1
|
Yetişkin E, Gündoğdu Ö, Mete D, Çelebioğlu N, Kara Y, Şanlı-Mohamed G. Synthesis, cytotoxicity, and antibacterial studies of 2,4,5,6-substituted hexahydro-1H-isoindole-1,3(2H)-dione. Chem Biol Drug Des 2023; 102:1448-1457. [PMID: 37712451 DOI: 10.1111/cbdd.14335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/02/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
In this study, synthesis of novel isoindole-1,3-dione analogues bearig halo, hydroxy, and acetoxy groups at the position 4,5,6 of the bicyclic imide ring was performed to examine their potential anticancer effects against some cell lines. A multistep chemical pathway was used to synthesize the derivatives. The cytotoxic effect of trisubstituted isoindole derivatives were evaluated by determining cellular viability using the MTT assay against A549, PC-3, HeLa, Caco-2, and MCF-7 cell lines. The C-2 selective ring-opening products were obtained from the ring-opening reaction of 5-alkyl/aryl-2-hydroxyhexahydro-4H-oxireno[2,3-e]isoindole-4,6(5H)-diones with nucleophiles such as chloride (Cl- ) and bromide (Br- ) ions. In addition, the ring-opening products halodiols were converted to their related acetates. The anticancer activity of synthesized isoindole-1,3-dione derivatives was investigated against HeLa, A549, MCF-7, PC3, and Caco-2 cells in vitro and resulted in varies cytotoxic effect depend on the group attached to the isoindole molecule. Furthermore, the evaluation of the antimicrobial action of trisubstituted isoindole derivatives against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria was assessed and found out selective inhibition of the both bacterial growth via different trisubstituted isoindole derivatives. The results of this work encourage further research on the potential utilization of trisubstituted isoindole derivatives as cytotoxic and antimicrobial agents.
Collapse
Affiliation(s)
- Egehan Yetişkin
- Department of Chemistry, Faculty of Sciences, İzmir Institute of Technology, İzmir, Turkey
| | - Özlem Gündoğdu
- Vocational School of Kaman, Ahi Evran University, Kırşehir, Turkey
| | - Derya Mete
- Department of Chemistry, Faculty of Sciences, İzmir Institute of Technology, İzmir, Turkey
| | - Neslihan Çelebioğlu
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, Turkey
| | - Yunus Kara
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, Turkey
| | - Gülşah Şanlı-Mohamed
- Department of Chemistry, Faculty of Sciences, İzmir Institute of Technology, İzmir, Turkey
| |
Collapse
|
2
|
Zhang Q, Fan Z, Zhang L, You Q, Wang L. Strategies for Targeting Serine/Threonine Protein Phosphatases with Small Molecules in Cancer. J Med Chem 2021; 64:8916-8938. [PMID: 34156850 DOI: 10.1021/acs.jmedchem.1c00631] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Among numerous posttranslational regulation patterns, phosphorylation is reversibly controlled by the balance of kinases and phosphatases. The major form of cellular signaling involves the reversible phosphorylation of proteins on tyrosine, serine, or threonine residues. However, altered phosphorylation levels are found in diverse diseases, including cancer, making kinases and phosphatases ideal drug targets. In contrast to the success of prosperous kinase inhibitors, design of small molecules targeting phosphatase is struggling due to past bias and difficulty. This is especially true for serine/threonine phosphatases, one of the largest phosphatase families. From this perspective, we aim to provide insights into serine/threonine phosphatases and the small molecules targeting these proteins for drug development, especially in cancer. Through highlighting the modulation strategies, we aim to provide basic principles for the design of small molecules and future perspectives for the application of drugs targeting serine/threonine phosphatases.
Collapse
Affiliation(s)
- Qiuyue Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhongjiao Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lianshan Zhang
- Shanghai Hengrui Pharmaceutical Co., Ltd., Shanghai 200245, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
3
|
Cullen A, Pearson LA, Mazmouz R, Liu T, Soeriyadi AH, Ongley SE, Neilan BA. Heterologous expression and biochemical characterisation of cyanotoxin biosynthesis pathways. Nat Prod Rep 2019; 36:1117-1136. [DOI: 10.1039/c8np00063h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review discusses cyanotoxin biosynthetic pathways and highlights the heterologous expression and biochemical studies used to characterise them.
Collapse
Affiliation(s)
- Alescia Cullen
- School of Environmental and Life Sciences
- University of Newcastle
- Callaghan 2308
- Australia
| | - Leanne A. Pearson
- School of Environmental and Life Sciences
- University of Newcastle
- Callaghan 2308
- Australia
| | - Rabia Mazmouz
- School of Environmental and Life Sciences
- University of Newcastle
- Callaghan 2308
- Australia
| | - Tianzhe Liu
- School of Biotechnology and Biomolecular Sciences
- The University of New South Wales
- Sydney 2052
- Australia
| | - Angela H. Soeriyadi
- School of Biotechnology and Biomolecular Sciences
- The University of New South Wales
- Sydney 2052
- Australia
| | - Sarah E. Ongley
- School of Environmental and Life Sciences
- University of Newcastle
- Callaghan 2308
- Australia
| | - Brett A. Neilan
- School of Environmental and Life Sciences
- University of Newcastle
- Callaghan 2308
- Australia
| |
Collapse
|
4
|
Microcystins: Synthesis and structure–activity relationship studies toward PP1 and PP2A. Bioorg Med Chem 2018; 26:1118-1126. [DOI: 10.1016/j.bmc.2017.08.040] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/19/2017] [Accepted: 08/23/2017] [Indexed: 11/19/2022]
|
5
|
Lund VA, Wacnik K, Turner RD, Cotterell BE, Walther CG, Fenn SJ, Grein F, Wollman AJ, Leake MC, Olivier N, Cadby A, Mesnage S, Jones S, Foster SJ. Molecular coordination of Staphylococcus aureus cell division. eLife 2018; 7:32057. [PMID: 29465397 PMCID: PMC5821461 DOI: 10.7554/elife.32057] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/26/2018] [Indexed: 12/21/2022] Open
Abstract
The bacterial cell wall is essential for viability, but despite its ability to withstand internal turgor must remain dynamic to permit growth and division. Peptidoglycan is the major cell wall structural polymer, whose synthesis requires multiple interacting components. The human pathogen Staphylococcus aureus is a prolate spheroid that divides in three orthogonal planes. Here, we have integrated cellular morphology during division with molecular level resolution imaging of peptidoglycan synthesis and the components responsible. Synthesis occurs across the developing septal surface in a diffuse pattern, a necessity of the observed septal geometry, that is matched by variegated division component distribution. Synthesis continues after septal annulus completion, where the core division component FtsZ remains. The novel molecular level information requires re-evaluation of the growth and division processes leading to a new conceptual model, whereby the cell cycle is expedited by a set of functionally connected but not regularly distributed components.
Collapse
Affiliation(s)
- Victoria A Lund
- Krebs Institute, University of Sheffield, Sheffield, United Kingdom.,Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Katarzyna Wacnik
- Krebs Institute, University of Sheffield, Sheffield, United Kingdom.,Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Robert D Turner
- Krebs Institute, University of Sheffield, Sheffield, United Kingdom.,Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom.,Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
| | - Bryony E Cotterell
- Krebs Institute, University of Sheffield, Sheffield, United Kingdom.,Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom.,Department of Chemistry, University of Sheffield, Sheffield, United Kingdom
| | - Christa G Walther
- Krebs Institute, University of Sheffield, Sheffield, United Kingdom.,Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Samuel J Fenn
- Krebs Institute, University of Sheffield, Sheffield, United Kingdom.,Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Fabian Grein
- Institute for Pharmaceutical Microbiology, German Center for Infection Research (DZIF), University of Bonn, Bonn, Germany
| | - Adam Jm Wollman
- Biological Physical Sciences Institute, University of York, York, United Kingdom
| | - Mark C Leake
- Biological Physical Sciences Institute, University of York, York, United Kingdom
| | - Nicolas Olivier
- Krebs Institute, University of Sheffield, Sheffield, United Kingdom.,Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
| | - Ashley Cadby
- Krebs Institute, University of Sheffield, Sheffield, United Kingdom.,Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
| | - Stéphane Mesnage
- Krebs Institute, University of Sheffield, Sheffield, United Kingdom.,Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Simon Jones
- Department of Chemistry, University of Sheffield, Sheffield, United Kingdom
| | - Simon J Foster
- Krebs Institute, University of Sheffield, Sheffield, United Kingdom.,Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
6
|
Zemskov I, Altaner S, Dietrich DR, Wittmann V. Total Synthesis of Microcystin-LF and Derivatives Thereof. J Org Chem 2017; 82:3680-3691. [PMID: 28294610 DOI: 10.1021/acs.joc.7b00175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microcystins (MCs) are highly toxic natural products which are produced by cyanobacteria. They can be released to the water during harmful algal blooms and are a serious threat to animals and humans. Described is the total synthesis of the cyanotoxin microcystin-LF (MC-LF, 1a) and two derivatives thereof. Deuterated derivative 1b is of interest as an internal standard during MC quantification in biological samples by mass spectrometry and alkyne-labeled 1c can be employed for toxin derivatization by click chemistry with an azide-containing reporter molecule or as an activity-based probe to identify interaction partners. Application of tert-butyl ester protecting groups for erythro-β-d-methylaspartic acid and γ-d-glutamic acid were key for an isomerization-free synthesis. The analytical data of synthetic MC-LF were identical to those of an authentic sample of the natural product. All derivatives 1a-c were determined to be potent inhibitors of protein phosphatase-1 with similar activity.
Collapse
Affiliation(s)
- Ivan Zemskov
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz , 78457 Konstanz, Germany
| | - Stefan Altaner
- Department of Biology and Graduate School Biological Sciences (GBS), University of Konstanz , 78457 Konstanz, Germany
| | - Daniel R Dietrich
- Department of Biology and Graduate School Biological Sciences (GBS), University of Konstanz , 78457 Konstanz, Germany
| | - Valentin Wittmann
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz , 78457 Konstanz, Germany
| |
Collapse
|
7
|
Fontanillo M, Zemskov I, Häfner M, Uhrig U, Salvi F, Simon B, Wittmann V, Köhn M. Synthesis of Highly Selective Submicromolar Microcystin-Based Inhibitors of Protein Phosphatase (PP)2A over PP1. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201606449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Miriam Fontanillo
- Genome Biology Unit; European Molecular Biology Laboratory; Meyerhofstrasse 1 69117 Heidelberg Germany
| | - Ivan Zemskov
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB); University of Konstanz; Fach 709 78457 Konstanz Germany
| | - Maximilian Häfner
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB); University of Konstanz; Fach 709 78457 Konstanz Germany
| | - Ulrike Uhrig
- Chemical Biology Core Facility; European Molecular Biology Laboratory; Meyerhofstrasse 1 69117 Heidelberg Germany
| | - Francesca Salvi
- Genome Biology Unit; European Molecular Biology Laboratory; Meyerhofstrasse 1 69117 Heidelberg Germany
| | - Bernd Simon
- Structural and Computational Biology Unit; European Molecular Biology Laboratory; Meyerhofstrasse 1 69117 Heidelberg Germany
| | - Valentin Wittmann
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB); University of Konstanz; Fach 709 78457 Konstanz Germany
| | - Maja Köhn
- Genome Biology Unit; European Molecular Biology Laboratory; Meyerhofstrasse 1 69117 Heidelberg Germany
| |
Collapse
|
8
|
Fontanillo M, Zemskov I, Häfner M, Uhrig U, Salvi F, Simon B, Wittmann V, Köhn M. Synthesis of Highly Selective Submicromolar Microcystin-Based Inhibitors of Protein Phosphatase (PP)2A over PP1. Angew Chem Int Ed Engl 2016; 55:13985-13989. [PMID: 27723199 PMCID: PMC5113787 DOI: 10.1002/anie.201606449] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 08/19/2016] [Indexed: 12/20/2022]
Abstract
Research and therapeutic targeting of the phosphoserine/threonine phosphatases PP1 and PP2A is hindered by the lack of selective inhibitors. The microcystin (MC) natural toxins target both phosphatases with equal potency, and their complex synthesis has complicated structure–activity relationship studies in the past. We report herein the synthesis and biochemical evaluation of 11 MC analogues, which was accomplished through an efficient strategy combining solid‐ and solution‐phase approaches. Our approach led to the first MC analogue with submicromolar inhibitory potency that is strongly selective for PP2A over PP1 and does not require the complex lipophilic Adda group. Through mutational and structural analyses, we identified a new key element for binding, as well as reasons for the selectivity. This work gives unprecedented insight into how selectivity between these phosphatases can be achieved with MC analogues.
Collapse
Affiliation(s)
- Miriam Fontanillo
- Genome Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Ivan Zemskov
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Fach 709, 78457, Konstanz, Germany
| | - Maximilian Häfner
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Fach 709, 78457, Konstanz, Germany
| | - Ulrike Uhrig
- Chemical Biology Core Facility, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Francesca Salvi
- Genome Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Bernd Simon
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Valentin Wittmann
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Fach 709, 78457, Konstanz, Germany
| | - Maja Köhn
- Genome Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany.
| |
Collapse
|
9
|
Weber S, Meyer-Roxlau S, Wagner M, Dobrev D, El-Armouche A. Counteracting Protein Kinase Activity in the Heart: The Multiple Roles of Protein Phosphatases. Front Pharmacol 2015; 6:270. [PMID: 26617522 PMCID: PMC4643138 DOI: 10.3389/fphar.2015.00270] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/28/2015] [Indexed: 12/19/2022] Open
Abstract
Decades of cardiovascular research have shown that variable and flexible levels of protein phosphorylation are necessary to maintain cardiac function. A delicate balance between phosphorylated and dephosphorylated states of proteins is guaranteed by a complex interplay of protein kinases (PKs) and phosphatases. Serine/threonine phosphatases, in particular members of the protein phosphatase (PP) family govern dephosphorylation of the majority of these cardiac proteins. Recent findings have however shown that PPs do not only dephosphorylate previously phosphorylated proteins as a passive control mechanism but are capable to actively control PK activity via different direct and indirect signaling pathways. These control mechanisms can take place on (epi-)genetic, (post-)transcriptional, and (post-)translational levels. In addition PPs themselves are targets of a plethora of proteinaceous interaction partner regulating their endogenous activity, thus adding another level of complexity and feedback control toward this system. Finally, novel approaches are underway to achieve spatiotemporal pharmacologic control of PPs which in turn can be used to fine-tune misleaded PK activity in heart disease. Taken together, this review comprehensively summarizes the major aspects of PP-mediated PK regulation and discusses the subsequent consequences of deregulated PP activity for cardiovascular diseases in depth.
Collapse
Affiliation(s)
- Silvio Weber
- Department of Pharmacology and Toxicology, Dresden University of Technology , Dresden, Germany
| | - Stefanie Meyer-Roxlau
- Department of Pharmacology and Toxicology, Dresden University of Technology , Dresden, Germany
| | - Michael Wagner
- Department of Pharmacology and Toxicology, Dresden University of Technology , Dresden, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, Faculty of Medicine, West German Heart and Vascular Center , Essen, Germany
| | - Ali El-Armouche
- Department of Pharmacology and Toxicology, Dresden University of Technology , Dresden, Germany
| |
Collapse
|
10
|
Lukashuk EI, Abdurakhmanova ER, Kondratyuk KM, Golovchenko AV, Brovarets VS. Synthesis of phosphorylated dehydrotyrosine-containing tripeptides from 5-amino-2-aminoalkyl-1,3-oxazole-4-phosphonic acids derivatives. RUSS J GEN CHEM+ 2015. [DOI: 10.1134/s1070363215010120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Liu Y, Wu Y, Wu H, Tang L, Wu P, Liu T, Hu Y. Design, Synthesis, Biological Evaluation, and Docking Studies of (S)-Phenylalanine Derivatives with a 2-Cyanopyrrolidine Moiety as Potent Dipeptidyl Peptidase 4 Inhibitors. Chem Biol Drug Des 2013; 82:140-6. [DOI: 10.1111/cbdd.12139] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/05/2013] [Accepted: 03/20/2013] [Indexed: 02/02/2023]
Affiliation(s)
- Yang Liu
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, College of Pharmaceutical Sciences; Zhejiang University; Hangzhou; 310058; China
| | - Yizhe Wu
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, College of Pharmaceutical Sciences; Zhejiang University; Hangzhou; 310058; China
| | - Haoshu Wu
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences; Zhejiang University; Hangzhou; 310058; China
| | - Li Tang
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, College of Pharmaceutical Sciences; Zhejiang University; Hangzhou; 310058; China
| | - Peng Wu
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, College of Pharmaceutical Sciences; Zhejiang University; Hangzhou; 310058; China
| | - Tao Liu
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, College of Pharmaceutical Sciences; Zhejiang University; Hangzhou; 310058; China
| | - Yongzhou Hu
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, College of Pharmaceutical Sciences; Zhejiang University; Hangzhou; 310058; China
| |
Collapse
|
12
|
Targeting the untargetable: recent advances in the selective chemical modulation of protein phosphatase-1 activity. Curr Opin Chem Biol 2013; 17:361-8. [PMID: 23647984 DOI: 10.1016/j.cbpa.2013.04.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 04/04/2013] [Accepted: 04/09/2013] [Indexed: 01/03/2023]
Abstract
Protein phosphatase-1 (PP1) has long been neglected as a potential drug target owing to its misinterpreted unselective nature. However, growing evidence demonstrates that PP1 is highly selective in complex with regulatory proteins at the holoenzyme level, each of which is involved in different essential cellular signaling events. Here we summarize promising approaches to specifically activate or inhibit PP1 activity, and discuss remaining challenges and potential solutions. The summarized chemical tools pave the way for a better understanding of PP1's role in signaling networks, and the effects resulting from their application suggest their potential as future therapeutic candidates.
Collapse
|
13
|
Kee JM, Villani B, Carpenter LR, Muir TW. Development of stable phosphohistidine analogues. J Am Chem Soc 2011; 132:14327-9. [PMID: 20879710 DOI: 10.1021/ja104393t] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein phosphorylation is one of the most common and extensively studied posttranslational modifications (PTMs). Compared to the O-phosphorylation of Ser, Thr, and Tyr residues, our understanding of histidine phosphorylation is relatively limited, particularly in higher eukaryotes, due to technical difficulties stemming from the intrinsic instability and isomerism of phosphohistidine (pHis). We report the design and synthesis of stable and nonisomerizable pHis analogues. These pHis analogues were successfully utilized in solid-phase peptide synthesis and semi-synthesis of histone H4. Significantly, the first antibody that specifically recognizes pHis was obtained using the synthetic peptide as the immunogen.
Collapse
Affiliation(s)
- Jung-Min Kee
- Laboratory of Synthetic Protein Chemistry, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | | | | | | |
Collapse
|
14
|
Xue F, Seto CT. Fluorogenic Peptide Substrates for Serine and Threonine Phosphatases. Org Lett 2010; 12:1936-9. [DOI: 10.1021/ol1003065] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Fengtian Xue
- Department of Chemistry, Brown University, Providence, Rhode Island 02912
| | | |
Collapse
|
15
|
Sainis I, Fokas D, Vareli K, Tzakos AG, Kounnis V, Briasoulis E. Cyanobacterial cyclopeptides as lead compounds to novel targeted cancer drugs. Mar Drugs 2010; 8:629-57. [PMID: 20411119 PMCID: PMC2857373 DOI: 10.3390/md8030629] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 02/10/2010] [Accepted: 02/26/2010] [Indexed: 12/22/2022] Open
Abstract
Cyanobacterial cyclopeptides, including microcystins and nodularins, are considered a health hazard to humans due to the possible toxic effects of high consumption. From a pharmacological standpoint, microcystins are stable hydrophilic cyclic heptapeptides with a potential to cause cellular damage following uptake via organic anion-transporting polypeptides (OATP). Their intracellular biological effects involve inhibition of catalytic subunits of protein phosphatase 1 (PP1) and PP2, glutathione depletion and generation of reactive oxygen species (ROS). Interestingly, certain OATPs are prominently expressed in cancers as compared to normal tissues, qualifying MC as potential candidates for cancer drug development. In the era of targeted cancer therapy, cyanotoxins comprise a rich source of natural cytotoxic compounds with a potential to target cancers expressing specific uptake transporters. Moreover, their structure offers opportunities for combinatorial engineering to enhance the therapeutic index and resolve organ-specific toxicity issues. In this article, we revisit cyanobacterial cyclopeptides as potential novel targets for anticancer drugs by summarizing existing biomedical evidence, presenting structure-activity data and discussing developmental perspectives.
Collapse
Affiliation(s)
- Ioannis Sainis
- Human Cancer Biobank Center, University of Ioannina, Greece; E-Mails:
(I.S.);
(K.V.);
(A.T.)
| | - Demosthenes Fokas
- Department of Materials Science and Engineering, University of Ioannina, Greece; E-Mail:
(D.F.)
| | - Katerina Vareli
- Human Cancer Biobank Center, University of Ioannina, Greece; E-Mails:
(I.S.);
(K.V.);
(A.T.)
- Department of Biological Applications and Technologies, University of Ioannina, Greece
| | - Andreas G. Tzakos
- Human Cancer Biobank Center, University of Ioannina, Greece; E-Mails:
(I.S.);
(K.V.);
(A.T.)
- Department of Chemistry, University of Ioannina, Greece
| | | | - Evangelos Briasoulis
- Human Cancer Biobank Center, University of Ioannina, Greece; E-Mails:
(I.S.);
(K.V.);
(A.T.)
- School of Medicine, University of Ioannina, Greece; E-Mail:
(V.K.)
- * Author to whom correspondence should be addressed; E-Mail:
or
; Tel.: +30-265-100-7713; Fax: +30-265-100-8087
| |
Collapse
|
16
|
|
17
|
McConnell JL, Wadzinski BE. Targeting protein serine/threonine phosphatases for drug development. Mol Pharmacol 2009; 75:1249-61. [PMID: 19299564 DOI: 10.1124/mol.108.053140] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
With the recent clinical success of drugs targeting protein kinase activity, drug discovery efforts are focusing on the role of reversible protein phosphorylation in disease states. The activity of protein phosphatases, enzymes that oppose protein kinases, can also be manipulated to alter cellular signaling for therapeutic benefits. In this review, we present protein serine/threonine phosphatases as viable therapeutic targets, discussing past successes, current challenges, and future strategies for modulating phosphatase activity.
Collapse
Affiliation(s)
- Jamie L McConnell
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232-6600, USA
| | | |
Collapse
|
18
|
Kelker MS, Page R, Peti W. Crystal structures of protein phosphatase-1 bound to nodularin-R and tautomycin: a novel scaffold for structure-based drug design of serine/threonine phosphatase inhibitors. J Mol Biol 2008; 385:11-21. [PMID: 18992256 DOI: 10.1016/j.jmb.2008.10.053] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 10/08/2008] [Accepted: 10/09/2008] [Indexed: 11/15/2022]
Abstract
Protein phosphatase 1 occurs in all tissues and regulates many pathways, ranging from cell-cycle progression to carbohydrate metabolism. Many naturally occurring, molecular toxins modulate PP1 activity, though the exact mechanism of this differential regulation is not understood. A detailed elucidation of these interactions is crucial for understanding the cellular basis of phosphatase function and signaling pathways but, more importantly, they can serve as the basis for highly specific therapeutics, e.g. against cancer. We report the crystal structures of PP1 in complex with nodularin-R at 1.63 A and tautomycin at 1.70 A resolution. The PP1:nodularin-R complex was used to demonstrate the utility of our improved PP1 production technique, which produces highly active, soluble PP1. Tautomycin is one of the few toxins that reportedly preferentially binds PP1>PP2A. Therefore, the PP1:tautomycin structure is the first complex structure with a toxin with preferred PP1 specificity. Furthermore, since tautomycin is a linear non-peptide-based toxin, our reported structure will aid the design of lead compounds for novel PP1-specific pharmaceuticals.
Collapse
Affiliation(s)
- Matthew S Kelker
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI 02903, USA
| | | | | |
Collapse
|
19
|
Affiliation(s)
- Sebastien Meiries
- WestCHEM, University of Glasgow, Joseph Black Building, University Avenue, Glasgow G12 8QQ, U.K
| | - Rodolfo Marquez
- WestCHEM, University of Glasgow, Joseph Black Building, University Avenue, Glasgow G12 8QQ, U.K
| |
Collapse
|
20
|
Stewart SG, Hill TA, Gilbert J, Ackland SP, Sakoff JA, McCluskey A. Synthesis and biological evaluation of norcantharidin analogues: Towards PP1 selectivity. Bioorg Med Chem 2007; 15:7301-10. [PMID: 17870547 DOI: 10.1016/j.bmc.2007.08.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Revised: 08/17/2007] [Accepted: 08/20/2007] [Indexed: 11/25/2022]
Abstract
Simple modifications to the anhydride moiety of norcantharidin have lead to the development of a series of analogues displaying modest PP1 inhibition (low muM IC(50)s) comparable to that of norcantharidin (PP1 IC(50)=10.3+/-1.37 microM). However, unlike norcantharidin, which is a potent inhibitor of PP2A (IC(50)=2.69+/-1.37 microM), these analogues show reduced PP2A inhibitory action resulting in the development of selective PP1 inhibitory compounds. Data indicates that the introduction of two ortho-disposed substituents on an aromatic ring, or para-substituent favours PP1 inhibition over PP2A inhibition. Introduction of a p-morphilinoaniline substituent, 35, affords an inhibitor displaying PP1 IC(50)=6.5+/-2.3 microM; and PP2A IC(50)=7.9+/-0.82 microM (PP1/PP2A=0.82); and a 2,4,6-trimethylaniline, 23, displaying PP1 IC(50)=48+/-9; and PP2A IC(5) 85+/-3 microM (PP1/PP2A=0.56). The latter shows a 7-fold improvement in PP1 versus PP2A selectivity when compared with norcantharidin. Subsequent analysis of 23 and 35 as potential PP2B inhibitors revealed modest inhibition with IC(50)s of 89+/-6 and 42+/-3 microM, respectively, and returned with PP1/PP2B selectivities of 0.54 and 0.15. Thus, these analogues are the simplest and most selective PP1 inhibitors retaining potency reported to date.
Collapse
Affiliation(s)
- Scott G Stewart
- Chemistry Building, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | | | | | | | | | | |
Collapse
|
21
|
An efficient synthesis of optically pure α-alkyl-β-azido- and α-alkyl-β-aminoalanines via ring opening of 3-amino-3-alkyl-2-oxetanones. Tetrahedron Lett 2007. [DOI: 10.1016/j.tetlet.2007.07.078] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Samant MP, Gulyas J, Hong DJ, Croston G, Rivier C, Rivier J. Iterative approach to the discovery of novel degarelix analogues: substitutions at positions 3, 7, and 8. Part II. J Med Chem 2005; 48:4851-60. [PMID: 16033265 PMCID: PMC2593149 DOI: 10.1021/jm050134t] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Degarelix (FE200486, Ac-d-2Nal(1)-d-4Cpa(2)-d-3Pal(3)-Ser(4)-4Aph(l-Hor)(5)-d-4Aph(Cbm)(6)-Leu(7)-ILys(8)-Pro(9)-d-Ala(10)-NH(2)) is a potent and very long acting antagonist of gonadotropin-releasing hormone (GnRH) after subcutaneous administration in mammals including humans. Analogues of degarelix were synthesized, characterized, and screened for the antagonism of GnRH-induced response in a reporter gene assay in HEK-293 cells expressing the human GnRH receptor. The duration of action was also determined in the castrated male rat assay to measure the extent (efficacy and duration of action) of inhibition of luteinizing hormone (LH) release. Structurally, this series of analogues has novel substitutions at positions 3, 7, and 8 and N(alpha)-methylation at positions 6, 7, and 8 in the structure of degarelix. These substitutions were designed to probe the spatial limitations of the receptor's cavity and to map the steric and ionic boundaries. Some functional groups were introduced that were hypothesized to influence the phamacokinetic properties of the analogues such as bioavailability, solubility, intra- or intermolecular hydrogen bond forming capacity, and ability to bind carrier proteins. Substitutions at positions 3 ([N(beta)-(2-pyridyl-methyl)d-Dap(3)]degarelix, IC(50) = 2.71 nM) (5), 7 ([Pra(7)]degarelix, IC(50) = 2.11 nM) (16), and 8 ([N(delta)-(IGly)Orn(8)]degarelix, IC(50) = 1.38 nM) (20) and N-methylation ([N(alpha)-methyl-Leu(7)]degarelix, IC(50) = 1.47 nM) (32) yielded analogues that were equipotent to degarelix (2) in vitro (IC(50) = 1.64 nM) but shorter acting in vivo. Out of the 33 novel analogues tested for the duration of action in this series, two analogues ([N(epsilon)-cyclohexyl-Lys(8)]degarelix, IC(50) = 1.50 nM) (23) and ([N(beta)-(IbetaAla)Dap(8)]degarelix, IC(50) = 1.98 nM) (26) had antagonist potencies and duration of action similar to that of azaline B {inhibited LH (>80%) release for >72 h after sc injection to castrated male rats at a standard dose of 50 mug/rat in 5% mannitol}. Under similar conditions analogues ([N(gamma)-(IGly)Dab(8)]degarelix, IC(50) = 1.56 nM) (21) and ([IOrn(8)]degarelix, IC(50) = 1.72 nM) (18) had a longer duration of action {inhibited LH (>96 h) release} than azaline B; however they were shorter acting than degarelix. Hydrophilicity of these analogues, a potential measure of their ability to be formulated for sustained release, was determined using RP-HPLC at neutral pH yielding analogues with shorter as well as longer retention times. No correlation was found between retention times and antagonist potency or duration of action.
Collapse
Affiliation(s)
- Manoj P. Samant
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037
| | - Jozsef Gulyas
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037
| | - Doley J. Hong
- Ferring Research Institute Inc., 3550 General Atomics Ct., San Diego, California 92121
| | - Glenn Croston
- Ferring Research Institute Inc., 3550 General Atomics Ct., San Diego, California 92121
| | - Catherine Rivier
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037
| | - Jean Rivier
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037
| |
Collapse
|
23
|
Lai MYH, Brimble MA, Callis DJ, Harris PWR, Levi MS, Sieg F. Synthesis and pharmacological evaluation of glycine-modified analogues of the neuroprotective agent glycyl-l-prolyl-l-glutamic acid (GPE). Bioorg Med Chem 2005; 13:533-48. [PMID: 15598574 DOI: 10.1016/j.bmc.2004.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Revised: 10/01/2004] [Accepted: 10/04/2004] [Indexed: 11/18/2022]
Abstract
The synthesis of 10 G*PE analogues, wherein the glycine residue has been modified, is described by coupling readily accessible dibenzyl-L-prolyl-L-glutamate 2 with various analogues of glycine. Pharmacological evaluation of the novel compounds was undertaken to further understand the role of the glycine residue on the observed neuroprotective properties of the endogenous tripeptide GPE.
Collapse
Affiliation(s)
- Michelle Y H Lai
- Neuren Pharmaceuticals Medicinal Chemistry Group, Department of Chemistry, University of Auckland, 23 Symonds Street, Auckland 1000, New Zealand
| | | | | | | | | | | |
Collapse
|
24
|
Hart ME, Chamberlin AR, Walkom C, Sakoff JA, McCluskey A. Modified norcantharidins; synthesis, protein phosphatases 1 and 2A inhibition, and anticancer activity. Bioorg Med Chem Lett 2004; 14:1969-73. [PMID: 15050639 DOI: 10.1016/j.bmcl.2004.01.093] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2003] [Accepted: 01/22/2004] [Indexed: 12/11/2022]
Abstract
Fourteen modified norcantharidin analogues have been synthesised and screened for their ability to inhibit the serine/threonine protein phosphatases 1 and 2A. The most potent compounds found were 10 (PP1 IC(50)=13+/-5 microM; PP2A IC(50)=7+/-3 microM) and 16 (PP1 IC(50)=18+/-8 microM; PP2A IC(50)=3.2+/-0.4 microM). Overall, only analogues possessing at least one acidic residue at the former anhydride warhead displayed any PP1 or PP2A inhibitory action. The ability of these analogues to inhibit PP1 and PP2A correlates well with their observed anti-cancer activity against a panel of five cancer cell lines: A2780 (human ovarian carcinoma), G401 (human kidney carcinoma), HT29 (human colorectal carcinoma), H460 (human lung carcinoma) and L1210 (murine leukemia).
Collapse
Affiliation(s)
- Matthew E Hart
- Department of Chemistry, University of California at Irvine, Irvine, CA 92697, USA
| | | | | | | | | |
Collapse
|
25
|
Robillot C, Hennion MC. Issues arising when interpreting the results of the protein phosphatase 2A inhibition assay for the monitoring of microcystins. Anal Chim Acta 2004. [DOI: 10.1016/j.aca.2004.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Gulledge BM, Aggen JB, Chamberlin AR. Linearized and truncated microcystin analogues as inhibitors of protein phosphatases 1 and 2A. Bioorg Med Chem Lett 2003; 13:2903-6. [PMID: 14611854 DOI: 10.1016/s0960-894x(03)00589-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A series of acyclic, truncated microcystin analogues, comprised of the dienic beta-amino acid (Adda) and up to four additional amino acids characteristic of the parent toxin, was synthesized and screened for activity as inhibitors of PP1 and PP2A. Despite a recent report to the contrary for a microcystin-derived tetrapeptide degradation product, none approaches the potency of microcystin itself.
Collapse
Affiliation(s)
- Brian M Gulledge
- Department of Chemistry, University of California at Irvine, CA 92697, USA
| | | | | |
Collapse
|
27
|
Gulledge BM, Aggen JB, Eng H, Sweimeh K, Chamberlin AR. Microcystin analogues comprised only of adda and a single additional amino acid retain moderate activity as PP1/PP2A inhibitors. Bioorg Med Chem Lett 2003; 13:2907-11. [PMID: 14611855 DOI: 10.1016/s0960-894x(03)00588-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A series of greatly simplified microcystin analogues comprised only of Adda (the beta-amino acid common to the microcystins, nodularins, and motuporin,) and a single additional amino acid residue was synthesized and screened for inhibition of the protein phosphatases 1 and 2A. Several of the analogues were shown to be mid-nanomolar inhibitors of the enzymes.
Collapse
Affiliation(s)
- Brian M Gulledge
- Department of Chemistry, University of California at Irvine, 92697, USA
| | | | | | | | | |
Collapse
|
28
|
Abstract
This review is an attempt to illustrate the diversity of peptides reported for a potential or an established use in cancer therapy. With 612 references, this work aims at covering the patents and publications up to year 2000 with many inroads in years 2001-2002. The peptides are classed according to four categories of effective (or plausible) biological mechanisms of action: receptor-interacting compounds; inhibitors of protein-protein interaction; enzymes inhibitors; nucleic acid-interacting compounds. The fifth group is made of the peptides for which no mechanism of action has been found yet. Incidentally this work provides an overview of many of the modern targets of anticancer research.
Collapse
Affiliation(s)
- Y L Janin
- UMR 176 CNRS-Intitut Curie, Paris, France.
| |
Collapse
|
29
|
McCluskey A, Sim ATR, Sakoff JA. Serine-threonine protein phosphatase inhibitors: development of potential therapeutic strategies. J Med Chem 2002; 45:1151-75. [PMID: 11881984 DOI: 10.1021/jm010066k] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Adam McCluskey
- School of Biological & Chemical Science, Medicinal Chemistry Group, The University of Newcastle, Callaghan, NSW 2308, Australia.
| | | | | |
Collapse
|
30
|
McCluskey A, Keane MA, Walkom CC, Bowyer MC, Sim ATR, Young DJ, Sakoff JA. The first two cantharidin analogues displaying PP1 selectivity. Bioorg Med Chem Lett 2002; 12:391-3. [PMID: 11814804 DOI: 10.1016/s0960-894x(01)00777-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
High pressure Diels-Alder reactions of furan and dimethylmaleate, and thiophene and maleimide resulted in two cantharidin analogues, 3 and 6 possessing PP1 selectivity (>40- and >30-fold selectivity) over PP2A. Both compounds exhibited moderate PP1 activity, 3 IC(50) 50 microM and 6 IC(50) 12.5 microM. Interestingly, the corresponding mono-ester derivatives of 3 showed no such selectivity.
Collapse
Affiliation(s)
- Adam McCluskey
- Medicinal Chemistry Group, School of Biological and Chemical Sciences, The University of Newcastle, University Drive, Callaghan, Newcastle, NSW 2308, Australia.
| | | | | | | | | | | | | |
Collapse
|
31
|
McCluskey A, Walkom C, Bowyer MC, Ackland SP, Gardiner E, Sakoff JA. Cantharimides: a new class of modified cantharidin analogues inhibiting protein phosphatases 1 and 2A. Bioorg Med Chem Lett 2001; 11:2941-6. [PMID: 11677131 DOI: 10.1016/s0960-894x(01)00594-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cantharidin and its analogues have been of considerable interest as potent inhibitors of the serine/threonine protein phosphatases 1 and 2A (PP1 and PP2A). However, limited modifications to the parent compounds is tolerated. As part of an on-going study we have developed a new series of cantharidin analogues, the cantharimides. Inhibition studies indicate that cantharimides possessing a D- or L-histidine, are more potent inhibitors of PP1 and PP2A (PP1 IC(50)=3.22+/-0.7 microM; PP2A IC(50)=0.81+/-0.1 microM and PP1 IC(50)=2.82+/-0.6 microM; PP2A IC(50)=1.35+/-0.3 microM, respectively) than norcantharidin (PP1 IC(50)=5.31+/-0.76 microM; PP2A IC(50)=2.9+/-1.04 microM) and essentially equipotent with cantharidin (PP1 IC(50)=3.6+/-0.42 microM; PP2A IC(50)=0.36+/-0.08 microM). Cantharimides with non-polar or acidic amino acid residues are only poor inhibitors of PP1 and PP2A.
Collapse
Affiliation(s)
- A McCluskey
- Medicinal Chemistry Group, School of Biological and Chemical Sciences, The University of Newcastle, Callaghan, NSW 2038, Australia.
| | | | | | | | | | | |
Collapse
|
32
|
Formation of hybrid polymethylene–poly(oxyethylene) macrocycles. Tetrahedron Lett 2001. [DOI: 10.1016/s0040-4039(00)02231-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
33
|
McCuskey A, Keane MA, Mudgee LM, Sim AT, Sakoff J, Quinn RJ. Anhydride modified cantharidin analogues. Is ring opening important in the inhibition of protein phosphatase 2A? Eur J Med Chem 2000; 35:957-64. [PMID: 11121622 DOI: 10.1016/s0223-5234(00)00186-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A series of anhydride modified cantharidin analogues have been synthesised and screened for their ability to inhibit protein phosphatase 2A. Surprisingly only analogues capable of undergoing a facile ring opening of the anhydride moiety displayed any significant inhibition. Subsequent NMR experiments indicated that 7-oxobicyclo[2.2.1]heptane-2,3-dicarboxylic acid was the major (sole) species under assay conditions. The ability of these modified anhydro-cantharidin analogues to inhibit protein phosphatase 2A varies from 4 (16) to 100% (8) at 100 microM test concentration.
Collapse
|
34
|
McCluskey A, Bowyer MC, Collins E, Sakoff JA, Baldwin ML. Anhydride modified cantharidin analogues: synthesis, inhibition of protein phosphatases 1 and 2A and anticancer activity. Bioorg Med Chem Lett 2000; 10:1687-90. [PMID: 10937725 DOI: 10.1016/s0960-894x(00)00323-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Two series of anhydride modified cantharidin analogues were synthesised and screened for their phosphatase inhibition (PP1 and PP2A) and cytotoxicity in various cancer cell lines (Ovarian A2780, ADDP; Osteosarcoma 143B; and Colon HCT116 and HT29). One series was synthesised by a novel, high yielding one-pot hydrogenation-ring-opening-esterification procedure, the other by acid catalysed acetal formation. Analogues 5-7 and 9 displayed moderate PP2A selectivity (ca. 5- to 20-fold) and inhibition typically in the low microM range (comparable, in some cases to cantharidin). The anticancer activity of these analogues varied with the cell line under study; however, many of them showed selective cytotoxicity for the colon tumour cell lines.
Collapse
Affiliation(s)
- A McCluskey
- Medicinal Chemistry Group, School of Biological and Chemical Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia.
| | | | | | | | | |
Collapse
|
35
|
Yousaf M, Chan E, Mrksich M. The Kinetic Order of an Interfacial Diels–Alder Reaction Depends on the Environment of the Immobilized Dienophile. Angew Chem Int Ed Engl 2000. [DOI: 10.1002/1521-3757(20000602)112:11<2019::aid-ange2019>3.0.co;2-p] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|