1
|
Hollenstein M, Stulz E. Introduction to the themed collection in honour of Professor Christian Leumann. RSC Med Chem 2024:d4md90039a. [PMID: 39450116 PMCID: PMC11495495 DOI: 10.1039/d4md90039a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
Marcel Hollenstein and Eugen Stulz introduce the cross-journal themed collection celebrating Christian Leumann's retirement.
Collapse
Affiliation(s)
- Marcel Hollenstein
- Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, Institut Pasteur, Université Paris Cité, CNRS UMR 3523 28, rue du Docteur Roux 75724 Paris Cedex 15 France
| | - Eugen Stulz
- School of Chemistry and Chemical Engineering & Institute for Life Sciences, University of Southampton Highfield Southampton SO17 1BJ UK
| |
Collapse
|
2
|
Traoré D, Biecher E, Mallet M, Rouanet S, Vasseur J, Smietana M, Dupouy C. Synthesis and properties of RNA constrained by a 2'-O-disulfide bridge. ChemistryOpen 2024; 13:e202300232. [PMID: 38200655 PMCID: PMC11319213 DOI: 10.1002/open.202300232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Indexed: 01/12/2024] Open
Abstract
We recently reported the properties of RNA hairpins constrained by a dimethylene (DME) disulfide (S-S) linker incorporated between two adjacent nucleosides in the loop and showed that this linker locked the hairpin conformation thus disturbing the duplex/hairpin equilibrium. We have now investigated the influence of the length of the linker and synthesized oligoribonucleotides containing diethylene (DEE) and dipropylene (DPE) S-S bridges. This was achieved via the preparation of building blocks, namely 2'-O-acetylthioethyl (2'-O-AcSE) and 2'-O-acetylthiopropyl (2'-O-AcSP) uridine phosphoramidites, which were successfully incorporated into RNA sequences. Thermal denaturation analysis revealed that the DEE and DPE disulfide bridges destabilize RNA duplexes but do not disrupt the hairpin conformation. Furthermore, our investigation of the duplex/hairpin equilibrium indicated that sequences modified with DME and DEE S-S linkers predominantly lock the hairpin form, whereas the DPE S-S linker provides flexibility. These findings highlight the potential of S-S linkers to study RNA interactions.
Collapse
Affiliation(s)
- Diallo Traoré
- CNRSENSCM1919 route de Mende34293Montpellier Cedex 5France
| | - Elisa Biecher
- CNRSENSCM1919 route de Mende34293Montpellier Cedex 5France
| | - Manon Mallet
- CNRSENSCM1919 route de Mende34293Montpellier Cedex 5France
| | - Sonia Rouanet
- CNRSENSCM1919 route de Mende34293Montpellier Cedex 5France
| | | | | | | |
Collapse
|
3
|
Gérard H, Lucas-Roper R, Zerrouki R. DFT investigation of the regioselective allylation of pyrimidine 2'-deoxynucleosides. Carbohydr Res 2024; 535:109012. [PMID: 38157586 DOI: 10.1016/j.carres.2023.109012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024]
Abstract
To understand the regioselectivity observed in the allylation of pyrimidine nucleosides and to identify the factors directing the reaction, a theoretical study of the regioselective allylation was carried out. Several key points were considered such as: the structure of the deprotonated nucleobase in the presence of Na+; the effect of the solvent on the dissociation and aggregation reactions of thymidine/Na+ ion pair; and the likely allylation reaction mechanisms involved. The results showed that the regioselectivity observed experimentally can be attributed to a greater stability of a dimeric form coupled to an increase of the reaction barrier in THF due to larger Na+ binding to the nucleobase.
Collapse
Affiliation(s)
- H Gérard
- Sorbonne Université, CNRS, LCT, UMR 7616, 4 Place Jussieu, Paris, 75005, France
| | - R Lucas-Roper
- Univ. Limoges, CNRS, IRCER, UMR 7315, F-87000, Limoges, France.
| | - R Zerrouki
- Univ. Limoges, LABCiS, UR 22722, F-87000, Limoges, France
| |
Collapse
|
4
|
Okita H, Kondo S, Murayama K, Asanuma H. Rapid Chemical Ligation of DNA and Acyclic Threoninol Nucleic Acid ( aTNA) for Effective Nonenzymatic Primer Extension. J Am Chem Soc 2023; 145:17872-17880. [PMID: 37466125 PMCID: PMC10436273 DOI: 10.1021/jacs.3c04979] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Indexed: 07/20/2023]
Abstract
Previously, nonenzymatic primer extension reaction of acyclic l-threoninol nucleic acid (L-aTNA) was achieved in the presence of N-cyanoimidazole (CNIm) and Mn2+; however, the reaction conditions were not optimized and a mechanistic insight was not sufficient. Herein, we report investigation of the kinetics and reaction mechanism of the chemical ligation of L-aTNA to L-aTNA and of DNA to DNA. We found that Cd2+, Ni2+, and Co2+ accelerated ligation of both L-aTNA and DNA and that the rate-determining step was activation of the phosphate group. The activation was enhanced by duplex formation between a phosphorylated L-aTNA fragment and template, resulting in unexpectedly more effective L-aTNA ligation than DNA ligation. Under optimized conditions, an 8-mer L-aTNA primer could be elongated by ligation to L-aTNA trimers to produce a 29-mer full-length oligomer with 60% yield within 2 h at 4 °C. This highly effective chemical ligation system will allow construction of artificial genomes, robust DNA nanostructures, and xeno nucleic acids for use in selection methods. Our findings also shed light on the possible pre-RNA world.
Collapse
Affiliation(s)
- Hikari Okita
- Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Shuto Kondo
- Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Keiji Murayama
- Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Hiroyuki Asanuma
- Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| |
Collapse
|
5
|
Kawamoto Y, Wu Y, Takahashi Y, Takakura Y. Development of nucleic acid medicines based on chemical technology. Adv Drug Deliv Rev 2023; 199:114872. [PMID: 37244354 DOI: 10.1016/j.addr.2023.114872] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/01/2023] [Accepted: 05/12/2023] [Indexed: 05/29/2023]
Abstract
Oligonucleotide-based therapeutics have attracted attention as an emerging modality that includes the modulation of genes and their binding proteins related to diseases, allowing us to take action on previously undruggable targets. Since the late 2010s, the number of oligonucleotide medicines approved for clinical uses has dramatically increased. Various chemistry-based technologies have been developed to improve the therapeutic properties of oligonucleotides, such as chemical modification, conjugation, and nanoparticle formation, which can increase nuclease resistance, enhance affinity and selectivity to target sites, suppress off-target effects, and improve pharmacokinetic properties. Similar strategies employing modified nucleobases and lipid nanoparticles have been used for developing coronavirus disease 2019 mRNA vaccines. In this review, we provide an overview of the development of chemistry-based technologies aimed at using nucleic acids for developing therapeutics over the past several decades, with a specific emphasis on the structural design and functionality of chemical modification strategies.
Collapse
Affiliation(s)
- Yusuke Kawamoto
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| | - You Wu
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Yuki Takahashi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| |
Collapse
|
6
|
Murayama K, Kashida H, Asanuma H. Methyl group configuration on acyclic threoninol nucleic acids ( aTNAs) impacts supramolecular properties. Org Biomol Chem 2022; 20:4115-4122. [PMID: 35274662 DOI: 10.1039/d2ob00266c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have synthesized acyclic allo-threoninol nucleic acids (allo-aTNAs), artificial xeno-nucleic acids (XNAs) that are diastereomers of acyclic threoninol nucleic acids (aTNAs), and have investigated their supramolecular properties. The allo-aTNAs formed homo-duplexes in an antiparallel manner but with lower thermal stability than DNA, whereas aTNAs formed extremely stable homo-duplexes. The allo-aTNAs formed duplexes with complementary aTNAs and serinol nucleic acid (SNA). The affinities of L-allo-aTNA were the highest for L-aTNA and the lowest for D-aTNA, with SNA being intermediate. The affinities of D-allo-aTNA were the reverse. Circular dichroism measurements revealed that L- and D-allo-aTNAs had weak right-handed and left-handed helicities, respectively. The weak helicity of allo-aTNAs likely explains the poor chiral discrimination of these XNAs, which is in contrast to aTNAs that have strong helical orthogonality. Energy-minimized structures of L-allo-aTNA/RNA and L-allo-aTNA/L-allo-aTNA indicated that the methyl group on the allo-aTNA strand is unfavourable for duplex formation. In contrast, the methyl group on L-aTNA likely stabilizes the duplex structure via hydrophobic effects and van der Waals interactions. Thus, the configuration of the methyl group on the XNA scaffold had an unexpectedly large impact on the hybridization ability and structure.
Collapse
Affiliation(s)
- Keiji Murayama
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| | - Hiromu Kashida
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| | - Hiroyuki Asanuma
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| |
Collapse
|
7
|
Chen Y, Nagao R, Murayama K, Asanuma H. Orthogonal Amplification Circuits Composed of Acyclic Nucleic Acids Enable RNA Detection. J Am Chem Soc 2022; 144:5887-5892. [PMID: 35258290 DOI: 10.1021/jacs.1c12659] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Construction of complex DNA circuits is difficult due to unintended hybridization and degradation by enzymes under biological conditions. We herein report a hybridization chain reaction (HCR) circuit composed of left-handed acyclic d-threoninol nucleic acid (d-aTNA), which is orthogonal to right-handed DNA and RNA. Because of its high thermal stability, use of an aTNA hairpin with a short 7 base-pair stem ensured clear ON-OFF control of the HCR circuit. The aTNA circuit was stable against nucleases. A circuit based on right-handed acyclic l-threoninol nucleic acid (l-aTNA) was also designed, and high orthogonality between d- and l-aTNA HCRs was confirmed by activation of each aTNA HCR via a corresponding input strand. A dual OR logic gate was successfully established using serinol nucleic acid (SNA), which could initiate both d- and l-aTNA circuits. The d-aTNA HCR was used for an RNA-dependent signal amplification system via the SNA interface. The design resulted in 80% yield of the cascade reaction in 3000 s without a significant leak. This work represents the first example of use of heterochiral HCR circuits for detection of RNA molecules. The method has potential for direct visualization of RNA in vivo and the FISH method.
Collapse
Affiliation(s)
- Yanglingzhi Chen
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Ryuya Nagao
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Keiji Murayama
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Hiroyuki Asanuma
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
8
|
Chen Y, Murayama K, Asanuma H. Signal Amplification Circuit Composed of Serinol Nucleic Acid for RNA Detection. CHEM LETT 2022. [DOI: 10.1246/cl.210813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yanglingzhi Chen
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Aichi 464-8603
| | - Keiji Murayama
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Aichi 464-8603
| | - Hiroyuki Asanuma
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Aichi 464-8603
| |
Collapse
|
9
|
Rajasekaran T, Freestone GC, Galindo-Murillo R, Lugato B, Rico L, Salinas JC, Gaus H, Migawa MT, Swayze EE, Cheatham TE, Hanessian S, Seth PP. Backbone Hydrocarbon-Constrained Nucleic Acids Modulate Hybridization Kinetics for RNA. J Am Chem Soc 2022; 144:1941-1950. [PMID: 35041415 DOI: 10.1021/jacs.1c12323] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The binding affinity of therapeutic oligonucleotides (ONs) for their cognate RNA is determined by the rates of association (ka) and dissociation (kd). Single-stranded ONs are highly flexible and can adopt multiple conformations in solution, some of which may not be conducive for hybridization. We investigated if restricting rotation around the sugar-phosphate backbone, by tethering two adjacent backbone phosphonate esters using hydrocarbon bridges, can modulate hybridization kinetics of the modified ONs for complementary RNA. Given the large number of possible analogues with different tether lengths and configurations at the phosphorus atoms, we employed molecular dynamic simulations to optimize the size of the hydrocarbon bridge to guide the synthetic efforts. The backbone-constrained nucleotide trimers with stereodefined configurations at the contiguous backbone phosphorus atoms were assembled using a ring-closing metathesis reaction, then incorporated into oligonucleotides by an in situ synthesis of the phosphoramidites followed by coupling to solid supports. Evaluation of the modified oligonucleotides revealed that 15-membered macrocyclic-constrained analogues displayed similar or slightly improved on-rates but significantly increased off-rates compared to unmodified DNA ONs, resulting in reduced duplex stability. In contrast, LNA ONs with conformationally preorganized furanose rings showed similar on-rates to DNA ONs but very slow off-rates, resulting in net improvement in duplex stability. Furthermore, the experimental data generally supported the molecular dynamics simulation results, suggesting that this strategy can be used as a predictive tool for designing the next generation of constrained backbone ON analogues with improved hybridization properties.
Collapse
Affiliation(s)
| | - Graeme C Freestone
- Department of Medicinal Chemistry, Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - Rodrigo Galindo-Murillo
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, 2000 East 30 South Skaggs 201, Salt Lake City, Utah 84112, United States
| | - Barbara Lugato
- Department of Chemistry, Université de Montréal, Quebec H3C 3J7, Canada
| | - Lorena Rico
- Department of Chemistry, Université de Montréal, Quebec H3C 3J7, Canada
| | - Juan C Salinas
- Department of Chemistry, Université de Montréal, Quebec H3C 3J7, Canada
| | - Hans Gaus
- Department of Medicinal Chemistry, Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - Michael T Migawa
- Department of Medicinal Chemistry, Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - Eric E Swayze
- Department of Medicinal Chemistry, Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - Thomas E Cheatham
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, 2000 East 30 South Skaggs 201, Salt Lake City, Utah 84112, United States
| | - Stephen Hanessian
- Department of Chemistry, Université de Montréal, Quebec H3C 3J7, Canada
| | - Punit P Seth
- Department of Medicinal Chemistry, Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, California 92010, United States
| |
Collapse
|
10
|
Chardet C, Payrastre C, Gerland B, Escudier JM. Convertible and Constrained Nucleotides: The 2'-Deoxyribose 5'-C-Functionalization Approach, a French Touch. Molecules 2021; 26:5925. [PMID: 34641475 PMCID: PMC8512084 DOI: 10.3390/molecules26195925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022] Open
Abstract
Many strategies have been developed to modulate the biological or biotechnical properties of oligonucleotides by introducing new chemical functionalities or by enhancing their affinity and specificity while restricting their conformational space. Among them, we review our approach consisting of modifications of the 5'-C-position of the nucleoside sugar. This allows the introduction of an additional chemical handle at any position on the nucleotide chain without disturbing the Watson-Crick base-pairing. We show that 5'-C bromo or propargyl convertible nucleotides (CvN) are accessible in pure diastereoisomeric form, either for nucleophilic displacement or for CuAAC conjugation. Alternatively, the 5'-carbon can be connected in a stereo-controlled manner to the phosphate moiety of the nucleotide chain to generate conformationally constrained nucleotides (CNA). These allow the precise control of the sugar/phosphate backbone torsional angles. The consequent modulation of the nucleic acid shape induces outstanding stabilization properties of duplex or hairpin structures in accordance with the preorganization concept. Some biological applications of these distorted oligonucleotides are also described. Effectively, the convertible and the constrained approaches have been merged to create constrained and convertible nucleotides (C2NA) providing unique tools to functionalize and stabilize nucleic acids.
Collapse
Affiliation(s)
| | | | - Béatrice Gerland
- Laboratoire de Synthèse et Physico-Chimie de Molécules d′Intérêt Biologique, UMR CNRS 5068, Université Paul Sabatier, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (C.C.); (C.P.)
| | - Jean-Marc Escudier
- Laboratoire de Synthèse et Physico-Chimie de Molécules d′Intérêt Biologique, UMR CNRS 5068, Université Paul Sabatier, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (C.C.); (C.P.)
| |
Collapse
|
11
|
Murayama K, Asanuma H. Design and Hybridization Properties of Acyclic Xeno Nucleic Acid Oligomers. Chembiochem 2021; 22:2507-2515. [PMID: 33998765 DOI: 10.1002/cbic.202100184] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/17/2021] [Indexed: 12/24/2022]
Abstract
Xeno nucleic acids (XNAs) are analogues of DNA and RNA that have a non-ribose artificial scaffold. XNAs are possible prebiotic genetic carriers as well as alternative genetic systems in artificial life. In addition, XNA oligomers can be used as biological tools. Acyclic XNAs, which do not have cyclic scaffolds, are attractive due to facile their synthesis and remarkably high nuclease resistance. To maximize the performance of XNAs, a negatively charged backbone is preferable to provide sufficient water solubility; however, acyclic XNAs containing polyanionic backbones suffer from high entropy cost upon duplex formation, because of the high flexibility of the acyclic nature. Herein, we review the relationships between the structure and duplex hybridization properties of various acyclic XNA oligomers with polyanion backbones.
Collapse
Affiliation(s)
- Keiji Murayama
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Hiroyuki Asanuma
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| |
Collapse
|
12
|
Liang X, Liu M, Komiyama M. Recognition of Target Site in Various Forms of DNA and RNA by Peptide Nucleic Acid (PNA): From Fundamentals to Practical Applications. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, P. R. China
| | - Mengqin Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Makoto Komiyama
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| |
Collapse
|
13
|
Murayama K, Okita H, Kuriki T, Asanuma H. Nonenzymatic polymerase-like template-directed synthesis of acyclic L-threoninol nucleic acid. Nat Commun 2021; 12:804. [PMID: 33547322 PMCID: PMC7864931 DOI: 10.1038/s41467-021-21128-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/04/2021] [Indexed: 02/08/2023] Open
Abstract
Evolution of xeno nucleic acid (XNA) world essentially requires template-directed synthesis of XNA polymers. In this study, we demonstrate template-directed synthesis of an acyclic XNA, acyclic L-threoninol nucleic acid (L-aTNA), via chemical ligation mediated by N-cyanoimidazole. The ligation of an L-aTNA fragment on an L-aTNA template is significantly faster and occurs in considerably higher yield than DNA ligation. Both L-aTNA ligation on a DNA template and DNA ligation on an L-aTNA template are also observed. High efficiency ligation of trimer L-aTNA fragments to a template-bound primer is achieved. Furthermore, a pseudo primer extension reaction is demonstrated using a pool of random L-aTNA trimers as substrates. To the best of our knowledge, this is the first example of polymerase-like primer extension of XNA with all four nucleobases, generating phosphodiester bonding without any special modification. This technique paves the way for a genetic system of the L-aTNA world.
Collapse
Affiliation(s)
- Keiji Murayama
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.
| | - Hikari Okita
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Takumi Kuriki
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Hiroyuki Asanuma
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.
| |
Collapse
|
14
|
McKenzie LK, El-Khoury R, Thorpe JD, Damha MJ, Hollenstein M. Recent progress in non-native nucleic acid modifications. Chem Soc Rev 2021; 50:5126-5164. [DOI: 10.1039/d0cs01430c] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
While Nature harnesses RNA and DNA to store, read and write genetic information, the inherent programmability, synthetic accessibility and wide functionality of these nucleic acids make them attractive tools for use in a vast array of applications.
Collapse
Affiliation(s)
- Luke K. McKenzie
- Institut Pasteur
- Department of Structural Biology and Chemistry
- Laboratory for Bioorganic Chemistry of Nucleic Acids
- CNRS UMR3523
- 75724 Paris Cedex 15
| | | | | | | | - Marcel Hollenstein
- Institut Pasteur
- Department of Structural Biology and Chemistry
- Laboratory for Bioorganic Chemistry of Nucleic Acids
- CNRS UMR3523
- 75724 Paris Cedex 15
| |
Collapse
|
15
|
Galindo-Murillo R, Cohen JS, Akabayov B. Molecular dynamics simulations of acyclic analogs of nucleic acids for antisense inhibition. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 23:527-535. [PMID: 33510941 PMCID: PMC7810604 DOI: 10.1016/j.omtn.2020.11.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 11/28/2020] [Indexed: 11/16/2022]
Abstract
For antisense applications, oligonucleotides must be chemically modified to be resistant to endogenous nucleases. Until now, antisense oligonucleotide (ASO) analogs have been synthesized and then tested for their ability to duplex with a target nucleic acid, usually RNA. In this work, using molecular dynamics calculations simulations, we systematically tested a series of chemically modified analogs in which the 2-deoxyribose was substituted for by one or two methylene groups on each side of the phosphate backbone, producing four compounds, of which three were previously unknown. We used a 9-mer sequence of which the solution structure has been determined by NMR spectroscopy and tested the ability to form stable duplexes of these acyclic analogs to both DNA and RNA. In only one case out of eight, we unexpectedly found the formation of a stable duplex with complementary RNA. We also applied limitations on end fraying because of the terminal AT base pairs, in order to eliminate this as a factor in the comparative results. We consider this a predictive method to potentially identify target ASO analogs for synthesis and testing for antisense drug development.
Collapse
Affiliation(s)
- Rodrigo Galindo-Murillo
- Medicinal Chemistry Department, Skaggs Pharmacy Institute, University of Utah, Salt Lake City, UT, USA
| | - Jack S Cohen
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Barak Akabayov
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
16
|
Corvaglia V, Carbajo D, Prabhakaran P, Ziach K, Mandal PK, Santos VD, Legeay C, Vogel R, Parissi V, Pourquier P, Huc I. Carboxylate-functionalized foldamer inhibitors of HIV-1 integrase and Topoisomerase 1: artificial analogues of DNA mimic proteins. Nucleic Acids Res 2019; 47:5511-5521. [PMID: 31073604 PMCID: PMC6582331 DOI: 10.1093/nar/gkz352] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/21/2019] [Accepted: 04/26/2019] [Indexed: 12/15/2022] Open
Abstract
Inspired by DNA mimic proteins, we have introduced aromatic foldamers bearing phosphonate groups as synthetic mimics of the charge surface of B-DNA and competitive inhibitors of some therapeutically relevant DNA-binding enzymes: the human DNA Topoisomerase 1 (Top1) and the human HIV-1 integrase (HIV-1 IN). We now report on variants of these anionic foldamers bearing carboxylates instead of phosphonates. Several new monomers have been synthesized with protecting groups suitable for solid phase synthesis (SPS). Six hexadecaamides have been prepared using SPS. Proof of their resemblance to B-DNA was brought by the first crystal structure of one of these DNA-mimic foldamers in its polyanionic form. While some of the foldamers were found to be as active as, or even more active than, the original phosphonate oligomers, others had no activity at all or could even stimulate enzyme activity in vitro. Some foldamers were found to have differential inhibitory effects on the two enzymes. These results demonstrate a strong dependence of inhibitory activity on foldamer structure and charge distribution. They open broad avenues for the development of new classes of derivatives that could inhibit the interaction of specific proteins with their DNA target thereby influencing the cellular pathways in which they are involved.
Collapse
Affiliation(s)
- Valentina Corvaglia
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-Universität, München 81377, Germany.,Université de Bordeaux, CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), Institut Européen de Chimie et Biologie, Pessac 33600, France
| | - Daniel Carbajo
- Université de Bordeaux, CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), Institut Européen de Chimie et Biologie, Pessac 33600, France
| | - Panchami Prabhakaran
- Université de Bordeaux, CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), Institut Européen de Chimie et Biologie, Pessac 33600, France
| | - Krzysztof Ziach
- Université de Bordeaux, CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), Institut Européen de Chimie et Biologie, Pessac 33600, France
| | - Pradeep Kumar Mandal
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-Universität, München 81377, Germany.,Université de Bordeaux, CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), Institut Européen de Chimie et Biologie, Pessac 33600, France
| | | | - Carole Legeay
- Sanofi recherche & développement, Montpellier 34184, France
| | - Rachel Vogel
- Sanofi recherche & développement, Montpellier 34184, France
| | - Vincent Parissi
- Université de Bordeaux, CNRS, Laboratoire de Microbiologie Fondamentale et Pathogénicité (UMR 5234), Bordeaux 33146, France
| | - Philippe Pourquier
- INSERM U1194, Institut de Recherche en Cancérologie de Montpellier & Université de Montpellier, Montpellier 34298, France
| | - Ivan Huc
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-Universität, München 81377, Germany.,Université de Bordeaux, CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), Institut Européen de Chimie et Biologie, Pessac 33600, France
| |
Collapse
|
17
|
Murayama K, Asanuma H. A Quencher-Free Linear Probe from Serinol Nucleic Acid with a Fluorescent Uracil Analogue. Chembiochem 2019; 21:120-128. [PMID: 31549777 DOI: 10.1002/cbic.201900498] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Indexed: 12/23/2022]
Abstract
With the goal of developing a quencher-free probe composed of an artificial nucleic acid, the fluorescent nucleobase analogue 5-(perylenylethynyl)uracil (Pe U), which was incorporated into totally artificial serinol nucleic acid (SNA) as a substitute for thymine, has been synthesized. In the context of a 12-mer duplex with RNA, these fluorophores reduce duplex stability slightly compared with that of an SNA without Pe U modification; thus suggesting that structural distortion is not induced by the modification. If two Pe Us were incorporated at separate positions in an SNA, the fluorescent emission at λ≈490 nm was clearly enhanced upon hybridization with complementary RNA. A quencher-free SNA linear probe containing three Pe Us, each separated by six nucleobases, has been designed. Detection of target RNA with high sensitivity and discrimination of a single-base mismatch has also been demonstrated.
Collapse
Affiliation(s)
- Keiji Murayama
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Hiroyuki Asanuma
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| |
Collapse
|
18
|
Diafa S, Evéquoz D, Leumann CJ, Hollenstein M. Synthesis and Enzymatic Characterization of Sugar-Modified Nucleoside Triphosphate Analogs. Methods Mol Biol 2019; 1973:1-13. [PMID: 31016692 DOI: 10.1007/978-1-4939-9216-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chemical modification of nucleic acids can be achieved by the enzymatic polymerization of modified nucleoside triphosphates (dN*TPs). This approach obviates some of the requirements and drawbacks imposed by the more traditional solid-phase synthesis of oligonucleotides. Here, we describe the protocol that is necessary to synthesize dN*TPs and evaluate their substrate acceptance by polymerases for their subsequent use in various applications including selection experiments to identify aptamers. The protocol is exemplified for a sugar-constrained nucleoside analog, 7',5'-bc-TTP.
Collapse
Affiliation(s)
- Stella Diafa
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Damien Evéquoz
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Christian J Leumann
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Marcel Hollenstein
- Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR 3523, Institut Pasteur, Paris, France.
| |
Collapse
|
19
|
Murayama K, Yamano Y, Asanuma H. 8-Pyrenylvinyl Adenine Controls Reversible Duplex Formation between Serinol Nucleic Acid and RNA by [2 + 2] Photocycloaddition. J Am Chem Soc 2019; 141:9485-9489. [DOI: 10.1021/jacs.9b03267] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Keiji Murayama
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yuuhei Yamano
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Hiroyuki Asanuma
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
20
|
Shigi N, Mizuno Y, Kunifuda H, Matsumura K, Komiyama M. Promotion of Single-Strand Invasion of PNA to Double-Stranded DNA by Pseudo-Complementary Base Pairing. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Narumi Shigi
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yuki Mizuno
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Department of Materials Science & Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan
| | - Hiroko Kunifuda
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Kazunari Matsumura
- Department of Materials Science & Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan
| | - Makoto Komiyama
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| |
Collapse
|
21
|
Abstract
Oligonucleotides (ONs) can interfere with biomolecules representing the entire extended central dogma. Antisense gapmer, steric block, splice-switching ONs, and short interfering RNA drugs have been successfully developed. Moreover, antagomirs (antimicroRNAs), microRNA mimics, aptamers, DNA decoys, DNAzymes, synthetic guide strands for CRISPR/Cas, and innate immunity-stimulating ONs are all in clinical trials. DNA-targeting, triplex-forming ONs and strand-invading ONs have made their mark on drug development research, but not yet as medicines. Both design and synthetic nucleic acid chemistry are crucial for achieving biologically active ONs. The dominating modifications are phosphorothioate linkages, base methylation, and numerous 2'-substitutions in the furanose ring, such as 2'-fluoro, O-methyl, or methoxyethyl. Locked nucleic acid and constrained ethyl, a related variant, are bridged forms where the 2'-oxygen connects to the 4'-carbon in the sugar. Phosphorodiamidate morpholino oligomers, carrying a modified heterocyclic backbone ring, have also been commercialized. Delivery remains a major obstacle, but systemic administration and intrathecal infusion are used for treatment of the liver and brain, respectively.
Collapse
Affiliation(s)
- C I Edvard Smith
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden; .,Stellenbosch Institute for Advanced Study, Wallenberg Research Centre, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Rula Zain
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden; .,Department of Clinical Genetics, Centre for Rare Diseases, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| |
Collapse
|
22
|
Efthymiou T, Gavette J, Stoop M, De Riccardis F, Froeyen M, Herdewijn P, Krishnamurthy R. Chimeric XNA: An Unconventional Design for Orthogonal Informational Systems. Chemistry 2018; 24:12811-12819. [PMID: 29901248 DOI: 10.1002/chem.201802287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/12/2018] [Indexed: 10/14/2022]
Abstract
The paradigm of homogenous-sugar-backbone of RNA and DNA has reliably guided the construction of many functional and useful xeno nucleic acid (XNA) systems to date. Deviations from this monotonous and canonical design, in many cases, results in oligonucleotide systems that lack base pairing with themselves, or with RNA or DNA. Here we show that nucleotides of two such compromised XNA systems can be combined with RNA and DNA in specific patterns to produce chimeric-backbone oligonucleotides, which in certain cases demonstrate base pairing properties comparable to-or stronger than-canonical systems, while also altering the conventional Watson-Crick pairing behavior. The unorthodox pairing properties generated from these chimeric sugar-backbone oligonucleotides suggest a counterintuitive approach of creating modules consisting of non-base pairing XNAs with RNA/DNA in a set pattern. This strategy has the potential to increase the diversity of unconventional nucleic acids leading to orthogonal backbone-sequence-controlled informational systems.
Collapse
Affiliation(s)
- Tim Efthymiou
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.,NSF/NASA Center for Chemical Evolution, Atlanta, GA, 30332, USA
| | - Jesse Gavette
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.,NSF/NASA Center for Chemical Evolution, Atlanta, GA, 30332, USA
| | - Matthias Stoop
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.,NSF/NASA Center for Chemical Evolution, Atlanta, GA, 30332, USA
| | - Francesco De Riccardis
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.,NSF/NASA Center for Chemical Evolution, Atlanta, GA, 30332, USA.,Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Salerno, Italy
| | - Mathy Froeyen
- Department of Medicinal Chemistry, Institute for Medical Research, KU Leuven, Herestraat, 49, Leuven, 3000, Belgium
| | - Piet Herdewijn
- Department of Medicinal Chemistry, Institute for Medical Research, KU Leuven, Herestraat, 49, Leuven, 3000, Belgium
| | - Ramanarayanan Krishnamurthy
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.,NSF/NASA Center for Chemical Evolution, Atlanta, GA, 30332, USA
| |
Collapse
|
23
|
Shoji T, Fukutomi H, Okada Y, Chiba K. Artificial bioconjugates with naturally occurring linkages: the use of phosphodiester. Beilstein J Org Chem 2018; 14:1946-1955. [PMID: 30112100 PMCID: PMC6071721 DOI: 10.3762/bjoc.14.169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 07/06/2018] [Indexed: 12/22/2022] Open
Abstract
Artificial orthogonal bond formations such as the alkyne–azide cycloaddition have enabled selective bioconjugations under mild conditions, yet naturally occurring linkages between native functional groups would be more straightforward to elaborate bioconjugates. Herein, we describe the use of a phosphodiester bond as a versatile option to access various bioconjugates. An opposite activation strategy, involving 5’-phosphitylation of the supported oligonucleotides, has allowed several biomolecules that possess an unactivated alcohol to be directly conjugated. It should be noted that there is no need to pre-install artificial functional groups and undesired and unpredictable perturbations possibly caused by bioconjugation can be minimized.
Collapse
Affiliation(s)
- Takao Shoji
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Hiroki Fukutomi
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Yohei Okada
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Kazuhiro Chiba
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
24
|
Páv O, Barvík I, Liboska R, Petrová M, Šimák O, Rosenbergová Š, Novák P, Buděšínský M, Rosenberg I. Tuning the hybridization properties of modified oligonucleotides: from flexible to conformationally constrained phosphonate internucleotide linkages. Org Biomol Chem 2018; 15:701-707. [PMID: 27995239 DOI: 10.1039/c6ob02571d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The concept of conformational restriction leading to the preorganization of modified strands has proven to be successful and has afforded nucleic acid analogues with many interesting properties suitable for various biochemical applications. We utilized this concept to prepare a set of constrained oligonucleotides derived from 1,4-dioxane and 1,3-dioxolane-locked nucleoside phosphonates and evaluated their hybridization affinities towards their complementary RNA strands. With an increase of ΔTm per modification up to +5.2 °C, the hybridization experiments revealed the (S)-2',3'-O-phosphonomethylidene internucleotide linkage as one of the most Tm-increasing modifications reported to date. Moreover, we introduced a novel prediction tool for the pre-selection of potentially interesting chemical modifications of oligonucleotides.
Collapse
Affiliation(s)
- Ondřej Páv
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí 2, 16610 Prague, Czech Republic.
| | - Ivan Barvík
- Faculty of Mathematics and Physics, Institute of Physics, Charles University, Ke Karlovu 5, 12116 Prague, Czech Republic
| | - Radek Liboska
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí 2, 16610 Prague, Czech Republic.
| | - Magdalena Petrová
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí 2, 16610 Prague, Czech Republic.
| | - Ondřej Šimák
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí 2, 16610 Prague, Czech Republic. and Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Technická 5, 16628 Prague, Czech Republic
| | - Šárka Rosenbergová
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí 2, 16610 Prague, Czech Republic.
| | - Pavel Novák
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí 2, 16610 Prague, Czech Republic.
| | - Miloš Buděšínský
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí 2, 16610 Prague, Czech Republic.
| | - Ivan Rosenberg
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí 2, 16610 Prague, Czech Republic.
| |
Collapse
|
25
|
Tang Q, Cai A, Bian K, Chen F, Delaney JC, Adusumalli S, Bach AC, Akhlaghi F, Cho BP, Li D. Characterization of Byproducts from Chemical Syntheses of Oligonucleotides Containing 1-Methyladenine and 3-Methylcytosine. ACS OMEGA 2017; 2:8205-8212. [PMID: 29214236 PMCID: PMC5709782 DOI: 10.1021/acsomega.7b01482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/01/2017] [Indexed: 06/07/2023]
Abstract
Oligonucleotides serve as important tools for biological, chemical, and medical research. The preparation of oligonucleotides through automated solid-phase synthesis is well-established. However, identification of byproducts generated from DNA synthesis, especially from oligonucleotides containing site-specific modifications, is sometimes challenging. Typical high-performance liquid chromatography (HPLC), mass spectrometry (MS), and gel electrophoresis methods alone are not sufficient for characterizing unexpected byproducts, especially for those having identical or very similar molecular weight (MW) to the products. We used a rigorous quality control procedure to characterize byproducts generated during oligonucleotide syntheses: (1) purify oligonucleotides by different HPLC systems; (2) determine exact MW by high-resolution MS; (3) locate modification position by MS/MS or exonuclease digestion with matrix-assisted laser desorption ionization-time of flight analysis; and (4) conduct, where applicable, enzymatic assays. We applied these steps to characterize byproducts in the syntheses of oligonucleotides containing biologically important methyl DNA adducts 1-methyladenine (m1A) and 3-methylcytosine (m3C). In m1A synthesis, we differentiated a regioisomeric byproduct 6-methyladenine, which possesses a MW identical to uncharged m1A. As for m3C, we identified a deamination byproduct 3-methyluracil, which is only 1 Da greater than uncharged m3C in the ∼4900 Da context. The detection of these byproducts would be very challenging if the abovementioned procedure was not adopted.
Collapse
Affiliation(s)
- Qi Tang
- Department
of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, Rhode Island 02881, United States
| | - Ang Cai
- Department
of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, Rhode Island 02881, United States
| | - Ke Bian
- Department
of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, Rhode Island 02881, United States
| | - Fangyi Chen
- Department
of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, Rhode Island 02881, United States
| | - James C. Delaney
- Visterra
Inc., One Kendall Square, Cambridge, Massachusetts 02139, United States
| | - Sravani Adusumalli
- Department
of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, Rhode Island 02881, United States
| | - Alvin C. Bach
- Department
of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, Rhode Island 02881, United States
| | - Fatemeh Akhlaghi
- Department
of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, Rhode Island 02881, United States
| | - Bongsup P. Cho
- Department
of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, Rhode Island 02881, United States
| | - Deyu Li
- Department
of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, Rhode Island 02881, United States
| |
Collapse
|
26
|
Condon JE, Jayaraman A. Effect of oligonucleic acid (ONA) backbone features on assembly of ONA-star polymer conjugates: a coarse-grained molecular simulation study. SOFT MATTER 2017; 13:6770-6783. [PMID: 28825068 DOI: 10.1039/c7sm01534h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Understanding the impact of incorporating new physical and chemical features in oligomeric DNA mimics, termed generally as "oligonucleic acids" (ONAs), on their structure and thermodynamics will be beneficial in designing novel materials for a variety of applications. In this work, we conduct coarse-grained molecular simulations of ONA-star polymer conjugates with varying ONA backbone flexibility, ONA backbone charge, and number of arms in the star polymer at a constant ONA strand volume fraction to elucidate the effect of these design parameters on the thermodynamics and assembly of multi-arm ONA-star polymer conjugates. We quantify the thermo-reversible behavior of the ONA-star polymer conjugates by quantifying the hybridization of the ONA strands in the system as a function of temperature (i.e. melting curve). Additionally, we characterize the assembly of the ONA-star polymer conjugates by tracking cluster formation and percolation as a function of temperature, as well as cluster size distribution at temperatures near the assembly transition region. The key results are as follows. The melting temperature (Tm) of the ONA strands decreases upon going from a neutral to a charged ONA backbone and upon increasing flexibility of the ONA backbone. Similar behavior is seen for the assembly transition temperature (Ta) with varying ONA backbone charge and flexibility. While the number of arms in the ONA-star polymer conjugate has a negligible effect on the ONA Tm in these systems, as the number of ONA-star polymer arms increase, the assembly temperature Ta increases and local ordering in the assembled state improves. By understanding how factors like ONA backbone charge, backbone flexibility, and ONA-star polymer conjugate architecture impact the behavior of ONA-star polymer conjugate systems, we can better inform how the selection of ONA chemistry will influence resulting ONA-star polymer assembly.
Collapse
Affiliation(s)
- Joshua E Condon
- Department of Chemical and Biomolecular Engineering, Colburn Laboratory, University of Delaware, 150 Academy Street, Newark, DE 19716, USA.
| | | |
Collapse
|
27
|
|
28
|
Kumar R, Ries A, Wengel J. Synthesis and Excellent Duplex Stability of Oligonucleotides Containing 2'-Amino-LNA Functionalized with Galactose Units. Molecules 2017; 22:molecules22050852. [PMID: 28531137 PMCID: PMC6153924 DOI: 10.3390/molecules22050852] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 02/07/2023] Open
Abstract
A convenient method for the preparation of oligonucleotides containing internally-attached galactose and triantennary galactose units has been developed based on click chemistry between 2′-N-alkyne 2′-amino-LNA nucleosides and azido-functionalized galactosyl building blocks. The synthesized oligonucleotides show excellent binding affinity and selectivity towards complementary DNA/RNA strands with an increase in the melting temperature of up to +23.5 °C for triply-modified variants.
Collapse
Affiliation(s)
- Rajesh Kumar
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
- Department of Chemistry, University of Delhi, Delhi 110007, India.
| | - Annika Ries
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | - Jesper Wengel
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| |
Collapse
|
29
|
Gerland B, Addamiano C, Renard BL, Payrastre C, Gopaul D, Escudier JM. Thio- and Seleno-Dioxaphosphorinane-Constrained Dinucleotides (D-CNA): Synthesis and Conformational Study. European J Org Chem 2017. [DOI: 10.1002/ejoc.201601568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Béatrice Gerland
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, UMR CNRS 5068; Université Paul Sabatier; 118 route de Narbonne 31062 Toulouse France
| | - Claudia Addamiano
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, UMR CNRS 5068; Université Paul Sabatier; 118 route de Narbonne 31062 Toulouse France
| | - Brice-Loïc Renard
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, UMR CNRS 5068; Université Paul Sabatier; 118 route de Narbonne 31062 Toulouse France
| | - Corinne Payrastre
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, UMR CNRS 5068; Université Paul Sabatier; 118 route de Narbonne 31062 Toulouse France
| | - Deshmukh Gopaul
- Laboratoire de Génomes et Génétique; UMR 3525 Institut Pasteur; 25 rue du Docteur Roux 75015 Paris France
| | - Jean-Marc Escudier
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, UMR CNRS 5068; Université Paul Sabatier; 118 route de Narbonne 31062 Toulouse France
| |
Collapse
|
30
|
Murayama K, Asanuma H. Effect of Methyl Group on Acyclic Serinol Scaffold for Tethering Dyes on the DNA Duplex Stability. Chembiochem 2016; 18:142-149. [DOI: 10.1002/cbic.201600558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Keiji Murayama
- Graduate School of Engineering; Nagoya University; Furo-cho Chikusa-ku Nagoya 464-8603 Japan
| | - Hiroyuki Asanuma
- Graduate School of Engineering; Nagoya University; Furo-cho Chikusa-ku Nagoya 464-8603 Japan
| |
Collapse
|
31
|
Fiers G, Chouikhi D, Oswald L, Al Ouahabi A, Chan-Seng D, Charles L, Lutz JF. Orthogonal Synthesis of Xeno Nucleic Acids. Chemistry 2016; 22:17945-17948. [DOI: 10.1002/chem.201604386] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Guillaume Fiers
- Precision Macromolecular Chemistry Group; Institut Charles Sadron; 23 rue du Loess, BP84047 67034 Strasbourg Cedex 2 France
| | - Dalila Chouikhi
- Precision Macromolecular Chemistry Group; Institut Charles Sadron; 23 rue du Loess, BP84047 67034 Strasbourg Cedex 2 France
- Laboratoire de Catalyse et Synthèse en Chimie Organique; Université Abou Bekr Belkaid; BP 119 Pole Imama Bât. B 13000 Tlemcen Algeria
| | - Laurence Oswald
- Precision Macromolecular Chemistry Group; Institut Charles Sadron; 23 rue du Loess, BP84047 67034 Strasbourg Cedex 2 France
| | - Abdelaziz Al Ouahabi
- Precision Macromolecular Chemistry Group; Institut Charles Sadron; 23 rue du Loess, BP84047 67034 Strasbourg Cedex 2 France
| | - Delphine Chan-Seng
- Precision Macromolecular Chemistry Group; Institut Charles Sadron; 23 rue du Loess, BP84047 67034 Strasbourg Cedex 2 France
| | - Laurence Charles
- Aix Marseille Univ; CNRS; Institute of Radical Chemistry; UMR 7273 Marseille France
| | - Jean-François Lutz
- Precision Macromolecular Chemistry Group; Institut Charles Sadron; 23 rue du Loess, BP84047 67034 Strasbourg Cedex 2 France
| |
Collapse
|
32
|
Abstract
Oligonucleotide-based therapeutics have made rapid progress in the clinic for treatment of a variety of disease indications. Unmodified oligonucleotides are polyanionic macromolecules with poor drug-like properties. Over the past two decades, medicinal chemists have identified a number of chemical modification and conjugation strategies which can improve the nuclease stability, RNA-binding affinity, and pharmacokinetic properties of oligonucleotides for therapeutic applications. In this perspective, we present a summary of the most commonly used nucleobase, sugar and backbone modification, and conjugation strategies used in oligonucleotide medicinal chemistry.
Collapse
Affiliation(s)
- W Brad Wan
- Department of Medicinal Chemistry, Ionis Pharmaceuticals , 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - Punit P Seth
- Department of Medicinal Chemistry, Ionis Pharmaceuticals , 2855 Gazelle Court, Carlsbad, California 92010, United States
| |
Collapse
|
33
|
Schürch S. Characterization of nucleic acids by tandem mass spectrometry - The second decade (2004-2013): From DNA to RNA and modified sequences. MASS SPECTROMETRY REVIEWS 2016; 35:483-523. [PMID: 25288464 DOI: 10.1002/mas.21442] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 05/04/2014] [Accepted: 05/04/2014] [Indexed: 06/03/2023]
Abstract
Nucleic acids play key roles in the storage and processing of genetic information, as well as in the regulation of cellular processes. Consequently, they represent attractive targets for drugs against gene-related diseases. On the other hand, synthetic oligonucleotide analogues have found application as chemotherapeutic agents targeting cellular DNA and RNA. The development of effective nucleic acid-based chemotherapeutic strategies requires adequate analytical techniques capable of providing detailed information about the nucleotide sequences, the presence of structural modifications, the formation of higher-order structures, as well as the interaction of nucleic acids with other cellular components and chemotherapeutic agents. Due to the impressive technical and methodological developments of the past years, tandem mass spectrometry has evolved to one of the most powerful tools supporting research related to nucleic acids. This review covers the literature of the past decade devoted to the tandem mass spectrometric investigation of nucleic acids, with the main focus on the fundamental mechanistic aspects governing the gas-phase dissociation of DNA, RNA, modified oligonucleotide analogues, and their adducts with metal ions. Additionally, recent findings on the elucidation of nucleic acid higher-order structures by tandem mass spectrometry are reviewed. © 2014 Wiley Periodicals, Inc., Mass Spec Rev 35:483-523, 2016.
Collapse
Affiliation(s)
- Stefan Schürch
- Department of Chemistry and Biochemistry, University of Bern, CH-3012, Bern, Switzerland
| |
Collapse
|
34
|
|
35
|
Fakhfakh K, Hughesman CB, Louise Creagh A, Kao V, Haynes C. Calorimetric and Spectroscopic Analysis of the Thermal Stability of Short Duplex DNA-Containing Sugar and Base-Modified Nucleotides. Methods Enzymol 2015; 567:97-127. [PMID: 26794352 DOI: 10.1016/bs.mie.2015.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Base- and sugar-modified analogs of DNA and RNA are finding ever expanding use in medicine and biotechnology as tools to better tailor structured oligonucleotides by altering their thermal stability, nuclease resistance, base-pairing specificity, antisense activity, or cellular uptake. Proper deployment of these chemical modifications generally requires knowledge of how each affects base-pairing properties and thermal stabilities. Here, we describe in detail how differential scanning calorimetry and UV spectroscopy may be used to quantify the melting thermodynamics of short dsDNA containing chemically modified nucleosides in one or both strands. Insights are provided into why and how the presence of highly stable base pairs containing modified nucleosides can alter the nature of calorimetry or melting spectroscopy data, and how each experiment must therefore be conducted to ensure high-quality melting thermodynamics data are obtained. Strengths and weaknesses of the two methods when applied to chemically modified duplexes are also addressed.
Collapse
Affiliation(s)
- Kareem Fakhfakh
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Curtis B Hughesman
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - A Louise Creagh
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vincent Kao
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Charles Haynes
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia, Canada; RES'EAU Water Research Network, Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
36
|
Fakhfakh K, Marais O, Cheng XBJ, Castañeda JR, Hughesman CB, Haynes C. Molecular thermodynamics of LNA:LNA base pairs and the hyperstabilizing effect of 5′-proximal LNA:DNA base pairs. AIChE J 2015. [DOI: 10.1002/aic.14916] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Kareem Fakhfakh
- Michael Smith Laboratories, University of British Columbia; Vancouver BC Canada
- Dept. of Chemical and Biological Engineering; University of British Columbia; Vancouver BC Canada
| | - Olivia Marais
- Dept. of Chemical and Biological Engineering; University of British Columbia; Vancouver BC Canada
| | - Xin Bo Justin Cheng
- Dept. of Chemical and Biological Engineering; University of British Columbia; Vancouver BC Canada
| | - Jorge Real Castañeda
- Dept. of Chemical and Biological Engineering; University of British Columbia; Vancouver BC Canada
| | - Curtis B. Hughesman
- Michael Smith Laboratories, University of British Columbia; Vancouver BC Canada
| | - Charles Haynes
- Michael Smith Laboratories, University of British Columbia; Vancouver BC Canada
- Dept. of Chemical and Biological Engineering; University of British Columbia; Vancouver BC Canada
- RES'EAU Water Research Network, Dept. of Chemical and Biological Engineering; University of British Columbia; Vancouver BC Canada
| |
Collapse
|
37
|
Hřebabecký H, Procházková E, Šála M, Plačková P, Tloušťová E, Barauskas O, Lee YJ, Tian Y, Mackman R, Nencka R. Synthesis and biological evaluation of conformationally restricted adenine bicycloribonucleosides. Org Biomol Chem 2015; 13:9300-13. [PMID: 26239898 DOI: 10.1039/c5ob00987a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We prepared a novel series of conformationally restricted bicyclonucleosides and nucleotides. The synthetic approach employed a ring closing metathesis to provide access to both 6 and 7 membered saturated and unsaturated rings linking the 3' to 5' methylene groups of the sugar. The bicyclonucleosides were also transformed to the corresponding phosphoramidate prodrugs by an innovative one-pot protocol of boronate ester protection, coupling of the phosphoryl chloridate and deprotection of the boronate. A similar strategy was also employed for the synthesis of the corresponding monophosphates as crucial intermediates for the synthesis of selected triphosphates. The biological properties of the nucleosides and monophosphate prodrugs were assessed for antiviral and cytostatic activities in cell based assays whilst the triphosphates were evaluated in enzymatic assays. The lack of significant effects suggests that the linkage of the 3' to 5'via a ring system and the subsequent conformational restriction of the ribose ring to the South conformation are incompatible with the kinases and polymerases that recognize nucleosides and their metabolites.
Collapse
Affiliation(s)
- Hubert Hřebabecký
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Gilead Sciences & IOCB Research Centre, 166 10 Prague 6, Czech Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Murayama K, Kamiya Y, Kashida H, Asanuma H. Ultrasensitive Molecular Beacon Designed with Totally Serinol Nucleic Acid (SNA) for Monitoring mRNA in Cells. Chembiochem 2015; 16:1298-301. [PMID: 25851922 DOI: 10.1002/cbic.201500167] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Indexed: 12/28/2022]
Abstract
An artificial nucleic acid based on acyclic serinol building blocks and termed "serinol nucleic acid" (SNA) was used to construct a fluorescent probe for RNA visualization in cells. The molecular beacon (MB) composed of only SNA with a fluorophore at one terminus and a quencher at the other was resistant to enzymatic digestion, due to its unnatural acyclic scaffold. The SNA-MB could detect its complementary RNA with extremely high sensitivity; the signal-to-background (S/B) ratio was as high as 930 when perylene and anthraquinone were used as the fluorophore and quencher pair. A high S/B ratio was also achieved with SNA-MB tethering the conventional Cy3 fluorophore, and this probe enabled selective visualization of target mRNA in fixed cells. Thus, SNA-MB has potential for use as a biological tool capable of visualizing RNA in living cells.
Collapse
Affiliation(s)
- Keiji Murayama
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)
- Venture business laboratory (VBL), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)
| | - Yukiko Kamiya
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)
- Division of Green Conversion, EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)
| | - Hiromu Kashida
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan).
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan).
| | - Hiroyuki Asanuma
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan).
| |
Collapse
|
39
|
Zhou P, Shi R, Yao JF, Sheng CF, Li H. Supramolecular self-assembly of nucleotide–metal coordination complexes: From simple molecules to nanomaterials. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2015.02.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Abou Assi H, Martínez-Montero S, Dixit DM, Chua Z, Bohle DS, Damha MJ. Synthesis, Structure, and Conformational Analysis of Nucleoside Analogues Comprising Six-Membered 1,3-Oxathiane Sugar Rings. European J Org Chem 2015. [DOI: 10.1002/ejoc.201403642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
41
|
Aiba Y, Honda Y, Komiyama M. Promotion of double-duplex invasion of peptide nucleic acids through conjugation with nuclear localization signal peptide. Chemistry 2015; 21:4021-6. [PMID: 25640012 DOI: 10.1002/chem.201406085] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Indexed: 11/10/2022]
Abstract
Pseudo-complementary peptide nucleic acid (pcPNA), as one of the most widely used synthetic DNA analogues, invades double-stranded DNA according to Watson-Crick rules to form invasion complexes. This unique mode of DNA recognition induces structural changes at the invasion site and can be used for a range of applications. In this paper, pcPNA is conjugated with a nuclear localization signal (NLS) peptide, and its invading activity is notably promoted both thermodynamically and kinetically. Thus, the double-duplex invasion complex is formed promptly at low pcPNA concentrations under high salt conditions, where the invasion otherwise never occurs. Furthermore, NLS-modified pcPNA is successfully employed for site-selective DNA scission, and the targeted DNA is selectively cleaved under conditions that are not conducive for DNA cutters using unmodified pcPNAs. This strategy of pcPNA modification is expected to be advantageous and promising for a range of in vitro and in vivo applications.
Collapse
Affiliation(s)
- Yuichiro Aiba
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577 (Japan); Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904 (Japan); Present address: Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041 (USA)
| | | | | |
Collapse
|
42
|
Šála M, Dejmek M, Procházková E, Hřebabecký H, Rybáček J, Dračínský M, Novák P, Rosenbergová Š, Fukal J, Sychrovský V, Rosenberg I, Nencka R. Synthesis of locked cyclohexene and cyclohexane nucleic acids (LCeNA and LCNA) with modified adenosine units. Org Biomol Chem 2015; 13:2703-15. [DOI: 10.1039/c4ob02193b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We designed novel conformationally locked cyclohexene nucleic acid and studied their properties.
Collapse
|
43
|
Murayama K, Kashida H, Asanuma H. Acyclic
l-threoninol nucleic acid (l-aTNA) with suitable structural rigidity cross-pairs with DNA and RNA. Chem Commun (Camb) 2015; 51:6500-3. [DOI: 10.1039/c4cc09244a] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We newly synthesized l-aTNA, which showed the best affinity to DNA and RNA among acyclic nucleic acids with phosphodiester linkages.
Collapse
Affiliation(s)
- Keiji Murayama
- Department of Molecular Design and Engineering
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Hiromu Kashida
- Department of Molecular Design and Engineering
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Hiroyuki Asanuma
- Department of Molecular Design and Engineering
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| |
Collapse
|
44
|
Vilaivan C, Srisuwannaket C, Ananthanawat C, Suparpprom C, Kawakami J, Yamaguchi Y, Tanaka Y, Vilaivan T. Pyrrolidinyl peptide nucleic acid with α/β-peptide backbone: A conformationally constrained PNA with unusual hybridization properties. ARTIFICIAL DNA, PNA & XNA 2014; 2:50-59. [PMID: 21912727 DOI: 10.4161/adna.2.2.16340] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 06/09/2011] [Accepted: 06/10/2011] [Indexed: 01/17/2023]
Abstract
We describe herein a new conformationally constrained analog of PNA carrying an alternating α/β amino acid backbone consisting of (2'R,4'R)-nucleobase-subtituted proline and (1S,2S)-2-aminocyclopentanecarboxylic acid (acpcPNA). The acpcPNA has been synthesized and evaluated for DNA, RNA and self-pairing properties by thermal denaturation experiments. It can form antiparallel hybrids with complementary DNA with high affinity and sequence specificity. Unlike other PNA systems, the thermal stability of acpcPNA·DNA hybrid is largely independent of G+C contents, and is generally higher than that of acpcPNA·RNA hybrid with the same sequence. Thermodynamic parameters analysis suggest that the A·T base pairs in the acpcPNA·DNA hybrids are enthalpically stabilized over G·C pairs. The acpcPNA also shows a hitherto unreported behavior, namely the inability to form self-pairing hybrids. These unusual properties should make the new acpcPNA a potentially useful candidate for various applications including microarray probes and antigene agents.
Collapse
Affiliation(s)
- Chotima Vilaivan
- Organic Synthesis Research Unit; Department of Chemistry; Faculty of Science; Chulalongkorn University; Patumwan, Bangkok, Thailand
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Dugovic B, Leumann CJ. A 6′-fluoro-substituent in bicyclo-DNA increases affinity to complementary RNA presumably by CF–HC pseudohydrogen bonds. J Org Chem 2014; 79:1271-9. [PMID: 24422513 DOI: 10.1021/jo402690j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The synthesis of a novel bicyclic thymidine analogue carrying a β-fluoro substituent at C6′ (6′F-bcT) has been achieved. Key steps of the synthesis were an electrophilic fluorination/stereospecific hydrogenation sequence of a bicyclo sugar intermediate, followed by an N-iodo-succinimide-induced stereoselective nucleosidation. A corresponding phosphoramidite building block was then prepared and used for oligonucleotide synthesis. Tm measurements of oligonucleotides with single and double incorporations showed a remarkable stabilization of duplex formation particularly with RNA as complement without compromising pairing selectivity. Increases in Tm were in the range of +1–2 °C compared to thymidine and +1–3 °C compared to a standard bc-T residue. Structural investigations of the 6′F-bcT nucleoside by X-ray crystallography showed an in-line arrangement of the fluorine substituent with H6 of thymine, however, with a distance that is relatively long for a nonclassical CF–HC hydrogen bond. In contrast, structural investigations in solution by 1H and 13C NMR clearly showed scalar coupling of fluorine with H6 and C6 of the nucleobase, indicating the existence of at least weak electrostatic interactions. On the basis of these results, we put forward the hypothesis that these weak CF–HC6 electrostatic interactions increase duplex stability by orienting and partially freezing torsion angle χ of the 6′F-bcT nucleoside.
Collapse
|
46
|
Borre Hansen M, Krog Andersen N, Raunkjaer M, Trolle Jørgensen P, Wengel J. Functionalization of 2″- C-(Piperazinomethyl)-2′,3′-BcNA (Bicyclic Nucleic Acids) with Pyren-1-ylcarbonyl Units. Helv Chim Acta 2014. [DOI: 10.1002/hlca.201400141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
47
|
Asanuma H, Kashida H, Kamiya Y. De novo design of functional oligonucleotides with acyclic scaffolds. CHEM REC 2014; 14:1055-69. [PMID: 25171046 DOI: 10.1002/tcr.201402040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Indexed: 01/20/2023]
Abstract
In this account, we demonstrate a new methodology for the de novo design of functional oligonucleotides with the acyclic scaffolds threoninol and serinol. Four functional motifs-wedge, interstrand-wedge, dimer, and cluster-have been prepared from natural DNA or RNA and functional base surrogates prepared from d-threoninol. The following applications of these motifs are described: (1) photoregulation of formation and dissociation of a DNA duplex modified with azobenzene, (2) sequence-specific detection of DNA using a fluorescent probe, (3) formation of fluorophore assemblies that mimic quantum dots, (4) improved strand selectivity of siRNA modified with a base surrogate, and (5) in vivo tracing of the RNAi pathway. Finally, we introduce artificial nucleic acids (XNAs) prepared from d-threoninol and serinol functionalized with each of the four nucleobases, which have unique properties compared with other acyclic XNAs. Functional oligonucleotides designed from acyclic scaffolds will be powerful tools for both DNA nanotechnology and biotechnology.
Collapse
Affiliation(s)
- Hiroyuki Asanuma
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.
| | | | | |
Collapse
|
48
|
Hollenstein M, Leumann CJ. Synthesis and biochemical characterization of tricyclothymidine triphosphate (tc-TTP). Chembiochem 2014; 15:1901-4. [PMID: 25044722 DOI: 10.1002/cbic.201402116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Indexed: 01/03/2023]
Abstract
Tricyclo-DNA (tc-DNA) is a conformationally restricted oligonucleotide analogue that exhibits promising properties as a robust antisense agent. Here we report on the synthesis and biochemical characterization of tc-TTP, the triphosphate of a tc-DNA nucleoside containing the base thymine. Tc-TTP turned out to be a substrate for the Vent (exo(-) ) DNA polymerase, a polymerase that allows for multiple incorporations of tc-T nucleotides under primer extension reaction conditions. However, the substrate acceptance is rather low, as also observed for other sugar-modified analogues. Tc-TTP and tc-nucleotide-containing templates do not sustain enzymatic polymerization under physiological conditions; this indicates that tc-DNA-based antisense agents will not enter natural metabolic pathways that lead to long-term toxicity.
Collapse
Affiliation(s)
- Marcel Hollenstein
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern (Switzerland).
| | | |
Collapse
|
49
|
Seth PP, Swayze EE. Unnatural Nucleoside Analogs for Antisense Therapy. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1002/9783527676545.ch12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
50
|
Gerland B, Millard P, Dupouy C, Renard BL, Escudier JM. Stabilization of hairpins and bulged secondary structures of nucleic acids by single incorporation of α,β-D-CNA featuring a gauche(+) alpha torsional angle. RSC Adv 2014. [DOI: 10.1039/c4ra09639h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A constrained dinucleotide unit featuring a gauche(+) alpha torsional angle configuration was used to stabilize DNA hairpin or bulged structures.
Collapse
Affiliation(s)
- Béatrice Gerland
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique
- UMR 5068 CNRS
- Université Paul Sabatier
- 31062 Toulouse Cedex 9, France
| | - Pierre Millard
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique
- UMR 5068 CNRS
- Université Paul Sabatier
- 31062 Toulouse Cedex 9, France
| | - Christelle Dupouy
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique
- UMR 5068 CNRS
- Université Paul Sabatier
- 31062 Toulouse Cedex 9, France
| | - Brice-Loïc Renard
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique
- UMR 5068 CNRS
- Université Paul Sabatier
- 31062 Toulouse Cedex 9, France
| | - Jean-Marc Escudier
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique
- UMR 5068 CNRS
- Université Paul Sabatier
- 31062 Toulouse Cedex 9, France
| |
Collapse
|