1
|
Feng C, Chen J, Ye W, Wang Z. Nitrile hydratase as a promising biocatalyst: recent advances and future prospects. Biotechnol Lett 2024; 46:1171-1185. [PMID: 39269672 DOI: 10.1007/s10529-024-03530-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/05/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
Amides are an important type of synthetic intermediate used in the chemical, agrochemical, pharmaceutical, and nutraceutical industries. The traditional chemical process of converting nitriles into the corresponding amides is feasible but is restricted because of the harsh conditions required. In recent decades, nitrile hydratase (NHase, EC 4.2.1.84) has attracted considerable attention because of its application in nitrile transformation as a prominent biocatalyst. In this review, we provide a comprehensive survey of recent advances in NHase research in terms of natural distribution, enzyme screening, and molecular modification on the basis of its characteristics and catalytic mechanism. Additionally, industrial applications and recent significant biotechnology advances in NHase bioengineering and immobilization techniques are systematically summarized. Moreover, the current challenges and future perspectives for its further development in industrial applications for green chemistry were also discussed. This study contributes to the current state-of-the-art, providing important technical information for new NHase applications in manufacturing industries.
Collapse
Affiliation(s)
- Chao Feng
- Department of Urology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Jing Chen
- Department of Urology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Wenxin Ye
- Department of Urology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Zhanshi Wang
- Department of Urology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
2
|
Modification of nitrile hydratase from Rhodococcus erythropolis CCM2595 by semirational design to enhance its substrate affinity. Biointerphases 2022; 17:061007. [PMID: 36456206 DOI: 10.1116/6.0002061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Nitrile hydratase (NHase, EC 4.2.1.84) is an excellent biocatalyst that catalyzes the hydration of nitrile substances to their corresponding amides. Given its catalytic specificity and eco-friendliness, NHase has extensive applications in the chemical, pharmaceutical, and cosmetic industries. To improve the affinity between Rhodococcus erythropolis CCM2595-derived NHase (ReNHase) and adiponitrile, this study used a semirational design to improve the efficiency of ReNHase in catalyzing the generation of 5-cyanopentanamide from adiponitrile. Enzyme kinetics analysis showed that Km of the mutant ReNHaseB:G196Y was 3.265 mmol l-1, which was lower than that of the wild-type NHase. The affinity of the mutant ReNHaseB:G196Y to adiponitrile was increased by 36.35%, and the efficiency of the mutant ReNHaseB:G196Y in catalyzing adiponitrile to 5-cyanopentamide was increased by 10.11%. The analysis of the enzyme-substrate interaction showed that the hydrogen bond length of the mutant ReNHaseB:G196Y to adiponitrile was shortened by 0.59 Å, which enhanced the interaction between the mutant and adiponitrile and, thereby, increased the substrate affinity. Similarly, the structural analysis showed that the amino acid flexibility near the mutation site of ReNHaseB:G196Y was increased, which enhanced the binding force between the enzyme and adiponitrile. Our work may provide a new theoretical basis for the modification of substrate affinity of NHase and increase the possibility of industrial applications of the enzyme.
Collapse
|
3
|
Du W, Huang J, Cui B, Guo Y, Wang L, Liang C. Efficient biodegradation of nitriles by a novel nitrile hydratase derived from Rhodococcus erythropolis CCM2595. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1941253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Wenjing Du
- Lab of Advanced Materials and Catalytic Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, PR China
| | - Jiao Huang
- Lab of Biocalyalysis and Transformation, School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, Liaoning, PR China
| | - Baocheng Cui
- Lab of Biocalyalysis and Transformation, School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, Liaoning, PR China
| | - Yi Guo
- Lab of Biocalyalysis and Transformation, School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, Liaoning, PR China
| | - Li Wang
- Lab of Biocalyalysis and Transformation, School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, Liaoning, PR China
| | - Changhai Liang
- Lab of Advanced Materials and Catalytic Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, PR China
| |
Collapse
|
4
|
Hashimoto Y, Ube Y, Doi S, Kumano T, Kobayashi M. Metal chaperone, NhpC, involved in the metallocenter biosynthesis of nitrile hydratase. J GEN APPL MICROBIOL 2021; 67:24-32. [DOI: 10.2323/jgam.2020.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Yoshiteru Hashimoto
- Institute of Applied Biochemistry and Graduate School of Life and Environmental Sciences, The University of Tsukuba
- Microbiology Research Center for Sustainability (MiCS), The University of Tsukuba
| | - Yuko Ube
- Institute of Applied Biochemistry and Graduate School of Life and Environmental Sciences, The University of Tsukuba
| | - Shiori Doi
- Institute of Applied Biochemistry and Graduate School of Life and Environmental Sciences, The University of Tsukuba
| | - Takuto Kumano
- Institute of Applied Biochemistry and Graduate School of Life and Environmental Sciences, The University of Tsukuba
- Microbiology Research Center for Sustainability (MiCS), The University of Tsukuba
| | - Michihiko Kobayashi
- Institute of Applied Biochemistry and Graduate School of Life and Environmental Sciences, The University of Tsukuba
- Microbiology Research Center for Sustainability (MiCS), The University of Tsukuba
| |
Collapse
|
5
|
Shen JD, Cai X, Liu ZQ, Zheng YG. Nitrilase: a promising biocatalyst in industrial applications for green chemistry. Crit Rev Biotechnol 2020; 41:72-93. [PMID: 33045860 DOI: 10.1080/07388551.2020.1827367] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nitrilases are widely distributed in nature and are able to hydrolyze nitriles into their corresponding carboxylic acids and ammonia. In industry, nitrilases have been used as green biocatalysts for the production of high value-added products. To date, biocatalysts are considered to be important alternatives to chemical catalysts due to increasing environmental problems and resource scarcity. This review provides an overview of recent advances of nitrilases in aspects of distribution, enzyme screening, molecular structure and catalytic mechanism, protein engineering, and their potential applications in industry.
Collapse
Affiliation(s)
- Ji-Dong Shen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P.R. China
| | - Xue Cai
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P.R. China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P.R. China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P.R. China
| |
Collapse
|
6
|
Prejanò M, Alberto ME, Russo N, Marino T. Hydration of Aromatic Nitriles Catalyzed by Mn-OH Complexes: A Rationalization from Quantum Chemical Investigations. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00436] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mario Prejanò
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci cubo 14 C, Arcavacata di Rende 87036, Italy
| | - Marta Erminia Alberto
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci cubo 14 C, Arcavacata di Rende 87036, Italy
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci cubo 14 C, Arcavacata di Rende 87036, Italy
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci cubo 14 C, Arcavacata di Rende 87036, Italy
| |
Collapse
|
7
|
Wang L, Liu S, Du W, Dou T, Liang C. High Regioselectivity Production of 5-Cyanovaleramide from Adiponitrile by a Novel Nitrile Hydratase Derived from Rhodococcus erythropolis CCM2595. ACS OMEGA 2020; 5:18397-18402. [PMID: 32743216 PMCID: PMC7392519 DOI: 10.1021/acsomega.0c02188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
5-Cyanovaleramide (5-CVAM) is an important intermediate of a herbicide and chemical raw material. Herein, we found a novel nitrile hydratase from the strain Rhodococcus erythropolis CCM2595, exhibiting high regioselectivity with higher substrate specificity toward dinitriles than mononitriles. In the past, the strain was shown to degrade only phenol, hydroxybenzoate, p-chlorophenol, aniline, and other aromatic compounds. In our study, 20 mM adiponitrile was completely consumed within 10 min with 95% selectivity to 5-CVAM and 5% selectivity to adipamide. In addition to its high regioselectivity, our recombinant Escherichia coli showed a higher substrate tolerance of up to 200 mM adiponitrile even after 3 h when compared with two reported strains with their cyano-tolerance concentrations of up to 100 mM, which is considered to be the highest cyano-tolerance. Such a robust biocatalyst is a desirable attribute of a biocatalyst intended for use in commercial applications of 5-CVAM.
Collapse
Affiliation(s)
- Li Wang
- School
of Life and Pharmaceutical Sciences, Dalian
University of Technology, Panjin 124221, China
| | - Shengxian Liu
- School
of Life and Pharmaceutical Sciences, Dalian
University of Technology, Panjin 124221, China
| | - Wenjing Du
- School
of Chemical Engineering, Dalian University
of Technology, Dalian 116024, China
| | - Tongyi Dou
- School
of Life and Pharmaceutical Sciences, Dalian
University of Technology, Panjin 124221, China
| | - Changhai Liang
- School
of Chemical Engineering, Dalian University
of Technology, Dalian 116024, China
| |
Collapse
|
8
|
Cheng Z, Xia Y, Zhou Z. Recent Advances and Promises in Nitrile Hydratase: From Mechanism to Industrial Applications. Front Bioeng Biotechnol 2020; 8:352. [PMID: 32391348 PMCID: PMC7193024 DOI: 10.3389/fbioe.2020.00352] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/30/2020] [Indexed: 12/21/2022] Open
Abstract
Nitrile hydratase (NHase, EC 4.2.1.84) is one type of metalloenzyme participating in the biotransformation of nitriles into amides. Given its catalytic specificity in amide production and eco-friendliness, NHase has overwhelmed its chemical counterpart during the past few decades. However, unclear catalytic mechanism, low thermostablity, and narrow substrate specificity limit the further application of NHase. During the past few years, numerous studies on the theoretical and industrial aspects of NHase have advanced the development of this green catalyst. This review critically focuses on NHase research from recent years, including the natural distribution, gene types, posttranslational modifications, expression, proposed catalytic mechanism, biochemical properties, and potential applications of NHase. The developments of NHase described here are not only useful for further application of NHase, but also beneficial for the development of the fields of biocatalysis and biotransformation.
Collapse
Affiliation(s)
| | | | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
9
|
Sheldon RA, Brady D, Bode ML. The Hitchhiker's guide to biocatalysis: recent advances in the use of enzymes in organic synthesis. Chem Sci 2020; 11:2587-2605. [PMID: 32206264 PMCID: PMC7069372 DOI: 10.1039/c9sc05746c] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/12/2020] [Indexed: 12/12/2022] Open
Abstract
Enzymes are excellent catalysts that are increasingly being used in industry and academia. This perspective is primarily aimed at synthetic organic chemists with limited experience using enzymes and provides a general and practical guide to enzymes and their synthetic potential, with particular focus on recent applications.
Collapse
Affiliation(s)
- Roger A Sheldon
- Molecular Sciences Institute , School of Chemistry , University of the Witwatersrand , Johannesburg , South Africa .
- Department of Biotechnology , Delft University of Technology , Delft , The Netherlands
| | - Dean Brady
- Molecular Sciences Institute , School of Chemistry , University of the Witwatersrand , Johannesburg , South Africa .
| | - Moira L Bode
- Molecular Sciences Institute , School of Chemistry , University of the Witwatersrand , Johannesburg , South Africa .
| |
Collapse
|
10
|
Mashweu AR, Chhiba-Govindjee VP, Bode ML, Brady D. Substrate Profiling of the Cobalt Nitrile Hydratase from Rhodococcus rhodochrous ATCC BAA 870. Molecules 2020; 25:molecules25010238. [PMID: 31935987 PMCID: PMC6983157 DOI: 10.3390/molecules25010238] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/22/2019] [Accepted: 12/26/2019] [Indexed: 02/04/2023] Open
Abstract
The aromatic substrate profile of the cobalt nitrile hydratase from Rhodococcus rhodochrous ATCC BAA 870 was evaluated against a wide range of nitrile containing compounds (>60). To determine the substrate limits of this enzyme, compounds ranging in size from small (90 Da) to large (325 Da) were evaluated. Larger compounds included those with a bi-aryl axis, prepared by the Suzuki coupling reaction, Morita-Baylis-Hillman adducts, heteroatom-linked diarylpyridines prepared by Buchwald-Hartwig cross-coupling reactions and imidazo[1,2-a]pyridines prepared by the Groebke-Blackburn-Bienaymé multicomponent reaction. The enzyme active site was moderately accommodating, accepting almost all of the small aromatic nitriles, the diarylpyridines and most of the bi-aryl compounds and Morita-Baylis-Hillman products but not the Groebke-Blackburn-Bienaymé products. Nitrile conversion was influenced by steric hindrance around the cyano group, the presence of electron donating groups (e.g., methoxy) on the aromatic ring, and the overall size of the compound.
Collapse
Affiliation(s)
- Adelaide R. Mashweu
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa; (A.R.M.); (V.P.C.-G.)
| | - Varsha P. Chhiba-Govindjee
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa; (A.R.M.); (V.P.C.-G.)
- CSIR Chemical Production Cluster, PO Box 395, Pretoria 0001, South Africa
| | - Moira L. Bode
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa; (A.R.M.); (V.P.C.-G.)
- Correspondence: (M.L.B.); (D.B.); Tel.: +27-117176745 (D.B.)
| | - Dean Brady
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa; (A.R.M.); (V.P.C.-G.)
- Correspondence: (M.L.B.); (D.B.); Tel.: +27-117176745 (D.B.)
| |
Collapse
|
11
|
Sheldon RA, Brady D. Broadening the Scope of Biocatalysis in Sustainable Organic Synthesis. CHEMSUSCHEM 2019; 12:2859-2881. [PMID: 30938093 DOI: 10.1002/cssc.201900351] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/05/2019] [Accepted: 03/04/2019] [Indexed: 05/21/2023]
Abstract
This Review is aimed at synthetic organic chemists who may be familiar with organometallic catalysis but have no experience with biocatalysis, and seeks to provide an answer to the perennial question: if it is so attractive, why wasn't it extensively used in the past? The development of biocatalysis in industrial organic synthesis is traced from the middle of the last century. Advances in molecular biology in the last two decades, in particular genome sequencing, gene synthesis and directed evolution of proteins, have enabled remarkable improvements in scope and substantially reduced biocatalyst development times and cost contributions. Additionally, improvements in biocatalyst recovery and reuse have been facilitated by developments in enzyme immobilization technologies. Biocatalysis has become eminently competitive with chemocatalysis and the biocatalytic production of important pharmaceutical intermediates, such as enantiopure alcohols and amines, has become mainstream organic synthesis. The synthetic space of biocatalysis has significantly expanded and is currently being extended even further to include new-to-nature biocatalytic reactions.
Collapse
Affiliation(s)
- Roger A Sheldon
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, 2050, South Africa
- Department of Biotechnology, Delft University of Technology, Section BOC, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Dean Brady
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, 2050, South Africa
| |
Collapse
|
12
|
Affiliation(s)
- Greg Hughes
- Department of Process Research and Development Merck Sharp & Dohme Corporation , Rahway, New Jersey 07065, United States
| | - Jared C Lewis
- Searle Chemistry Lab, Department of Chemistry, The University of Chicago , 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
13
|
Singh R, Pandey D, Devi N, Chand D. Bench scale production of butyramide using free and immobilized cells of Bacillus sp. APB-6. Bioprocess Biosyst Eng 2018; 41:1225-1232. [DOI: 10.1007/s00449-018-1951-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 05/04/2018] [Indexed: 11/29/2022]
|
14
|
Nitrile Metabolizing Enzymes in Biocatalysis and Biotransformation. Appl Biochem Biotechnol 2018; 185:925-946. [DOI: 10.1007/s12010-018-2705-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/19/2018] [Indexed: 11/26/2022]
|
15
|
Cheng Z, Cui W, Xia Y, Peplowski L, Kobayashi M, Zhou Z. Modulation of Nitrile Hydratase Regioselectivity towards Dinitriles by Tailoring the Substrate Binding Pocket Residues. ChemCatChem 2017. [DOI: 10.1002/cctc.201701170] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zhongyi Cheng
- Key laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology; Jiangnan University; Wuxi 214122 P.R. China
| | - Wenjing Cui
- Key laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology; Jiangnan University; Wuxi 214122 P.R. China
| | - Yuanyuan Xia
- Key laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology; Jiangnan University; Wuxi 214122 P.R. China
| | - Lukasz Peplowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics; Nicolaus Copernicus University; Grudziadzka 5 87-100 Torun Poland
| | - Michihiko Kobayashi
- Institute of Applied Biochemistry and the Graduate School of Life, and Environment Sciences; The University of Tsukuba; Ibaraki 305-8572 Japan
| | - Zhemin Zhou
- Key laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology; Jiangnan University; Wuxi 214122 P.R. China
| |
Collapse
|
16
|
Tang R, Shen Y, Wang M, Zhai Y, Gao Q. Highly chemoselective and efficient production of 2,6-difluorobenzamide using Rhodococcus ruber CGMCC3090 resting cells. J Biosci Bioeng 2017; 124:641-646. [DOI: 10.1016/j.jbiosc.2017.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/09/2017] [Accepted: 07/02/2017] [Indexed: 11/24/2022]
|
17
|
Zhang H, Li M, Li J, Wang G, Li F, Xiong M. Chaperone-assisted maturation of the recombinant Fe-type nitrile hydratase is insufficient for fully active expression in Escherichia coli. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Maksimova YG, Maksimov AY, Demakov VA. Biofilms of nitrile-hydrolyzing bacteria: Dynamics of growth, resistance to toxic substances, and biotechnological potential. APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s0003683816080068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Pratush A, Seth A, Bhalla TC. Expression of nitrile hydratase gene of mutant 4D strain of Rhodococcus rhodochrous PA 34 in Pichia pastoris. BIOCATAL BIOTRANSFOR 2016. [DOI: 10.1080/10242422.2016.1247831] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Amit Pratush
- Department of Bioengineering, School of life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China,
| | - Amit Seth
- Department of Bioengineering, Shoolini University of Biotechnology and management Sciences, Solan, India, and
| | - Tek Chand Bhalla
- Department of Biotechnology, Himachal Pradesh University, Shimla, India
| |
Collapse
|
20
|
Cheng Z, Cui W, Liu Z, Zhou L, Wang M, Kobayashi M, Zhou Z. A switch in a substrate tunnel for directing regioselectivity of nitrile hydratases towards α,ω-dinitriles. Catal Sci Technol 2016. [DOI: 10.1039/c5cy01997d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The β37 residue of nitrile hydratase (NHase) from Pseudomonas putida and NHase from Comamonas testosteroni played a critical role in directing enzyme regioselectivity.
Collapse
Affiliation(s)
- Zhongyi Cheng
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi 214122
| | - Wenjing Cui
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi 214122
| | - Zhongmei Liu
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi 214122
| | - Li Zhou
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi 214122
| | - Min Wang
- College of Biotechnology
- Tianjin University of Science & Technology
- Tianjin 300457
- PR China
| | - Michihiko Kobayashi
- Institute of Applied Biochemistry and the Graduate School of Life and Environmental Sciences
- The University of Tsukuba
- Tsukuba
- Japan
| | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi 214122
| |
Collapse
|
21
|
Characterization of a nitrilase and a nitrile hydratase from Pseudomonas sp. strain UW4 that converts indole-3-acetonitrile to indole-3-acetic acid. Appl Environ Microbiol 2015; 80:4640-9. [PMID: 24837382 DOI: 10.1128/aem.00649-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Indole-3-acetic acid (IAA) is a fundamental phytohormone with the ability to control many aspects of plant growth and development. Pseudomonas sp. strain UW4 is a rhizospheric plant growth-promoting bacterium that produces and secretes IAA. While several putative IAA biosynthetic genes have been reported in this bacterium, the pathways leading to the production of IAA in strain UW4 are unclear. Here, the presence of the indole-3-acetamide (IAM) and indole-3-acetaldoxime/indole-3-acetonitrile (IAOx/IAN) pathways of IAA biosynthesis is described, and the specific role of two of the enzymes (nitrilase and nitrile hydratase) that mediate these pathways is assessed. The genes encoding these two enzymes were expressed in Escherichia coli, and the enzymes were isolated and characterized. Substrate-feeding assays indicate that the nitrilase produces both IAM and IAA from the IAN substrate, while the nitrile hydratase only produces IAM. The two nitrile-hydrolyzing enzymes have very different temperature and pH optimums. Nitrilase prefers a temperature of 50°C and a pH of 6, while nitrile hydratase prefers 4°C and a pH of 7.5. Based on multiple sequence alignments and motif analyses, physicochemical properties and enzyme assays, it is concluded that the UW4 nitrilase has an aromatic substrate specificity. The nitrile hydratase is identified as an iron-type metalloenzyme that does not require the help of a P47K activator protein to be active. These data are interpreted in terms of a preliminary model for the biosynthesis of IAA in this bacterium.
Collapse
|
22
|
Abstract
The hydration and hydrolysis of nitriles are valuable synthetic methods used to prepare carboxamides and carboxylic acids. However, chemical hydration and hydrolysis of nitriles involve harsh reaction conditions, have low selectivity, and generate large amounts of waste. Therefore, researchers have confined the scope of these reactions to simple nitrile substrates. However, biological transformations of nitriles are highly efficient, chemoselective, and environmentally benign, which has led synthetic organic chemists and biotechologists to study these reactions in detail over the last two decades. In nature, biological systems degrade nitriles via two distinct pathways: nitrilases catalyze the direct hydrolysis of nitriles to afford carboxylic acids with release of ammonia, and nitrile hydratases catalyze the conversion of nitriles into carboxamides, which then furnish carboxylic acids via hydrolysis in the presence of amidases. Researchers have subsequently developed biocatalytic methods into useful industrial processes for the manufacture of commodity chemicals, including acrylamide. Since the late 1990s, research by my group and others has led to enormous progress in the understanding and application of enantioselective biotransformations of nitriles in organic synthesis. In this Account, I summarize the important advances in enantioselective biotransformations of nitriles and amides, with a primary focus on research from my laboratory. I describe microbial whole-cell-catalyzed kinetic resolution of various functionalized nitriles, amino- and hydroxynitriles, and nitriles that contain small rings and the desymmetrization of prochiral and meso dinitriles and diamides. I also demonstrate how we can apply the biocatalytic protocol to synthesize natural products and bioactive compounds. These nitrile biotransformations offer an attractive and unique protocol for the enantioselective synthesis of polyfunctionalized organic compounds that are not readily obtainable by other methods. Nitrile substrates are readily available, and the mild reaction conditions are specific toward cyano and amido functional groups without interfering with other reactive functional groups. I anticipate that further advances in this field will lead to new and engineered nitrile-hydrolyzing enzymes or catalytic systems with improved activity and altered selectivity. These advances will broaden the scope of these transformations and their applications in organic synthesis.
Collapse
Affiliation(s)
- Mei-Xiang Wang
- MOE Key
Laboratory of Bioorganic
Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| |
Collapse
|
23
|
Ramteke PW, Maurice NG, Joseph B, Wadher BJ. Nitrile-converting enzymes: an eco-friendly tool for industrial biocatalysis. Biotechnol Appl Biochem 2014; 60:459-81. [PMID: 23826937 DOI: 10.1002/bab.1139] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 06/21/2013] [Indexed: 11/10/2022]
Abstract
Nitriles are organic compounds bearing a − C ≡ N group; they are frequently known to occur naturally in both fauna and flora and are also synthesized chemically. They have wide applicability in the fields of medicine, industry, and environmental monitoring. However, the majority of nitrile compounds are considered to be lethal, mutagenic, and carcinogenic in nature and are known to cause potential health problems such as nausea, bronchial irritation, respiratory distress, convulsions, coma, and skeletal deformities in humans. Nitrile-converting enzymes, which are extracted from microorganisms, are commonly termed nitrilases and have drawn the attention of researchers all over the world to combat the toxicity of nitrile compounds. The present review focuses on the utility of nitrile-converting enzymes, sources, classification, structure, properties, and applications, as well as the future perspective on nitrilases.
Collapse
Affiliation(s)
- Pramod W Ramteke
- Department of Biological Sciences, Sam Higginbotom Institute of Agriculture, Technology and Sciences, Allahabad, India
| | | | | | | |
Collapse
|
24
|
|
25
|
Microbial transformation of nitriles to high-value acids or amides. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014. [PMID: 19475377 DOI: 10.1007/10_2008_25] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Biotransformation of nitriles mediated by nitrile-amide converting enzymes has attracted considerable attention and developed tremendously in the recent years in China since it offers a valuable alternative to traditional chemical reaction which requires harsh conditions. As a result, an upsurge of these promising enzymes (including nitrile hydratase, nitrilase and amidase) has been taking place. This review aims at describing these enzymes in detail. A variety of microorganisms harboring nitrile-amide converting activities have been isolated and identified in China, some of which have already applied with moderate success. Currently, a wide range of high-value compounds such as aliphatic, alicyclic, aromatic and heterocyclic amides and their corresponding acids were provided by these nitrile-amide degrading organisms. Simultaneously, with the increasing demand of chiral substances, the enantioselectivity of the nitrilase superfamily is widely investigated and exploited in China, especially the bioconversion of optically active alpha-substituted phenylacetamides, acids and 2,2-dimethylcyclopropanecarboxamide and 2,2-dimethylcyclopropanecarboxylic acid by means of the catalysts exhibiting excellent stereoselectivity. Besides their synthetic value, the nitrile-amide converting enzymes also play an important role in environmental protection. In this context, cloning of the genes and expression of these enzymes are presented. In the near future in China, an increasing number of novel nitrile-amide converting organisms will be screened and their potential in the synthesis of useful acids and amides will be further exploited.
Collapse
|
26
|
Crystal structure of aldoxime dehydratase and its catalytic mechanism involved in carbon-nitrogen triple-bond synthesis. Proc Natl Acad Sci U S A 2013; 110:2810-5. [PMID: 23382199 DOI: 10.1073/pnas.1200338110] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aldoxime dehydratase (OxdA), which is a unique heme protein, catalyzes the dehydration of an aldoxime to a nitrile even in the presence of water in the reaction mixture. Unlike the utilization of H(2)O(2) or O(2) as a mediator of catalysis by other heme-containing enzymes (e.g., P450), OxdA is notable for the direct binding of a substrate to the heme iron. Here, we determined the crystal structure of OxdA. We then constructed OxdA mutants in which each of the polar amino acids lying within ∼6 Å of the iron atom of the heme was converted to alanine. Among the purified mutant OxdAs, S219A had completely lost and R178A exhibited a reduction in the activity. Together with this finding, the crystal structural analysis of OxdA and spectroscopic and electrostatic potential analyses of the wild-type and mutant OxdAs suggest that S219 plays a key role in the catalysis, forming a hydrogen bond with the substrate. Based on the spatial arrangement of the OxdA active site and the results of a series of mutagenesis experiments, we propose the detailed catalytic mechanism of general aldoxime dehydratases: (i) S219 stabilizes the hydroxy group of the substrate to increase its basicity; (ii) H320 acts as an acid-base catalyst; and (iii) R178 stabilizes the heme, and would donate a proton to and accept one from H320.
Collapse
|
27
|
Liu YM, He L, Wang MM, Cao Y, He HY, Fan KN. A general and efficient heterogeneous gold-catalyzed hydration of nitriles in neat water under mild atmospheric conditions. CHEMSUSCHEM 2012; 5:1392-6. [PMID: 22674755 DOI: 10.1002/cssc.201200203] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Indexed: 05/22/2023]
Affiliation(s)
- Yong-Mei Liu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Handan Road 220, Shanghai 200433, PR China
| | | | | | | | | | | |
Collapse
|
28
|
Cloning, sequencing, and expression of nitrile hydratase gene of mutant 4D strain of Rhodococcus rhodochrous PA 34 in E. coli. Appl Biochem Biotechnol 2012; 168:465-86. [PMID: 22833401 DOI: 10.1007/s12010-012-9790-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 07/03/2012] [Indexed: 10/28/2022]
Abstract
The NHase encoding gene of mutant 4D was isolated by PCR amplification. The NHase gene of mutant 4D was successfully cloned and expressed in Escherichia coli by using Ek/LIC Duet cloning kits (Novagen). For the active expression of the NHase gene, the co-expression of small cobalt transporter gene (P-protein gene) has also been co-expressed with NHase gene E. coli. The nucleotide sequence of this NHase gene revealed high homology with the H-NHase of Rhodococcus rhodochrous J1. The recombinant E. coli cells showed higher NHase activity (5.9 U/mg dcw) as compared to the wild (4.1 U/mg dcw) whereas it is less than the mutant strain (8.4 U/mg dcw). Addition of cobalt ion in Luria-Bertani medium is needed up to a very small concentration (0.4 mM) for NHase activity. The recombinant E. coli exhibited maximum NHase activity at 6 h of incubation and was purified with a yield of 56 % with specific activity of 37.1 U/mg protein.
Collapse
|
29
|
|
30
|
Kaul P, Asano Y. Strategies for discovery and improvement of enzyme function: state of the art and opportunities. Microb Biotechnol 2011; 5:18-33. [PMID: 21883976 PMCID: PMC3815269 DOI: 10.1111/j.1751-7915.2011.00280.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Developments in biocatalysis have been largely fuelled by consumer demands for new products, industrial attempts to improving existing process and minimizing waste, coupled with governmental measures to regulate consumer safety along with scientific advancements. One of the major hurdles to application of biocatalysis to chemical synthesis is unavailability of the desired enzyme to catalyse the reaction to allow for a viable process development. Even when the desired enzyme is available it often forces the process engineers to alter process parameters due to inadequacies of the enzyme, such as instability, inhibition, low yield or selectivity, etc. Developments in the field of enzyme or reaction engineering have allowed access to means to achieve the ends, such as directed evolution, de novo protein design, use of non‐conventional media, using new substrates for old enzymes, active‐site imprinting, altering temperature, etc. Utilization of enzyme discovery and improvement tools therefore provides a feasible means to overcome this problem. Judicious employment of these tools has resulted in significant advancements that have leveraged the research from laboratory to market thus impacting economic growth; however, there are further opportunities that have not yet been explored. The present review attempts to highlight some of these achievements and potential opportunities.
Collapse
Affiliation(s)
- Praveen Kaul
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Hauz Khas, New Delhi - 110 016, India
| | | |
Collapse
|
31
|
Yousefi M, Mohammadi M, Habibi Z, Cheraghi Z. Nitrile biotransformation by whole cells ofAspergillussp. PTCC 5266. BIOCATAL BIOTRANSFOR 2011. [DOI: 10.3109/10242422.2010.550002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
32
|
Nitrile hydratases (NHases): At the interface of academia and industry. Biotechnol Adv 2010; 28:725-41. [DOI: 10.1016/j.biotechadv.2010.05.020] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 05/16/2010] [Accepted: 05/17/2010] [Indexed: 11/19/2022]
|
33
|
Kamble A, Meena V, Banerjee U. Effect of agitation and aeration on the production of nitrile hydratase by Rhodococcus erythropolis MTCC 1526 in a stirred tank reactor. Lett Appl Microbiol 2010; 51:413-20. [DOI: 10.1111/j.1472-765x.2010.02909.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Chiyanzu I, Cowan DA, Burton SG. Immobilization of Geobacillus pallidus RAPc8 nitrile hydratase (NHase) reduces substrate inhibition and enhances thermostability. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.molcatb.2009.12.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
35
|
Franssen MCR, Kircher M, Wohlgemuth R. Industrial Biotechnology in the Chemical and Pharmaceutical Industries. Ind Biotechnol (New Rochelle N Y) 2010. [DOI: 10.1002/9783527630233.ch9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
36
|
Rosche B, Li XZ, Hauer B, Schmid A, Buehler K. Microbial biofilms: a concept for industrial catalysis? Trends Biotechnol 2009; 27:636-43. [PMID: 19783314 DOI: 10.1016/j.tibtech.2009.08.001] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 08/13/2009] [Accepted: 08/14/2009] [Indexed: 11/18/2022]
Abstract
Biofilm reactors have long been commercially used in the treatment of wastewater and off-gas. New opportunities are arising with the rapid expansion of our understanding of biofilm biology over the last few years. Biofilms have great potential as industrial workhorses for the sustainable production of chemicals because of their inherent characteristics of self-immobilization, high resistance to reactants and long-term activity, which all facilitate continuous processing. A variety of biofilm reactor configurations have been explored for productive catalysis and some reactors have been operated continuously for months. Sectors that might particularly benefit from this biofilm approach include synthetic chemistry (ranging from specialty to bulk chemicals), bioenergy, biologics and the food industry.
Collapse
Affiliation(s)
- Bettina Rosche
- The University of New South Wales, School of Biotechnology and Biomolecular Sciences, Sydney, NSW 2052, Australia.
| | | | | | | | | |
Collapse
|
37
|
Transcriptional regulation of the nitrile hydratase gene cluster in Pseudomonas chlororaphis B23. J Bacteriol 2008; 190:4210-7. [PMID: 18408036 DOI: 10.1128/jb.00061-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An enormous amount of nitrile hydratase (NHase) is inducibly produced by Pseudomonas chlororaphis B23 after addition of methacrylamide as the sole nitrogen source to a medium. The expression pattern of the P. chlororaphis B23 NHase gene cluster in response to addition of methacrylamide to the medium was investigated. Recently, we reported that the NHase gene cluster comprises seven genes (oxdA, amiA, nhpA, nhpB, nhpC, nhpS, and acsA). Sequence analysis of the 1.5-kb region upstream of the oxdA gene revealed the presence of a 936-bp open reading frame (designated nhpR), which should encode a protein with a molecular mass of 35,098. The deduced amino acid sequence of the nhpR product showed similarity to the sequences of transcriptional regulators belonging to the XylS/AraC family. Although the transcription of the eight genes (nhpR, oxdA, amiA, nhpABC, nhpS, and acsA) in the NHase gene cluster was induced significantly in the P. chlororaphis B23 wild-type strain after addition of methacrylamide to the medium, transcription of these genes in the nhpR disruptant was not induced, demonstrating that nhpR codes for a positive transcriptional regulator in the NHase gene cluster. A reverse transcription-PCR experiment revealed that five genes (oxdA, amiA, nhpA, nhpB, and nhpC) are cotranscribed, as are two other genes (nhpS and acsA). The transcription start sites for nhpR, oxdA, nhpA, and nhpS were mapped by primer extension analysis, and putative -12 and -24 sigma(54)-type promoter binding sites were identified. NhpR was found to be the first transcriptional regulator of NHase belonging to the XylS/AraC family.
Collapse
|
38
|
Abe T, Hashimoto Y, Hosaka H, Tomita-Yokotani K, Kobayashi M. Discovery of amide (peptide) bond synthetic activity in Acyl-CoA synthetase. J Biol Chem 2008; 283:11312-21. [PMID: 18305111 DOI: 10.1074/jbc.m709654200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Acyl-CoA synthetase, which is one of the acid-thiol ligases (EC 6.2.1), plays key roles in metabolic and regulatory processes. This enzyme forms a carbon-sulfur bond in the presence of ATP and Mg(2+), yielding acyl-CoA thioesters from the corresponding free acids and CoA. This enzyme belongs to the superfamily of adenylate-forming enzymes, whose three-dimensional structures are analogous to one another. We here discovered a new reaction while studying the short-chain acyl-CoA synthetase that we recently reported (Hashimoto, Y., Hosaka, H., Oinuma, K., Goda, M., Higashibata, H., and Kobayashi, M. (2005) J. Biol. Chem. 280, 8660-8667). When l-cysteine was used as a substrate instead of CoA, N-acyl-l-cysteine was surprisingly detected as a reaction product. This finding demonstrated that the enzyme formed a carbon-nitrogen bond (EC 6.3.1 acid-ammonia (or amide) ligase (amide synthase); EC 6.3.2 acid-amino acid ligase (peptide synthase)) comprising the amino group of the cysteine and the carboxyl group of the acid. N-Acyl-d-cysteine, N-acyl-dl-homocysteine, and N-acyl-l-cysteine methyl ester were also synthesized from the corresponding cysteine analog substrates by the enzyme. Furthermore, this unexpected enzyme activity was also observed for acetyl-CoA synthetase and firefly luciferase, indicating the generality of the new reaction in the superfamily of adenylate-forming enzymes.
Collapse
Affiliation(s)
- Tomoko Abe
- Institute of Applied Biochemistry, and Graduate School of Life and Environmental Sciences, The University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | | | |
Collapse
|
39
|
Efficient expression in E. coli of an enantioselective nitrile hydratase from Rhodococcus erythropolis. Biotechnol Lett 2007; 30:755-62. [PMID: 18043868 DOI: 10.1007/s10529-007-9611-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 11/07/2007] [Accepted: 11/09/2007] [Indexed: 10/22/2022]
Abstract
The genes encoding an enantioselective nitrile hydratase (NHase) from Rhodococcus erythropolis AJ270 have been cloned and an active NHase has been produced in Escherichia coli. Maximal activity was found when the genes encoding the alpha- and beta-subunits were transcribed as one unit and the gene encoding the P44k activator protein as a separate ORF on a single replicon. Addition of n-butyric acid and FeSO(4 )could improve NHase activity. Coexpression of the GroEL-GroES chaperone proteins increased activity in the absence of P44k protein but had no effect in the presence of P44k. The recombinant enzyme was highly enantioselective in the synthesis of S-(+)-3-benzoyloxy- 4-cyanobutyramide from the prochiral substrate 3-benzoyloxyglutaronitrile.
Collapse
|
40
|
Song L, Wang M, Shi J, Xue Z, Wang MX, Qian S. High resolution X-ray molecular structure of the nitrile hydratase from Rhodococcus erythropolis AJ270 reveals posttranslational oxidation of two cysteines into sulfinic acids and a novel biocatalytic nitrile hydration mechanism. Biochem Biophys Res Commun 2007; 362:319-24. [PMID: 17716629 DOI: 10.1016/j.bbrc.2007.07.184] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2007] [Accepted: 07/23/2007] [Indexed: 11/27/2022]
Abstract
The crystal structure of Fe-type nitrile hydratase from Rhodococcus erythropolis AJ270 was determined at 1.3A resolution. The two cysteine residues (alphaCys(112) and alphaCys(114)) equatorially coordinated to the ferric ion were post-translationally modified to cysteine sulfinic acids. A glutamine residue (alphaGln(90)) in the active center gave double conformations. Based on the interactions among the enzyme, substrate and water molecules, a new mechanism of biocatalysis of nitrile hydratase was proposed, in which the water molecule activated by the glutamine residue performed as the nucleophile to attack on the nitrile which was simultaneously interacted by another water molecule coordinated to the ferric ion.
Collapse
Affiliation(s)
- Liya Song
- State Key Laboratories of Transducer Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | |
Collapse
|
41
|
Kato Y, Tsuda T, Asano Y. Purification and partial characterization of N-hydroxy-l-phenylalanine decarboxylase/oxidase from Bacillus sp. strain OxB-1, an enzyme involved in aldoxime biosynthesis in the “aldoxime–nitrile pathway”. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:856-65. [PMID: 17544345 DOI: 10.1016/j.bbapap.2007.04.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 03/27/2007] [Accepted: 04/25/2007] [Indexed: 11/22/2022]
Abstract
An enzyme that catalyzes the conversion of N-hydroxy-l-phenylalanine to phenylacetaldoxime was shown to be present in the Z-phenylacetaldoxime-degrading bacterium, Bacillus sp. strain OxB-1. The aldoxime-forming enzyme, which is induced by L-phenylalanine, was purified 8,050-fold to apparent homogeneity with a yield of 15.2%. The enzyme has a subunit M(r) of about 86,000. The enzyme converts N-hydroxy-L-phenylalanine (K(m) 0.99 mM) to only one geometrical isomer, namely Z-phenylacetaldoxime. Relatively large amounts of pyridoxal 5'-phosphate (PLP) are required to be present in the reaction mixture because PLP reacts non-enzymatically with the N-hydroxy amino acid substrate to form a nitrone. Several characteristics of the enzyme were compared with those of other PLP-dependent aromatic amino acid-converting enzymes described in the literature. The enzyme is tentatively named "N-hydroxy-L-phenylalanine decarboxylase/oxidase". Finally, the possible biosynthesis and metabolism of phenylacetaldoxime in Bacillus sp. strain OxB-1 is discussed.
Collapse
Affiliation(s)
- Yasuo Kato
- Biotechnology Research Center, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | | | | |
Collapse
|
42
|
Trotman RJ, Camp CE, Ben-Bassat A, DiCosimo R, Huang L, Crum GA, Sariaslani FS, Haynie SL. Calcium alginate bead immobilization of cells containing tyrosine ammonia lyase activity for use in the production of p-hydroxycinnamic acid. Biotechnol Prog 2007; 23:638-44. [PMID: 17461550 DOI: 10.1021/bp060379e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An Escherichia coli catalyst with tyrosine ammonia lyase activity (TAL) has been stabilized for repeated use in batch conversions of high tyrosine solids to p-hydroxycinnamic acid (pHCA). The TAL biocatalyst was stabilized by controlling the reaction pH to 9.8 +/- 0.1 and immobilizing the cells within a calcium alginate matrix that was cross-linked with glutaraldehyde and polyethyleneimine (GA/PEI). We found a GA range where the bead-encapsulated TAL was not inactivated, and the resulting cross-linking provided the beads with the mechanical stability necessary for repeated use in consecutive batch reactions with catalyst recycle. The GA/PEI calcium alginate TAL catalyst was used in 41 1-L batch reactions where 50 g L(-1) tyrosine was converted to 39 +/- 4 g L(-1) pHCA in each batch. The practical usefulness and ease of this process was demonstrated by scaling up the TAL bead immobilization and using the immobilized TAL catalyst in four 125-L bioconversion reactions to produce over 12 kg of purified pHCA.
Collapse
Affiliation(s)
- Robert J Trotman
- Central Research and Development Department, E. I. du Pont de Nemours and Co., Experimental Station, Wilmington, Delaware 19880-0328, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Kato Y, Asano Y. Molecular and enzymatic analysis of the “aldoxime–nitrile pathway” in the glutaronitrile degrader Pseudomonas sp. K-9. Appl Microbiol Biotechnol 2006; 70:92-101. [PMID: 16003557 DOI: 10.1007/s00253-005-0044-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2005] [Revised: 04/29/2005] [Accepted: 05/30/2005] [Indexed: 12/01/2022]
Abstract
A gene cluster responsible for aldoxime metabolism in the glutaronitrile degrader Pseudomonas sp. K-9 was analyzed genetically and enzymatically. The cluster was composed of genes coding for aldoxime dehydratase (Oxd), nitrile hydratase (NHase), NHase activator, amidase, acyl-CoA ligase, and some regulatory and functionally unknown proteins, which were similar to proteins appearing in the "aldoxime-nitrile pathway" gene cluster from strains having Fe-containing NHase. A key enzyme in the cluster, OxdK, which has 32.7-90.3 % identity with known Oxds, was overexpressed in Escherichia coli cells under the control of a T7 promoter in its His(6)-tagged form, purified, and characterized. The enzyme showed similar characteristics with the known Oxds coexisting with an Fe-containing NHase in its subunit structure, substrate specificity, and effects on various compounds. The enzyme can be classified into a group of "aliphatic aldoxime dehydratase (EC 4.99.1.5)." The existence of a gene cluster of enzymes responsible for aldoxime metabolism via the aldoxime-nitrile pathway (aldoxime-->nitrile-->amide-->acid-->acyl-CoA) in Pseudomonas sp. K-9, and the fact that the proteins comprising the cluster are similar to those acting on aliphatic type substrates, evidently clarified the alkylaldoxime-degrading pathway in that strain.
Collapse
Affiliation(s)
- Yasuo Kato
- Biotechnology Research Center, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Kosugi, Toyama 939-0398, Japan
| | | |
Collapse
|
45
|
Konishi K, Ohta T, Oinuma KI, Hashimoto Y, Kitagawa T, Kobayashi M. Discovery of a reaction intermediate of aliphatic aldoxime dehydratase involving heme as an active center. Proc Natl Acad Sci U S A 2006; 103:564-8. [PMID: 16407114 PMCID: PMC1334632 DOI: 10.1073/pnas.0505412103] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recently, we discovered an intriguing hemoprotein [aliphatic aldoxime dehydratase (OxdA)] that catalyzes the dehydration of aliphatic aldoximes [R-CH=N-OH] to the corresponding nitriles [R-C identical withN] in the industrial Pseudomonas chlororaphis B23 strain. Unlike the utilization of H(2)O(2) or O(2) as a mediator of the catalysis by other heme-containing enzymes (e.g., P450), OxdA is notable for the direct binding of a substrate to the heme iron, experimental evidence of which was obtained here by means of resonance Raman (RR) analysis with an isotope technique. We found that the addition of a large amount of butyraldoxime (final concentration, 200 mM) to ferrous OxdA with a low enzyme concentration (final concentration, 5 muM) yields a long-lived OxdA-substrate complex (named OS-II), whose UV-vis spectrum is different from the corresponding spectra of the OxdA-substrate complex I and CO-bound, ferrous, and ferric forms of OxdA. Intriguingly, the RR analysis demonstrated that OS-II includes a highly oxidized heme with strong bonding between a substrate and the heme iron, as judged from the heme oxidation state marker nu(4) band at 1,379 cm(-1) and the (15)N-isotope-substituted butyraldoxime sensitive band at 857 cm(-1) in the RR spectra. It is noteworthy that OS-II has a highly oxidized heme like the ferryl-oxo heme species (e.g., compound II) formed by some general hemoproteins, although the function of OxdA is different from those (transport of electrons, transport of oxygen, sensing of oxygen or carbon monoxide, and catalysis of redox reactions) of general hemoproteins.
Collapse
Affiliation(s)
- Kazunobu Konishi
- Institute of Applied Biochemistry, and Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Use of a UF-membrane reactor for controlling selectively the nitrile hydratase–amidase system in Microbacterium imperiale CBS 498-74 resting cells. Enzyme Microb Technol 2006. [DOI: 10.1016/j.enzmictec.2005.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Kato Y, Yoshida S, Xie SX, Asano Y. Aldoxime dehydratase co-existing with nitrile hydratase and amidase in the iron-type nitrile hydratase-producer Rhodococcus sp. N-771. J Biosci Bioeng 2005; 97:250-9. [PMID: 16233624 DOI: 10.1016/s1389-1723(04)70200-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2003] [Accepted: 01/26/2004] [Indexed: 10/26/2022]
Abstract
We identified an aldoxime dehydratase (Oxd) gene in the 5'-flanking region of the nitrile hydratase-amidase gene cluster in the photoreactive iron-type nitrile hydratase-producer, Rhodococcus sp. N-771. The enzyme showed 96.3%, 77.6%, and 30.4% identities with the Oxds of Rhodococcus globerulus A-4, Pseudomonas chlororaphis B23, and Bacillus sp. OxB-1, respectively. The enzyme was expressed in Escherichia coli under the control of the lac- or T7 promoters in its intact and His6-tagged forms, purified, and characterized. The enzyme had heme b as a prosthetic group, catalyzed a stoichiometric dehydration of aldoxime into nitrile, and exhibited the highest activity at neutral pH and at around 30 degrees C similar to the known Oxd from Bacillus sp. OxB-1. The activity was enhanced by reducing agents, such as Na2S, Na2S2(O4), 2-mercaptoethanol, and L-cysteine and supplementary additions of electron acceptors such as flavins, sulfite ion, and vitamin K3. The effect of various chemicals on the enzyme activity was different in the presence and absence of the reducing reagent, Na2S. The enzyme preferentially acts on aliphatic-type substrates and the substrate specificity of the enzyme coincides with that reported for nitrile hydratase produced by the strain.
Collapse
Affiliation(s)
- Yasuo Kato
- Biotechnology Research Center, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Kosugi, Toyama 939-0398, Japan
| | | | | | | |
Collapse
|
48
|
Oinuma KI, Kumita H, Ohta T, Konishi K, Hashimoto Y, Higashibata H, Kitagawa T, Shiro Y, Kobayashi M. Stopped-flow spectrophotometric and resonance Raman analyses of aldoxime dehydratase involved in carbon-nitrogen triple bond synthesis. FEBS Lett 2005; 579:1394-8. [PMID: 15733847 DOI: 10.1016/j.febslet.2005.01.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2004] [Revised: 12/28/2004] [Accepted: 01/17/2005] [Indexed: 10/25/2022]
Abstract
On stopped-flow analysis of aliphatic aldoxime dehydratase (OxdA), a novel hemoprotein, a spectrum derived from a reaction intermediate was detected on mixing ferrous OxdA with butyraldoxime; it gradually changed into that of ferrous OxdA with an isosbestic point at 421 nm. The spectral change on the addition of butyraldoxime to the ferrous H320A mutant showed the formation of a substrate-coordinated mutant, the absorption spectrum of which closely resembled that of the above intermediate. These observations and the resonance Raman investigation revealed that the substrate actually binds to the heme in OxdA, forming a hexa-coordinate low-spin heme.
Collapse
Affiliation(s)
- Ken-Ichi Oinuma
- Institute of Applied Biochemistry and Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Hashimoto Y, Hosaka H, Oinuma KI, Goda M, Higashibata H, Kobayashi M. Nitrile pathway involving acyl-CoA synthetase: overall metabolic gene organization and purification and characterization of the enzyme. J Biol Chem 2005; 280:8660-7. [PMID: 15632196 DOI: 10.1074/jbc.m405686200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two open reading frames (nhpS and acsA) were identified immediately downstream of the previously described Pseudomonas chlororaphis B23 nitrile hydratase (NHase) gene cluster (encoding aldoxime dehydratase, amidase, the two NHase subunits, and an uncharacterized protein). The amino acid sequence deduced from acsA shows similarity to that of acyl-CoA synthetase (AcsA). The acsA gene product expressed in Escherichia coli showed acyl-CoA synthetase activity toward butyric acid and CoA as substrates, with butyryl-CoA being synthesized. From the E. coli transformant, AcsA was purified to homogeneity and characterized. The quality of the recombinant protein was verified by the NH2-terminal amino acid sequence and the results of matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The apparent Km values for butyric acid, CoA, and ATP were 0.32 +/- 0.04, 0.37 +/- 0.02, and 0.22 +/- 0.02 mm, respectively. AcsA was shown to be a short-chain acyl-CoA synthetase, according to the catalytic efficiencies (kcat/Km) for various acids. The substrate specificity of AcsA was similar to those of aldoxime dehydratase, NHase, and amidase, the genes of which coexist in the same orientation in the gene cluster. P. chlororaphis B23 grew when cultured in a medium containing butyraldoxime as the sole carbon and nitrogen source. The activities of aldoxime dehydratase, NHase, and amidase were detected together with that of acyl-CoA synthetase under the culture conditions used. Moreover, on culture in a medium containing butyric acid as the sole carbon source, acyl-CoA synthetase activity was also detected. Together with the adjacent locations of the aldoxime dehydratase, NHase, amidase, and acyl-CoA synthetase genes, these findings suggest that the four enzymes are sequentially correlated with one another in vivo to utilize butyraldoxime as a carbon and nitrogen source. This is the first report of an overall "nitrile pathway" (aldoxime-->nitrile-->amide-->acid-->acyl-CoA) comprising these enzymes.
Collapse
Affiliation(s)
- Yoshiteru Hashimoto
- Institute of Applied Biochemistry, and Graduate School of Life and Environmental Sciences, The University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Konishi K, Ishida K, Oinuma KI, Ohta T, Hashimoto Y, Higashibata H, Kitagawa T, Kobayashi M. Identification of Crucial Histidines Involved in Carbon-Nitrogen Triple Bond Synthesis by Aldoxime Dehydratase. J Biol Chem 2004; 279:47619-25. [PMID: 15339918 DOI: 10.1074/jbc.m407223200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aldoxime dehydratase (OxdA), which is a novel heme protein, catalyzes the dehydration of an aldoxime to a nitrile even in the presence of water in the reaction mixture. The combination of site-directed mutagenesis of OxdA (mutation of all conserved histidines in the aldoxime dehydratase superfamily), estimation of the heme contents and specific activities of the mutants, and CD and resonance Raman spectroscopic analyses led to the identification of the proximal and distal histidines in this unique enzyme. The heme contents and CD spectra in the far-UV region of all mutants except for the H299A one were almost identical to those of the wild-type OxdA, whereas the H299A mutant lost the ability of binding heme, demonstrating that His(299) is the proximal histidine. On the other hand, substitution of alanine for His(320) did not affect the overall structure of OxdA but caused loss of its ability of carbon-nitrogen triple bond synthesis and a lower shift of the Fe-C stretching band in the resonance Raman spectrum for the CO-bound form. Furthermore, the pH dependence of the wild-type OxdA closely followed the His protonation curves observed for other proteins. These findings suggest that His(320) is located in the distal heme pocket of OxdA and would donate a proton to the substrate in the aldoxime dehydration mechanism.
Collapse
Affiliation(s)
- Kazunobu Konishi
- Institute of Applied Biochemistry, and Graduate School of Life and Environmental Sciences, The University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | | | | | | | | | |
Collapse
|