1
|
Sun Y, Zhou Z, Shi Z, Zhao F, Xie M, Zhuo Z, De Clercq E, Pannecouque C, Kang D, Zhan P, Liu X. Design and optimization of piperidine-substituted thiophene[3,2- d]pyrimidine-based HIV-1 NNRTIs with improved drug resistance and pharmacokinetic profiles. Acta Pharm Sin B 2024; 14:3110-3124. [PMID: 39027243 PMCID: PMC11252457 DOI: 10.1016/j.apsb.2024.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 07/20/2024] Open
Abstract
HIV-1 reverse transcriptase (RT) has received great attention as an attractive therapeutic target for acquired immune deficiency syndrome (AIDS), but the inevitable drug resistance and side effects have always been major challenges faced by non-nucleoside reverse transcriptase inhibitors (NNRTIs). This work aimed to identify novel chemotypes of anti-HIV-1 agents with improved drug-resistance profiles, reduced toxicity, and excellent druggability. A series of diarylpyrimidine (DAPY) derivatives were prepared via structural modifications of the leads K-5a2 and 25a. Among them, 15a with dimethylphosphine oxide moiety showed the most prominent antiviral potency against all of the tested viral panel, being 1.6-fold (WT, EC50 = 1.75 nmol/L), 3.0-fold (L100I, EC50 = 2.84 nmol/L), 2.4-fold (K103N, EC50 = 1.27 nmol/L), 3.3-fold (Y181C, EC50 = 5.38 nmol/L), 2.9-fold (Y188L, EC50 = 7.96 nmol/L), 2.5-fold (E138K, EC50 = 4.28 nmol/L), 4.8-fold (F227L/V106A, EC50 = 3.76 nmol/L) and 5.3-fold (RES056, EC50 = 15.8 nmol/L) more effective than that of the marketed drug ETR. Molecular docking results illustrated the detailed interactions formed by compound 15a and WT, F227L/V106A, and RES056 RT. Moreover, 15a·HCl carried outstanding pharmacokinetic (t 1/2 = 1.32 h, F = 40.8%) and safety profiles (LD50 > 2000 mg/kg), which demonstrated that 15a HCl is a potential anti-HIV-1 drug candidate.
Collapse
Affiliation(s)
- Yanying Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Zhenzhen Zhou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Zhongling Shi
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Fabao Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Minghui Xie
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Zongji Zhuo
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Leuven B-3000, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Leuven B-3000, Belgium
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan 250012, China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan 250012, China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan 250012, China
| |
Collapse
|
2
|
Sun L, Wang C, Hu X, Wu Y, Jiang Z, Li Z, Chen X, Hu L. Design, synthesis, and evaluations of the antiproliferative activity and aqueous solubility of novel carbazole sulfonamide derivatives as antitumor agents. Bioorg Chem 2020; 99:103766. [PMID: 32247110 DOI: 10.1016/j.bioorg.2020.103766] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 01/12/2023]
Abstract
Optimization of IG-105 (1) on the carbazole ring provided five series of new carbazole sulfonamides derivatives, 7a-e, 8a-g, 9a-g, 10a-e, and 11a-g. All of the compounds were evaluated against HepG2, MCF-7, MIA PaCa-2, and Bel-7402 cells for antiproliferative activity. Each series of compounds was 2-5 times more active against HepG2 cells (IC50: 1.00-10.0 μM) than the other three tumor cell lines. Several representative compounds, selected from each series, showed aqueous solubility (13.4-176.5 µg/mL at pH 7.4 and 2.0) better than 1, with the aqueous solubility of corresponding salts > 30 mg/mL. From the results of evaluating the effects of the compounds 7b, 8c, 9c, 10c and 11c on tubulin in vitro, we speculated that their targets were different from those of 1 and CA-4P. We tested the antitumor activity of the representative compound 7b·HCl (10 mg/kg) in an in vivo study and found that its tumor growth inhibition rate was 41.1%. The tumor growth inhibition rate of 7b·HCl (20 mg/kg) was 54.6%, whereas the tumor growth inhibition rate of CA-4P (50 mg/kg) was 48.3%. And in another batch of in vivo antitumor activity testing, 9c·HCl and 11c·HCl at doses of 10 mg/kg resulted in 61.1% and 50.0% inhibition, respectively. These promising results warrant further development of the derivatives, which may use a novel mechanism and show potential potency as antitumor drug candidates.
Collapse
Affiliation(s)
- Lianqi Sun
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Chenxi Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Xinyue Hu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Yanbin Wu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Zhi Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Zhuorong Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Xiaofang Chen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China.
| | - Laixing Hu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China.
| |
Collapse
|
3
|
Vale N, Ferreira A, Matos J, Fresco P, Gouveia MJ. Amino Acids in the Development of Prodrugs. Molecules 2018; 23:E2318. [PMID: 30208629 PMCID: PMC6225300 DOI: 10.3390/molecules23092318] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/30/2018] [Accepted: 09/06/2018] [Indexed: 01/03/2023] Open
Abstract
Although drugs currently used for the various types of diseases (e.g., antiparasitic, antiviral, antibacterial, etc.) are effective, they present several undesirable pharmacological and pharmaceutical properties. Most of the drugs have low bioavailability, lack of sensitivity, and do not target only the damaged cells, thus also affecting normal cells. Moreover, there is the risk of developing resistance against drugs upon chronic treatment. Consequently, their potential clinical applications might be limited and therefore, it is mandatory to find strategies that improve those properties of therapeutic agents. The development of prodrugs using amino acids as moieties has resulted in improvements in several properties, namely increased bioavailability, decreased toxicity of the parent drug, accurate delivery to target tissues or organs, and prevention of fast metabolism. Herein, we provide an overview of models currently in use of prodrug design with amino acids. Furthermore, we review the challenges related to the permeability of poorly absorbed drugs and transport and deliver on target organs.
Collapse
Affiliation(s)
- Nuno Vale
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal.
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
- Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Abigail Ferreira
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
- LAQV&REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Joana Matos
- SpiroChem AG, Rosental Area, WRO-1074-3, Mattenstrasse 24, 4058 Basel, Switzerland.
| | - Paula Fresco
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Maria João Gouveia
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
- Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| |
Collapse
|
4
|
Okoh OA, Klahn P. Trimethyl Lock: A Multifunctional Molecular Tool for Drug Delivery, Cellular Imaging, and Stimuli-Responsive Materials. Chembiochem 2018; 19:1668-1694. [PMID: 29888433 DOI: 10.1002/cbic.201800269] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Indexed: 12/13/2022]
Abstract
Trimethyl lock (TML) systems are based on ortho-hydroxydihydrocinnamic acid derivatives displaying increased lactonization reactivity owing to unfavorable steric interactions of three pendant methyl groups, and this leads to the formation of hydrocoumarins. Protection of the phenolic hydroxy function or masking of the reactivity as benzoquinone derivatives prevents lactonization and provides a trigger for controlled release of molecules attached to the carboxylic acid function through amides, esters, or thioesters. Their easy synthesis and possible chemical adaption to several different triggers make TML a highly versatile module for the development of drug-delivery systems, prodrug approaches, cell-imaging tools, molecular tools for supramolecular chemistry, as well as smart stimuliresponsive materials.
Collapse
Affiliation(s)
- Okoh Adeyi Okoh
- Institute for Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Philipp Klahn
- Institute for Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| |
Collapse
|
5
|
Synthesis and Antiproliferative Activity Evaluation of Aryl(Hetaryl)Cyclopentenone Analogs of Combretastatin A-4. Pharm Chem J 2018. [DOI: 10.1007/s11094-018-1706-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
6
|
Walther R, Rautio J, Zelikin AN. Prodrugs in medicinal chemistry and enzyme prodrug therapies. Adv Drug Deliv Rev 2017; 118:65-77. [PMID: 28676386 DOI: 10.1016/j.addr.2017.06.013] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 12/21/2022]
Abstract
Prodrugs are cunning derivatives of therapeutic agents designed to improve the pharmacokinetics profile of the drug. Within a prodrug, pharmacological activity of the drug is masked and is recovered within the human body upon bioconversion of the prodrug, a process that is typically mediated by enzymes. This concept is highly successful and a significant fraction of marketed therapeutic formulations is based on prodrugs. An advanced subset of prodrugs can be engineered such as to achieve site-specific bioconversion of the prodrug - to comprise the highly advantageous "enzyme prodrug therapy", EPT. Design of prodrugs for EPT is similar to the prodrugs in general medicinal use in that the pharmacological activity of the drug is masked, but differs significantly in that site-specific bioconversion is a prime consideration, and the enzymes typically used for EPT are non-mammalian and/or with low systemic abundance in the human body. This review focuses on the design of prodrugs for EPT in terms of the choice of an enzyme and the corresponding prodrug for bioconversion. We also discuss the recent success of "self immolative linkers" which significantly empower and diversify the prodrug design, and present methodologies for the design of prodrugs with extended blood residence time. The review aims to be of specific interest for medicinal chemists, biomedical engineers, and pharmaceutical scientists.
Collapse
|
7
|
Gholivand MB, Mohammadi-Behzad L, Paimard G, Gholivand K, Ebrahimi Valmoozi AA. Electrochemical characterization of some bisphosphoramidates spiked carbon paste electrodes and their applications in DNA sensing. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.01.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Investigation of amino acid conjugates of (S)-1-[1-(4-aminobenzoyl)-2,3-dihydro-1H-indol-6-sulfonyl]-4-phenyl-imidazolidin-2-one (DW2282) as water soluble anticancer prodrugs. Eur J Med Chem 2014; 80:439-46. [DOI: 10.1016/j.ejmech.2014.04.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 04/14/2014] [Accepted: 04/15/2014] [Indexed: 11/23/2022]
|
9
|
Vig BS, Huttunen KM, Laine K, Rautio J. Amino acids as promoieties in prodrug design and development. Adv Drug Deliv Rev 2013; 65:1370-85. [PMID: 23099277 DOI: 10.1016/j.addr.2012.10.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 10/07/2012] [Accepted: 10/16/2012] [Indexed: 01/18/2023]
Abstract
Prodrugs are biologically inactive agents that upon biotransformation in vivo result in active drug molecules. Since prodrugs might alter the tissue distribution, efficacy and the toxicity of the parent drug, prodrug design should be considered at the early stages of preclinical development. In this regard, natural and synthetic amino acids offer wide structural diversity and physicochemical properties. This review covers the use of amino acid prodrugs to improve poor solubility, poor permeability, sustained release, intravenous delivery, drug targeting, and metabolic stability of the parent drug. In addition, practical considerations and challenges associated with the development of amino acid prodrugs are also covered.
Collapse
|
10
|
Malik P, Chakraborty D. Synthesis, structural and spectroscopic characterization of thiophosphorodiamidates and effect of ZnCl2 on the hydrolysis of the P–N bond. Polyhedron 2013. [DOI: 10.1016/j.poly.2012.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Abstract
Twelve melatonin amide prodrugs aiming at prolonging the action of melatoninin vivoby improving its half-life were designed and synthesized. Using an 80% human plasma model, it was found that the aliphatic amide derivatives were relatively stable and melatonin release from these compounds was not sufficient with melatonin release percentage. After 4-hour incubation with 80% human plasma, the melatonin release percentage achieved only approximately less than 20%. In contrast, the -succinyl and -glutaroylmelatonin derivatives (compounds11and12, resp.) were found to release melatonin in much higher rates. After 3-hour incubation in 80% human plasma, the melatonin release rates from11and12were found to be 67.3 and 75.6%, respectively. From these results, the -succinyl and -glutaroylmelatonin derivatives (compounds11and12) could be promising as sustained release prodrugs of melatonin.
Collapse
|
12
|
Bol'shakov O, Kovacs J, Chahar M, Ha K, Khelashvili L, Katritzky AR. S- toN-Acyl transfer inS-acylcysteine isopeptides via 9-, 10-, 12-, and 13-membered cyclic transition states. J Pept Sci 2012; 18:704-9. [DOI: 10.1002/psc.2438] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 07/05/2012] [Accepted: 07/06/2012] [Indexed: 11/06/2022]
Affiliation(s)
- Oleg Bol'shakov
- Center for Heterocyclic Compounds, Department of Chemistry; University of Florida; Gainesville; FL; 32611-7200; USA
| | - Judit Kovacs
- Center for Heterocyclic Compounds, Department of Chemistry; University of Florida; Gainesville; FL; 32611-7200; USA
| | - Mamta Chahar
- Center for Heterocyclic Compounds, Department of Chemistry; University of Florida; Gainesville; FL; 32611-7200; USA
| | - Khanh Ha
- Center for Heterocyclic Compounds, Department of Chemistry; University of Florida; Gainesville; FL; 32611-7200; USA
| | - Levan Khelashvili
- Center for Heterocyclic Compounds, Department of Chemistry; University of Florida; Gainesville; FL; 32611-7200; USA
| | | |
Collapse
|
13
|
McDonnell ME, Vera MD, Blass BE, Pelletier JC, King RC, Fernandez-Metzler C, Smith GR, Wrobel J, Chen S, Reitz AB. Riluzole prodrugs for melanoma and ALS: design, synthesis, and in vitro metabolic profiling. Bioorg Med Chem 2012; 20:5642-8. [PMID: 22892214 PMCID: PMC3495316 DOI: 10.1016/j.bmc.2012.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 06/27/2012] [Accepted: 07/04/2012] [Indexed: 12/13/2022]
Abstract
Riluzole (1) is an approved therapeutic for the treatment of ALS and has also demonstrated anti-melanoma activity in metabotropic glutamate GRM1 positive cell lines, a mouse xenograft assay and human clinical trials. Highly variable drug exposure following oral administration among patients, likely due to variable first pass effects from heterogeneous CYP1A2 expression, hinders its clinical use. In an effort to mitigate effects of this clearance pathway and uniformly administer riluzole at efficacious exposure levels, several classes of prodrugs of riluzole were designed, synthesized, and evaluated in multiple in vitro stability assays to predict in vivo drug levels. The optimal prodrug would possess the following profile: stability while transiting the digestive system, stability towards first pass metabolism, and metabolic lability in the plasma releasing riluzole. (S)-O-Benzyl serine derivative 9 was identified as the most promising therapeutically acceptable prodrug.
Collapse
Affiliation(s)
- Mark E. McDonnell
- Fox Chase Chemical Diversity Center, Inc., 3805 Old Easton Road, Doylestown, PA 18902
| | - Matthew D. Vera
- Fox Chase Chemical Diversity Center, Inc., 3805 Old Easton Road, Doylestown, PA 18902
| | - Benjamin E. Blass
- Fox Chase Chemical Diversity Center, Inc., 3805 Old Easton Road, Doylestown, PA 18902
| | - Jeffrey C. Pelletier
- Fox Chase Chemical Diversity Center, Inc., 3805 Old Easton Road, Doylestown, PA 18902
| | - Richard C. King
- PharmaCadence Analytical Services, LLC, 2880 Bergey Road, Suite AA, Hatfield, PA 19440
| | | | - Garry R. Smith
- Fox Chase Chemical Diversity Center, Inc., 3805 Old Easton Road, Doylestown, PA 18902
| | - Jay Wrobel
- Fox Chase Chemical Diversity Center, Inc., 3805 Old Easton Road, Doylestown, PA 18902
| | - Suzie Chen
- Department of Chemical Biology, Ernest Mario School of Pharmacy, 164 Frelinghuysen Road, Rutgers University, Piscataway, NJ 08854
| | - Allen B. Reitz
- Fox Chase Chemical Diversity Center, Inc., 3805 Old Easton Road, Doylestown, PA 18902
| |
Collapse
|
14
|
Shirinian VZ, Lonshakov DV, Kachala VV, Zavarzin IV, Shimkin AA, Lvov AG, Krayushkin MM. Regio- and Chemoselective Bromination of 2,3-Diarylcyclopent-2-en-1-ones. J Org Chem 2012; 77:8112-23. [DOI: 10.1021/jo301474j] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Valerii Z. Shirinian
- N.D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Dmitry V. Lonshakov
- N.D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Vadim V. Kachala
- N.D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Igor V. Zavarzin
- N.D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Alexey A. Shimkin
- N.D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Andrew G. Lvov
- N.D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Mikhail M. Krayushkin
- N.D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| |
Collapse
|
15
|
Levine MN, Raines RT. Trimethyl lock: A trigger for molecular release in chemistry, biology, and pharmacology. Chem Sci 2012; 3:2412-2420. [PMID: 23181187 PMCID: PMC3501758 DOI: 10.1039/c2sc20536j] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The trimethyl lock is an o-hydroxydihydrocinnamic acid derivative in which unfavorable steric interactions between three pendant methyl groups encourage lactonization to form a hydrocoumarin. This reaction is extremely rapid, even when the electrophile is an amide and the leaving group is an amino group of a small-molecule drug, fluorophore, peptide, or nucleic acid. O-Acylation of the phenolic hydroxyl group prevents reaction, providing a trigger for the reaction. Thus, the release of an amino group from an amide can be coupled to the hydrolysis of a designated ester (or to another chemical reaction that regenerates the hydroxyl group). Trimethyl lock conjugates are easy to synthesize, making the trimethyl lock a highly versatile module for chemical biology and related fields.
Collapse
Affiliation(s)
- Michael N. Levine
- Department of Biochemistry, University of Wisconsin–Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Ronald T. Raines
- Department of Biochemistry, University of Wisconsin–Madison, 433 Babcock Drive, Madison, WI 53706, USA
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, WI 53706, USA
| |
Collapse
|
16
|
Romagnoli R, Baraldi PG, Lopez-Cara C, Cruz-Lopez O, Carrion MD, Kimatrai Salvador M, Bermejo J, Estévez S, Estévez F, Balzarini J, Brancale A, Ricci A, Chen L, Kim JG, Hamel E. Synthesis and antitumor molecular mechanism of agents based on amino 2-(3',4',5'-trimethoxybenzoyl)benzo[b]furan: inhibition of tubulin and induction of apoptosis. ChemMedChem 2011; 6:1841-53. [PMID: 21805646 PMCID: PMC3190670 DOI: 10.1002/cmdc.201100279] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Indexed: 11/11/2022]
Abstract
Induction of apoptosis is a promising strategy that could lead to the discovery of new molecules active in cancer chemotherapy. This property is generally observed when cells are treated with agents that target microtubules, dynamic structures that play a crucial role in cell division. Small molecules such as benzo[b]furans are attractive as inhibitors of tubulin polymerization. A new class of inhibitors of tubulin polymerization based on the 2-(3',4',5'-trimethoxybenzoyl)benzo[b]furan molecular skeleton, with the amino group placed at different positions on the benzene ring, were synthesized and evaluated for antiproliferative activity, inhibition of tubulin polymerization, and cell-cycle effects. The methoxy substitution pattern on the benzene portion of the benzo[b]furan moiety played an important role in affecting antiproliferative activity. In the series of 5-amino derivatives, the greatest inhibition of cell growth occurred if the methoxy substituent is placed at the C6 position, whereas C7 substitution decreases potency. The most promising compound in this series is 2-(3',4',5'-trimethoxybenzoyl)-3-methyl-5-amino-6-methoxybenzo[b]furan (3 h), which inhibits cancer cell growth at nanomolar concentrations (IC(50) =16-24 nM), and interacts strongly with tubulin by binding to the colchicine site. Sub-G(1) apoptotic cells in cultures of HL-60 and U937 cells were observed by flow cytometric analysis after treatment with 3 h in a concentration-dependent manner. We also show that compound 3 h induces apoptosis by activation of caspase-3, -8, and -9, and this is associated with cytochrome c release from mitochondria. The introduction of an α-bromoacryloyl group increased antiproliferative activity with respect to the parent amino derivatives.
Collapse
Affiliation(s)
- Romeo Romagnoli
- Dipartimento di Scienze Farmaceutiche, Università di Ferrara, 44100 Ferrara, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Water-Soluble Prodrug of Antimicrotubule Agent Plinabulin: Effective Strategy with Click Chemistry. Chemistry 2011; 17:12587-90. [DOI: 10.1002/chem.201102293] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Indexed: 11/07/2022]
|
18
|
Gooyit M, Lee M, Schroeder VA, Ikejiri M, Suckow MA, Mobashery S, Chang M. Selective water-soluble gelatinase inhibitor prodrugs. J Med Chem 2011; 54:6676-90. [PMID: 21866961 DOI: 10.1021/jm200566e] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
SB-3CT (1), a selective and potent thiirane-based gelatinase inhibitor, is effective in animal models of cancer metastasis and stroke; however, it is limited by poor aqueous solubility and extensive metabolism. We addressed these issues by blocking the primary site of metabolism and capitalizing on a prodrug strategy to achieve >5000-fold increased solubility. The amide prodrugs were quantitatively hydrolyzed in human blood to a potent gelatinase inhibitor, ND-322 (3). The arginyl amide prodrug (ND-478, 5d) was metabolically stable in mouse, rat, and human liver microsomes. Both 5d and 3 were nonmutagenic in the Ames II mutagenicity assay. The prodrug 5d showed moderate clearance of 0.0582 L/min/kg, remained mostly in the extracellular fluid compartment (Vd = 0.0978 L/kg), and had a terminal half-life of >4 h. The prodrug 5d had superior pharmacokinetic properties than those of 3, making the thiirane class of selective gelatinase inhibitors suitable for intravenous administration in the treatment of acute gelatinase-dependent diseases.
Collapse
Affiliation(s)
- Major Gooyit
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | | | | | | | | | | | | |
Collapse
|
19
|
New phosphoroamidate compounds: Synthesis, structural characterization and studies on ZnCl2 assisted hydrolysis of the P–N bond. Polyhedron 2010. [DOI: 10.1016/j.poly.2010.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Structural diversity in phosphoramidate’s chemistry: Syntheses, spectroscopic and X-ray crystallography studies. Polyhedron 2009. [DOI: 10.1016/j.poly.2008.10.057] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Gomes P, Vale N, Moreira R. Cyclization-activated prodrugs. Molecules 2007; 12:2484-506. [PMID: 18065953 PMCID: PMC6149143 DOI: 10.3390/12112484] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2007] [Revised: 11/08/2007] [Accepted: 11/09/2007] [Indexed: 11/16/2022] Open
Abstract
Many drugs suffer from an extensive first-pass metabolism leading to drug inactivation and/or production of toxic metabolites, which makes them attractive targets for prodrug design. The classical prodrug approach, which involves enzyme-sensitive covalent linkage between the parent drug and a carrier moiety, is a well established strategy to overcome bioavailability/toxicity issues. However, the development of prodrugs that can regenerate the parent drug through non-enzymatic pathways has emerged as an alternative approach in which prodrug activation is not influenced by inter- and intraindividual variability that affects enzymatic activity. Cyclization-activated prodrugs have been capturing the attention of medicinal chemists since the middle-1980s, and reached maturity in prodrug design in the late 1990 s. Many different strategies have been exploited in recent years concerning the development of intramoleculary-activated prodrugs spanning from analgesics to anti-HIV therapeutic agents. Intramolecular pathways have also a key role in two-step prodrug activation, where an initial enzymatic cleavage step is followed by a cyclization-elimination reaction that releases the active drug. This work is a brief overview of research on cyclization-activated prodrugs from the last two decades.
Collapse
Affiliation(s)
- Paula Gomes
- Centro de Investigação em Química da Universidade do Porto, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Porto, Portugal.
| | | | | |
Collapse
|