1
|
Manikandan R, Gollapalli SK, Shreya G, Basagoudanavar S, Sreenivasa BP, Dubey S, Bhanuprakash V, Sanyal A, Mahapatra M, Parida S, Hosamani M. Mapping novel antigenic determinants on foot-and-mouth disease virus serotype Asia 1 using neutralising monoclonal antibody resistant mutants. Virology 2025; 604:110421. [PMID: 39889477 DOI: 10.1016/j.virol.2025.110421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
Foot-and-mouth disease (FMD) is a severe and, highly contagious viral disease caused by FMD virus (FMDV) that primarily targets ungulates. Identifying neutralising antigenic sites on the virus is crucial for understanding the virus's antigenic characteristics. Numerous studies have pinpointed the critical residues of the neutralising antigenic sites in FMDV serotypes O, A, and C. However, information on serotype Asia 1 is very limited. This study reports the generation and characterization of forty-one monoclonal antibodies (mAbs) against FMDV serotype Asia 1 (current Indian vaccine strain). Of these, a panel of 23 neutralising mAbs was utilized to generate mAb resistant (MAR) mutants for mapping the virus's antigenic sites. New critical residues defining sites 1, 2, and 4 in FMDV serotype Asia 1 were identified. These findings significantly enhance our understanding of the antigenic nature of FMDV serotype Asia 1, and provide insights to designing broadly acting vaccines against FMD.
Collapse
Affiliation(s)
- Rajendran Manikandan
- ICAR-Indian Veterinary Research Institute, Hebbal campus, Bengaluru, 560024, Karnataka, India
| | | | - Gopinath Shreya
- ICAR-Indian Veterinary Research Institute, Hebbal campus, Bengaluru, 560024, Karnataka, India
| | - Suresh Basagoudanavar
- ICAR-Indian Veterinary Research Institute, Hebbal campus, Bengaluru, 560024, Karnataka, India
| | - B P Sreenivasa
- ICAR-Indian Veterinary Research Institute, Hebbal campus, Bengaluru, 560024, Karnataka, India
| | - Samriddhi Dubey
- ICAR-Indian Veterinary Research Institute, Hebbal campus, Bengaluru, 560024, Karnataka, India
| | - V Bhanuprakash
- ICAR-Indian Veterinary Research Institute, Hebbal campus, Bengaluru, 560024, Karnataka, India
| | - Aniket Sanyal
- ICAR-Indian Veterinary Research Institute, Hebbal campus, Bengaluru, 560024, Karnataka, India; ICAR-National Institute of High Security Animal Diseases, Bhopal, 462021, India
| | - Mana Mahapatra
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, United Kingdom
| | - Satya Parida
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, United Kingdom; Food and Agriculture Organization of the United Nations (FAO), Viale delle Terme di Caracalla, 00153, Rome, Italy
| | - Madhusudan Hosamani
- ICAR-Indian Veterinary Research Institute, Hebbal campus, Bengaluru, 560024, Karnataka, India.
| |
Collapse
|
2
|
Rahman MA, Zereen F, Rana ML, Hossain MG, Shimada M, Saha S. Foot-and-mouth disease in Asia. Virus Res 2025; 351:199514. [PMID: 39689813 PMCID: PMC11770323 DOI: 10.1016/j.virusres.2024.199514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 12/19/2024]
Abstract
Foot-and-mouth disease (FMD) is a highly contagious transboundary disease prevalent across the Asian continent, affecting both wild and domestic artiodactyls. The disease is caused by a virus belonging to the Aphthovirus genus of the Picornaviridae family which is categorized into seven serotypes: C, O, A, SAT1, SAT2, SAT3, and Asia1. The virus spreads through direct and indirect contact, including semen, meat, fomites, ingestion, and aerosols. FMD has a severe economic impact due to the high morbidity and mortality, especially in young animals. Prevention of the disease relies on vaccination with the prevalent serotype(s) or the slaughter and destruction of affected animals. This review discusses the prevalence of various FMD virus (FMDV) serotypes across Asia, along with the transmission modes, pathogenesis, immune response, and immune suppression by FMDV. Additionally, the review explores FMD diagnosis, prevention, and control strategies, and highlights future opportunities for research aimed at developing strain-specific viral and bacterial combined vaccines.
Collapse
Affiliation(s)
- Md Abdur Rahman
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh; Gono Bishwabidyalay, Dhaka, Bangladesh
| | - Farah Zereen
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh; Gono Bishwabidyalay, Dhaka, Bangladesh
| | - Md Liton Rana
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Md Golzar Hossain
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh.
| | - Masaru Shimada
- Department of Molecular Biodefense Research, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan.
| | - Sukumar Saha
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh.
| |
Collapse
|
3
|
Li Z, Ma Y, Nan X, Dong H, Tang J, Yin S, Sun S, Bao E, Guo H. Production of virus-like particles of FMDV by 3C protease cleaving precursor polyprotein P1 in vitro. Appl Microbiol Biotechnol 2024; 108:542. [PMID: 39718572 DOI: 10.1007/s00253-024-13376-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/01/2024] [Accepted: 12/04/2024] [Indexed: 12/25/2024]
Abstract
Nonstructural protein 3C, a master protease of Picornaviridae, plays a critical role in viral replication by directly cleaving the viral precursor polyprotein to form the viral capsid protein and antagonizing the host antiviral response. Additionally, 3C protease, as a tool enzyme, is involved in regulating polyprotein expression. Here, the 3C mutant gene (3Cm), fused with a small ubiquitin-like modifier (SUMO) tag at the N-terminal and featuring a mutation at position 127, was inserted into the cold-shock plasmid pCold of Escherichia coli for expression. Meanwhile, the P1-∆2A plasmid was constructed for expression in Pichia pastoris. The expressions of 3C protein and P1 precursor protein were confirmed by polymerase chain reaction (PCR), polyacrylamide gel electrophoresis (SDS-PAGE), and western blot (WB) analysis. The results showed that the wild-type 3C protease is toxic to the host, not only inhibiting protein expression but also inducing the degradation of the host. Moreover, mutation of the 127th amino acid from leucine (L) to proline (P) on the β-ribbon of 3C enhanced the overexpression capacity of 3C in E. coli while maintaining enzymatic activity. Subsequently, 100 µg P1 protein was utilized as a substrate to investigate the cleavage efficiency of 3C protease at various concentrations, temperatures, durations, and pH levels. The results showed that the target protein was cleaved when the protease reached 8 μg. We also found that the presence of the N-terminal SUMO tag did not affect the cleavage activity of 3Cm. The optimal cleavage activity was observed between 25 and 37 °C, with the peak cleavage efficiency of 89% at 30 °C for 2 h. More than 50% of the substrate was degraded within 1 h at 30 °C. Its optimal pH range is between 7 and 8. Remarkably, the P1 protein, cleaved by 3Cm protease, can further form virus-like particles (VLPs) in vitro. KEY POINTS: • Expression and purification of toxic protein 3C protease in E. coli • Cleavage efficiency assessment of 3C protease at various temperatures, durations, and pH • Assembly of virus-like particles of FMDV by cleaving the precursor polyprotein in vitro.
Collapse
Affiliation(s)
- Zhiyao Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Yuqing Ma
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Xu Nan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Hu Dong
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Jianli Tang
- Carter Immunology Center, University of Virginia, Charlottesville, VA, 22903, USA
| | - Shuanghui Yin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Shiqi Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Endong Bao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China.
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China.
| |
Collapse
|
4
|
Li Q, Wubshet AK, Wang Y, Heath L, Zhang J. B and T Cell Epitopes of the Incursionary Foot-and-Mouth Disease Virus Serotype SAT2 for Vaccine Development. Viruses 2023; 15:v15030797. [PMID: 36992505 PMCID: PMC10059872 DOI: 10.3390/v15030797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 03/31/2023] Open
Abstract
Failure of cross-protection among interserotypes and intratypes of foot-and-mouth disease virus (FMDV) is a big threat to endemic countries and their prevention and control strategies. However, insights into practices relating to the development of a multi-epitope vaccine appear as a best alternative approach to alleviate the cross-protection-associated problems. In order to facilitate the development of such a vaccine design approach, identification and prediction of the antigenic B and T cell epitopes along with determining the level of immunogenicity are essential bioinformatics steps. These steps are well applied in Eurasian serotypes, but very rare in South African Territories (SAT) Types, particularly in serotype SAT2. For this reason, the available scattered immunogenic information on SAT2 epitopes needs to be organized and clearly understood. Therefore, in this review, we compiled relevant bioinformatic reports about B and T cell epitopes of the incursionary SAT2 FMDV and the promising experimental demonstrations of such designed and developed vaccines against this serotype.
Collapse
Affiliation(s)
- Qian Li
- Key Laboratory of Veterinary Etiological Biology, National/WOAH Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Ashenafi Kiros Wubshet
- Key Laboratory of Veterinary Etiological Biology, National/WOAH Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- Department of Veterinary Basics and Diagnostic Sciences, College of Veterinary Science, Mekelle University, Mekelle 2084, Tigray, Ethiopia
| | - Yang Wang
- Key Laboratory of Veterinary Etiological Biology, National/WOAH Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Livio Heath
- Transboundary Animal Diseases: Vaccine Production Programme, Onderstepoort Veterinary Research Institute, Agricultural Research Council, Pretoria 0110, South Africa
| | - Jie Zhang
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| |
Collapse
|
5
|
Yang L, Chen H, Liu L, Song J, Feng T, Li Y, Shen C, Kong L, Xin X. Foot-and-mouth disease virus VP1 promotes viral replication by regulating the expression of chemokines and GBP1. Front Vet Sci 2022; 9:937409. [PMID: 35937300 PMCID: PMC9353127 DOI: 10.3389/fvets.2022.937409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) is an acute, highly contagious, and economically destructive pathogen of vesicular disease that affects domestic and wild cloven-hoofed animals. The FMDV VP1 protein is an important part of the nucleocapsid and plays a significant role during FMDV infection. However, the signal pathways mediated by VP1 in the life cycle of FMDV and the related mechanisms are not yet fully understood. Here, we performed RNA-seq to compare gene expression profiles between pCAGGS-HA-VP1 transfected PK-15 cells and pCAGGS-HA (empty vector) transfected PK-15 cells. The results showed 5,571 genes with significantly different expression levels, of which 2,981 were up-regulated and 2,590 were down-regulated. GO enrichment analysis showed that 51 GO terms were significantly enriched in cell components including protein complex, membrane and organelle part. KEGG enrichment analysis showed 11 KEGG pathways were significantly enriched which were mainly related to the immune system, infectious viral disease, and signal transduction. Among the up-regulated genes, the chemokines such as CCL5, CXCL8, and CXCL10 in turn promoted FMDV replication. In contrast, GBP1, an interferon-stimulated gene that was suppressed by VP1 and FMDV, could effectively inhibit FMDV replication. Our research provides a comprehensive overview of the response of host cells to VP1 protein and a basis for further research to understand the roles of VP1 in FMDV infection including the genes involved in FMDV replication.
Collapse
Affiliation(s)
- Li Yang
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang, China
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Hong Chen
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang, China
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Liqing Liu
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang, China
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Jingjing Song
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang, China
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Tian Feng
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang, China
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Yihan Li
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang, China
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Chao Shen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lingbao Kong
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang, China
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Xiu Xin
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang, China
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
- *Correspondence: Xiu Xin
| |
Collapse
|
6
|
Truong TN, Cheng LT. Development of a Subunit Vaccine against Duck Hepatitis A Virus Serotype 3. Vaccines (Basel) 2022; 10:vaccines10040523. [PMID: 35455272 PMCID: PMC9028120 DOI: 10.3390/vaccines10040523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023] Open
Abstract
In this study, we sought to develop a subunit vaccine against the increasingly prevalent Duck hepatitis A virus serotype 3 (DHAV-3). The VP1 protein of DHAV-3 and a truncated version containing the C-terminal region of VP1, termed VP1-C, were expressed recombinantly in Escherichia coli as vaccine antigens. For enhanced immune response, a truncated version of flagellin, nFliC, was included as vaccine adjuvant. Ducklings were vaccinated once for immune response analysis and challenge test. Results showed that VP1-C elicited a higher level of virus-specific antibody response and neutralization titer than VP1. The addition of nFliC further enhanced the antibody response. In terms of cellular immune response, the VP1-C + nFliC vaccine elicited the highest level of T cell proliferation among the vaccine formulations tested. Examination of the cytokine expression profile showed that peripheral blood mononuclear cells from the VP1-C + nFliC vaccine group expressed the highest levels of pro-inflammatory (IL-6) and TH-1 type (IL-12 and IFN-γ) cytokines. Finally, in a DHAV-3 challenge test, the VP1-C + nFliC vaccine provided a 75% protection rate (n = 8), in contrast to 25% for the VP1 vaccine. In conclusion, E. coli-expressed VP1-C has been shown to be a promising antigen when combined with nFliC and may be further developed as a single-dose subunit vaccine against DHAV-3.
Collapse
Affiliation(s)
- Trang-Nhu Truong
- International Degree Program of Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan;
- Institute of Veterinary Research and Development in Central Vietnam, Km 4, Road 2/4, Vinh Hoa, Nha Trang City 57000, Vietnam
| | - Li-Ting Cheng
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan
- Correspondence: ; Tel.: +886-8-770-3202 (ext. 5336); Fax: +886-8-7740178
| |
Collapse
|
7
|
Caridi F, Cañas-Arranz R, Vázquez-Calvo Á, de León P, Calderón KI, Domingo E, Sobrino F, Martín-Acebes MA. Adaptive value of foot-and-mouth disease virus capsid substitutions with opposite effects on particle acid stability. Sci Rep 2021; 11:23494. [PMID: 34873184 PMCID: PMC8648728 DOI: 10.1038/s41598-021-02757-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/15/2021] [Indexed: 11/09/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) is a picornavirus that exhibits an extremely acid sensitive capsid. This acid lability is directly related to its mechanism of uncoating triggered by acidification inside cellular endosomes. Using a collection of FMDV mutants we have systematically analyzed the relationship between acid stability and the requirement for acidic endosomes using ammonium chloride (NH4Cl), an inhibitor of endosome acidification. A FMDV mutant carrying two substitutions with opposite effects on acid-stability (VP3 A116V that reduces acid stability, and VP1 N17D that increases acid stability) displayed a rapid shift towards acid lability that resulted in increased resistance to NH4Cl as well as to concanamicyn A, a different lysosomotropic agent. This resistance could be explained by a higher ability of the mutant populations to produce NH4Cl-resistant variants, as supported by their tendency to accumulate mutations related to NH4Cl-resistance that was higher than that of the WT populations. Competition experiments also indicated that the combination of both amino acid substitutions promoted an increase of viral fitness that likely contributed to NH4Cl resistance. This study provides novel evidences supporting that the combination of mutations in a viral capsid can result in compensatory effects that lead to fitness gain, and facilitate space to an inhibitor of acid-dependent uncoating. Thus, although drug-resistant variants usually exhibit a reduction in viral fitness, our results indicate that compensatory mutations that restore this reduction in fitness can promote emergence of resistance mutants.
Collapse
Affiliation(s)
- Flavia Caridi
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049, Madrid, Spain
| | | | | | - Patricia de León
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049, Madrid, Spain
| | | | - Esteban Domingo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049, Madrid, Spain
| | - Francisco Sobrino
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049, Madrid, Spain.
| | - Miguel A Martín-Acebes
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), 28040, Madrid, Spain
| |
Collapse
|
8
|
Two Cross-Protective Antigen Sites on Foot-and-Mouth Disease Virus Serotype O Structurally Revealed by Broadly Neutralizing Antibodies from Cattle. J Virol 2021; 95:e0088121. [PMID: 34406868 DOI: 10.1128/jvi.00881-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) is a highly contagious virus that infects cloven-hoofed animals. Neutralizing antibodies play critical roles in antiviral infection. Although five known antigen sites that induce neutralizing antibodies have been defined, studies on cross-protective antigen sites are still scarce. We mapped two cross-protective antigen sites using 13 bovine-derived broadly neutralizing monoclonal antibodies (bnAbs) capable of neutralizing 4 lineages within 3 topotypes of FMDV serotype O. One antigen site was formed by a novel cluster of VP3-focused epitopes recognized by bnAb C4 and C4-like antibodies. The cryo-electron microscopy (cryo-EM) structure of the FMDV-OTi (O/Tibet/99)-C4 complex showed close contact with VP3 and a novel interprotomer antigen epitope around the icosahedral 3-fold axis of the FMDV particle, which is far beyond the known antigen site 4. The key determinants of the neutralizing function of C4 and C4-like antibodies on the capsid were βB (T65), the B-C loop (T68), the E-F loop (E131 and K134), and the H-I loop (G196), revealing a novel antigen site on VP3. The other antigen site comprised two group epitopes on VP2 recognized by 9 bnAbs (B57, B73, B77, B82, F28, F145, F150, E46, and E54), which belong to the known antigen site 2 of FMDV serotype O. Notably, bnAb C4 potently promoted FMDV RNA release in response to damage to viral particles, suggesting that the targeted epitope contains a trigger mechanism for particle disassembly. This study revealed two cross-protective antigen sites that can elicit cross-reactive neutralizing antibodies in cattle and provided new structural information for the design of a broad-spectrum molecular vaccine against FMDV serotype O. IMPORTANCE FMDV is the causative agent of foot-and-mouth disease (FMD), which is one of the most contagious and economically devastating diseases of domestic animals. The antigenic structure of FMDV serotype O is rather complicated, especially for those sites that can elicit a cross-protective neutralizing antibody response. Monoclonal neutralization antibodies provide both crucial defense components against FMDV infection and valuable tools for fine analysis of the antigenic structure. In this study, we found a cluster of novel VP3-focused epitopes using 13 bnAbs against FMDV serotype O from natural host cattle, which revealed two cross-protective antigen sites on VP2 and VP3. Antibody C4 targeting this novel epitope potently promoted viral particle disassembly and RNA release before infection, which may indicate a vulnerable region of FMDV. This study reveals new structural information about cross-protective antigen sites of FMDV serotype O, providing valuable and strong support for future research on broad-spectrum vaccines against FMD.
Collapse
|
9
|
Structures of foot-and-mouth disease virus with bovine neutralizing antibodies reveal the determinant of intra-serotype cross-neutralization. J Virol 2021; 95:e0130821. [PMID: 34586859 DOI: 10.1128/jvi.01308-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) exhibits broad antigenic diversity with poor intra-serotype cross-neutralizing activity. Studies of the determinant involved in this diversity are essential for the development of broadly protective vaccines. In this work, we isolated a bovine antibody, designated R55, that displays cross-reaction with both FMDV A/AF/72 (hereafter named FMDV-AAF) and FMDV A/WH/09 (hereafter named FMDV-AWH) but only has a neutralizing effect on FMDV-AWH. Near-atomic resolution structures of FMDV-AAF-R55 and FMDV-AWH-R55 show that R55 engages the capsids of both FMDV-AAF and FMDV-AWH near the icosahedral threefold axis and binds to the βB and BC/HI-loops of VP2 and to the B-B knob of VP3. The common interaction residues are highly conserved, which is the major determinant for cross-reaction with both FMDV-AAF and FMDV-AWH. In addition, the cryo-EM structure of the FMDV-AWH-R55 complex also shows that R55 binds to VP3E70 located at the VP3 BC-loop in an adjacent pentamer, which enhances the acid and thermal stabilities of the viral capsid. This may prevent capsid dissociation and genome release into host cells, eventually leading to neutralization of the viral infection. In contrast, R55 binds only to the FMDV-AAF capsid within one pentamer due to the VP3E70G variation, which neither enhances capsid stability nor neutralizes FMDV-AAF infection. The VP3E70G mutation is the major determinant involved in the neutralizing differences between FMDV-AWH and FMDV-AAF. The crucial amino acid VP3E70 is a key component of the neutralizing epitopes, which may aid in the development of broadly protective vaccines. Importance Foot-and-mouth disease virus (FMDV) causes a highly contagious and economically devastating disease in cloven-hoofed animals, and neutralizing antibodies play critical roles in the defense against viral infections. Here, we isolated a bovine antibody (R55) using the single B cell antibody isolation technique. Enzyme-linked immunosorbent assays (ELISA) and virus neutralization tests (VNT) showed that R55 displays cross-reactions with both FMDV-AWH and FMDV-AAF but only has a neutralizing effect on FMDV-AWH. Cryo-EM structures, fluorescence-based thermal stability assays and acid stability assays showed that R55 engages the capsid of FMDV-AWH near the icosahedral threefold axis and informs an interpentamer epitope, which overstabilizes virions to hinder capsid dissociation to release the genome, eventually leading to neutralization of viral infection. The crucial amino acid VP3E70 forms a key component of neutralizing epitopes, and the determination of the VP3E70G mutation involved in the neutralizing differences between FMDV-AWH and FMDV-AAF could aid in the development of broadly protective vaccines.
Collapse
|
10
|
Antigenicity and Immunogenicity Analysis of the E. coli Expressed FMDV Structural Proteins; VP1, VP0, VP3 of the South African Territories Type 2 Virus. Viruses 2021; 13:v13061005. [PMID: 34072100 PMCID: PMC8227194 DOI: 10.3390/v13061005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 11/24/2022] Open
Abstract
An alternative vaccine design approach and diagnostic kits are highly required against the anticipated pandemicity caused by the South African Territories type 2 (SAT2) Foot and Mouth Disease Virus (FMDV). However, the distinct antigenicity and immunogenicity of VP1, VP0, and VP3 of FMDV serotype SAT2 are poorly understood. Similarly, the particular roles of the three structural proteins in novel vaccine design and development remain unexplained. We therefore constructed VP1, VP0, and VP3 encoding gene (SAT2:JX014256 strain) separately fused with His-SUMO (histidine-small ubiquitin-related modifier) inserted into pET-32a cassette to express the three recombinant proteins and separately evaluated their antigenicity and immunogenicity in mice. The fusion protein was successfully expressed and purified by the Ni-NTA resin chromatography. The level of serum antibody, spleen lymphocyte proliferation, and cytokines against the three distinct recombinant proteins were analyzed. Results showed that the anti-FMDV humoral response was triggered by these proteins, and the fusion proteins did enhance the splenocyte immune response in the separately immunized mice. We observed low variations among the three fusion proteins in terms of the antibody and cytokine production in mice. Hence, in this study, results demonstrated that the structural proteins of SAT2 FMDV could be used for the development of immunodiagnostic kits and subunit vaccine designs.
Collapse
|
11
|
Forner M, Cañas-Arranz R, Defaus S, de León P, Rodríguez-Pulido M, Ganges L, Blanco E, Sobrino F, Andreu D. Peptide-Based Vaccines: Foot-and-Mouth Disease Virus, a Paradigm in Animal Health. Vaccines (Basel) 2021; 9:vaccines9050477. [PMID: 34066901 PMCID: PMC8150788 DOI: 10.3390/vaccines9050477] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/19/2021] [Accepted: 05/02/2021] [Indexed: 02/07/2023] Open
Abstract
Vaccines are considered one of the greatest global health achievements, improving the welfare of society by saving lives and substantially reducing the burden of infectious diseases. However, few vaccines are fully effective, for reasons ranging from intrinsic limitations to more contingent shortcomings related, e.g., to cold chain transport, handling and storage. In this context, subunit vaccines where the essential antigenic traits (but not the entire pathogen) are presented in rationally designed fashion have emerged as an attractive alternative to conventional ones. In particular, this includes the option of fully synthetic peptide vaccines able to mimic well-defined B- and T-cell epitopes from the infectious agent and to induce protection against it. Although, in general, linear peptides have been associated to low immunogenicity and partial protection, there are several strategies to address such issues. In this review, we report the progress towards the development of peptide-based vaccines against foot-and-mouth disease (FMD) a highly transmissible, economically devastating animal disease. Starting from preliminary experiments using single linear B-cell epitopes, recent research has led to more complex and successful second-generation vaccines featuring peptide dendrimers containing multiple copies of B- and T-cell epitopes against FMD virus or classical swine fever virus (CSFV). The usefulness of this strategy to prevent other animal and human diseases is discussed.
Collapse
Affiliation(s)
- Mar Forner
- Departament de Ciències Experimentals i de la Salut (DCEXS-UPF), 08003 Barcelona, Spain; (M.F.); (S.D.)
| | - Rodrigo Cañas-Arranz
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain; (R.C.-A.); (P.d.L.); (M.R.-P.)
| | - Sira Defaus
- Departament de Ciències Experimentals i de la Salut (DCEXS-UPF), 08003 Barcelona, Spain; (M.F.); (S.D.)
| | - Patricia de León
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain; (R.C.-A.); (P.d.L.); (M.R.-P.)
| | - Miguel Rodríguez-Pulido
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain; (R.C.-A.); (P.d.L.); (M.R.-P.)
| | - Llilianne Ganges
- Centre de Recerca en Sanitat Animal (CReSA), OIE Reference Laboratory for Classical Swine Fever, Institute of Agrifood Research and Technology, 08193 Barcelona, Spain;
| | - Esther Blanco
- Centro de Investigación en Sanidad Animal (CISA-INIA), 28130 Valdeolmos, Spain;
| | - Francisco Sobrino
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain; (R.C.-A.); (P.d.L.); (M.R.-P.)
- Correspondence: (F.S.); (D.A.)
| | - David Andreu
- Departament de Ciències Experimentals i de la Salut (DCEXS-UPF), 08003 Barcelona, Spain; (M.F.); (S.D.)
- Correspondence: (F.S.); (D.A.)
| |
Collapse
|
12
|
Qiu J, Qiu T, Dong Q, Xu D, Wang X, Zhang Q, Pan J, Liu Q. Predicting the Antigenic Relationship of Foot-and-Mouth Disease Virus for Vaccine Selection Through a Computational Model. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:677-685. [PMID: 31217127 DOI: 10.1109/tcbb.2019.2923396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Foot-and-mouth disease virus (FMDV) is an antigenic-variable RNA virus that is responsible for the recurrence of foot-and-mouth disease in livestock and can be prevented and controlled using a vaccine with broad-spectrum protection. Current anti-genicity evaluation methods, which involve animal immunity experiments and serum preparation, are unable to fulfill the needs of high-throughput antigenicity measurements. This study designed an antigenicity scoring model to rapidly predict the antigenicity of FMDV. Antigenic-dominant sites were initially determined on the VP1 protein, a position-specific scoring matrix and physical chemical indexes were integrated to generate antigenicity descriptors. Independent tests showed a high accuracy of 0.848 and an AUC value of 0.889, indicating the good performance of the model in antigenicity measurement. When applying this model to historical data, annual antigenicity coverage of widely used vaccine strains was successfully evaluated, this was also supported by previous experiments. Furthermore, the utility of this model was extended to select potential broad-spectrum vaccines among 1,201 historical non-redundant strains to recommend potential univalent, bivalent and trivalent vaccine candidates. The results suggested that the computational model designed in this study could be used for the high-throughput antigenicity measurement of FMDV and could aid in vaccine development for preventing FMDV epidemics.
Collapse
|
13
|
Xiao Y, Zhang S, Yan H, Geng X, Wang Y, Xu X, Wang M, Zhang H, Huang B, Pang W, Yang M, Tian K. The High Immunity Induced by the Virus-Like Particles of Foot-and-Mouth Disease Virus Serotype O. Front Vet Sci 2021; 8:633706. [PMID: 33718472 PMCID: PMC7947224 DOI: 10.3389/fvets.2021.633706] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/20/2021] [Indexed: 11/13/2022] Open
Abstract
Foot-and-mouth disease (FMD), caused by FMD virus (FMDV), is a highly contagious and economically devastating viral disease of cloven-hoofed animals worldwide. In this study, the coexpression of small ubiquitin-like modifier (SUMO)–fused capsid proteins of FMDV serotype O by single plasmid in Escherichia coli was achieved with an optimal tandem permutation (VP0–VP3–VP1), showing a protein yield close to 1:1:1. After SUMO removal at a low level of protease activity (5 units), the assembled FMDV virus-like particles (VLPs) could expose multiple epitopes and have a size similar to the naive FMDV. Immunization of pigs with the FMDV VLPs could induce FMDV-specific humoral and cellular immune responses effectively, in a dose-dependent manner. These data suggested that the stable FMDV VLPs with multiple epitope exposure were effective for the induction of an immune response in pigs, which laid a foundation for the further development of the FMDV subunit vaccine.
Collapse
Affiliation(s)
- Yan Xiao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,National Research Center for Veterinary Medicine, Luoyang, China
| | - Suling Zhang
- National Research Center for Veterinary Medicine, Luoyang, China
| | - He Yan
- National Research Center for Veterinary Medicine, Luoyang, China
| | - Xiaolin Geng
- National Research Center for Veterinary Medicine, Luoyang, China
| | - Yanwei Wang
- National Research Center for Veterinary Medicine, Luoyang, China
| | - Xin Xu
- National Research Center for Veterinary Medicine, Luoyang, China
| | - Mengyue Wang
- National Research Center for Veterinary Medicine, Luoyang, China
| | - Haohao Zhang
- National Research Center for Veterinary Medicine, Luoyang, China
| | - Baicheng Huang
- National Research Center for Veterinary Medicine, Luoyang, China
| | - Wenqiang Pang
- National Research Center for Veterinary Medicine, Luoyang, China
| | - Ming Yang
- National Centre for Foreign Animal Disease, Winnipeg, MB, Canada
| | - Kegong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,National Research Center for Veterinary Medicine, Luoyang, China
| |
Collapse
|
14
|
Xu W, Yang M. Genetic variation and evolution of foot-and-mouth disease virus serotype A in relation to vaccine matching. Vaccine 2021; 39:1420-1427. [PMID: 33526282 DOI: 10.1016/j.vaccine.2021.01.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 11/27/2022]
Abstract
Foot-and-mouth disease (FMD) is a severe, highly contagious viral disease that affects a wide variety of domestic and wild cloven-hoofed animals. FMD vaccines can play a vital role in disease control and are very widely used globally each year. However, due to the diversity of FMDV, the choice of FMD vaccine is still a huge challenge. In this study, 45 FMDV/A isolates were phylogenetically categorized into three topotypes: ASIA (n = 31), AFRICA (n = 10), and EURO-SA (n = 4). Three sera collected from vaccinated cattle with FMDV A22/IRQ/24/64, A/IRN/05, and A/ARG/01 were used to evaluate their antigenic relationship (r1) with the field isolates. The IRQ/24/64 serum demonstrated a 39% (17/44) match (r1 ≥ 0.3) to the field isolates, whereas IRN/05 serum and ARG/01serum showed an 18% (8/44) and a 2% (1/44) match (r1 ≥ 0.3) to the field isolates, respectively. The A22/IRQ/24/64 matched with isolates mainly from topotype ASIA, with limited cross-topotype match with isolates from topotypes AFRICA and EURO-SA. However, the A/IRN/05 did not show a cross-topotype match with topotype AFRICA isolates and A/ARG/01 failed to match any isolates from topotypes ASIA and AFRICA. After analyzing the amino acid variation of the known antigenic sites of 45 strains of FMDV/A, it was found that together antigenic sites 1 and 3 contributed about 71% of the amino acid changes to the vaccine evaluated. Based on the capsid sequences, the FMDV/A evolved unequally among topotypes. The topotypes of ASIA and AFRICA evolves faster than that of EURO-SA. The FMDV/A continues to show a high level of genetic diversity driven by a high substitution rate, purifying selection, and positive selection concentrated on antigenic sites or near antigenic sites. The current research shows the challenges of the FMDV/A vaccine selection and emphasizes the importance of continuous monitoring of antigenic evolution for the selection of effective vaccines.
Collapse
Affiliation(s)
- Wanhong Xu
- National Centre for Foreign Animal Disease, 1015 Arlington Street, Winnipeg, Manitoba R3E 3M4, Canada
| | - Ming Yang
- National Centre for Foreign Animal Disease, 1015 Arlington Street, Winnipeg, Manitoba R3E 3M4, Canada.
| |
Collapse
|
15
|
Paton DJ, Di Nardo A, Knowles NJ, Wadsworth J, Pituco EM, Cosivi O, Rivera AM, Kassimi LB, Brocchi E, de Clercq K, Carrillo C, Maree FF, Singh RK, Vosloo W, Park MK, Sumption KJ, Ludi AB, King DP. The history of foot-and-mouth disease virus serotype C: the first known extinct serotype? Virus Evol 2021; 7:veab009. [PMID: 35186323 PMCID: PMC8102019 DOI: 10.1093/ve/veab009] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023] Open
Abstract
Foot-and-mouth disease (FMD) is a highly contagious animal disease caused by an RNA virus subdivided into seven serotypes that are unevenly distributed in Asia, Africa, and South America. Despite the challenges of controlling FMD, since 1996 there have been only two outbreaks attributed to serotype C, in Brazil and in Kenya, in 2004. This article describes the historical distribution and origins of serotype C and its disappearance. The serotype was first described in Europe in the 1920s, where it mainly affected pigs and cattle but as a less common cause of outbreaks than serotypes O and A. No serotype C outbreaks have been reported in Europe since vaccination stopped in 1990. FMD virus is presumed to have been introduced into South America from Europe in the nineteenth century, although whether serotype C evolved there or in Europe is not known. As in Europe, this serotype was less widely distributed and caused fewer outbreaks than serotypes O and A. Since 1994, serotype C had not been reported from South America until four small outbreaks were detected in the Amazon region in 2004. Elsewhere, serotype C was introduced to Asia, in the 1950s to the 1970s, persisting and evolving for several decades in the Indian subcontinent and for eighteen years in the Philippines. Serotype C virus also circulated in East Africa between 1957 and 2004. Many serotype C viruses from European and Kenyan outbreaks were closely related to vaccine strains, including the most recently recovered Kenyan isolate from 2004. International surveillance has not confirmed any serotype C cases, worldwide, for over 15 years, despite more than 2,000 clinical submissions per year to reference laboratories. Serology provides limited evidence for absence of this serotype, as unequivocal interpretation is hampered by incomplete intra-serotype specificity of immunoassays and the continued use of this serotype in vaccines. It is recommended to continue strengthening surveillance in regions of FMD endemicity, to stop vaccination against serotype C and to reduce working with the virus in laboratories, since inadvertent escape of virus during such activities is now the biggest risk for its reappearance in the field.
Collapse
Affiliation(s)
- David J Paton
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK
| | | | - Nick J Knowles
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK
| | - Jemma Wadsworth
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK
| | - Edviges M Pituco
- Pan American Foot-and-Mouth Disease and Veterinary Public Health Center, Pan American Health Organization/World Health Organization (PANAFTOSA/VPH-PAHO/WHO), Rio de Janeiro, Brazil
| | - Ottorino Cosivi
- Pan American Foot-and-Mouth Disease and Veterinary Public Health Center, Pan American Health Organization/World Health Organization (PANAFTOSA/VPH-PAHO/WHO), Rio de Janeiro, Brazil
| | - Alejandro M Rivera
- Pan American Foot-and-Mouth Disease and Veterinary Public Health Center, Pan American Health Organization/World Health Organization (PANAFTOSA/VPH-PAHO/WHO), Rio de Janeiro, Brazil
| | - Labib Bakkali Kassimi
- Animal Health Laboratory, UMR1161 Virology, INRAE, ANSES, ENVA, Paris-Est University, Maisons-Alfort 94700, France
| | - Emiliana Brocchi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), Via Bianchi, 9. 25124 Brescia, Italy
| | - Kris de Clercq
- Sciensano, Infectious Diseases in Animals, Ukkel 1180, Belgium
| | - Consuelo Carrillo
- Diagnostic Services of the Foreign Animal Disease Diagnostic Laboratories, NVSL-VS-APHIS (USDA), Greenport, NY 11944, USA
| | - Francois F Maree
- Transboundary Animal Diseases, Vaccine and Diagnostic Development Programme, Onderstepoort Veterinary Research Institute, Agricultural Research Council, Onderstepoort, Pretoria 0110, South Africa
| | - Raj K Singh
- ICAR-Directorate of Foot-and-Mouth Disease, Uttarakhand, Mukteswar 263138, India
| | - Wilna Vosloo
- Australian Animal Health Laboratory, CSIRO Health and Biosecurity, Geelong, Australia
| | - Min-Kyung Park
- Status Department, World Organisation for Animal Health (OIE), Paris 75017, France
| | - Keith J Sumption
- European Commission for the Control of Foot-and-Mouth Disease, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, Rome 00153, Italy
| | - Anna B Ludi
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK
| | - Donald P King
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK
| |
Collapse
|
16
|
Grazioli S, Ferris NP, Dho G, Pezzoni G, Morris AS, Mioulet V, Brocchi E. Development and validation of a simplified serotyping ELISA based on monoclonal antibodies for the diagnosis of foot-and-mouth disease virus serotypes O, A, C and Asia 1. Transbound Emerg Dis 2020; 67:3005-3015. [PMID: 32530134 DOI: 10.1111/tbed.13677] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/13/2020] [Accepted: 06/01/2020] [Indexed: 12/31/2022]
Abstract
This study describes the development and validation of a simplified enzyme-linked immunosorbent assay (ELISA) for the detection and discrimination of foot-and-mouth disease virus (FMDV) serotypes O, A, C and Asia 1. The multiplex ELISA was designed using selected, type-specific monoclonal antibodies (MAbs) coated onto ELISA plates as catching antibodies and a unique pan-FMDV MAb (1F10) as detector conjugate. Capture MAbs with the broadest intratypic reactivity were selected for each of the four FMDV serotypes by screening large panels of candidate MAbs with a wide spectrum of representative FMDV isolates. An additional pan-FMDV ELISA using 1F10 MAb for both capture and detection was used to complement the specific typing ELISAs to detect virus isolates, which might escape binding to the selected serotype-specific MAbs. This multiplex ELISA was prepared in a stabilized format, with immunoplates pre-coated with six MAbs and positive antigen controls already trapped by the relevant MAb, with the view to make available a diagnostic kit. Diagnostic performance of the MAbs-multiplex ELISA was analysed using 299 FMDV-positive epithelial suspensions representative of the antigenic and genomic variability within each serotype. Overall, the results provided evidence that the diagnostic performance of this assay platform is improved compared to the more complex polyclonal-based antigen detection ELISA; combining data from different serotypes and referring to the gold standard tests (i.e. virus isolation and/or RT-PCR), the MAbs-multiplex ELISA showed a sensitivity of 79% for the serotype-specific ELISA, compared to 72% for the polyclonal ELISA. The absence of reactivity of a minority of FMDV strains using the MAbs-multiplex ELISA can largely be attributed to deteriorated or low antigen concentration in the sample. This multiplex ELISA is simple, rapid and stable. FMDV antigenic diversity was adequately covered by the selected MAbs. Therefore, it can be used to replace existing polyclonal ELISAs for FMDV detection and serotyping.
Collapse
Affiliation(s)
- Santina Grazioli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Brescia, Italy
| | | | - Giovanna Dho
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Brescia, Italy
| | - Giulia Pezzoni
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Brescia, Italy
| | | | | | - Emiliana Brocchi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Brescia, Italy
| |
Collapse
|
17
|
Asfor AS, Howe N, Grazioli S, Berryman S, Parekh K, Wilsden G, Ludi A, King DP, Parida S, Brocchi E, Tuthill TJ. Detection of Bovine Antibodies against a Conserved Capsid Epitope as the Basis of a Novel Universal Serological Test for Foot-and-Mouth Disease. J Clin Microbiol 2020; 58:e01527-19. [PMID: 32188689 PMCID: PMC7269384 DOI: 10.1128/jcm.01527-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 03/06/2020] [Indexed: 02/01/2023] Open
Abstract
Diagnostic tests for foot-and-mouth disease (FMD) include the detection of antibodies against either the viral nonstructural proteins or the capsid. The detection of antibodies against the structural proteins (SP) of the capsid can be used to monitor seroconversion in both infected and vaccinated animals. However, SP tests need to be tailored to the individual FMD virus (FMDV) serotype and their sensitivity may be affected by antigenic variability within each serotype and mismatching between test reagents. As a consequence, FMD reference laboratories are required to maintain multiple type-specific SP assays and reagents. A universal SP test would simplify frontline diagnostics and facilitate large-scale serological surveillance and postvaccination monitoring. In this study, a highly conserved region in the N terminus of FMDV capsid protein VP2 (VP2N) was characterized using a panel of intertype-reactive monoclonal antibodies. This revealed a universal epitope in VP2N which could be used as a peptide antigen to detect FMDV-specific antibodies against all types of the virus. A VP2-peptide enzyme-linked immunosorbent assay (VP2-ELISA) was optimized using experimental and reference antisera from immunized, convalescent, and naïve animals (n = 172). The VP2-ELISA is universal and simple and provided sensitive (99%) and specific (93%) detection of antibodies to all FMDV strains used in this study. We anticipate that this SP test could have utility for serosurveillance during virus incursions in FMD-free countries and as an additional screening tool to assess FMD virus circulation in countries where the disease is endemic.
Collapse
Affiliation(s)
- A S Asfor
- The Pirbright Institute, Woking, United Kingdom
| | - N Howe
- The Pirbright Institute, Woking, United Kingdom
| | - S Grazioli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy
| | - S Berryman
- The Pirbright Institute, Woking, United Kingdom
| | - K Parekh
- The Pirbright Institute, Woking, United Kingdom
| | - G Wilsden
- The Pirbright Institute, Woking, United Kingdom
| | - A Ludi
- The Pirbright Institute, Woking, United Kingdom
| | - D P King
- The Pirbright Institute, Woking, United Kingdom
| | - S Parida
- The Pirbright Institute, Woking, United Kingdom
| | - E Brocchi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy
| | - T J Tuthill
- The Pirbright Institute, Woking, United Kingdom
| |
Collapse
|
18
|
Elmenofy W, Mohamed I, El-Gaied L, Salem R, Osman G, Ibrahim M. Expression of 1B capsid protein of Foot-and-mouth disease virus (FMDV) using baculovirus expression system and its validation in detecting SAT 2- specific antisera. PeerJ 2020; 8:e8946. [PMID: 32341896 PMCID: PMC7182021 DOI: 10.7717/peerj.8946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/19/2020] [Indexed: 12/28/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) is one of the most devastating animal viruses that affect livestock worldwide. The 1B capsid of FMDV has been widely used to detect and confirm the infection. In the present study, the sequence coding for 1B subunit of FMDV capsid was expressed in insect cells using the baculovirus expression system under the polyhedrin (polh) promoter. The expression of 1B capsid protein was validated in the culture filtrate of insect cells using SDS-PAGE and western blotting. The culture filtrate containing recombinant 1B capsid (r1B) was used as a coated antigen in an indirect enzyme-linked immunosorbent assay (ELISA). The antigenicity and specificity of r1B against SAT 2 serotype-specific antibodies were assessed. Our results revealed that a protein concentration as low as 25 ng could detect SAT 2-specific antibodies in ELISA. The results highlight the application of insect cells developed r1B protein in the detection of FMDV. Further studies are required to determine the ability of r1B to detect other FMDV serotypes.
Collapse
Affiliation(s)
- Wael Elmenofy
- Agricultural Genetic Engineering Research Institute (AGERI), ARC, Giza, Egypt
| | - Ismail Mohamed
- Agricultural Genetic Engineering Research Institute (AGERI), ARC, Giza, Egypt
| | - Lamiaa El-Gaied
- Agricultural Genetic Engineering Research Institute (AGERI), ARC, Giza, Egypt
| | - Reda Salem
- Agricultural Genetic Engineering Research Institute (AGERI), ARC, Giza, Egypt
| | - Gamal Osman
- Agricultural Genetic Engineering Research Institute (AGERI), ARC, Giza, Egypt
- Department of Biology, Umm Al-Qura University, Makkah, Makkah, Saudi Arabia
- Research Laboratories Center, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohamed Ibrahim
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
19
|
Avendaño C, Celis-Giraldo C, Ordoñez D, Díaz-Arévalo D, Rodríguez-Habibe I, Oviedo J, Curtidor H, García-Castiblanco S, Martínez-Panqueva F, Camargo-Castañeda A, Reyes C, Bohórquez MD, Vanegas M, Cantor D, Patarroyo ME, Patarroyo MA. Evaluating the immunogenicity of chemically-synthesised peptides derived from foot-and-mouth disease VP1, VP2 and VP3 proteins as vaccine candidates. Vaccine 2020; 38:3942-3951. [PMID: 32307277 DOI: 10.1016/j.vaccine.2020.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 11/25/2022]
Abstract
Foot-and-mouth disease (FMD) is one of the most contagious veterinary viral diseases known, having economic, social and potentially devastating environmental impacts. The vaccines currently being marketed/sold around the world for disease control and prevention in bovines do not stimulate the production of antibodies having crossed reactions to different serotypes. This means that if an animal becomes infected by a serotype which has not been included in a vaccine then it will develop the disease. Synthetic peptide vaccines represent a safer option and (depending on the design) can stimulate antibodies protecting against different variants. Based on the forgoing, this work was aimed at evaluating FMDV VP1, VP2 and VP3 protein-derived, modified and chemically-synthesised peptides' ability to induce an immune response for developing a vaccine contributing towards controlling the disease. VP1, VP2 and VP3 proteins' conserved regions were selected for this. Peptides from these regions were chemically synthesised; binding assays were then carried out for ascertaining whether they were involved in BHK-21 cell binding. Selected peptides' structure and location were studied. Peptides which did bind were modified and formulated with Montanide ISA 70 adjuvant; 17 animals were immunised twice with the formulation. The animals were genotyped by amplifying the BoLA-DRB3.2 gene. Blood samples were taken from 17 cattle on day 43 post-first immunisation for studying the formulation's immunogenicity. The sera were used in ELISA, immunofluorescence, flow cytometry, immunoadsorption and seroneutralisation assays. The A24 Cruzeiro and O1 Campos virus serotypes were used for these assays. The results revealed that even though protein exposure and 3D structure might be different amongst serotypes, the antibodies so produced could inhibit virus entry to cells, thereby showing the selected peptides' in vitro protection-inducing ability.
Collapse
Affiliation(s)
- Catalina Avendaño
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá, Colombia
| | - Carmen Celis-Giraldo
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá, Colombia
| | - Diego Ordoñez
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá, Colombia
| | - Diana Díaz-Arévalo
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia; Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Ibett Rodríguez-Habibe
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá, Colombia
| | - Jairo Oviedo
- Dirección Técnica de Análisis y Diagnóstico Veterinario. Instituto Colombiano Agropecuario (ICA), Bogotá, Colombia
| | - Hernando Curtidor
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | | | - Fredy Martínez-Panqueva
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá, Colombia
| | - Andrea Camargo-Castañeda
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá, Colombia
| | - César Reyes
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Michel D Bohórquez
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia; Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Magnolia Vanegas
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Daniela Cantor
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá, Colombia
| | - Manuel E Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia; Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Manuel A Patarroyo
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia; Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.
| |
Collapse
|
20
|
Wang H, Xin X, Zheng C, Shen C. Single-Cell Analysis of Foot-and-Mouth Disease Virus. Front Microbiol 2020; 11:361. [PMID: 32194538 PMCID: PMC7066083 DOI: 10.3389/fmicb.2020.00361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 02/18/2020] [Indexed: 11/25/2022] Open
Abstract
With the rapid development of single-cell technologies, the mechanisms underlying viral infections and the interactions between hosts and viruses are starting to be explored at the single-cell level. The foot-and-mouth-disease (FMD) virus (FMDV) causes an acute and persistent infection that can result in the break-out of FMD, which can have serious effects on animal husbandry. Single-cell techniques have emerged as powerful approaches to analyze virus infection at the resolution of individual cells. In this review, the existing single-cell studies examining FMDV will be systematically summarized, and the central themes of these studies will be presented.
Collapse
Affiliation(s)
- Hailong Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiu Xin
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Congyi Zheng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- China Center for Type Culture Collection, Wuhan University, Wuhan, China
| | - Chao Shen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- China Center for Type Culture Collection, Wuhan University, Wuhan, China
| |
Collapse
|
21
|
Negatively charged amino acids at the foot-and-mouth disease virus capsid reduce the virion-destabilizing effect of viral RNA at acidic pH. Sci Rep 2020; 10:1657. [PMID: 32015411 PMCID: PMC6997383 DOI: 10.1038/s41598-020-58414-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/24/2019] [Indexed: 11/10/2022] Open
Abstract
Elucidation of the molecular basis of the stability of foot-and-mouth disease virus (FMDV) particles is relevant to understand key aspects of the virus cycle. Residue N17D in VP1, located at the capsid inner surface, modulates the resistance of FMDV virion to dissociation and inactivation at acidic pH. Here we have studied whether the virion-stabilizing effect of amino acid substitution VP1 N17D may be mediated by the alteration of electrostatic charge at this position and/or the presence of the viral RNA. Substitutions that either introduced a positive charge (R,K) or preserved neutrality (A) at position VP1 17 led to increased sensitivity of virions to inactivation at acidic pH, while replacement by negatively charged residues (D,E) increased the resistance of virions to acidic pH. The role in virion stability of viral RNA was addressed using FMDV empty capsids that have a virtually unchanged structure compared to the capsid in the RNA-filled virion, but that are considerably more resistant to acidic pH than WT virions, supporting a virion-destabilizing effect of the RNA. Remarkably, no differences were observed in the resistance to dissociation at acidic pH between the WT empty capsids and those harboring replacement N17D. Thus, the virion-destabilizing effect of viral RNA at acidic pH can be partially restored by introducing negatively charged residues at position VP1 N17.
Collapse
|
22
|
Abstract
Viral population numbers are extremely large compared with those of their host species. Population bottlenecks are frequent during the life cycle of viruses and can reduce viral populations transiently to very few individuals. Viruses have to confront several types of constraints that can be divided into basal, cell-dependent, and organism-dependent constraints. Viruses overcome them exploiting a number of molecular mechanisms, with an important contribution of population numbers and genome variation. The adaptive potential of viruses is reflected in modifications of cell tropism and host range, escape to components of the host immune response, and capacity to alternate among different host species, among other phenotypic changes. Despite a fitness cost of most mutations required to overcome a selective constraint, viruses can find evolutionary pathways that ensure their survival in equilibrium with their hosts.
Collapse
|
23
|
Domingo E. Long-term virus evolution in nature. VIRUS AS POPULATIONS 2020. [PMCID: PMC7153321 DOI: 10.1016/b978-0-12-816331-3.00007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Viruses spread to give rise to epidemics and pandemics, and some key parameters that include virus and host population numbers determine virus persistence or extinction in nature. Viruses evolve at different rates depending on the polymerase copying fidelity during genome replication and a number of environmental influences. Calculated rates of evolution in nature vary depending on the time interval between virus isolations. In particular, intrahost evolution is generally more rapid that interhost evolution, and several possible mechanisms for this difference are considered. The mechanisms by which the error-prone viruses evolve are very unlikely to render the operation of a molecular clock (constant rate of incorporation of mutations in the evolving genomes), although a clock is assumed in many calculations. Several computational tools permit the alignment of viral sequences and the establishment of phylogenetic relationships among viruses. The evolution of the virus in the form of dynamic mutant clouds in each infected individual, together with multiple environmental parameters renders the emergence and reemergence of viral pathogens an unpredictable event, another facet of biological complexity.
Collapse
|
24
|
Evolutionary conserved compositional structures hidden in genomes of the foot-and-mouth disease virus and of the human rhinovirus. Sci Rep 2019; 9:16553. [PMID: 31719605 PMCID: PMC6851159 DOI: 10.1038/s41598-019-53013-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/25/2019] [Indexed: 11/08/2022] Open
Abstract
Picornaviridae family includes several viruses of great economic and medical importance. Among all members of the family we focused our attention on the human rhinovirus, the most important etiologic agent of the common cold and on the foot-and-mouth disease virus that cause of an economically important disease in cattle. Despite the low sequence similarity of the polyprotein coding open reading frames of these highly divergent picornaviruses, they have in common structural and functional similarities including a similar genomic organization, a capsid structure composed of 60 copies of four different proteins, or 3D-structures showing similar general topology, among others. We hypothesized that such similarities could be reflected in emergent common compositional structures interspersed in their genomes which were not observed heretofore. Using a methodology categorizing nucleotide triplets by their gross-composition we have found two human rhinoviruses sharing compositional structures interspersed along their genomic RNA with three foot-and-mouth disease viruses. The shared compositional structures are in one case composed by nucleotide triplets containing all nearest-neighbours of A and G and in other case containing all nearest-neighbours of A, and C. The structures are under strong evolutionary constraints for variability, allowing the access to novel viral genomic motifs with likely biological relevance. The conserved fragments would be useful to predict critical mutation points sites important from the evolutionary point of view.
Collapse
|
25
|
Cifuente JO, Moratorio G. Evolutionary and Structural Overview of Human Picornavirus Capsid Antibody Evasion. Front Cell Infect Microbiol 2019; 9:283. [PMID: 31482072 PMCID: PMC6710328 DOI: 10.3389/fcimb.2019.00283] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/24/2019] [Indexed: 11/13/2022] Open
Abstract
Picornaviruses constitute one of the most relevant viral groups according to their impact on human and animal health. Etiologic agents of a broad spectrum of illnesses with a clinical presentation that ranges from asymptomatic to fatal disease, they have been the cause of uncountable epidemics throughout history. Picornaviruses are small naked RNA-positive single-stranded viruses that include some of the most important pillars in the development of virology, comprising poliovirus, rhinovirus, and hepatitis A virus. Picornavirus infectious particles use the fecal-oral or respiratory routes as primary modes of transmission. In this regard, successful viral spread relies on the capability of viral capsids to (i) shelter the viral genome, (ii) display molecular determinants for cell receptor recognition, (iii) facilitate efficient genome delivery, and (iv) escape from the immune system. Importantly, picornaviruses display a substantial amount of genetic variability driven by both mutation and recombination. Therefore, the outcome of their replication results in the emergence of a genetically diverse cloud of individuals presenting phenotypic variance. The host humoral response against the capsid protein represents the most active immune pressure and primary weapon to control the infection. Since the preservation of the capsid function is deeply rooted in the virus evolutionary dynamics, here we review the current structural evidence focused on capsid antibody evasion mechanisms from that perspective.
Collapse
Affiliation(s)
| | - Gonzalo Moratorio
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.,Laboratorio de Inmunovirología, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
26
|
Salem R, El-Kholy AA, Omar OA, Abu El-Naga MN, Ibrahim M, Osman G. Construction, Expression and Evaluation of Recombinant VP2 Protein for serotype-independent Detection of FMDV Seropositive Animals in Egypt. Sci Rep 2019; 9:10135. [PMID: 31300744 PMCID: PMC6626030 DOI: 10.1038/s41598-019-46596-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 06/25/2019] [Indexed: 12/15/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) is one of the most devastating viral pathogens of cloven-hoofed animals. The detection of antibodies (Ab) against FMDV structural proteins (SP) using virus neutralization test (VNT) and liquid-phase blocking ELISA (LPBE) is the standard procedure in use for monitoring seroconversion in animals post vaccination, the prevalence of infection-surveillance, proving clinical cases and seronegative status of FMDV-free/naïve-animals prior transportation. However, due to variations within SP of FMDV serotypes, each serotype-specific Ab should be detected separately which is laborious and time-consuming. Accordingly, it is crucial to develop a sensitive, rapid, and accurate test capable of detecting FMDV-specific Ab, regardless its serotype. This study describes the heterologous expression of VP2 protein in E. coli, and its evaluation as a capture antigen in a simple indirect ELISA for serotype-independent detection of anti-FMDV Ab. Sequence analysis revealed that the VP2-coding sequence is considerably conserved among FMDV serotypes. The recombinant VP2 (rVP2), a 22 kDa polypeptide, was purified to near homogeneity by affinity chromatography under native conditions. Immunoreactivity of the rVP2 was confirmed by using a panel of positive sera including sera from animals vaccinated with the local trivalent vaccine and guinea pig FMDV antiserum, which is routinely used as tracing/detecting Ab in LPBE testing. The results obtained from the VP2-based ELISA were comparable to those determined by VNT and LPBE standard diagnostic assays. Specificity and sensitivity of rVP2 in capturing anti-FMDV Ab were 98.3% and 100%, respectively. The developed VP2-ELISA is proved reliable and time-efficient assay for detection of FMDV seropositive animals, regardless the FMDV serotype that can be implemented in a combination with VNT and/or LPBE for rapid diagnosis of an ongoing FMDV infection.
Collapse
Affiliation(s)
- Reda Salem
- Agricultural Genetic Engineering Research Institute (AGERI), ARC, 12619, Giza, Egypt.
| | - Alaa A El-Kholy
- Veterinary Sera and Vaccines Research Institute (VSVRI), ARC, Abbassia, Cairo, Egypt
| | - Omar A Omar
- Agricultural Genetic Engineering Research Institute (AGERI), ARC, 12619, Giza, Egypt
| | - Mohamed N Abu El-Naga
- Radiation microbiology department, National Center for Radiation Research and Technology, Atomic Energy Authority, 11787, Cairo, Egypt
| | - Mohamed Ibrahim
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX, 75083, USA
| | - Gamal Osman
- Agricultural Genetic Engineering Research Institute (AGERI), ARC, 12619, Giza, Egypt. .,Biology Department, Faculty of Science, Umm-Al-Qura University, Mecca, 673, Saudi Arabia. .,Research Laboratories Center, Faculty of Applied Science, Umm Al-Qura University, Mecca, Saudi Arabia.
| |
Collapse
|
27
|
Salem R, El-Kholy AA, Ibrahim M. Eight novel single chain antibody fragments recognising VP2 of foot-and-mouth disease virus serotypes A, O, and SAT 2. Virology 2019; 533:145-154. [PMID: 31170612 DOI: 10.1016/j.virol.2019.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 11/26/2022]
Abstract
Foot-and-mouth disease virus (FMDV) exhibits a high degree of antigenic diversity among its serotypes, requiring several anti-FMDV antibodies for its laboratory diagnosis, which complicated the used techniques. To conquer this cumbersome, we developed a new panel of different single-chain fragment variable (scFv) for serotype-independent detection of FMDV. The recombinant VP2 capsid protein, as a relatively conserved protein among FMDV serotypes, was expressed in E. Coli, and injected in mice. Spleen's RNA was extracted for isolating the coding sequences of IgG variable domains that were assembled into repertoires of scFv. Phage library displaying scFv was constructed with ∼1.9 × 108 plaque forming units. Characterization of the library showed eight of unique scFvs, which were expressed as bacterial periplasmic proteins with apparent molecular weight of ∼27 kDa. Our data revealed the broad-spectrum binding affinity of the eight scFvs as both coating and tracing antibodies to FMDV serotypes A, O, and SAT 2.
Collapse
Affiliation(s)
- Reda Salem
- Agricultural Genetic Engineering Research Institute (AGERI), ARC, 12619, Giza, Egypt.
| | - Alaa A El-Kholy
- Veterinary Sera and Vaccines Research Institute (VSVRI), ARC, Abbassia, P.O. Box # 131,11381, Cairo, Egypt
| | - Mohamed Ibrahim
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX, 75083, USA
| |
Collapse
|
28
|
López-Argüello S, Rincón V, Rodríguez-Huete A, Martínez-Salas E, Belsham GJ, Valbuena A, Mateu MG. Thermostability of the Foot-and-Mouth Disease Virus Capsid Is Modulated by Lethal and Viability-Restoring Compensatory Amino Acid Substitutions. J Virol 2019; 93:e02293-18. [PMID: 30867300 PMCID: PMC6498042 DOI: 10.1128/jvi.02293-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/01/2019] [Indexed: 11/20/2022] Open
Abstract
Infection by viruses depends on a balance between capsid stability and dynamics. This study investigated biologically and biotechnologically relevant aspects of the relationship in foot-and-mouth disease virus (FMDV) between capsid structure and thermostability and between thermostability and infectivity. In the FMDV capsid, a substantial number of amino acid side chains at the interfaces between pentameric subunits are charged at neutral pH. Here a mutational analysis revealed that the essential role for virus infection of most of the 8 tested charged groups is not related to substantial changes in capsid protein expression or processing or in capsid assembly or stability against a thermally induced dissociation into pentamers. However, the positively charged side chains of R2018 and H3141, located at the interpentamer interfaces close to the capsid 2-fold symmetry axes, were found to be critical both for virus infectivity and for keeping the capsid in a state of weak thermostability. A charge-restoring substitution (N2019H) that was repeatedly fixed during amplification of viral genomes carrying deleterious mutations reverted both the lethal and capsid-stabilizing effects of the substitution H3141A, leading to a double mutant virus with close to normal infectivity and thermolability. H3141A and other thermostabilizing substitutions had no detectable effect on capsid resistance to acid-induced dissociation into pentamers. The results suggest that FMDV infectivity requires limited local stability around the 2-fold axes at the interpentamer interfaces of the capsid. The implications for the mechanism of genome uncoating in FMDV and the development of thermostabilized vaccines against foot-and-mouth disease are discussed.IMPORTANCE This study provides novel insights into the little-known structural determinants of the balance between thermal stability and instability in the capsid of foot-and-mouth disease virus and into the relationship between capsid stability and virus infectivity. The results provide new guidelines for the development of thermostabilized empty capsid-based recombinant vaccines against foot-and-mouth disease, one of the economically most important animal diseases worldwide.
Collapse
Affiliation(s)
- Silvia López-Argüello
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Verónica Rincón
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Alicia Rodríguez-Huete
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Graham J Belsham
- National Veterinary Institute, Technical University of Denmark, Kalvehave, Denmark
| | - Alejandro Valbuena
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Mauricio G Mateu
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
29
|
Mahapatra M, Upadhyaya S, Parida S. Identification of novel epitopes in serotype O foot-and-mouth disease virus by in vitro immune selection. J Gen Virol 2019; 100:804-811. [PMID: 30990405 DOI: 10.1099/jgv.0.001259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) displays various epitopes on the capsid outer surface. In addition to the five neutralizing antigenic sites, there is evidence of the existence of other, yet unidentified, epitopes that are believed to play a role in antibody-mediated protection. Previous attempts to identify these epitopes revealed two additional substitutions at positions VP2-74 and -191 (5M2/5 virus) to be of antigenic significance. However, complete resistance to neutralization was not obtained in the neutralization assay, indicating the existence of other, undisclosed epitopes. Results from this study provides evidence of at least two new neutralizing epitopes involving residues VP3-116 and -195 around the threefold axis that have significant impact on the antigenic nature of the virus. These findings extend our knowledge of the surface features of the FMDV capsid known to elicit neutralizing antibodies, and should help with rational vaccine design.
Collapse
Affiliation(s)
- Mana Mahapatra
- The Pirbright Institute, Ash Road, Woking, Surrey, GU24 0NF, UK
| | | | - Satya Parida
- The Pirbright Institute, Ash Road, Woking, Surrey, GU24 0NF, UK
| |
Collapse
|
30
|
Sahu TK, Pradhan D, Rao AR, Jena L. In silico site-directed mutagenesis of neutralizing mAb 4C4 and analysis of its interaction with G-H loop of VP1 to explore its therapeutic applications against FMD. J Biomol Struct Dyn 2018; 37:2641-2651. [PMID: 30051760 DOI: 10.1080/07391102.2018.1494631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Investigating the behaviour of bio-molecules through computational mutagenesis is gaining interest to facilitate the development of new therapeutic solutions for infectious diseases. The antigenetically variant genotypes of foot and mouth disease virus (FMDV) and their subsequent infections are challenging to tackle with traditional vaccination. In such scenario, neutralizing antibodies might provide an alternate solution to manage the FMDV infection. Thus, we have analysed the interaction of the mAb 4C4 with a synthetic G-H loop of FMDV-VP1 through in silico mutagenesis and molecular modelling. Initially, a set of 25,434 mutants were designed and the mutants having better energetic stability than 4C4 were clustered based on sequence identity. The best mutant representing each cluster was selected and evaluated for its binding affinity with the antigen in terms of docking scores, interaction energy and binding energy. Six mutants have confirmed better binding affinities towards the antigen than 4C4. Further, interaction of these mutants with the natural G-H loop that is bound to mAb SD6 was also evaluated. One 4C4 variant having mutations at the positions 2034(N→L), 2096(N→C), 2098(D→Y), 2532(T→K) and 2599(A→G) has revealed better binding affinities towards both the synthetic and natural G-H loops than 4C4 and SD6, respectively. A molecular dynamic simulation for 50 ns was conducted for mutant and wild-type antibody structures which supported the pre-simulation results. Therefore, these mutations on mAb 4C4 are believed to provide a better antibody-based therapeutic option for FMD. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Tanmaya Kumar Sahu
- a Centre for Agricultural Bioinformatics , ICAR-Indian Agricultural Statistics Research Institute , New Delhi , Delhi , India
| | - Dibyabhaba Pradhan
- b Biomedical Informatics Centre , ICMR-National Institute of Pathology , New Delhi , Delhi , India.,c ICMR-Computational Genomics Centre , Indian Council of Medical Research , New Delhi , Delhi , India
| | - Atmakuri Ramakrishna Rao
- a Centre for Agricultural Bioinformatics , ICAR-Indian Agricultural Statistics Research Institute , New Delhi , Delhi , India
| | - Lingaraj Jena
- d Bioinformatics Centre , Mahatma Gandhi Institute of Medical Sciences , Sevagram , Maharashtra , India
| |
Collapse
|
31
|
Mahapatra M, Parida S. Foot and mouth disease vaccine strain selection: current approaches and future perspectives. Expert Rev Vaccines 2018; 17:577-591. [PMID: 29950121 DOI: 10.1080/14760584.2018.1492378] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Lack of cross protection between foot and mouth disease (FMD) virus (FMDV) serotypes as well as incomplete protection between some subtypes of FMDV affect the application of vaccine in the field. Further, the emergence of new variant FMD viruses periodically makes the existing vaccine inefficient. Consequently, periodical vaccine strain selection either by in vivo methods or in vitro methods become an essential requirement to enable utilization of appropriate and efficient vaccines. AREAS COVERED Here we describe the cross reactivity of the existing vaccines with the global pool of circulating viruses and the putative selected vaccine strains for targeting protection against the two major circulating serotype O and A FMD viruses for East Africa, the Middle East, South Asia and South East Asia. EXPERT COMMENTARY Although in vivo cross protection studies are more appropriate methods for vaccine matching and selection than in vitro neutralization test or ELISA, in the face of an outbreak both in vivo and in vitro methods of vaccine matching are not easy, and time consuming. The FMDV capsid contains all the immunogenic epitopes, and therefore vaccine strain prediction models using both capsid sequence and serology data will likely replace existing tools in the future.
Collapse
|
32
|
Xu W, Zhang Z, Nfon C, Yang M. Genetic and antigenic relationship of foot–and–mouth disease virus serotype O isolates with the vaccine strain O1/BFS. Vaccine 2018; 36:3802-3808. [DOI: 10.1016/j.vaccine.2018.05.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/30/2018] [Accepted: 05/07/2018] [Indexed: 11/25/2022]
|
33
|
Ali W, Habib M, Khan RSA, Zia MA, Farooq M, Sajid S, Shah MSUD. Molecular investigation of foot-and-mouth disease virus circulating in Pakistan during 2014-17. Arch Virol 2018. [DOI: 10.1007/s00705-018-3775-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Yuan H, Li P, Ma X, Lu Z, Sun P, Bai X, Zhang J, Bao H, Cao Y, Li D, Fu Y, Chen Y, Bai Q, Zhang J, Liu Z. The pH stability of foot-and-mouth disease virus. Virol J 2017; 14:233. [PMID: 29183342 PMCID: PMC5706165 DOI: 10.1186/s12985-017-0897-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 11/15/2017] [Indexed: 01/13/2023] Open
Abstract
ᅟ This review summarized the molecular determinants of the acid stability of FMDV in order to explore the uncoating mechanism of FMDV and improve the acid stability of vaccines. Background The foot-and-mouth disease virus (FMDV) capsid is highly acid labile and tends to dissociate into pentameric subunits at acidic condition to release viral RNA for initiating virus replication. However, the acid stability of virus capsid is greatly required for the maintenance of intact virion during the process of virus culture and vaccine production. The conflict between the acid lability in vivo and acid stability in vitro of FMDV capsid promotes the selection of a series of amino acid substitutions which can confer resistance to acid-induced FMDV inactivation. In order to explore the uncoating activity of FMDV and enhance the acid stability of vaccines, we summarized the available works about the pH stability of FMDV. Main body of the abstract In this review, we analyzed the intrinsic reasons for the acid instability of FMDV from the structural and functional aspects. We also listed all substitutions obtained by different research methods and showed them in the partial capsid of FMDV. We found that a quadrangle region in the viral capsid was the place where a great many pH-sensitive residues were distributed. As the uncoating event of FMDV is dependent on the pH-sensitive amino acid residues in the capsid, this most pH-sensitive position indicates a potential candidate location for RNA delivery triggered by the acid-induced coat disassociation. Short conclusion This review provided an overview of the pH stability of FMDV. The study of pH stability of FMDV not only contributes to the exploration of molecule and mechanism information for FMDV uncoating, but also enlightens the development of FMDV vaccines, including the traditionally inactivated vaccines and the new VLP (virus-like particle) vaccines.
Collapse
Affiliation(s)
- Hong Yuan
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou, Gansu, 730046, People's Republic of China
| | - Pinghua Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou, Gansu, 730046, People's Republic of China.
| | - Xueqing Ma
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou, Gansu, 730046, People's Republic of China
| | - Zengjun Lu
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou, Gansu, 730046, People's Republic of China
| | - Pu Sun
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou, Gansu, 730046, People's Republic of China
| | - Xingwen Bai
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou, Gansu, 730046, People's Republic of China
| | - Jing Zhang
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou, Gansu, 730046, People's Republic of China
| | - Huifang Bao
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou, Gansu, 730046, People's Republic of China
| | - Yimei Cao
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou, Gansu, 730046, People's Republic of China
| | - Dong Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou, Gansu, 730046, People's Republic of China
| | - Yuanfang Fu
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou, Gansu, 730046, People's Republic of China
| | - Yingli Chen
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou, Gansu, 730046, People's Republic of China
| | - Qifeng Bai
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730046, People's Republic of China
| | - Jie Zhang
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou, Gansu, 730046, People's Republic of China.
| | - Zaixin Liu
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou, Gansu, 730046, People's Republic of China.
| |
Collapse
|
35
|
Tully DC, Fares MA. Unravelling Selection Shifts among Foot-and-Mouth Disease virus (FMDV) Serotypes. Evol Bioinform Online 2017. [DOI: 10.1177/117693430600200009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
FMDV virus has been increasingly recognised as the most economically severe animal virus with a remarkable degree of antigenic diversity. Using an integrative evolutionary and computational approach we have compelling evidence for heterogeneity in the selection forces shaping the evolution of the seven different FMDV serotypes. Our results show that positive Darwinian selection has governed the evolution of the major antigenic regions of serotypes A, Asia1, O, SAT1 and SAT2, but not C or SAT3. Co-evolution between sites from antigenic regions under positive selection pinpoints their functional communication to generate immune-escape mutants while maintaining their ability to recognise the host-cell receptors. Neural network and functional divergence analyses strongly point to selection shifts between the different serotypes. Our results suggest that, unlike African FMDV serotypes, serotypes with wide geographical distribution have accumulated compensatory mutations as a strategy to ameliorate the effect of slightly deleterious mutations fixed by genetic drift. This strategy may have provided the virus by a flexibility to generate immune-escape mutants and yet recognise host-cell receptors. African serotypes presented no evidence for compensatory mutations. Our results support heterogeneous selective constraints affecting the different serotypes. This points to the possible accelerated rates of evolution diverging serotypes sharing geographical locations as to ameliorate the competition for the host.
Collapse
Affiliation(s)
- Damien C. Tully
- Molecular Evolution and Bioinformatics Laboratory, Biology Department, National University of Ireland, Maynooth, Co. Kildare, Ireland
- Department of Genetics, Smurfit Institute, University of Dublin, Trinity College, Co. Dublin, Ireland
| | - Mario A. Fares
- Molecular Evolution and Bioinformatics Laboratory, Biology Department, National University of Ireland, Maynooth, Co. Kildare, Ireland
- Department of Genetics, Smurfit Institute, University of Dublin, Trinity College, Co. Dublin, Ireland
| |
Collapse
|
36
|
Malik N, Kotecha A, Gold S, Asfor A, Ren J, Huiskonen JT, Tuthill TJ, Fry EE, Stuart DI. Structures of foot and mouth disease virus pentamers: Insight into capsid dissociation and unexpected pentamer reassociation. PLoS Pathog 2017; 13:e1006607. [PMID: 28937999 PMCID: PMC5656323 DOI: 10.1371/journal.ppat.1006607] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 10/25/2017] [Accepted: 08/24/2017] [Indexed: 01/21/2023] Open
Abstract
Foot-and-mouth disease virus (FMDV) belongs to the Aphthovirus genus of the Picornaviridae, a family of small, icosahedral, non-enveloped, single-stranded RNA viruses. It is a highly infectious pathogen and is one of the biggest hindrances to the international trade of animals and animal products. FMDV capsids (which are unstable below pH6.5) release their genome into the host cell from an acidic compartment, such as that of an endosome, and in the process dissociate into pentamers. Whilst other members of the family (enteroviruses) have been visualized to form an expanded intermediate capsid with holes from which inner capsid proteins (VP4), N-termini (VP1) and RNA can be released, there has been no visualization of any such state for an aphthovirus, instead the capsid appears to simply dissociate into pentamers. Here we present the 8-Å resolution structure of isolated dissociated pentamers of FMDV, lacking VP4. We also found these pentamers to re-associate into a rigid, icosahedrally symmetric assembly, which enabled their structure to be solved at higher resolution (5.2 Å). In this assembly, the pentamers unexpectedly associate 'inside out', but still with their exposed hydrophobic edges buried. Stabilizing interactions occur between the HI loop of VP2 and its symmetry related partners at the icosahedral 3-fold axes, and between the BC and EF loops of VP3 with the VP2 βB-strand and the CD loop at the 2-fold axes. A relatively extensive but subtle structural rearrangement towards the periphery of the dissociated pentamer compared to that in the mature virus provides insight into the mechanism of dissociation of FMDV and the marked difference in antigenicity.
Collapse
Affiliation(s)
- Nayab Malik
- Division of Structural Biology, University of Oxford, Headington, Oxford, United Kingdom
| | - Abhay Kotecha
- Division of Structural Biology, University of Oxford, Headington, Oxford, United Kingdom
| | - Sarah Gold
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Amin Asfor
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Jingshan Ren
- Division of Structural Biology, University of Oxford, Headington, Oxford, United Kingdom
| | - Juha T. Huiskonen
- Division of Structural Biology, University of Oxford, Headington, Oxford, United Kingdom
- Helsinki Institute of Life Science and Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Tobias J. Tuthill
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
- * E-mail: (TJT); (DIS); (EEF)
| | - Elizabeth E. Fry
- Division of Structural Biology, University of Oxford, Headington, Oxford, United Kingdom
- * E-mail: (TJT); (DIS); (EEF)
| | - David I. Stuart
- Division of Structural Biology, University of Oxford, Headington, Oxford, United Kingdom
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, United Kingdom
- * E-mail: (TJT); (DIS); (EEF)
| |
Collapse
|
37
|
Hu NN, Zhang W, Wang L, Wang YZ, Chen CF. Inhibition of viral replication by small interfering RNA targeting of the foot-and-mouth disease virus receptor integrin β6. Exp Ther Med 2017; 14:735-742. [PMID: 28672992 DOI: 10.3892/etm.2017.4560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 03/03/2017] [Indexed: 11/05/2022] Open
Abstract
In animals, foot-and-mouth disease (FMD) causes symptoms such as fever, limping and the development of blister spots on the skin and mucous membranes. RNA interference (RNAi) may be a novel way of controlling the FMD virus (FMDV), specifically by targeting its cognate receptor protein integrin β6. The present study used RNAi technology to construct and screen plasmids that expressed small interfering RNA molecules (siRNAs) specific for the integrin β6 subunit. Expression of green fluorescence protein from the RNAi plasmids was observed following transfection into porcine embryonic fibroblast (PEF) cells, and RNAi plasmids were screened using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis. A fragment (5'AAAGGCCAAGTGGCAAACGGG 3') with marked interference activity was ligated into a PXL-EGFP-NEO integration plasmid and transfected into PEF cells. Transfected cells were selected using G418, and interference of the integrated plasmid was subsequently evaluated by FMDV challenge experiments, in which the levels of viral replication were determined using optical microscopy and RT-qPCR. A total of seven interference plasmids were successfully constructed, including the pGsi-Z4 plasmid, which had a significant interference efficiency of 91.7% in PEF cells (**P<0.01). Upon transfection into PEF cells for 36 h, a Z4 integration plasmid exhibited significant inhibitory effects (**P<0.01) on the integrin β6 subunit. Subsequent challenge experiments in transfected PEF cells also demonstrated that viral replication was reduced by 24.2 and 12.8% after 24 and 36 h, respectively. These data indicate that RNAi technology may inhibit intracellular viral replication in PEF cells by reducing expression of the FMDV receptor integrin β6.
Collapse
Affiliation(s)
- Na-Na Hu
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Wenzhi Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Lina Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Yuan-Zhi Wang
- College of Medicine, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Chuang-Fu Chen
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| |
Collapse
|
38
|
Davies V, Reeve R, Harvey WT, Maree FF, Husmeier D. A sparse hierarchical Bayesian model for detecting relevant antigenic sites in virus evolution. Comput Stat 2017. [DOI: 10.1007/s00180-017-0730-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Kotecha A, Wang Q, Dong X, Ilca SL, Ondiviela M, Zihe R, Seago J, Charleston B, Fry EE, Abrescia NGA, Springer TA, Huiskonen JT, Stuart DI. Rules of engagement between αvβ6 integrin and foot-and-mouth disease virus. Nat Commun 2017; 8:15408. [PMID: 28534487 PMCID: PMC5457520 DOI: 10.1038/ncomms15408] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/26/2017] [Indexed: 11/21/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) mediates cell entry by attachment to an integrin receptor, generally αvβ6, via a conserved arginine-glycine-aspartic acid (RGD) motif in the exposed, antigenic, GH loop of capsid protein VP1. Infection can also occur in tissue culture adapted virus in the absence of integrin via acquired basic mutations interacting with heparin sulphate (HS); this virus is attenuated in natural infections. HS interaction has been visualized at a conserved site in two serotypes suggesting a propensity for sulfated-sugar binding. Here we determined the interaction between αvβ6 and two tissue culture adapted FMDV strains by cryo-electron microscopy. In the preferred mode of engagement, the fully open form of the integrin, hitherto unseen at high resolution, attaches to an extended GH loop via interactions with the RGD motif plus downstream hydrophobic residues. In addition, an N-linked sugar of the integrin attaches to the previously identified HS binding site, suggesting a functional role.
Collapse
Affiliation(s)
- Abhay Kotecha
- Division of Structural Biology, The Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford OX3 7BN, UK
| | - Quan Wang
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xianchi Dong
- Program in Cellular and Molecular Medicine and Division of Hematology, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Serban L. Ilca
- Division of Structural Biology, The Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford OX3 7BN, UK
| | - Marina Ondiviela
- Structural Biology Unit, CIC bioGUNE, CIBERehd, 48160 Derio, Spain
| | - Rao Zihe
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing 100084, China
| | | | | | - Elizabeth E. Fry
- Division of Structural Biology, The Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford OX3 7BN, UK
| | - Nicola G. A. Abrescia
- Structural Biology Unit, CIC bioGUNE, CIBERehd, 48160 Derio, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Timothy A. Springer
- Program in Cellular and Molecular Medicine and Division of Hematology, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Juha T. Huiskonen
- Division of Structural Biology, The Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford OX3 7BN, UK
| | - David I. Stuart
- Division of Structural Biology, The Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford OX3 7BN, UK
- Diamond Light Sources, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| |
Collapse
|
40
|
Preserved immunogenicity of an inactivated vaccine based on foot-and-mouth disease virus particles with improved stability. Vet Microbiol 2017; 203:275-279. [DOI: 10.1016/j.vetmic.2017.03.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 11/22/2022]
|
41
|
Ashkani J, Rees DJG. The Critical Role Of VP1 In Forming The Necessary Cavities For Receptor-mediated Entry Of FMDV To The Host Cell. Sci Rep 2016; 6:27140. [PMID: 27249937 PMCID: PMC4890027 DOI: 10.1038/srep27140] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/16/2016] [Indexed: 01/04/2023] Open
Abstract
The antigenic inconsistency of the foot-and-mouth disease virus (FMDV) is very broad, such that a vaccine made from one isolate will not offer protection against infection with other isolates from the same serotype. Viral particles (VPs) or surface exposed capsid proteins, VP1–VP3, of FMDV determine both the antigenicity of the virus and its receptor-mediated entry into the host cell. Therefore, modifications of these structural proteins may alter the properties of the virus. Here we show putative cavities on the FMDV-SAT1 (FMDV Southern African Territories1) capsid as possible binding sites for the receptor-mediated viral entry into the host cell. We identified three possible cavities on the FMDV capsid surface, from which the largest one (C2) is shaped in the contact regions of VP1–VP3. Our results demonstrate the significance of VP1, in the formation of FMDV-SAT1 surface cavities, which is the main component in all the identified cavities. Our findings can have profound implications in the protein engineering of FMDV in the contact region of VP1–VP3 found to be embedded in several cavities. Such information is of great significance in the context of vaccine design, as it provides the ground for future improvement of synthetic vaccines to control FMD caused by FMDV-SAT1 serotypes.
Collapse
Affiliation(s)
- Jahanshah Ashkani
- Agricultural Research Council, Biotechnology Platform, Private Bag X5, Onderstepoort, 0110, South Africa
| | - D J G Rees
- Agricultural Research Council, Biotechnology Platform, Private Bag X5, Onderstepoort, 0110, South Africa
| |
Collapse
|
42
|
Lian K, Yang F, Zhu Z, Cao W, Jin Y, Liu H, Li D, Zhang K, Guo J, Liu X, Zheng H. The VP1 S154D mutation of type Asia1 foot-and-mouth disease virus enhances viral replication and pathogenicity. INFECTION GENETICS AND EVOLUTION 2016; 39:113-119. [PMID: 26792712 DOI: 10.1016/j.meegid.2016.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/30/2015] [Accepted: 01/11/2016] [Indexed: 12/23/2022]
Abstract
One of the proteins encoded by the foot-and-mouth disease virus (FMDV), the VP1 protein, a capsid protein, plays an important role in integrin receptor attachment and humoral immunity-mediated host responses. The integrin receptor recognition motif and an important antigenic epitope exist within the G-H loop, which is comprised of amino acids 134-160 of the VP1 protein. FMDV strain, Asia1/HN/CHA/06, isolated from a pig, was passaged four times in suckling mice and sequenced. Sequencing analyses showed that there was a mutation of the integrin receptor recognition motif Arg-Gly-Asp/Arg-Asp-Asp (RGD/RDD, VP1 143-145) and a VP1 154 serine/Asp (VP1 S154D) mutation in the G-H loop of the VP1 protein. The influence of the RGD/RDD mutation on Asia1 FMDV disease phenotype has been previously studied. In this study, to determine the influence of the VP1 S154D mutation on FMDV Asia1 replication and pathogenicity, two recombinant FMDVs with different residues only at the VP1 154 site were rescued by reverse genetics techniques and their infectious potential in host cells and pathogenicity in pigs were compared. Our data indicates that the VP1 S154D mutation increases the replication level of FMDV Asia1/HN/CHA/06 in BHK-21, IB-RS-2, and PK-15 cells and enhances pathogenicity in pigs. Through the transient transfection-infection assay to compare integrin receptor usage of two recombinant viruses, the result shows that the VP1 S154D mutation markedly increases the ability of type Asia1 FMDV to use the integrin receptors αυβ6 and αυβ8 from pig. This study identifies a key research target for illuminating the role of residues located at G-H loop in FMDV pathogenicity.
Collapse
Affiliation(s)
- Kaiqi Lian
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fan Yang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zixiang Zhu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Weijun Cao
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ye Jin
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huanan Liu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Dan Li
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Keshan Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jianhong Guo
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangtao Liu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| |
Collapse
|
43
|
Domingo E. Long-Term Virus Evolution in Nature. VIRUS AS POPULATIONS 2016. [PMCID: PMC7149407 DOI: 10.1016/b978-0-12-800837-9.00007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Viruses spread to give rise to epidemics and pandemics, and some key parameters that include virus and host population numbers determine virus persistence or extinction in nature. Viruses evolve at different rates of evolution depending on the polymerase copying fidelity during genome replication. Calculated rates of evolution in nature vary depending on the time interval between virus isolations. In particular, intra-host evolution is generally more rapid that inter-host evolution and several possible mechanisms for this difference are considered. The mechanisms by which the error-prone viruses evolve render very unlikely the operation of a molecular clock (constant rate of incorporation of mutations in the evolving genomes). Several computational methods are reviewed that permit the alignment of viral sequences and the establishment of phylogenetic relationships among viruses. The evolution of virus in the form of dynamic mutant clouds in each infected individual, together with multiple environmental influences, render the emergence and reemergence of viral pathogens an unpredictable event, another example of biological complexity.
Collapse
|
44
|
Domingo E. Interaction of Virus Populations with Their Hosts. VIRUS AS POPULATIONS 2016. [PMCID: PMC7150142 DOI: 10.1016/b978-0-12-800837-9.00004-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Viral population numbers are extremely large compared with those of their host species. Population bottlenecks are frequent during the life cycle of viruses and can reduce viral populations transiently to very few individuals. Viruses have to confront several types of constraints that can be divided in basal, cell-dependent, and organism-dependent constraints. Viruses overcome them exploiting a number of molecular mechanisms, with an important contribution of population numbers and genome variation. The adaptive potential of viruses is reflected in modifications of cell tropism and host range, escape to components of the host immune response, and capacity to alternate among different host species, among other phenotypic changes. Despite a fitness cost of most mutations required to overcome a selective constraint, viruses can find evolutionary pathways that ensure their survival in equilibrium with their hosts.
Collapse
|
45
|
Chaijarasphong T, Nichols RJ, Kortright KE, Nixon CF, Teng PK, Oltrogge LM, Savage DF. Programmed Ribosomal Frameshifting Mediates Expression of the α-Carboxysome. J Mol Biol 2016; 428:153-164. [DOI: 10.1016/j.jmb.2015.11.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/04/2015] [Accepted: 11/12/2015] [Indexed: 01/24/2023]
|
46
|
Kotecha A, Seago J, Scott K, Burman A, Loureiro S, Ren J, Porta C, Ginn HM, Jackson T, Perez-Martin E, Siebert CA, Paul G, Huiskonen JT, Jones IM, Esnouf RM, Fry EE, Maree FF, Charleston B, Stuart DI. Structure-based energetics of protein interfaces guides foot-and-mouth disease virus vaccine design. Nat Struct Mol Biol 2015; 22:788-94. [PMID: 26389739 PMCID: PMC5985953 DOI: 10.1038/nsmb.3096] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/26/2015] [Indexed: 11/08/2022]
Abstract
Virus capsids are primed for disassembly, yet capsid integrity is key to generating a protective immune response. Foot-and-mouth disease virus (FMDV) capsids comprise identical pentameric protein subunits held together by tenuous noncovalent interactions and are often unstable. Chemically inactivated or recombinant empty capsids, which could form the basis of future vaccines, are even less stable than live virus. Here we devised a computational method to assess the relative stability of protein-protein interfaces and used it to design improved candidate vaccines for two poorly stable, but globally important, serotypes of FMDV: O and SAT2. We used a restrained molecular dynamics strategy to rank mutations predicted to strengthen the pentamer interfaces and applied the results to produce stabilized capsids. Structural analyses and stability assays confirmed the predictions, and vaccinated animals generated improved neutralizing-antibody responses to stabilized particles compared to parental viruses and wild-type capsids.
Collapse
Affiliation(s)
- Abhay Kotecha
- Division of Structural Biology, University of Oxford, Oxford, UK
| | | | - Katherine Scott
- Transboundary Animal Disease Programme, Agricultural Research Council-Onderstepoort Veterinary Institute, Onderstepoort, South Africa
| | | | - Silvia Loureiro
- Animal and Microbial Sciences, University of Reading, Reading, UK
| | - Jingshan Ren
- Division of Structural Biology, University of Oxford, Oxford, UK
| | - Claudine Porta
- Division of Structural Biology, University of Oxford, Oxford, UK
- The Pirbright Institute, Pirbright, UK
| | - Helen M. Ginn
- Division of Structural Biology, University of Oxford, Oxford, UK
| | | | | | | | - Guntram Paul
- Merck Sharp & Dohme Animal Health, Cologne, Germany
| | | | - Ian M. Jones
- Animal and Microbial Sciences, University of Reading, Reading, UK
| | - Robert M. Esnouf
- Division of Structural Biology, University of Oxford, Oxford, UK
| | - Elizabeth E. Fry
- Division of Structural Biology, University of Oxford, Oxford, UK
| | - Francois F. Maree
- Transboundary Animal Disease Programme, Agricultural Research Council-Onderstepoort Veterinary Institute, Onderstepoort, South Africa
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa
| | | | - David I. Stuart
- Division of Structural Biology, University of Oxford, Oxford, UK
- Life Science Division, Diamond Light Source, Didcot, UK
| |
Collapse
|
47
|
Rincón V, Rodríguez-Huete A, Mateu MG. Different functional sensitivity to mutation at intersubunit interfaces involved in consecutive stages of foot-and-mouth disease virus assembly. J Gen Virol 2015; 96:2595-2606. [DOI: 10.1099/vir.0.000187] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Verónica Rincón
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Alicia Rodríguez-Huete
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Mauricio G. Mateu
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
48
|
Structural Basis of Human Parechovirus Neutralization by Human Monoclonal Antibodies. J Virol 2015; 89:9571-80. [PMID: 26157123 DOI: 10.1128/jvi.01429-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 07/02/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Since it was first recognized in 2004 that human parechoviruses (HPeV) are a significant cause of central nervous system and neonatal sepsis, their clinical importance, primarily in children, has started to emerge. Intravenous immunoglobulin treatment is the only treatment available in such life-threatening cases and has given moderate success. Direct inhibition of parechovirus infection using monoclonal antibodies is a potential treatment. We have developed two neutralizing monoclonal antibodies against HPeV1 and HPeV2, namely, AM18 and AM28, which also cross-neutralize other viruses. Here, we present the mapping of their epitopes using peptide scanning, surface plasmon resonance, fluorescence-based thermal shift assays, electron cryomicroscopy, and image reconstruction. We determined by peptide scanning and surface plasmon resonance that AM18 recognizes a linear epitope motif including the arginine-glycine-aspartic acid on the C terminus of capsid protein VP1. This epitope is normally used by the virus to attach to host cell surface integrins during entry and is found in 3 other viruses that AM18 neutralizes. Therefore, AM18 is likely to cause virus neutralization by aggregation and by blocking integrin binding to the capsid. Further, we show by electron cryomicroscopy, three-dimensional reconstruction, and pseudoatomic model fitting that ordered RNA interacts with HPeV1 VP1 and VP3. AM28 recognizes quaternary epitopes on the capsid composed of VP0 and VP3 loops from neighboring pentamers, thereby increasing the RNA accessibility temperature for the virus-AM28 complex compared to the virus alone. Thus, inhibition of RNA uncoating probably contributes to neutralization by AM28. IMPORTANCE Human parechoviruses can cause mild infections to severe diseases in young children, such as neonatal sepsis, encephalitis, and cardiomyopathy. Intravenous immunoglobulin treatment is the only treatment available in such life-threatening cases. In order to develop more targeted treatment, we have searched for human monoclonal antibodies that would neutralize human parechoviruses 1 and 2, associated with mild infections such as gastroenteritis and severe infections of the central nervous system, and thus allow safe treatment. In the current study, we show how two such promising antibodies interact with the virus, modeling the atomic interactions between the virus and the antibody to propose how neutralization occurs. Both antibodies can cause aggregation; in addition, one antibody interferes with the virus recognizing its target cell, while the other, recognizing only the whole virus, inhibits the genome uncoating and replication in the cell.
Collapse
|
49
|
Nsamba P, de Beer T, Chitray M, Scott K, Vosloo W, Maree F. Determination of common genetic variants within the non-structural proteins of foot-and-mouth disease viruses isolated in sub-Saharan Africa. Vet Microbiol 2015; 177:106-22. [DOI: 10.1016/j.vetmic.2015.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 10/23/2022]
|
50
|
Hause BM, Collin EA, Anderson J, Hesse RA, Anderson G. Bovine rhinitis viruses are common in U.S. cattle with bovine respiratory disease. PLoS One 2015; 10:e0121998. [PMID: 25789939 PMCID: PMC4366061 DOI: 10.1371/journal.pone.0121998] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 02/16/2015] [Indexed: 11/18/2022] Open
Abstract
Bovine rhinitis viruses (BRV) are established etiological agents of bovine respiratory disease complex however little research into their epidemiology and ecology has been published for several decades. In the U.S., only bovine rhinitis A virus 1 (BRAV1) has been identified while bovine rhinitis A virus 2 (BRAV2) and bovine rhinitis B virus (BRBV) were previously only identified in England and Japan, respectively. Metagenomic sequencing of a nasal swab from a bovine respiratory disease (BRD) diagnostic submission from Kansas identified contigs with approximately 90% nucleotide similarity to BRAV2 and BRBV. A combination of de novo and templated assemblies using reference genomes yielded near complete BRAV2 and BRBV genomes. The near complete genome of bovine rhinitis A virus 1 (BRAV1) was also determined from a historical isolate to enable further molecular epidemiological studies. A 5’-nuclease reverse transcription PCR assay targeting the 3D polymerase gene was designed and used to screen 204 archived BRD clinical specimens. Thirteen (6.4%) were positive. Metagenomic sequencing of six positive samples identified mixed BRAV1/BRAV2, BRAV1/BRBV and BRAV2/BRBV infections for five samples. One sample showed infection only with BRAV1. Seroprevalence studies using a cell culture adapted BRBV found immunofluorescence assay-reactive antibodies were common in the herds analyzed. Altogether, these results demonstrate that BRV infections are common in cattle with respiratory disease and that BRAV1, BRAV2 and BRBV co-circulate in U.S. cattle and have high similarity to viruses isolated more than 30 years ago from diverse locations.
Collapse
Affiliation(s)
- Ben M. Hause
- Veterinary Diagnostic Laboratory and Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, United States of America
- * E-mail:
| | - Emily A. Collin
- Veterinary Diagnostic Laboratory and Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, United States of America
| | - Joe Anderson
- Veterinary Diagnostic Laboratory and Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, United States of America
| | - Richard A. Hesse
- Veterinary Diagnostic Laboratory and Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, United States of America
| | - Gary Anderson
- Veterinary Diagnostic Laboratory and Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, United States of America
| |
Collapse
|