.1016/j.cell.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/03/2024] [Accepted: 05/02/2024] [Indexed: 05/28/2024]
Abstract
Recent studies suggest that human-associated bacteria interact with host-produced steroids, but the mechanisms and physiological impact of such interactions remain unclear. Here, we show that the human gut bacteria Gordonibacter pamelaeae and Eggerthella lenta convert abundant biliary corticoids into progestins through 21-dehydroxylation, thereby transforming a class of immuno- and metabo-regulatory steroids into a class of sex hormones and neurosteroids. Using comparative genomics, homologous expression, and heterologous expression, we identify a bacterial gene cluster that performs 21-dehydroxylation. We also uncover an unexpected role for hydrogen gas production by gut commensals in promoting 21-dehydroxylation, suggesting that hydrogen modulates secondary metabolism in the gut. Levels of certain bacterial progestins, including allopregnanolone, better known as brexanolone, an FDA-approved drug for postpartum depression, are substantially increased in feces from pregnant humans. Thus, bacterial conversion of corticoids into progestins may affect host physiology, particularly in the context of pregnancy and women's health.
Collapse
Affiliation(s)
- Megan D McCurry
- Department of Biological Chemistry & Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Gabriel D D'Agostino
- Department of Biological Chemistry & Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jasmine T Walsh
- Department of Biological Chemistry & Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jordan E Bisanz
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, State College, PA 16802, USA
| | - Ines Zalosnik
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Xueyang Dong
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - David J Morris
- Emeritus Professor of Pathology and Laboratory Medicine, Brown University Alpert School of Medicine, Providence, RI 02903, USA
| | - Joshua R Korzenik
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham & Women's Hospital, Boston, MA 02115, USA
| | - Andrea G Edlow
- Department of Obstetrics & Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Emily P Balskus
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - Peter J Turnbaugh
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub-San Francisco, San Francisco, CA 94158, USA
| | - Jun R Huh
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - A Sloan Devlin
- Department of Biological Chemistry & Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Wessel AK, Yoshii Y, Reder A, Boudjemaa R, Szczesna M, Betton JM, Bernal-Bayard J, Beloin C, Lopez D, Völker U, Ghigo JM. Escherichia coli SPFH Membrane Microdomain Proteins HflKC Contribute to Aminoglycoside and Oxidative Stress Tolerance. Microbiol Spectr 2023; 11:e0176723. [PMID: 37347165 PMCID: PMC10434171 DOI: 10.1128/spectrum.01767-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023] Open
Abstract
Many eukaryotic membrane-dependent functions are often spatially and temporally regulated by membrane microdomains (FMMs), also known as lipid rafts. These domains are enriched in polyisoprenoid lipids and scaffolding proteins belonging to the stomatin, prohibitin, flotillin, and HflK/C (SPFH) protein superfamily that was also identified in Gram-positive bacteria. In contrast, little is still known about FMMs in Gram-negative bacteria. In Escherichia coli K-12, 4 SPFH proteins, YqiK, QmcA, HflK, and HflC, were shown to localize in discrete polar or lateral inner membrane locations, raising the possibility that E. coli SPFH proteins could contribute to the assembly of inner membrane FMMs and the regulation of cellular processes. Here, we studied the determinant of the localization of QmcA and HflC and showed that FMM-associated cardiolipin lipid biosynthesis is required for their native localization pattern. Using Biolog phenotypic arrays, we showed that a mutant lacking all SPFH genes displayed increased sensitivity to aminoglycosides and oxidative stress that is due to the absence of HflKC. Our study therefore provides further insights into the contribution of SPFH proteins to stress tolerance in E. coli. IMPORTANCE Eukaryotic cells often segregate physiological processes in cholesterol-rich functional membrane microdomains. These domains are also called lipid rafts and contain proteins of the stomatin, prohibitin, flotillin, and HflK/C (SPFH) superfamily, which are also present in prokaryotes but have been mostly studied in Gram-positive bacteria. Here, we showed that the cell localization of the SPFH proteins QmcA and HflKC in the Gram-negative bacterium E. coli is altered in the absence of cardiolipin lipid synthesis. This suggests that cardiolipins contribute to E. coli membrane microdomain assembly. Using a broad phenotypic analysis, we also showed that HflKC contribute to E. coli tolerance to aminoglycosides and oxidative stress. Our study, therefore, provides new insights into the cellular processes associated with SPFH proteins in E. coli.
Collapse
Affiliation(s)
- Aimee K. Wessel
- Institut Pasteur, Université de Paris-Cité, CNRS UMR6047, Genetics of Biofilms Laboratory, Paris, France
| | - Yutaka Yoshii
- Institut Pasteur, Université de Paris-Cité, CNRS UMR6047, Genetics of Biofilms Laboratory, Paris, France
| | - Alexander Reder
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | | | - Magdalena Szczesna
- Institut Pasteur, Université de Paris-Cité, CNRS UMR6047, Genetics of Biofilms Laboratory, Paris, France
- Centre for Bacteriology Resistance Biology, Imperial College London, London, United Kingdom
| | - Jean-Michel Betton
- Institut Pasteur, Université de Paris-Cité, UMR UMR6047, Stress adaptation and metabolism in enterobacteria, Paris, France
| | - Joaquin Bernal-Bayard
- Institut Pasteur, Université de Paris-Cité, CNRS UMR6047, Genetics of Biofilms Laboratory, Paris, France
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Christophe Beloin
- Institut Pasteur, Université de Paris-Cité, CNRS UMR6047, Genetics of Biofilms Laboratory, Paris, France
| | - Daniel Lopez
- Universidad Autonoma de Madrid, Centro Nacional de Biotecnologia, Madrid, Spain
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Jean-Marc Ghigo
- Institut Pasteur, Université de Paris-Cité, CNRS UMR6047, Genetics of Biofilms Laboratory, Paris, France
| |
Collapse
|
5
|
Pmorf0222, a Virulence Factor in Pasteurella multocida, Activates Nuclear Factor Kappa B and Mitogen-Activated Protein Kinase via Toll-Like Receptor 1/2. Infect Immun 2023; 91:e0019322. [PMID: 36541752 PMCID: PMC9872710 DOI: 10.1128/iai.00193-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Pasteurella multocida primarily causes hemorrhagic septicemia and pneumonia in poultry and livestock. Identification of the relevant virulence factors is therefore essential for understanding its pathogenicity. Pmorf0222, encoding the PM0222 protein, is located on a specific prophage island of the pathogenic strain C48-1 of P. multocida. Its role in the pathogenesis of P. multocida infection is still unknown. The proinflammatory cytokine plays an important role in P. multocida infection; therefore, murine peritoneal exudate macrophages were treated with the purified recombinant PM0222, which induced the secretion of tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β) via the Toll-like receptor 1/2 (TLR1/2)-nuclear factor kappa B (NF-κB)/mitogen-activated protein kinase (MAPK) signaling and inflammasome activation. Additionally, the mutant strain and complemented strain were evaluated in the mouse model with P. multocida infection, and PM0222 was identified as a virulence factor, which was secreted by outer membrane vesicles of P. multocida. Further results revealed that Pmorf0222 affected the synthesis of the capsule, adhesion, serum sensitivity, and biofilm formation. Thus, we identified Pmorf0222 as a novel virulence factor in the C48-1 strain of P. multocida, explaining the high pathogenicity of this pathogenic strain.
Collapse
|
6
|
Rougé S, Genetet S, Leal Denis MF, Dussiot M, Schwarzbaum PJ, Ostuni MA, Mouro-Chanteloup I. Mechanosensitive Pannexin 1 Activity Is Modulated by Stomatin in Human Red Blood Cells. Int J Mol Sci 2022; 23:ijms23169401. [PMID: 36012667 PMCID: PMC9409209 DOI: 10.3390/ijms23169401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/11/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Pannexin 1 (PANX1) was proposed to drive ATP release from red blood cells (RBCs) in response to stress conditions. Stomatin, a membrane protein regulating mechanosensitive channels, has been proposed to modulate PANX1 activity in non-erythroid cells. To determine whether stomatin modulates PANX1 activity in an erythroid context, we have (i) assessed the in situ stomatin-PANX1 interaction in RBCs, (ii) measured PANX1-stimulated activity in RBCs expressing stomatin or from OverHydrated Hereditary Stomatocytosis (OHSt) patients lacking stomatin, and in erythroid K562 cells invalidated for stomatin. Proximity Ligation Assay coupled with flow imaging shows 27.09% and 6.13% positive events in control and OHSt RBCs, respectively. The uptake of dyes 5(6)-Carboxyfluorescein (CF) and TO-PRO-3 was used to evaluate PANX1 activity. RBC permeability for CF is 34% and 11.8% in control and OHSt RBCs, respectively. PANX1 permeability for TO-PRO-3 is 35.72% and 18.42% in K562 stom+ and stom− clones, respectively. These results suggest an interaction between PANX1 and stomatin in human RBCs and show a significant defect in PANX1 activity in the absence of stomatin. Based on these results, we propose that stomatin plays a major role in opening the PANX1 pore by being involved in a caspase-independent lifting of autoinhibition.
Collapse
Affiliation(s)
- Sarah Rougé
- Université Paris Cité and Université des Antilles, INSERM U1134, BIGR, F-75014 Paris, France
| | - Sandrine Genetet
- Université Paris Cité and Université des Antilles, INSERM U1134, BIGR, F-75014 Paris, France
| | - Maria Florencia Leal Denis
- Instituto de Química y Fisico-Química Biológicas “Prof. Alejandro C. Paladini”, UBA, CONICET, Facultad de Farmacia y Bioquímica, 1113 Buenos Aires, Argentina
| | - Michael Dussiot
- Université Paris Cité, INSERM U1163, IMAGINE, F-75015 Paris, France
| | - Pablo Julio Schwarzbaum
- Instituto de Química y Fisico-Química Biológicas “Prof. Alejandro C. Paladini”, UBA, CONICET, Facultad de Farmacia y Bioquímica, 1113 Buenos Aires, Argentina
| | - Mariano Anibal Ostuni
- Université Paris Cité and Université des Antilles, INSERM U1134, BIGR, F-75014 Paris, France
| | - Isabelle Mouro-Chanteloup
- Université Paris Cité and Université des Antilles, INSERM U1134, BIGR, F-75014 Paris, France
- Correspondence:
| |
Collapse
|
7
|
Guérin A, Angebault C, Kinet S, Cazevieille C, Rojo M, Fauconnier J, Lacampagne A, Mourier A, Taylor N, de Santa Barbara P, Faure S. LIX1-mediated changes in mitochondrial metabolism control the fate of digestive mesenchyme-derived cells. Redox Biol 2022; 56:102431. [PMID: 35988446 PMCID: PMC9420520 DOI: 10.1016/j.redox.2022.102431] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/03/2022] [Indexed: 11/06/2022] Open
Abstract
YAP1 and TAZ are transcriptional co-activator proteins that play fundamental roles in many biological processes, from cell proliferation and cell lineage fate determination to tumorigenesis. We previously demonstrated that Limb Expression 1 (LIX1) regulates YAP1 and TAZ activity and controls digestive mesenchymal progenitor proliferation. However, LIX1 mode of action remains elusive. Here, we found that endogenous LIX1 is localized in mitochondria and is anchored to the outer mitochondrial membrane through S-palmitoylation of cysteine 84, a residue conserved in all LIX1 orthologs. LIX1 downregulation altered the mitochondrial ultrastructure, resulting in a significantly decreased respiration and attenuated production of mitochondrial reactive oxygen species (mtROS). Mechanistically, LIX1 knock-down impaired the stability of the mitochondrial proteins PHB2 and OPA1 that are found in complexes with mitochondrial-specific phospholipids and are required for cristae organization. Supplementation with unsaturated fatty acids counteracted the effects of LIX1 knock-down on mitochondrial morphology and ultrastructure and restored YAP1/TAZ signaling. Collectively, our data demonstrate that LIX1 is a key regulator of cristae organization, modulating mtROS level and subsequently regulating the signaling cascades that control fate commitment of digestive mesenchyme-derived cells. LIX1 is tightly anchored to the outer membrane of mitochondria. LIX1 mitochondrial localization is mediated by S-palmitoylation on cysteine 84. LIX1 knock-down reduces the stability of the mitochondrial proteins PHB2 and OPA1 and impairs cristae organization. Redox signaling modulations regulate YAP1/TAZ activity and control fate commitment of digestive mesenchyme-derived cells.
Collapse
Affiliation(s)
- Amandine Guérin
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Claire Angebault
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Sandrina Kinet
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Chantal Cazevieille
- Institut de Neurosciences de Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Manuel Rojo
- Centre National de la Recherche Scientifique, Université de Bordeaux, IBGC UMR, 5095, Bordeaux, France
| | - Jérémy Fauconnier
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Alain Lacampagne
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Arnaud Mourier
- Centre National de la Recherche Scientifique, Université de Bordeaux, IBGC UMR, 5095, Bordeaux, France
| | - Naomi Taylor
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | | | - Sandrine Faure
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France.
| |
Collapse
|
8
|
Mitochondrial prohibitin complex regulates fungal virulence via ATG24-assisted mitophagy. Commun Biol 2022; 5:698. [PMID: 35835849 PMCID: PMC9283515 DOI: 10.1038/s42003-022-03666-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 06/30/2022] [Indexed: 11/25/2022] Open
Abstract
Prohibitins are highly conserved eukaryotic proteins in mitochondria that function in various cellular processes. The roles of prohibitins in fungal virulence and their regulatory mechanisms are still unknown. Here, we identified the prohibitins ChPhb1 and ChPhb2 in a plant pathogenic fungus Colletotrichum higginsianum and investigated their roles in the virulence of this anthracnose fungus attacking crucifers. We demonstrate that ChPhb1 and ChPhb2 are required for the proper functioning of mitochondria, mitophagy and virulence. ChPhb1 and ChPhb2 interact with the autophagy-related protein ChATG24 in mitochondria, and ChATG24 shares similar functions with these proteins in mitophagy and virulence, suggesting that ChATG24 is involved in prohibitin-dependent mitophagy. ChPhb1 and ChPhb2 modulate the translocation of ChATG24 into mitochondria during mitophagy. The role of ChATG24 in mitophagy is further confirmed to be conserved in plant pathogenic fungi. Our study presents that prohibitins regulate fungal virulence by mediating ATG24-assisted mitophagy. Prohibitins recruit ChATG24 into the mitochondria to modulate mitophagy, thereby affecting the virulence of Colletotrichum higginsianum.
Collapse
|
9
|
Santoscoy MC, Jarboe LR. Production of cholesterol-like molecules impacts Escherichia coli robustness, production capacity, and vesicle trafficking. Metab Eng 2022; 73:134-143. [PMID: 35842218 DOI: 10.1016/j.ymben.2022.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/26/2022] [Accepted: 07/03/2022] [Indexed: 10/17/2022]
Abstract
The economic viability of bioprocesses is constrained by the limited range of operating conditions that can be tolerated by the cell factory. Engineering of the microbial cell membrane is one strategy that can increase robustness and thus alter this range. In this work, we targeted cellular components that contribute to maintenance of appropriate membrane function, such as: flotillin-like proteins, membrane structural proteins, and membrane lipids. Specifically, we exploited the promiscuity of squalene hopene cyclase (SHC) to produce polycyclic terpenoids with properties analogous to cholesterol. Strains producing these cholesterol-like molecules were visualized by AFM and height features were observed. Production of these cholesterol-like molecules was associated with increased tolerance towards a diversity of chemicals, particularly alcohols, and membrane trafficking processes such as lipid droplet accumulation and production of extracellular vesicles. This engineering approach improved the production titers for wax-esters and ethanol by 80- and 10-fold, respectively. Expression of SHC resulted in the production of steroids. Strains engineered to also express truncated squalene synthase (tERG9) produced diplopterol and generally did not perform as well. Increased expression of several membrane-associated proteins, such as YqiK, was observed to impact vesicle trafficking and further improve tolerance relative to SHC alone, but did not improve bio-production. Deletion of YbbJ increased lipid droplet accumulation as well as production of intracellular wax esters. This work serves as a proof of concept for engineering strategies targeting membrane physiology and trafficking to expand the production capacity of microbial cell factories.
Collapse
Affiliation(s)
- Miguel C Santoscoy
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Laura R Jarboe
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
10
|
Expression pattern of Stomatin-domain proteins in the peripheral olfactory system. Sci Rep 2022; 12:11447. [PMID: 35794236 PMCID: PMC9259621 DOI: 10.1038/s41598-022-15572-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
Recent data show that Stomatin-like protein 3 (STOML3), a member of the stomatin-domain family, is expressed in the olfactory sensory neurons (OSNs) where it modulates both spontaneous and evoked action potential firing. The protein family is constituted by other 4 members (besides STOML3): STOM, STOML1, STOML2 and podocin. Interestingly, STOML3 with STOM and STOML1 are expressed in other peripheral sensory neurons: dorsal root ganglia. In here, they functionally interact and modulate the activity of the mechanosensitive Piezo channels and members of the ASIC family. Therefore, we investigated whether STOM and STOML1 are expressed together with STOML3 in the OSNs and whether they could interact. We found that all three are indeed expressed in ONSs, although STOML1 at very low level. STOM and STOML3 share a similar expression pattern and STOML3 is necessary for STOM to properly localize to OSN cilia. In addition, we extended our investigation to podocin and STOML2, and while the former is not expressed in the olfactory system, the latter showed a peculiar expression pattern in multiple cell types. In summary, we provided a first complete description of stomatin-domain protein family in the olfactory system, highlighting the precise compartmentalization, possible interactions and, finally, their functional implications.
Collapse
|
11
|
Villegas-Coronado D, Guzman-Partida AM, Aispuro-Hernandez E, Vazquez-Moreno L, Huerta-Ocampo JÁ, Sarabia-Sainz JAI, Teran-Saavedra NG, Minjarez-Osorio C, Castro-Longoria R, Maldonado A, Lagarda-Diaz I. Characterization and expression of prohibitin during the mexican bean weevil (Zabrotes subfasciatus, Boheman, 1833) larvae development. Comp Biochem Physiol B Biochem Mol Biol 2022; 262:110770. [PMID: 35644320 DOI: 10.1016/j.cbpb.2022.110770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022]
Abstract
Prohibitin (PHB) is a highly conserved eukaryotic protein complex involved in multiple cellular processes. In insects, PHB has been identified as a potential target protein to insecticidal molecules acting as a receptor of PF2 insecticidal lectin in the midgut of Zabrotes subfasciatus larvae (bean pest) and Cry protein of Bacillus thuringiensis in Leptinotarsa decemlineata (Colorado potato beetle). This study aimed to characterize the structural features of Z. subfasciatus prohibitin (ZsPHB) by homology modeling and evaluate its expression and tissue localization at different stages of larval development both at the transcript and protein levels. The samples were collected from eggs and larvae of different developmental stages. The immunodetection of ZsPHB was done with anti-PHB1 and confirmed by LC-MS/MS analysis. Gene expression analysis of ZsPHB1 and ZsPHB2 was performed by RT-qPCR, and immunohistochemistry with FITC-labeled anti-PHB1. Results showed that ZsPHBs exhibit distinctive characteristics of the SPFH protein superfamily. The transcript levels suggest a coordinated expression of ZsPHB1 and ZsPHB2 genes, while ZsPHB1 was detected in soluble protein extracts depending on the stage of development. Histological examination showed ZsPHB1 is present in all larval tissues, with an intense fluorescence signal observed at the gut. These results suggest a physiologically important role of PHB during Z. subfasciatus development and show its regulation occurs at the transcriptional and post-transcriptional levels. This is the first characterization of PHB in Z. subfasciatus.
Collapse
Affiliation(s)
| | | | | | - Luz Vazquez-Moreno
- Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo, 83304, Mexico
| | | | | | | | - Christian Minjarez-Osorio
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Hermosillo, 83000, Mexico
| | - Reina Castro-Longoria
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Hermosillo, 83000, Mexico
| | - Amir Maldonado
- Departamento de Física, Universidad de Sonora, Hermosillo, 83000, Mexico
| | - Irlanda Lagarda-Diaz
- CONACyT- Departamento de Física, Universidad de Sonora, Hermosillo, 83000, Mexico.
| |
Collapse
|
12
|
Kataoka K, Suzuki S, Tenno T, Goda N, Hibino E, Oshima A, Hiroaki H. A cryptic phosphate-binding pocket on the SPFH domain of human stomatin that regulates a novel fibril-like self-assembly. Curr Res Struct Biol 2022; 4:158-166. [PMID: 35663930 PMCID: PMC9157467 DOI: 10.1016/j.crstbi.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 12/03/2022] Open
Abstract
Human stomatin (hSTOM) is a component of the membrane skeleton of erythrocytes that maintains the membrane's shape and stiffness through interconnecting spectrin and actin. hSTOM is a member of the protein family that possesses a single stomatin/prohibitin/flotillin/HflK (SPFH) domain at the center of the molecule. Although SPFH domain proteins are widely distributed from archaea to mammals, the detailed function of the domain remains unclear. In this study, we first determined the solution structure of the SPFH domain of hSTOM (hSTOM(SPFH)) via NMR. The solution structure of hSTOM(SPFH) is essentially identical to the already reported crystal structure of the STOM SPFH domain (mSTOM(SPFH)) of mice, except for the existence of a small hydrophilic pocket on the surface. We identified this pocket as a phosphate-binding site by comparing its NMR spectra with and without phosphate ions. Meanwhile, during the conventional process of protein NMR analysis, we eventually discovered that hSTOM(SPFH) formed a unique solid material after lyophilization. This lyophilized hSTOM(SPFH) sample was moderately slowly dissolved in a physiological buffer. Interestingly, it was resistant to dissolution against the phosphate buffer. We then found that the lyophilized hSTOM(SPFH) formed a fibril-like assembly under electron microscopy. Finally, we succeeded in reproducing this fibril-like assembly of hSTOM(SPFH) using a centrifugal ultrafiltration device, thus demonstrating that the increased protein concentration may promote self-assembly of hSTOM(SPFH) into fibril forms. Our observations may help understand the molecular function of the SPFH domain and its involvement in protein oligomerization as a component of the membrane skeleton. (245 words). Solution structure of human stomatin SPFH domain is determined. A cryptic phosphate-binding pocket was identified. Stomatin SPFH domain can form a fibril-like assembly at a high concentration. Phosphate ions promote formation of the fibril-like assembly.
Collapse
|
13
|
Yang Z, Wang L, Yang C, Pu S, Guo Z, Wu Q, Zhou Z, Zhao H. Mitochondrial Membrane Remodeling. Front Bioeng Biotechnol 2022; 9:786806. [PMID: 35059386 PMCID: PMC8763711 DOI: 10.3389/fbioe.2021.786806] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/22/2021] [Indexed: 02/05/2023] Open
Abstract
Mitochondria are key regulators of many important cellular processes and their dysfunction has been implicated in a large number of human disorders. Importantly, mitochondrial function is tightly linked to their ultrastructure, which possesses an intricate membrane architecture defining specific submitochondrial compartments. In particular, the mitochondrial inner membrane is highly folded into membrane invaginations that are essential for oxidative phosphorylation. Furthermore, mitochondrial membranes are highly dynamic and undergo constant membrane remodeling during mitochondrial fusion and fission. It has remained enigmatic how these membrane curvatures are generated and maintained, and specific factors involved in these processes are largely unknown. This review focuses on the current understanding of the molecular mechanism of mitochondrial membrane architectural organization and factors critical for mitochondrial morphogenesis, as well as their functional link to human diseases.
Collapse
Affiliation(s)
- Ziyun Yang
- School of Life Sciences, Guangxi Normal University, Guilin, China.,Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Liang Wang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, High-Tech Development Zone, Chengdu, China
| | - Cheng Yang
- School of Life Sciences, Guangxi Normal University, Guilin, China.,Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Shiming Pu
- School of Life Sciences, Guangxi Normal University, Guilin, China.,Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Ziqi Guo
- School of Life Sciences, Guangxi Normal University, Guilin, China.,Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Qiong Wu
- School of Life Sciences, Guangxi Normal University, Guilin, China.,Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Zuping Zhou
- School of Life Sciences, Guangxi Normal University, Guilin, China.,Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Hongxia Zhao
- School of Life Sciences, Guangxi Normal University, Guilin, China.,Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China.,Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Yi L, Liu B, Nixon PJ, Yu J, Chen F. Recent Advances in Understanding the Structural and Functional Evolution of FtsH Proteases. FRONTIERS IN PLANT SCIENCE 2022; 13:837528. [PMID: 35463435 PMCID: PMC9020784 DOI: 10.3389/fpls.2022.837528] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/24/2022] [Indexed: 05/18/2023]
Abstract
The FtsH family of proteases are membrane-anchored, ATP-dependent, zinc metalloproteases. They are universally present in prokaryotes and the mitochondria and chloroplasts of eukaryotic cells. Most bacteria bear a single ftsH gene that produces hexameric homocomplexes with diverse house-keeping roles. However, in mitochondria, chloroplasts and cyanobacteria, multiple FtsH homologs form homo- and heterocomplexes with specialized functions in maintaining photosynthesis and respiration. The diversification of FtsH homologs combined with selective pairing of FtsH isomers is a versatile strategy to enable functional adaptation. In this article we summarize recent progress in understanding the evolution, structure and function of FtsH proteases with a focus on the role of FtsH in photosynthesis and respiration.
Collapse
Affiliation(s)
- Lanbo Yi
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Bin Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Peter J. Nixon
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, London, United Kingdom
- *Correspondence: Peter J. Nixon, ; orcid.org/0000-0003-1952-6937
| | - Jianfeng Yu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, London, United Kingdom
- Jianfeng Yu, ; orcid.org/0000-0001-7174-3803
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
- Feng Chen, ; orcid.org/0000-0002-9054-943X
| |
Collapse
|
15
|
Wang X, Jin S, Chang X, Li G, Zhang L, Jin S. Two interaction proteins between AtPHB6 and AtSOT12 regulate plant salt resistance through ROS signaling. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 169:70-80. [PMID: 34773804 DOI: 10.1016/j.plaphy.2021.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/12/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
In the past, the PHB gene function was mainly focused on anti-cell proliferation and antitumor effects. But the molecular mechanism of the PHB gene regarding saline and oxidative stresses is unclear. To study the role of AtPHB6 in salt and oxidative stress, AtPHB6 was cloned from A. thaliana. Bioinformatics analysis showed that AtPHB6 was closely related to AtPHB1 and AtPHB2, which are both type II PHB. RT-qPCR results indicated that the AtPHB6 in the leaves and roots of A. thaliana was obviously induced under different stress treatments. AtPHB6-overexpressing plants were larger and more lush than wild-type and mutant plants when placed under stress treatments during seed germination. The root length and fresh weight of AtPHB6 transgenic plants showed the best resistance compared to wild-type plants under different treatments, in contrast, the AtPHB6 mutants had the worst resistance during the seedling stage. AtSOT12 was an interacting protein of AtPHB6, which screened by yeast two-hybrid system. The interaction between the two proteins were further confirmed using in vitro pull-down experiments and in vivo BiFC experiments. Subcellular localization showed both AtPHB6 and AtSOT12 protein expressed in the nucleus and cytoplasm. The H2O2 content in both the transgenic AtPHB6 and AtSOT12 plants were lower than that in the wild type under stresses. Thus, AtPHB6 increased plant resistance to salt stress and interacted with the AtSOT12 protein.
Collapse
Affiliation(s)
- Xiaolu Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Shengxuan Jin
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China; College of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Xu Chang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Guanrong Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Ling Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Shumei Jin
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
16
|
Scholz AS, Baur SSM, Wolf D, Bramkamp M. An Stomatin, Prohibitin, Flotillin, and HflK/C-Domain Protein Required to Link the Phage-Shock Protein to the Membrane in Bacillus subtilis. Front Microbiol 2021; 12:754924. [PMID: 34777311 PMCID: PMC8581546 DOI: 10.3389/fmicb.2021.754924] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/27/2021] [Indexed: 11/28/2022] Open
Abstract
Membrane surveillance and repair is of utmost importance to maintain cellular integrity and allow cellular life. Several systems detect cell envelope stress caused by antimicrobial compounds and abiotic stresses such as solvents, pH-changes and temperature in bacteria. Proteins containing an Stomatin, Prohibitin, Flotillin, and HflK/C (SPFH)-domain, including bacterial flotillins have been shown to be involved in membrane protection and membrane fluidity regulation. Here, we characterize a bacterial SPFH-domain protein, YdjI that is part of a stress induced complex in Bacillus subtilis. We show that YdjI is required to localize the ESCRT-III homolog PspA to the membrane with the help of two membrane integral proteins, YdjG/H. In contrast to classical flotillins, YdjI resides in fluid membrane regions and does not enrich in detergent resistant membrane fractions. However, similarly to FloA and FloT from B. subtilis, deletion of YdjI decreases membrane fluidity. Our data reveal a hardwired connection between phage shock response and SPFH proteins.
Collapse
Affiliation(s)
- Abigail Savietto Scholz
- Institute for General Microbiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
- Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sarah S. M. Baur
- Institute for General Microbiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Diana Wolf
- Institute of Microbiology, Technische Universität Dresden, Dresden, Germany
| | - Marc Bramkamp
- Institute for General Microbiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
- Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
17
|
Gao X, Du C, Zheng X, Hou C, Wang Y, Xu S, Yang Y, Zhu J, Jin S. Characterisation, expression and possible functions of prohibitin during spermatogenesis in the silver pomfret Pampus argenteus. Reprod Fertil Dev 2021; 32:1084-1098. [PMID: 32741428 DOI: 10.1071/rd19381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/13/2019] [Indexed: 01/14/2023] Open
Abstract
Mitochondria play an important role in spermatogenesis, and some mitochondrial proteins are specifically related to this process. In this study we investigated the cytological characteristics of spermatogenic cells, including mitochondrial dynamics, during spermatogenesis in Pampus argenteus. In addition, we characterised the mitochondria-related protein prohibitin (PHB), which has been reported to play roles in mitochondrial dynamics and animal fertility. The full-length cDNA of the P. argenteus phb gene (Pa-phb) is 1687bp, including a 102-bp 5'-untranslated region (UTR), a 772-bp 3'-UTR and an 813-bp open reading frame encoding 271 amino acids. The predicted P. argenteus PHB protein (Pa-PHB) contains three functional domains (a transmembrane domain, an SPFH domain (the conserved region of stomatins, prohibitins, flotillins and HflK/C) and a coiled-coil domain) and exhibits high similarity with its homologue in other animals. The Pa-phb gene was widely expressed in all tissues examined, especially the liver and heart. We primarily focused on Pa-phb expression during spermatogenesis after observing the cytological features of male germ cells, and found that Pa-phb transcripts were detected throughout the course of development of male germ cells. Notably, we observed colocalised signals of Pa-PHB and mitochondria, which were distributed in the cytoplasm around the nucleus in spermatogonia, spermatocytes and early spermatids, tended to move to one side of the cell in middle spermatids and, finally, were colocalised in the sperm midpiece. These observations indicate that Pa-PHB is primarily localised in mitochondria during spermatogenesis, indicating that it has a role in mitochondria. Based on the results of this and previous studies regarding the essential roles of PHB in mitochondria and spermatogenesis in animals, we propose a functional model for PHB during spermatogenesis, including possible roles in the proliferation of spermatogonia and in the regulation of mitochondrial morphology and function in spermatogenic cells.
Collapse
Affiliation(s)
- Xinming Gao
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Chen Du
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Xuebin Zheng
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Congcong Hou
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Yajun Wang
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Shanliang Xu
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Yang Yang
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Junquan Zhu
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China; and Corresponding author.
| | - Shan Jin
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China
| |
Collapse
|
18
|
A Role for STOML3 in Olfactory Sensory Transduction. eNeuro 2021; 8:ENEURO.0565-20.2021. [PMID: 33637538 PMCID: PMC7986538 DOI: 10.1523/eneuro.0565-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/25/2021] [Accepted: 02/08/2021] [Indexed: 11/24/2022] Open
Abstract
Stomatin-like protein-3 (STOML3) is an integral membrane protein expressed in the cilia of olfactory sensory neurons (OSNs), but its functional role in this cell type has never been addressed. STOML3 is also expressed in dorsal root ganglia neurons, where it has been shown to be required for normal touch sensation. Here, we extended previous results indicating that STOML3 is mainly expressed in the knob and proximal cilia of OSNs. We additionally showed that mice lacking STOML3 have a morphologically normal olfactory epithelium. Because of its presence in the cilia, together with known olfactory transduction components, we hypothesized that STOML3 could be involved in modulating odorant responses in OSNs. To investigate the functional role of STOML3, we performed loose patch recordings from wild-type (WT) and Stoml3 knock-out (KO) OSNs. We found that spontaneous mean firing activity was lower with additional shift in interspike intervals (ISIs) distributions in Stoml3 KOs compared with WT neurons. Moreover, the firing activity in response to stimuli was reduced both in spike number and duration in neurons lacking STOML3 compared with WT neurons. Control experiments suggested that the primary deficit in neurons lacking STOML3 was at the level of transduction and not at the level of action potential generation. We conclude that STOML3 has a physiological role in olfaction, being required for normal sensory encoding by OSNs.
Collapse
|
19
|
Huang F, Ye X, Wang Z, Ding Y, Cai X, Yu L, Waseem M, Abbas F, Ashraf U, Chen X, Ke Y. The prohibitins (PHB) gene family in tomato: Bioinformatic identification and expression analysis under abiotic and phytohormone stresses. GM CROPS & FOOD 2021; 12:535-550. [PMID: 33678114 PMCID: PMC8820253 DOI: 10.1080/21645698.2021.1872333] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The prohibitins (PHB) are SPFH domain-containing proteins found in the prokaryotes to eukaryotes. The plant PHBs are associated with a wide range of biological processes, including senescence, development, and responses to biotic and abiotic stresses. The PHB proteins are identified and characterized in the number of plant species, such as Arabidopsis, rice, maize, and soybean. However, no systematic identification of PHB proteins was performed in Solanum lycopersicum. In this study, we identified 16 PHB proteins in the tomato genome. The analysis of conserved motifs and gene structure validated the phylogenetic classification of tomato PHB proteins. It was observed that various members of tomato PHB proteins undergo purifying selection based on the Ka/Ks ratio and are targeted by four families of miRNAs. Moreover, SlPHB proteins displayed a very unique expression pattern in different plant parts including fruits at various development stages. It was found that SlPHBs processed various development-related and phytohormone responsive cis-regulatory elements in their promoter regions. Furthermore, the exogenous phytohormones treatments (Abscisic acid, indole-3-acetic acid, gibberellic acid, methyl jasmonate) salt and drought stresses induce the expression of SlPHB. Moreover, the subcellular localization assay revealed that SlPHB5 and SlPHB10 were located in the mitochondria. This study systematically summarized the general characterization of SlPHBs in the tomato genome and provides a foundation for the functional characterization of PHB genes in tomato and other plant species.
Collapse
Affiliation(s)
- Feiyan Huang
- College of Agriculture and Life Sciences, Yunnan Urban Agricultural Engineering & Technological Research Center, Kunming University Kunming, China
| | - Xianwen Ye
- Kunming Tobacco Corporation of Yunnan Province, Kunming, China
| | - Zhijiang Wang
- Kunming Tobacco Corporation of Yunnan Province, Kunming, China
| | - Yan Ding
- Material Procurement Center, Shanghai Tobacco Group Co., Ltd, Shanghai, China
| | - Xianjie Cai
- Material Procurement Center, Shanghai Tobacco Group Co., Ltd, Shanghai, China
| | - Lei Yu
- College of Agriculture and Life Sciences, Yunnan Urban Agricultural Engineering & Technological Research Center, Kunming University Kunming, China
| | - Muhammad Waseem
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Farhat Abbas
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Umair Ashraf
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Xiaolong Chen
- Tobacco Leaf Purchase Center, China Tobacco Henan Industrial Co., Ltd, Zhengzhou, China
| | - Yanguo Ke
- College of Economics and Management, Kunming University, Kunming, China
| |
Collapse
|
20
|
Lema A S, Klemenčič M, Völlmy F, Altelaar M, Funk C. The Role of Pseudo-Orthocaspase (SyOC) of Synechocystis sp. PCC 6803 in Attenuating the Effect of Oxidative Stress. Front Microbiol 2021; 12:634366. [PMID: 33613507 PMCID: PMC7889975 DOI: 10.3389/fmicb.2021.634366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/11/2021] [Indexed: 11/13/2022] Open
Abstract
Caspases are proteases, best known for their involvement in the execution of apoptosis-a subtype of programmed cell death, which occurs only in animals. These proteases are composed of two structural building blocks: a proteolytically active p20 domain and a regulatory p10 domain. Although structural homologs appear in representatives of all other organisms, their functional homology, i.e., cell death depending on their proteolytical activity, is still much disputed. Additionally, pseudo-caspases and pseudo-metacaspases, in which the catalytic histidine-cysteine dyad is substituted with non-proteolytic amino acid residues, were shown to be involved in cell death programs. Here, we present the involvement of a pseudo-orthocaspase (SyOC), a prokaryotic caspase-homolog lacking the p10 domain, in oxidative stress in the model cyanobacterium Synechocystis sp. PCC 6803. To study the in vivo impact of this pseudo-protease during oxidative stress its gene expression during exposure to H2O2 was monitored by RT-qPCR. Furthermore, a knock-out mutant lacking the pseudo-orthocaspase gene was designed, and its survival and growth rates were compared to wild type cells as well as its proteome. Deletion of SyOC led to cells with a higher tolerance toward oxidative stress, suggesting that this protein may be involved in a pro-death pathway.
Collapse
Affiliation(s)
- Saul Lema A
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | | - Franziska Völlmy
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands.,Netherlands Proteomics Centre, Utrecht, Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands.,Netherlands Proteomics Centre, Utrecht, Netherlands
| | | |
Collapse
|
21
|
Zhang J, Yin Y, Wang J, Zhang J, Liu H, Feng W, Yang W, Zetter B, Xu Y. Prohibitin regulates mTOR pathway via interaction with FKBP8. Front Med 2020; 15:448-459. [PMID: 33259040 DOI: 10.1007/s11684-020-0805-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022]
Abstract
The ability of tumor cells to sustain continuous proliferation is one of the major characteristics of cancer. The activation of oncogenes and the mutation or inactivation of tumor suppressor genes ensure the rapid proliferation of tumor cells. The PI3K-Akt-mTOR axis is one of the most frequently modified signaling pathways whose activation sustains cancer growth. Unsurprisingly, it is also one of the most commonly attempted targets for cancer therapy. FK506 binding protein 8 (FKBP8) is an intrinsic inhibitor of mTOR kinase that also exerts an anti-apoptotic function. We aimed to explain these contradictory aspects of FKBP8 in cancer by identifying a "switch" type regulator. We identified through immunoprecipitation-mass spectrometry-based proteomic analysis that the mitochondrial protein prohibitin 1 (PHB1) specifically interacts with FKBP8. Furthermore, the downregulation of PHB1 inhibited the proliferation of ovarian cancer cells and the mTOR signaling pathway, whereas the FKBP8 level in the mitochondria was substantially reduced. Moreover, concomitant with these changes, the interaction between FKBP8 and mTOR substantially increased in the absence of PHB1. Collectively, our finding highlights PHB1 as a potential regulator of FKBP8 because of its subcellular localization and mTOR regulating role.
Collapse
Affiliation(s)
- Jiahui Zhang
- Department of Biochemistry and Molecular and Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yanan Yin
- Department of Biochemistry and Molecular and Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiahui Wang
- Department of Biochemistry and Molecular and Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jingjing Zhang
- Department of Obstetrics and Gynecology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hua Liu
- Department of Obstetrics and Gynecology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Weiwei Feng
- Department of Obstetrics and Gynecology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wen Yang
- Department of Biochemistry and Molecular and Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Bruce Zetter
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Yingjie Xu
- Department of Biochemistry and Molecular and Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
22
|
Mitochondrial respiratory supercomplexes in mammalian cells: structural versus functional role. J Mol Med (Berl) 2020; 99:57-73. [PMID: 33201259 DOI: 10.1007/s00109-020-02004-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/06/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023]
Abstract
Mitochondria are recognized as the main source of ATP to meet the energy demands of the cell. ATP production occurs by oxidative phosphorylation when electrons are transported through the electron transport chain (ETC) complexes and develop the proton motive force across the inner mitochondrial membrane that is used for ATP synthesis. Studies since the 1960s have been concentrated on the two models of structural organization of ETC complexes known as "solid-state" and "fluid-state" models. However, advanced new techniques such as blue-native gel electrophoresis, mass spectroscopy, and cryogenic electron microscopy for analysis of macromolecular protein complexes provided new data in favor of the solid-state model. According to this model, individual ETC complexes are assembled into macromolecular structures known as respiratory supercomplexes (SCs). A large number of studies over the last 20 years proposed the potential role of SCs to facilitate substrate channeling, maintain the integrity of individual ETC complexes, reduce electron leakage and production of reactive oxygen species, and prevent excessive and random aggregation of proteins in the inner mitochondrial membrane. However, many other studies have challenged the proposed functional role of SCs. Recently, a third model known as the "plasticity" model was proposed that partly reconciles both "solid-state" and "fluid-state" models. According to the "plasticity" model, respiratory SCs can co-exist with the individual ETC complexes. To date, the physiological role of SCs remains unknown, although several studies using tissue samples of patients or animal/cell models of human diseases revealed an associative link between functional changes and the disintegration of SC assembly. This review summarizes and discusses previous studies on the mechanisms and regulation of SC assembly under physiological and pathological conditions.
Collapse
|
23
|
Voutsadakis IA. Amplification of 8p11.23 in cancers and the role of amplicon genes. Life Sci 2020; 264:118729. [PMID: 33166592 DOI: 10.1016/j.lfs.2020.118729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/31/2020] [Accepted: 11/04/2020] [Indexed: 02/08/2023]
Abstract
Copy number alterations are widespread in cancer genomes and are part of the genomic instability underlying the pathogenesis of neoplastic diseases. Recurrent copy number alterations of specific chromosomal loci may result in gains of oncogenes or losses of tumor suppressor genes and become entrenched in the genomic framework of certain types of cancers. The locus at chromosome 8p11.23 presents recurrent amplifications most commonly in squamous lung carcinomas, breast cancers, squamous esophageal carcinomas, and urothelial carcinomas. Amplification is rare in other cancers. The amplified segment involves several described oncogenes that may promote cancer cell survival and proliferation, as well as less well characterized genes that could also contribute to neoplastic processes. Genes proposed to be "drivers" in 8p11.23 amplifications include ZNF703, FGFR1 and PLPP5. Additional genes in the locus that could be functionally important in neoplastic networks include co-chaperone BAG4, lysine methyltransferase NSD3, ASH2L, a member of another methyltransferase complex, MLL and the mRNA processing and translation regulators LSM1 and EIF4EBP1. In this paper, genes located in the amplified segment of 8p11.23 will be examined for their role in cancer and data arguing for their importance for cancers with the amplification will be presented.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Algoma District Cancer Program, Sault Area Hospital, Sault Ste. Marie, Ontario, Canada; Section of Internal Medicine, Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, Ontario, Canada.
| |
Collapse
|
24
|
Cui C, Zhu L, Tang X, Xing J, Sheng X, Zhan W. Molecular characterization of prohibitins and their differential responses to WSSV infection in hemocyte subpopulations of Fenneropenaeus chinensis. FISH & SHELLFISH IMMUNOLOGY 2020; 106:296-306. [PMID: 32717325 DOI: 10.1016/j.fsi.2020.07.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
In our previous work, prohibitin1 (PHB1) was identified to be only expressed in granulocytes of Fenneropenaeus chinensis. In order to elucidate the potential immunological properties of prohibitins in hemocyte subpopulations, in this paper, the full-length cDNAs of PHB1 and PHB2 were firstly cloned from F. chinensis using rapid amplification of cDNA ends approach, and they were designated FcPHB1 and FcPHB2, respectively. Based on the sequence analysis and multiple sequence alignment, FcPHB1 and FcPHB2 were members of SPFH protein family. By quantitative real-time RT-PCR, the higher mRNA transcription levels of FcPHB1 and FcPHB2 were detected in intestine and hemocytes of F. chinensis, and these two genes in hemocytes were significantly up-regulated upon WSSV infection. The FcPHB1 and FcPHB2 were recombinantly expressed in Escherichia coli BL21 (DE3), and employed as immunogens to produce the polyclonal antibodies (PAbs) in rabbits. Indirect immunofluorescence assay (IFA) revealed that the FcPHB1 and FcPHB2 were located both in the cytoplasm and nuclei of hemocytes, which could also be specifically recognized by the PAbs against FcPHB1 or FcPHB2 in Western blot. Interestingly, it was found that FcPHB1 and FcPHB2 were only expressed in the granulocytes of heathy shrimp and highly expressed in the WSSV-infected granulocytes, however only weak expressions of FcPHB1 and FcPHB2 were observed in the hyalinocytes of WSSV-infected shrimp. Meanwhile, silencing of FcPHB1 and FcPHB2 genes were performed by small interfering RNA, and the results showed that the WSSV copies in hemocytes were increased by knockdown of either FcPHB1 or FcPHB2, and the cumulative mortalities of shrimp in the silenced groups were also markedly increased. These results demonstrated that FcPHB1 and FcPHB2 played important roles in anti-WSSV infection, and their differential expression characteristics in hemocyte subpopulations provided a further understanding of the immune functions of granulocytes and hyalinocytes.
Collapse
Affiliation(s)
- Chuang Cui
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Lei Zhu
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| |
Collapse
|
25
|
Yokoyama H, Suzuki K, Hara K, Matsui I, Hashimoto H. Inactive dimeric structure of the protease domain of stomatin operon partner protein. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2020; 76:515-520. [PMID: 32496213 DOI: 10.1107/s2059798320005021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/09/2020] [Indexed: 11/11/2022]
Abstract
The N-terminal region of the stomatin operon partner protein (STOPP) PH1510 (1510-N) from the hyperthermophilic archaeon Pyrococcus horikoshii is a serine protease with a catalytic Ser-Lys dyad (Ser97 and Lys138) and specifically cleaves the C-terminal hydrophobic region of the p-stomatin PH1511. In a form of human hemolytic anemia known as hereditary stomatocytosis, stomatin is deficient in the erythrocyte membrane owing to mis-trafficking. Stomatin is thought to act as an oligomeric scaffolding protein to support cell membranes. The cleavage of stomatin by STOPP might be involved in a regulatory system. Several crystal structures of 1510-N have previously been determined: the wild type, the K138A mutant and its complex with a substrate peptide. Here, the crystal structure of the S97A mutant of 1510-N (1510-N S97A) was determined at 2.25 Å resolution. The structure contained two 1510-N S97A molecules in the asymmetric unit. On the superposition of one monomer of the 1510-N S97A and wild-type dimers, the S97A Cα atom of the other monomer of 1510-N S97A deviated by 23 Å from that of the wild type. This result indicates that 1510-N can greatly change the form of its dimer. Because of crystallographic symmetry in space group P65, a sixfold helical structure is constructed using the 1510-N dimer as a basic unit. This helical structure may be common to STOPP structures.
Collapse
Affiliation(s)
- Hideshi Yokoyama
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kana Suzuki
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kodai Hara
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Ikuo Matsui
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Hiroshi Hashimoto
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
26
|
Wang D, Qi H, Li A, Deng F, Xu Y, Hu Z, Liu Q, Wang Y. Coexisting overexpression of STOML1 and STOML2 proteins may be associated with pathology of oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2020; 129:591-599.e3. [PMID: 32402568 DOI: 10.1016/j.oooo.2020.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 12/17/2019] [Accepted: 01/26/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The present study aimed to investigate the expression and co-localization of stomatin-like protein-1 (STOML1) and stomatin-like protein-2 (STOML2) in oral squamous cell carcinoma (OSCC) tissues in situ and evaluate their pathologic roles in OSCC. STUDY DESIGN STOML1 and STOML2 in human OSCC tissues (n = 109) and normal oral/paracancerous tissues (n = 19) were detected by using multiple immunohistochemistry (IHC) staining. Positive staining scores and clinicopathologic features during the OSCC process were analyzed. RESULTS STOML1 and STOML2 were significantly overexpressed in OSCC tissues compared with normal oral tissue/paracancerous tissues (P < .0001 and P < .0001, respectively). Furthermore, both STOML1 and STOML2 were positively associated with pathologic tumor (T) stages. Positive signals of both STOML1 and STOML2 were mainly localized to the cell membrane and the cytoplasm, whereas those of STOML1 were also expressed in the cell nucleus. CONCLUSIONS Our results indicated that overexpression of STOML1 and STOML2 was significantly associated with T1 and T2 stages of OSCC. STOML1 and STOML2 were mainly co-localized at the cell membrane and the cytoplasm. These findings suggested that either STOML1 or STOML2 may play critical roles in OSCC development and may serve as potential diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Daiwei Wang
- Center for Research and Technology of Precision Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - Hong Qi
- Hospital of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ang Li
- Hospital of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Fang Deng
- Center for Research and Technology of Precision Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Ying Xu
- Center for Research and Technology of Precision Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Zhangli Hu
- Center for Research and Technology of Precision Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Qiong Liu
- Center for Research and Technology of Precision Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - Yun Wang
- Center for Research and Technology of Precision Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China.
| |
Collapse
|
27
|
Badierah RA, Uversky VN, Redwan EM. Dancing with Trojan horses: an interplay between the extracellular vesicles and viruses. J Biomol Struct Dyn 2020; 39:3034-3060. [DOI: 10.1080/07391102.2020.1756409] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Raied A. Badierah
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Molecular Diagnostic Laboratory, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vladimir N. Uversky
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Federal Research Center ‘Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences’, Pushchino, Moscow Region, Russia
| | - Elrashdy M. Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
28
|
Kaur G, Burroughs AM, Iyer LM, Aravind L. Highly regulated, diversifying NTP-dependent biological conflict systems with implications for the emergence of multicellularity. eLife 2020; 9:e52696. [PMID: 32101166 PMCID: PMC7159879 DOI: 10.7554/elife.52696] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
Social cellular aggregation or multicellular organization pose increased risk of transmission of infections through the system upon infection of a single cell. The generality of the evolutionary responses to this outside of Metazoa remains unclear. We report the discovery of several thematically unified, remarkable biological conflict systems preponderantly present in multicellular prokaryotes. These combine thresholding mechanisms utilizing NTPase chaperones (the MoxR-vWA couple), GTPases and proteolytic cascades with hypervariable effectors, which vary either by using a reverse transcriptase-dependent diversity-generating system or through a system of acquisition of diverse protein modules, typically in inactive form, from various cellular subsystems. Conciliant lines of evidence indicate their deployment against invasive entities, like viruses, to limit their spread in multicellular/social contexts via physical containment, dominant-negative interactions or apoptosis. These findings argue for both a similar operational 'grammar' and shared protein domains in the sensing and limiting of infections during the multiple emergences of multicellularity.
Collapse
Affiliation(s)
- Gurmeet Kaur
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - A Maxwell Burroughs
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Lakshminarayan M Iyer
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - L Aravind
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
29
|
Yokoyama H, Matsui I. The lipid raft markers stomatin, prohibitin, flotillin, and HflK/C (SPFH)-domain proteins form an operon with NfeD proteins and function with apolar polyisoprenoid lipids. Crit Rev Microbiol 2020; 46:38-48. [PMID: 31983249 DOI: 10.1080/1040841x.2020.1716682] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SPFH-domain proteins are found in almost all organisms across three domains: archaea, bacteria, and eukaryotes. In eukaryotic organelles, their subfamilies exhibit overlapping distribution and functions; thus, the rationality of annotation to discriminate these subfamilies remains unclear. In this review, the binding ability of prokaryotic SPFH-domain proteins towards nonpolar polyisoprenoides such as squalene and lycopene, rather than cholesterol, is discussed. The hydrophobic region at the C-terminus of SPFH-domain proteins constitutes the main region that binds apolar polyisoprenoid lipids as well as cholesterol and substantively contributes towards lipid raft formation as these regions are self-assembled together with specific lipids. Because the scaffolding proteins caveolins show common topological properties with SPFH-domain proteins such as stomatin and flotillin, the α-helical segments of stomatin proteins can flexibly move along with the membrane surface, with such movement potentially leading to membrane bending via lipid raft clustering through the formation of high order homo-oligomeric complexes of SPFH-domain proteins. We also discuss the functional significance and ancient origin of SPFH-domain proteins and the NfeD protein (STOPP) operon, which can be traced back to the ancient living cells that diverged and evolved to archaea and bacteria. Based on the molecular mechanism whereby the STOPP-protease degrades the C-terminal hydrophobic clusters of SPFH-domain proteins, it is conceivable that STOPP-protease might control the physicochemical properties of lipid rafts.
Collapse
Affiliation(s)
- Hideshi Yokoyama
- Department of Medical and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Ikuo Matsui
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
30
|
Gill S, Catchpole R, Forterre P. Extracellular membrane vesicles in the three domains of life and beyond. FEMS Microbiol Rev 2019; 43:273-303. [PMID: 30476045 PMCID: PMC6524685 DOI: 10.1093/femsre/fuy042] [Citation(s) in RCA: 271] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/20/2018] [Indexed: 02/06/2023] Open
Abstract
Cells from all three domains of life, Archaea, Bacteria and Eukarya, produce extracellular vesicles (EVs) which are sometimes associated with filamentous structures known as nanopods or nanotubes. The mechanisms of EV biogenesis in the three domains remain poorly understood, although studies in Bacteria and Eukarya indicate that the regulation of lipid composition plays a major role in initiating membrane curvature. EVs are increasingly recognized as important mediators of intercellular communication via transfer of a wide variety of molecular cargoes. They have been implicated in many aspects of cell physiology such as stress response, intercellular competition, lateral gene transfer (via RNA or DNA), pathogenicity and detoxification. Their role in various human pathologies and aging has aroused much interest in recent years. EVs can be used as decoys against viral attack but virus-infected cells also produce EVs that boost viral infection. Here, we review current knowledge on EVs in the three domains of life and their interactions with the viral world.
Collapse
Affiliation(s)
- Sukhvinder Gill
- Institute for Integrative Biology of the Cell (I2BC), Biologie Cellulaire des Archées (BCA), CEA, CNRS, Université Paris-Sud, 91405 Orsay cedex, France
| | - Ryan Catchpole
- Institut Pasteur, Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, Département de Microbiologie, F75015 Paris, France
| | - Patrick Forterre
- Institute for Integrative Biology of the Cell (I2BC), Biologie Cellulaire des Archées (BCA), CEA, CNRS, Université Paris-Sud, 91405 Orsay cedex, France
- Institut Pasteur, Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, Département de Microbiologie, F75015 Paris, France
| |
Collapse
|
31
|
Gazi MA, Mahmud S, Fahim SM, Kibria MG, Palit P, Islam MR, Rashid H, Das S, Mahfuz M, Ahmeed T. Functional Prediction of Hypothetical Proteins from Shigella flexneri and Validation of the Predicted Models by Using ROC Curve Analysis. Genomics Inform 2018; 16:e26. [PMID: 30602087 PMCID: PMC6440662 DOI: 10.5808/gi.2018.16.4.e26] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/16/2018] [Indexed: 01/04/2023] Open
Abstract
Shigella spp. constitutes some of the key pathogens responsible for the global burden of diarrhoeal disease. With over 164 million reported cases per annum, shigellosis accounts for 1.1 million deaths each year. Majority of these cases occur among the children of the developing nations and the emergence of multi-drug resistance Shigella strains in clinical isolates demands the development of better/new drugs against this pathogen. The genome of Shigella flexneri was extensively analyzed and found 4,362 proteins among which the functions of 674 proteins, termed as hypothetical proteins (HPs) had not been previously elucidated. Amino acid sequences of all these 674 HPs were studied and the functions of a total of 39 HPs have been assigned with high level of confidence. Here we have utilized a combination of the latest versions of databases to assign the precise function of HPs for which no experimental information is available. These HPs were found to belong to various classes of proteins such as enzymes, binding proteins, signal transducers, lipoprotein, transporters, virulence and other proteins. Evaluation of the performance of the various computational tools conducted using receiver operating characteristic curve analysis and a resoundingly high average accuracy of 93.6% were obtained. Our comprehensive analysis will help to gain greater understanding for the development of many novel potential therapeutic interventions to defeat Shigella infection.
Collapse
Affiliation(s)
- Md Amran Gazi
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Sultan Mahmud
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Shah Mohammad Fahim
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Mohammad Golam Kibria
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Parag Palit
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Md Rezaul Islam
- International Max Planck Research School, Grisebachstraße 5, 37077 Göttingen, Germany
| | - Humaira Rashid
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Subhasish Das
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Mustafa Mahfuz
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Tahmeed Ahmeed
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| |
Collapse
|
32
|
Hernando-Rodríguez B, Artal-Sanz M. Mitochondrial Quality Control Mechanisms and the PHB (Prohibitin) Complex. Cells 2018; 7:cells7120238. [PMID: 30501123 PMCID: PMC6315423 DOI: 10.3390/cells7120238] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial functions are essential for life, critical for development, maintenance of stem cells, adaptation to physiological changes, responses to stress, and aging. The complexity of mitochondrial biogenesis requires coordinated nuclear and mitochondrial gene expression, owing to the need of stoichiometrically assemble the oxidative phosphorylation (OXPHOS) system for ATP production. It requires, in addition, the import of a large number of proteins from the cytosol to keep optimal mitochondrial function and metabolism. Moreover, mitochondria require lipid supply for membrane biogenesis, while it is itself essential for the synthesis of membrane lipids. To achieve mitochondrial homeostasis, multiple mechanisms of quality control have evolved to ensure that mitochondrial function meets cell, tissue, and organismal demands. Herein, we give an overview of mitochondrial mechanisms that are activated in response to stress, including mitochondrial dynamics, mitophagy and the mitochondrial unfolded protein response (UPRmt). We then discuss the role of these stress responses in aging, with particular focus on Caenorhabditis elegans. Finally, we review observations that point to the mitochondrial prohibitin (PHB) complex as a key player in mitochondrial homeostasis, being essential for mitochondrial biogenesis and degradation, and responding to mitochondrial stress. Understanding how mitochondria responds to stress and how such responses are regulated is pivotal to combat aging and disease.
Collapse
Affiliation(s)
- Blanca Hernando-Rodríguez
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas, Junta de Andalucía, Universidad Pablo de Olavide, 41013 Seville, Spain.
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Seville, Spain.
| | - Marta Artal-Sanz
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas, Junta de Andalucía, Universidad Pablo de Olavide, 41013 Seville, Spain.
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Seville, Spain.
| |
Collapse
|
33
|
Wang D, Zhao YQ, Han YL, Hou CC, Zhu JQ. Characterization of mitochondrial prohibitin from Boleophthalmus pectinirostris and evaluation of its possible role in spermatogenesis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:1299-1313. [PMID: 28501977 DOI: 10.1007/s10695-017-0373-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/19/2017] [Indexed: 06/07/2023]
Abstract
Prohibitin (PHB) is an evolutionarily conserved mitochondrial membrane protein. It plays a vital role in cell proteolysis, senescence, and apoptosis and is associated with spermatogenesis and sperm quality control in mammals. To study the characteristics of the PHB gene and its potential roles during spermatogenesis in Boleophthalmus pectinirostris, we cloned a 1153-bp full-length cDNA from the testis of B. pectinirostris with an open reading frame of 816 bp, which encodes 272 amino acid residues. Real-time quantitative PCR (qPCR) analysis revealed the presence of phb mRNA in all the tissues examined, with higher expression levels found in the testis, kidney, intestine, and muscle tissues. We examined the localization of phb mRNA during spermatogenesis by in situ hybridization (ISH), showing that phb mRNA was distributed in the periphery of the nucleus in primary and secondary spermatocytes. In spermatid and mature sperm, the phb mRNA gradually moved toward one side, where the flagellum is formed. Immunofluorescence (IF) results showed co-localization of the PHB and mitochondria at different stages during spermatogenesis of B. pectinirostris. The signals obtained for PHB decreased as spermatogenesis proceeded; the strongest detection signal was found in secondary spermatocytes, with lower levels of staining in other stages. Additionally, in the mature germ cells, the PHB signals were weak and aggregate in the midpiece of the flagellum.
Collapse
Affiliation(s)
- Di Wang
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China
| | - Yong-Qiang Zhao
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China
| | - Ying-Li Han
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China
| | - Cong-Cong Hou
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China.
| | - Jun-Quan Zhu
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China.
| |
Collapse
|
34
|
Koch G, Wermser C, Acosta IC, Kricks L, Stengel ST, Yepes A, Lopez D. Attenuating Staphylococcus aureus Virulence by Targeting Flotillin Protein Scaffold Activity. Cell Chem Biol 2017; 24:845-857.e6. [PMID: 28669526 DOI: 10.1016/j.chembiol.2017.05.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/11/2017] [Accepted: 05/30/2017] [Indexed: 01/13/2023]
Abstract
Scaffold proteins are ubiquitous chaperones that bind proteins and facilitate physical interaction of multi-enzyme complexes. Here we used a biochemical approach to dissect the scaffold activity of the flotillin-homolog protein FloA of the multi-drug-resistant human pathogen Staphylococcus aureus. We show that FloA promotes oligomerization of membrane protein complexes, such as the membrane-associated RNase Rny, which forms part of the RNA-degradation machinery called the degradosome. Cells lacking FloA had reduced Rny function and a consequent increase in the targeted sRNA transcripts that negatively regulate S. aureus toxin expression. Small molecules that altered FloA oligomerization also reduced Rny function and decreased the virulence potential of S. aureus in vitro, as well as in vivo, using invertebrate and murine infection models. Our results suggest that flotillin assists in the assembly of protein complexes involved in S. aureus virulence, and could thus be an attractive target for the development of new antimicrobial therapies.
Collapse
Affiliation(s)
- Gudrun Koch
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg 97080, Germany; Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg 97080, Germany
| | - Charlotte Wermser
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg 97080, Germany; Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg 97080, Germany
| | - Ivan C Acosta
- National Centre for Biotechnology (CNB), Spanish Research Council (CSIC), Darwin 3, Madrid 28049, Spain
| | - Lara Kricks
- National Centre for Biotechnology (CNB), Spanish Research Council (CSIC), Darwin 3, Madrid 28049, Spain
| | - Stephanie T Stengel
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg 97080, Germany; Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg 97080, Germany
| | - Ana Yepes
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg 97080, Germany; Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg 97080, Germany
| | - Daniel Lopez
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg 97080, Germany; Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg 97080, Germany; National Centre for Biotechnology (CNB), Spanish Research Council (CSIC), Darwin 3, Madrid 28049, Spain.
| |
Collapse
|
35
|
|
36
|
Structure-function analysis of human stomatin: A mutation study. PLoS One 2017; 12:e0178646. [PMID: 28575093 PMCID: PMC5456319 DOI: 10.1371/journal.pone.0178646] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 05/16/2017] [Indexed: 12/27/2022] Open
Abstract
Stomatin is an ancient, widely expressed, oligomeric, monotopic membrane protein that is associated with cholesterol-rich membranes/lipid rafts. It is part of the SPFH superfamily including stomatin-like proteins, prohibitins, flotillin/reggie proteins, bacterial HflK/C proteins and erlins. Biochemical features such as palmitoylation, oligomerization, and hydrophobic “hairpin” structure show similarity to caveolins and other integral scaffolding proteins. Recent structure analyses of the conserved PHB/SPFH domain revealed amino acid residues and subdomains that appear essential for the structure and function of stomatin. To test the significance of these residues and domains, we exchanged or deleted them, expressed respective GFP-tagged mutants, and studied their subcellular localization, molecular dynamics and biochemical properties. We show that stomatin is a cholesterol binding protein and that at least two domains are important for the association with cholesterol-rich membranes. The conserved, prominent coiled-coil domain is necessary for oligomerization, while association with cholesterol-rich membranes is also involved in oligomer formation. FRAP analyses indicate that the C-terminus is the dominant entity for lateral mobility and binding site for the cortical actin cytoskeleton.
Collapse
|
37
|
Nourbakhsh N, Mak RH. Steroid-resistant nephrotic syndrome: past and current perspectives. PEDIATRIC HEALTH MEDICINE AND THERAPEUTICS 2017; 8:29-37. [PMID: 29388620 PMCID: PMC5774596 DOI: 10.2147/phmt.s100803] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Patients with steroid-resistant nephrotic syndrome (SRNS) represent a challenging subset of patients with nephrotic syndrome who often fail standard immunosuppression and have a higher likelihood of progressing to end-stage renal disease. Appropriate treatment of SRNS requires an adequate understanding of the historical treatment, renal histopathology, and genetics associated with the disease. The aim of this review is to present a comprehensive appraisal of the history, role of renal biopsy, genetics, and treatment of SRNS.
Collapse
Affiliation(s)
- Noureddin Nourbakhsh
- Division of Pediatric Nephrology, Rady Children's Hospital San Diego, University of California, San Diego, La Jolla, CA, USA
| | - Robert H Mak
- Division of Pediatric Nephrology, Rady Children's Hospital San Diego, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
38
|
Genetet S, Desrames A, Chouali Y, Ripoche P, Lopez C, Mouro-Chanteloup I. Stomatin modulates the activity of the Anion Exchanger 1 (AE1, SLC4A1). Sci Rep 2017; 7:46170. [PMID: 28387307 PMCID: PMC5383999 DOI: 10.1038/srep46170] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/09/2017] [Indexed: 12/17/2022] Open
Abstract
Anion Exchanger 1 (AE1) and stomatin are integral proteins of the red blood cell (RBC) membrane. Erythroid and kidney AE1 play a major role in HCO3- and Cl- exchange. Stomatins down-regulate the activity of many channels and transporters. Biochemical studies suggested an interaction of erythroid AE1 with stomatin. Moreover, we previously reported normal AE1 expression level in stomatin-deficient RBCs. Here, the ability of stomatin to modulate AE1-dependent Cl-/HCO3- exchange was evaluated using stopped-flow methods. In HEK293 cells expressing recombinant AE1 and stomatin, the permeabilities associated with AE1 activity were 30% higher in cells overexpressing stomatin, compared to cells with only endogenous stomatin expression. Ghosts from stomatin-deficient RBCs and controls were resealed in the presence of pH- or chloride-sensitive fluorescent probes and submitted to inward HCO3- and outward Cl- gradients. From alkalinization rate constants, we deduced a 47% decreased permeability to HCO3- for stomatin-deficient patients. Similarly, kinetics of Cl- efflux, followed by the probe dequenching, revealed a significant 42% decrease in patients. In situ Proximity Ligation Assays confirmed an interaction of AE1 with stomatin, in both HEK recombinant cells and RBCs. Here we show that stomatin modulates the transport activity of AE1 through a direct protein-protein interaction.
Collapse
Affiliation(s)
- Sandrine Genetet
- Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge, Laboratoire d'Excellence GR-Ex, 75739 Paris Cedex 15, France
| | - Alexandra Desrames
- Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge, Laboratoire d'Excellence GR-Ex, 75739 Paris Cedex 15, France
| | - Youcef Chouali
- Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge, Laboratoire d'Excellence GR-Ex, 75739 Paris Cedex 15, France
| | - Pierre Ripoche
- Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge, Laboratoire d'Excellence GR-Ex, 75739 Paris Cedex 15, France
| | - Claude Lopez
- Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge, Laboratoire d'Excellence GR-Ex, 75739 Paris Cedex 15, France
| | - Isabelle Mouro-Chanteloup
- Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge, Laboratoire d'Excellence GR-Ex, 75739 Paris Cedex 15, France
| |
Collapse
|
39
|
Lopez D, Koch G. Exploring functional membrane microdomains in bacteria: an overview. Curr Opin Microbiol 2017; 36:76-84. [PMID: 28237903 DOI: 10.1016/j.mib.2017.02.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/01/2017] [Indexed: 01/08/2023]
Abstract
Recent studies show that internal organization of bacterial cells is more complex than previously appreciated. A clear example of this is the assembly of the nanoscale membrane platforms termed functional membrane microdomains. The lipid composition of these regions differs from that of the surrounding membrane; these domains confine a set of proteins involved in specific cellular processes such as protease secretion and signal transduction. It is currently thought that functional membrane microdomains act as oligomerization platforms and promote efficient oligomerization of interacting protein partners in bacterial membranes. In this review, we highlight the most noteworthy achievements, challenges and controversies of this emerging research field over the past five years.
Collapse
Affiliation(s)
- Daniel Lopez
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg 97080, Germany; Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg 97080, Germany; Spanish National Centre for Biotechnology (CNB), Madrid 28049, Spain.
| | - Gudrun Koch
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg 97080, Germany; Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg 97080, Germany
| |
Collapse
|
40
|
Huang Y, Chen Y, Lin X, Lin Q, Han M, Guo G. Clinical significance of SLP-2 in hepatocellular carcinoma tissues and its regulation in cancer cell proliferation, migration, and EMT. Onco Targets Ther 2017; 10:4665-4673. [PMID: 29033585 PMCID: PMC5614784 DOI: 10.2147/ott.s144638] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Stomatin-like protein 2 (SLP-2) gene was significantly upregulated in a variety of tumor tissues and found to be involved in proliferation and metastasis. However, its functional role in hepatocellular carcinoma (HCC) remains unknown. Our study was to investigate the function of SLP-2 in cell proliferation, migration, invasion, cell apoptosis, and the process of epithelial-mesenchymal transition (EMT) in HCC. SLP-2 mRNA and protein expression in HCC were assessed by qRT-PCR and immunohistochemical staining. In vitro, we determined cell proliferation, migration, invasion, and cell apoptosis by CCK-8, transwell, and flow cytometry assays, respectively. SLP-2 was found to be upregulated at both mRNA and protein levels in HCC tissues, and its aberrant overexpression was linked with poor prognosis in patients with HCC. SLP-2 downregulation by siRNAs significantly suppressed cell proliferation, migration, invasion, anti-apoptosis abilities, and inhibited EMT process in vitro. In conclusion, the present study demonstrated the overexpression of SLP-2 in HCC tissues for the first time. As an effective regulator involved in cell proliferation, migration, invasion, cell apoptosis, and EMT, SLP-2 could be a novel therapeutic target for patients with HCC who express high levels of SLP-2.
Collapse
Affiliation(s)
- Yijie Huang
- Department of General Surgery, Guangdong General Hospital, Guangzhou
| | - Yexi Chen
- Department of General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, People’s Republic of China
| | - Xiaoqi Lin
- Department of General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, People’s Republic of China
| | - Qingjun Lin
- Department of General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, People’s Republic of China
| | - Ming Han
- Department of General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, People’s Republic of China
- Correspondence: Guohu Guo; Ming Han, Department of General Surgery, The Second Affiliated Hospital of Shantou University, 69 Dongxia North Road, Shantou 515100, People’s Republic of China, Tel +86 135 0299 3993, Fax +86 754 8314 1101, Email ;
| | - Guohu Guo
- Department of General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, People’s Republic of China
- Correspondence: Guohu Guo; Ming Han, Department of General Surgery, The Second Affiliated Hospital of Shantou University, 69 Dongxia North Road, Shantou 515100, People’s Republic of China, Tel +86 135 0299 3993, Fax +86 754 8314 1101, Email ;
| |
Collapse
|
41
|
Functional Membrane Microdomains Organize Signaling Networks in Bacteria. J Membr Biol 2016; 250:367-378. [PMID: 27566471 DOI: 10.1007/s00232-016-9923-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 08/16/2016] [Indexed: 11/27/2022]
Abstract
Membrane organization is usually associated with the correct function of a number of cellular processes in eukaryotic cells as diverse as signal transduction, protein sorting, membrane trafficking, or pathogen invasion. It has been recently discovered that bacterial membranes are able to compartmentalize their signal transduction pathways in functional membrane microdomains (FMMs). In this review article, we discuss the biological significance of the existence of FMMs in bacteria and comment on possible beneficial roles that FMMs play on the harbored signal transduction cascades. Moreover, four different membrane-associated signal transduction cascades whose functions are linked to the integrity of FMMs are introduced, and the specific role that FMMs play in stabilizing and promoting interactions of their signaling components is discussed. Altogether, FMMs seem to play a relevant role in promoting more efficient activation of signal transduction cascades in bacterial cells and show that bacteria are more sophisticated organisms than previously appreciated.
Collapse
|
42
|
Burroughs AM, Aravind L. RNA damage in biological conflicts and the diversity of responding RNA repair systems. Nucleic Acids Res 2016; 44:8525-8555. [PMID: 27536007 PMCID: PMC5062991 DOI: 10.1093/nar/gkw722] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/08/2016] [Indexed: 12/16/2022] Open
Abstract
RNA is targeted in biological conflicts by enzymatic toxins or effectors. A vast diversity of systems which repair or ‘heal’ this damage has only recently become apparent. Here, we summarize the known effectors, their modes of action, and RNA targets before surveying the diverse systems which counter this damage from a comparative genomics viewpoint. RNA-repair systems show a modular organization with extensive shuffling and displacement of the constituent domains; however, a general ‘syntax’ is strongly maintained whereby systems typically contain: a RNA ligase (either ATP-grasp or RtcB superfamilies), nucleotidyltransferases, enzymes modifying RNA-termini for ligation (phosphatases and kinases) or protection (methylases), and scaffold or cofactor proteins. We highlight poorly-understood or previously-uncharacterized repair systems and components, e.g. potential scaffolding cofactors (Rot/TROVE and SPFH/Band-7 modules) with their respective cognate non-coding RNAs (YRNAs and a novel tRNA-like molecule) and a novel nucleotidyltransferase associating with diverse ligases. These systems have been extensively disseminated by lateral transfer between distant prokaryotic and microbial eukaryotic lineages consistent with intense inter-organismal conflict. Components have also often been ‘institutionalized’ for non-conflict roles, e.g. in RNA-splicing and in RNAi systems (e.g. in kinetoplastids) which combine a distinct family of RNA-acting prim-pol domains with DICER-like proteins.
Collapse
Affiliation(s)
- A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
43
|
Ande SR, Nguyen KH, Nyomba BLG, Mishra S. Prohibitin in Adipose and Immune Functions. Trends Endocrinol Metab 2016; 27:531-541. [PMID: 27312736 DOI: 10.1016/j.tem.2016.05.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/11/2016] [Accepted: 05/17/2016] [Indexed: 12/17/2022]
Abstract
Prohibitin (PHB) was discovered in a quest to find genes with antiproliferative functions. However, the attribute of PHB that is responsible for its antiproliferative function remains elusive. Meanwhile, recent studies have established PHB as a pleiotropic protein with roles in metabolism, immunity, and senescence. PHB has cell compartment-specific functions, acting as a scaffolding protein in mitochondria, an adaptor molecule in membrane signaling, and a transcriptional coregulator in the nucleus. However, it remains unclear whether different functions and locations of PHB are interrelated or independent from each other, or if PHB works in a tissue-specific manner. Here, we discuss new findings on the role of PHB in adipose-immune interaction and an unexpected role in sex differences in adipose and immune functions.
Collapse
Affiliation(s)
- Sudharsana R Ande
- Department of Internal Medicine, University of Manitoba, Winnipeg, Canada
| | - K Hoa Nguyen
- Department of Internal Medicine, University of Manitoba, Winnipeg, Canada
| | | | - Suresh Mishra
- Department of Internal Medicine, University of Manitoba, Winnipeg, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
44
|
Somani VK, Aggarwal S, Singh D, Prasad T, Bhatnagar R. Identification of Novel Raft Marker Protein, FlotP in Bacillus anthracis. Front Microbiol 2016; 7:169. [PMID: 26925042 PMCID: PMC4756111 DOI: 10.3389/fmicb.2016.00169] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 02/01/2016] [Indexed: 01/14/2023] Open
Abstract
Lipid rafts are dynamic, nanoscale assemblies of specific proteins and lipids, distributed heterogeneously on eukaryotic membrane. Flotillin-1, a conserved eukaryotic raft marker protein (RMP) harbor SPFH (Stomatin, Prohibitin, Flotillin, and HflK/C) and oligomerization domains to regulate various cellular processes through its interactions with other signaling or transport proteins. Rafts were thought to be absent in prokaryotes hitherto, but recent report of its presence and significance in physiology of Bacillus subtilis prompted us to investigate the same in pathogenic bacteria (PB) also. In prokaryotes, proteins of SPFH2a subfamily show highest identity to SPFH domain of Flotillin-1. Moreover, bacterial genome organization revealed that Flotillin homolog harboring SPFH2a domain exists in an operon with an upstream gene containing NFeD domain. Here, presence of RMP in PB was initially investigated in silico by analyzing the presence of SPFH2a, oligomerization domains in the concerned gene and NfeD domain in the adjacent upstream gene. After investigating 300 PB, four were found to harbor RMP. Among them, domains of Bas0525 (FlotP) of Bacillus anthracis (BA) showed highest identity with characteristic domains of RMP. Considering the global threat of BA as the bioterror agent, it was selected as a model for further in vitro characterization of rafts in PB. In silico and in vitro analysis showed significant similarity of FlotP with numerous attributes of Flotillin-1. Its punctate distribution on membrane with exclusive localization in detergent resistant membrane fraction; strongly favors presence of raft with RMP FlotP in BA. Furthermore, significant effect of Zaragozic acid (ZA), a raft associated lipid biosynthesis inhibitor, on several patho-physiological attributes of BA such as growth, morphology, membrane rigidity etc., were also observed. Specifically, a considerable decrease in membrane rigidity, strongly recommended presence of an unknown raft associated lipid molecule on membrane of BA. In addition, treatment with ZA decreased secretion of anthrax toxins and FlotP expression, suggesting potential role of raft in pathogenesis and physiology of BA. Thus, the present study not only suggest the existence and role of raft like entity in pathophysiology of BA but also its possible use for the development of novel drugs or vaccines against anthrax.
Collapse
Affiliation(s)
- Vikas K Somani
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University New Delhi, India
| | - Somya Aggarwal
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University New Delhi, India
| | - Damini Singh
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University New Delhi, India
| | | | - Rakesh Bhatnagar
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University New Delhi, India
| |
Collapse
|
45
|
Chi H, Hu YH. Stomatin-like protein 2 of turbot Scopthalmus maximus: Gene cloning, expression profiling and immunoregulatory properties. FISH & SHELLFISH IMMUNOLOGY 2016; 49:436-441. [PMID: 26806162 DOI: 10.1016/j.fsi.2016.01.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 01/08/2016] [Accepted: 01/11/2016] [Indexed: 06/05/2023]
Abstract
Stomatin-like protein 2 (SLP-2) is a novel and unusual member of the stomatin gene superfamily. In this study, we obtained a full-length SLP-2 (SmSLP-2) cDNA from turbot (Scopthalmus maximus) spleen cDNA library. The cDNA sequence of SmSLP-2 contains a 5'-UTR of 107 bp, an ORF of 1050 bp, and a 3'-UTR of 959 bp. The ORF encodes a putative protein of 349 residues, which has a calculated molecular mass of 38.7 kDa. The SmSLP-2 protein possesses a prohibitin-homology (PHB) domain (residues 40 to 198) and shares 72.4-87.6% overall sequence identity with that of the teleost species. The highest expression of SmSLP-2 mRNA was found in the skin, followed by the head kidney, gut, spleen, liver, heart, gill and muscle. Moreover, both viral and bacterial pathogen infection resulted in the up-regulation of SmSLP-2 mRNA in the turbot head kidney and spleen in vivo. Subcellular localization analysis indicated that the SmSLP-2 proteins are mainly located in the peripheral membrane of ZF4 cells. This study also demonstrated that SmSLP-2 modulates IL-2 expression via active NFκB signaling pathway, and is possibly involved in host immune defense against bacterial and viral pathogens.
Collapse
Affiliation(s)
- Heng Chi
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yong-Hua Hu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
46
|
Li R, Tian JZ, Zhuang CH, Zhang YC, Geng XY, Zhu LN, Sun JS. CHH binding protein (CHHBP): a newly identified receptor of crustacean hyperglycemic hormone (CHH). J Exp Biol 2016; 219:1259-68. [DOI: 10.1242/jeb.133181] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 02/03/2016] [Indexed: 11/20/2022]
Abstract
Crustacean hyperglycemic hormone (CHH) is a neurohormone found only in arthropods that plays a pivotal role in the regulation of hemolymph glucose levels, molting, and stress responses. Although it was determined that a membrane guanylyl cyclase (GC) acts as the CHH receptor in the Y-organ during ecdysteroidogenesis, the identity of the CHH receptor in the hepatopancreas has not been established. In this study, we identified a new molecular, CHH binding protein (CHHBP), as a potential receptor by screening the annotated unigenes from the transcriptome of Eriocheir sinensis, after removal of eyestalk. Analysis of the binding affinity between CHH and CHHBP provided direct evidence that CHH interacts with CHHBP in a specific binding mode. Subsequent analysis showed that CHHBP was expressed primarily in the hepatopancreas and localized on cell membrane. In addition, real-time PCR analysis showed that CHHBP transcript levels gradually increased in the hepatopancreas following eyestalk ablation. RNAi-mediated suppression of CHHBP expression resulted in decreased glucose levels. Furthermore, the reduction of blood glucose induced by CHHBP RNAi reached the same degree as that observed in the eyestalk ablation group, suggesting that CHHBP contributes to glucose metabolism regulated by CHH. Besides, compared to the control group, injection of CHH was unable to rescue the decreased glucose levels in CHHBP RNAi crabs. CHH induced transport of 2-NBDG to the outside of cells, with indispensable assist from CHHBP. Taken together, these findings imply that CHHBP probably acts as one type of the primary signal processor of CHH-mediated regulation of cellular glucose metabolism.
Collapse
Affiliation(s)
- Ran Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin, People's Republic of China
| | - Jin-Ze Tian
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin, People's Republic of China
| | - Cui-Heng Zhuang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin, People's Republic of China
| | - Yi-Chen Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin, People's Republic of China
| | - Xu-Yun Geng
- Tianjin Center for Control and Prevention of Aquatic Animal Infectious Disease, Tianjin, People's Republic of China
| | - Li-Na Zhu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin, People's Republic of China
| | - Jin-Sheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin, People's Republic of China
- Tianjin Center for Control and Prevention of Aquatic Animal Infectious Disease, Tianjin, People's Republic of China
| |
Collapse
|
47
|
Wang Y, O’Bryant Z, Wang H, Huang Y. Regulating Factors in Acid-Sensing Ion Channel 1a Function. Neurochem Res 2015; 41:631-45. [DOI: 10.1007/s11064-015-1768-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 11/04/2015] [Accepted: 11/08/2015] [Indexed: 12/11/2022]
|
48
|
Niederman RA. Development and dynamics of the photosynthetic apparatus in purple phototrophic bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:232-46. [PMID: 26519773 DOI: 10.1016/j.bbabio.2015.10.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 10/22/2015] [Accepted: 10/25/2015] [Indexed: 11/30/2022]
Abstract
The purple bacterium Rhodobacter sphaeroides provides a useful model system for studies of the assembly and dynamics of bacterial photosynthetic membranes. For the nascent developing membrane, proteomic analyses showed an ~2-fold enrichment in general membrane assembly factors, compared to chromatophores. When the protonophore carbonyl-cyanide m-chlorophenyl-hydrazone (CCCP) was added to an ICM inducing culture, an ~2-fold elevation in spectral counts vs. the control was seen for the SecA translocation ATPase, the preprotein translocase SecY, SecD and SecF insertion components, and chaperonins DnaJ and DnaK, which act early in the assembly process. It is suggested that these factors accumulated with their nascent polypeptides, as putative assembly intermediates in a functionally arrested state. Since in Synechocystis PCC 6803, a link has been established between Chl delivery involving the high-light HilD protein and the SecY/YidC-requiring cotranslational insertion of nascent polypeptides, such a connection between BChl biosynthesis and insertion and folding of nascent Rba. sphaeroides BChl binding proteins is likely to also occur. AFM imaging studies of the formation of the reaction center (RC)-light harvesting 1 (LH1) complex suggested a cooperative assembly mechanism in which, following the association between the RC template and the initial LH1 unit, addition of successive LH1 units to the RC drives the assembly process to completion. Alterations in membrane dynamics as the developing membrane becomes filled with LH2-rings were assessed by fluorescence induction/relaxation kinetics, which showed a slowing in RC electron transfer rate thought to mainly reflect alterations in donor side electron transfer. This was attributed to an increased distance for electron flow in cytochrome c2 between the RC and cytochrome bc1 complexes, as suggested in the current structural models. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Prof Conrad Mullineaux.
Collapse
Affiliation(s)
- Robert A Niederman
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, New Jersey 08854-8082, United States.
| |
Collapse
|
49
|
Magalon A, Alberge F. Distribution and dynamics of OXPHOS complexes in the bacterial cytoplasmic membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:198-213. [PMID: 26545610 DOI: 10.1016/j.bbabio.2015.10.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/28/2015] [Accepted: 10/29/2015] [Indexed: 12/23/2022]
Abstract
Oxidative phosphorylation (OXPHOS) is an essential process for most living organisms mostly sustained by protein complexes embedded in the cell membrane. In order to thrive, cells need to quickly respond to changes in the metabolic demand or in their environment. An overview of the strategies that can be employed by bacterial cells to adjust the OXPHOS outcome is provided. Regulation at the level of gene expression can only provide a means to adjust the OXPHOS outcome to long-term trends in the environment. In addition, the actual view is that bioenergetic membranes are highly compartmentalized structures. This review discusses what is known about the spatial organization of OXPHOS complexes and the timescales at which they occur. As exemplified with the commensal gut bacterium Escherichia coli, three levels of spatial organization are at play: supercomplexes, membrane microdomains and polar assemblies. This review provides a particular focus on whether dynamic spatial organization can fine-tune the OXPHOS through the definition of specialized functional membrane microdomains. Putative mechanisms responsible for spatio-temporal regulation of the OXPHOS complexes are discussed. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Conrad Mullineaux.
Collapse
Affiliation(s)
- Axel Magalon
- CNRS, Laboratoire de Chimie Bactérienne (UMR 7283), Institut de Microbiologie de la Méditerranée, 13009 Marseille, France; Aix-Marseille University, UMR 7283, 13009 Marseille, France.
| | - François Alberge
- CNRS, Laboratoire de Chimie Bactérienne (UMR 7283), Institut de Microbiologie de la Méditerranée, 13009 Marseille, France; Aix-Marseille University, UMR 7283, 13009 Marseille, France
| |
Collapse
|
50
|
Effects of the protonophore carbonyl-cyanide m-chlorophenylhydrazone on intracytoplasmic membrane assembly in Rhodobacter sphaeroides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1119-28. [DOI: 10.1016/j.bbabio.2015.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/02/2015] [Accepted: 06/03/2015] [Indexed: 11/20/2022]
|