1
|
Zhu P, Hou J, Xiong Y, Xie R, Wang Y, Wang F. Expanded Archaeal Genomes Shed New Light on the Evolution of Isoprenoid Biosynthesis. Microorganisms 2024; 12:707. [PMID: 38674651 PMCID: PMC11052028 DOI: 10.3390/microorganisms12040707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Isoprenoids and their derivatives, essential for all cellular life on Earth, are particularly crucial in archaeal membrane lipids, suggesting that their biosynthesis pathways have ancient origins and play pivotal roles in the evolution of early life. Despite all eukaryotes, archaea, and a few bacterial lineages being known to exclusively use the mevalonate (MVA) pathway to synthesize isoprenoids, the origin and evolutionary trajectory of the MVA pathway remain controversial. Here, we conducted a thorough comparison and phylogenetic analysis of key enzymes across the four types of MVA pathway, with the particular inclusion of metagenome assembled genomes (MAGs) from uncultivated archaea. Our findings support an archaeal origin of the MVA pathway, likely postdating the divergence of Bacteria and Archaea from the Last Universal Common Ancestor (LUCA), thus implying the LUCA's enzymatic inability for isoprenoid biosynthesis. Notably, the Asgard archaea are implicated in playing central roles in the evolution of the MVA pathway, serving not only as putative ancestors of the eukaryote- and Thermoplasma-type routes, but also as crucial mediators in the gene transfer to eukaryotes, possibly during eukaryogenesis. Overall, this study advances our understanding of the origin and evolutionary history of the MVA pathway, providing unique insights into the lipid divide and the evolution of early life.
Collapse
Affiliation(s)
- Pengfei Zhu
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education, School of Oceanography, Shanghai Jiao Tong University, Shanghai 200240, China; (P.Z.); (J.H.); (Y.X.); (R.X.)
| | - Jialin Hou
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education, School of Oceanography, Shanghai Jiao Tong University, Shanghai 200240, China; (P.Z.); (J.H.); (Y.X.); (R.X.)
| | - Yixuan Xiong
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education, School of Oceanography, Shanghai Jiao Tong University, Shanghai 200240, China; (P.Z.); (J.H.); (Y.X.); (R.X.)
| | - Ruize Xie
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education, School of Oceanography, Shanghai Jiao Tong University, Shanghai 200240, China; (P.Z.); (J.H.); (Y.X.); (R.X.)
| | - Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Fengping Wang
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education, School of Oceanography, Shanghai Jiao Tong University, Shanghai 200240, China; (P.Z.); (J.H.); (Y.X.); (R.X.)
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
- Southern Marine Science and Engineering, Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| |
Collapse
|
2
|
Cushing VI, Koh AF, Feng J, Jurgaityte K, Bondke A, Kroll SHB, Barbazanges M, Scheiper B, Bahl AK, Barrett AGM, Ali S, Kotecha A, Greber BJ. High-resolution cryo-EM of the human CDK-activating kinase for structure-based drug design. Nat Commun 2024; 15:2265. [PMID: 38480681 PMCID: PMC10937634 DOI: 10.1038/s41467-024-46375-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 02/23/2024] [Indexed: 03/17/2024] Open
Abstract
Rational design of next-generation therapeutics can be facilitated by high-resolution structures of drug targets bound to small-molecule inhibitors. However, application of structure-based methods to macromolecules refractory to crystallization has been hampered by the often-limiting resolution and throughput of cryogenic electron microscopy (cryo-EM). Here, we use high-resolution cryo-EM to determine structures of the CDK-activating kinase, a master regulator of cell growth and division, in its free and nucleotide-bound states and in complex with 15 inhibitors at up to 1.8 Å resolution. Our structures provide detailed insight into inhibitor interactions and networks of water molecules in the active site of cyclin-dependent kinase 7 and provide insights into the mechanisms contributing to inhibitor selectivity, thereby providing the basis for rational design of next-generation therapeutics. These results establish a methodological framework for the use of high-resolution cryo-EM in structure-based drug design.
Collapse
Affiliation(s)
- Victoria I Cushing
- The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | - Adrian F Koh
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Achtseweg Noord 5, 5651, Eindhoven, The Netherlands
| | - Junjie Feng
- The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | - Kaste Jurgaityte
- Division of Cancer, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | | | | | - Marion Barbazanges
- Department of Chemistry, Imperial College London, London, UK
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS, 4 Place Jussieu, 75252, Paris Cedex 05, France
| | - Bodo Scheiper
- Department of Chemistry, Imperial College London, London, UK
| | - Ash K Bahl
- Carrick Therapeutics, Nova UCD, Bellfield Innovation Park, Dublin 4, Ireland
| | | | - Simak Ali
- Division of Cancer, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK.
| | - Abhay Kotecha
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Achtseweg Noord 5, 5651, Eindhoven, The Netherlands.
| | - Basil J Greber
- The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK.
| |
Collapse
|
3
|
Soni M, Srivastava G, Ramalingam K, Shakya AK, Siddiqi MI, Pratap JV. Identification of potent inhibitors for Leishmania donovani homoserine kinase: an integrated in silico and kinetic study. J Biomol Struct Dyn 2023:1-16. [PMID: 37962849 DOI: 10.1080/07391102.2023.2279279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023]
Abstract
Leishmaniasis is caused by ∼20 species of Leishmania that affects millions in endemic areas. Available therapies are not sufficient to effectively control the disease, cause severe side effects and eventually lead to drug resistance, making the discovery of novel therapeutic molecules an immediate need. Molecular target-based drug discovery, where the target is a defined molecular gene, protein or a mechanism, is a rationale driven approach for novel therapeutics. Humans obtain the essential amino acid such as threonine from dietary sources, while Leishmania synthesize it de-novo. Enzymes of the threonine biosynthesis pathway, including the rate limiting Homoserine kinase (HSK) which converts L-homoserine into ortho-phospho homoserine are thus attractive targets for rationale driven therapy. The absence of HSK in humans and its presence in Leishmania donovani enhances the opportunity to exploit HSK as a molecular target for anti-leishmanials therapeutic development. In this study, we utilize structure-based high throughput drug discovery (SBDD), followed by biochemical validation and identified two potential inhibitors (RH00038 and S02587) from Maybridge chemical library that targets L. donovani HSK. These two inhibitors effectively induced the mortality of Leishmania donovani in both amastigote and promastigote stages, with one of them being specific to parasite and twice as effective as the standard therapeutic molecule.
Collapse
Affiliation(s)
- Mohini Soni
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India
| | - Gaurava Srivastava
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Karthik Ramalingam
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Anil Kumar Shakya
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Mohammad Imran Siddiqi
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India
| | - J Venkatesh Pratap
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India
| |
Collapse
|
4
|
Chaturvedi S, Khan S, Thakur N, Jangra A, Tiwari S. Genome-wide identification and gene expression analysis of GHMP kinase gene family in banana cv. Rasthali. Mol Biol Rep 2023; 50:9061-9072. [PMID: 37731027 DOI: 10.1007/s11033-023-08743-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 08/08/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND The GHMP kinase gene family encompasses ATP-dependent kinases, significantly involved in the biosynthesis of isoprenes, amino acids, and metabolism of carbohydrates. Banana is a staple tropical crop that is globally consumed but known for high sensitivity to salt, cold, and drought stresses. The GHMP kinases are known to play a significant role during abiotic stresses in plants. The present study emphasizes the role of GHMP kinases in various abiotic stress conditions in banana. METHODS AND RESULTS We identified 12 GHMP kinase (MaGHMP kinase) genes in the banana genome database and witnessed the presence of the conserved Pro-X-X-X-Gly-Leu-X-Ser-Ser-Ala domain in their protein sequences. All genes were found to be involved in ATP-binding and carried kinase activity confronting their biological roles in the isoprene (27%) and amino acid (20%) biosyntheses. The expression analysis of genes during cold, drought, and salt stress conditions in tissue culture grown banana cultivar Rasthali plants showed a significant involvement of MaGHMP kinase genes in these stress conditions. The highest expression of MaGHMP kinase3 (8.5 fold) was noted during cold stress, while MaGHMP kinase1 (25 fold and 40.01 fold) showed maximum expression during drought and salt stress conditions in leaf tissue of Rasthali. CONCLUSION Our findings suggested that MaGHMP kinase1 (MaHSK) and MaGHMP kinase3 (MaGlcAK) could be considered promising candidates for thwarting the abiotic stresses in banana.
Collapse
Affiliation(s)
- Siddhant Chaturvedi
- Plant Tissue Culture and Genetic Engineering Lab, Department of Biotechnology, S.A.S. Nagar, Ministry of Science and Technology (Government of India), National Agri-Food Biotechnology Institute (NABI), Sector 81, Knowledge City, Mohali, Punjab, 140306, India
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India
- Department of Botany, Goswami Tulsidas Government Post Graduate College (Bundelkhand University, Jhansi), Karwi, Chitrakoot, Uttar Pradesh, 210205, India
| | - Shahirina Khan
- Plant Tissue Culture and Genetic Engineering Lab, Department of Biotechnology, S.A.S. Nagar, Ministry of Science and Technology (Government of India), National Agri-Food Biotechnology Institute (NABI), Sector 81, Knowledge City, Mohali, Punjab, 140306, India
- Department of Botany, Central University of Punjab, Bathinda, Punjab, 151001, India
| | - Neha Thakur
- Plant Tissue Culture and Genetic Engineering Lab, Department of Biotechnology, S.A.S. Nagar, Ministry of Science and Technology (Government of India), National Agri-Food Biotechnology Institute (NABI), Sector 81, Knowledge City, Mohali, Punjab, 140306, India
| | - Alka Jangra
- Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Siddharth Tiwari
- Plant Tissue Culture and Genetic Engineering Lab, Department of Biotechnology, S.A.S. Nagar, Ministry of Science and Technology (Government of India), National Agri-Food Biotechnology Institute (NABI), Sector 81, Knowledge City, Mohali, Punjab, 140306, India.
| |
Collapse
|
5
|
Drouin P, da Silva ÉB, Tremblay J, Chevaux E, Apper E, Castex M. Inoculation with Lentilactobacillus buchneri alone or in combination with Lentilactobacillus hilgardii modifies gene expression, fermentation profile, and starch digestibility in high-moisture corn. Front Microbiol 2023; 14:1253588. [PMID: 37901805 PMCID: PMC10602787 DOI: 10.3389/fmicb.2023.1253588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Inoculants combining Lentilactobacillus buchneri and Lentilactobacillus hilgardii have been shown to improve the aerobic stability of high-moisture corn (HMC) and whole-plant corn silage, but the mode of action of this co-inoculation remains to be elucidated. This study used metatranscriptomics to evaluate the effects of inoculation with L. buchneri alone or combined with L. hilgardii on the bacterial community, gene expression, fermentation profile, and starch digestibility in HMC. High-moisture corn not inoculated (Control) or inoculated with L. buchneri NCIMB 40788 (LB) or L. buchneri NCIMB 40788 combined with L. hilgardii CNCM-I-4785 (Combo) was ensiled in mini silo bags for 30, 60, 120, and 180 days. The fermentation profile was evaluated at all time points. Metatranscriptomics was performed on samples collected on day 120. Combo had a greater alpha diversity richness index of contigs than LB and Control, and inoculation with Combo and LB modified the beta-diversity of contigs compared to Control. Out of 69 genes of interest, 20 were differentially expressed in LB compared to Control and 25 in Combo compared to Control. Of those differently expressed genes, 16 (10 of which were associated with carbohydrate metabolism and six with amino acid metabolism) were differently expressed in both LB and Combo compared to Control, and all those genes were upregulated in the inoculated silages. When we compared Combo and LB, we found seven genes expressed differently, four associated with carbohydrate metabolism and downregulated in Combo, and three associated with amino acid metabolism and upregulated in Combo. At day 120, the inoculated silages had more culturable lactic acid bacteria, higher Lactobacillus relative abundance, and lower Leuconostoc relative abundance than Control. The concentration of acetic acid remained low throughout ensiling in Control, but in LB and Combo, it increased up to day 60 and remained stable from day 60 to 180. The 1,2-propanediol was only detected in LB and Combo. Inoculation did not affect the concentration of starch, but starch digestibility was greater in Combo than in Control. Inoculation of HMC with Combo modified the gene expression and fermentation profile compared to Control and LB, improving starch digestibility compared to uninoculated HMC.
Collapse
Affiliation(s)
- Pascal Drouin
- Independent Researcher, Saint-Jean-sur-Richelieu, QC, Canada
| | | | - Julien Tremblay
- Energy, Mining, and Environment, National Research Council of Canada, Montréal, QC, Canada
| | | | | | | |
Collapse
|
6
|
Copley SD, Newton MS, Widney KA. How to Recruit a Promiscuous Enzyme to Serve a New Function. Biochemistry 2023; 62:300-308. [PMID: 35729117 PMCID: PMC9881647 DOI: 10.1021/acs.biochem.2c00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Promiscuous enzymes can be recruited to serve new functions when a genetic or environmental change makes catalysis of a novel reaction important for fitness or even survival. Subsequently, gene duplication and divergence can lead to evolution of an efficient and specialized new enzyme. Every organism likely has thousands of promiscuous enzyme activities that provide a vast reservoir of catalytic potential. However, much of this potential may not be accessible. We compiled kinetic parameters for promiscuous reactions catalyzed by 108 enzymes. The median value of kcat/KM is a very modest 31 M-1 s-1. Based upon the fluxes through metabolic pathways in E. coli, we estimate that many, if not most, promiscuous activities are too inefficient to impact fitness. However, mutations can elevate the level of an insufficient promiscuous activity by increasing enzyme expression, improving kcat/KM, or altering concentrations of the promiscuous and native substrates and allosteric regulators. Particularly in large bacterial populations, stochastic mutations may provide a viable pathway for recruitment of even inefficient promiscuous activities.
Collapse
|
7
|
Li W, Girt GC, Radadiya A, Stewart JJP, Richards NGJ, Naismith JH. Experimental and computational snapshots of C-C bond formation in a C-nucleoside synthase. Open Biol 2023; 13:220287. [PMID: 36629016 PMCID: PMC9832568 DOI: 10.1098/rsob.220287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/30/2022] [Indexed: 01/12/2023] Open
Abstract
The biosynthetic enzyme, ForT, catalyses the formation of a C-C bond between 4-amino-1H-pyrazoledicarboxylic acid and MgPRPP to produce a C-nucleoside precursor of formycin A. The transformation catalysed by ForT is of chemical interest because it is one of only a few examples in which C-C bond formation takes place via an electrophilic substitution of a small, aromatic heterocycle. In addition, ForT is capable of discriminating between the aminopyrazoledicarboxylic acid and an analogue in which the amine is replaced by a hydroxyl group; a remarkable feat given the steric and electronic similarities of the two molecules. Here we report biophysical measurements, structural biology and quantum chemical calculations that provide a detailed molecular picture of ForT-catalysed C-C bond formation and the conformational changes that are coupled to catalysis. Our findings set the scene for employing engineered ForT variants in the biocatalytic production of novel, anti-viral C-nucleoside and C-nucleotide analogues.
Collapse
Affiliation(s)
- Wenbo Li
- Structural Biology, The Rosalind Franklin Institute, Didcot OX11 0QS, UK
- Division of Structural Biology, Nuffield Department of Medicine, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Georgina C. Girt
- Structural Biology, The Rosalind Franklin Institute, Didcot OX11 0QS, UK
| | - Ashish Radadiya
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
| | | | - Nigel G. J. Richards
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
- Foundation for Applied Molecular Evolution, Alachua, FL 32615, USA
| | - James H. Naismith
- Structural Biology, The Rosalind Franklin Institute, Didcot OX11 0QS, UK
- Division of Structural Biology, Nuffield Department of Medicine, Roosevelt Drive, Oxford OX3 7BN, UK
| |
Collapse
|
8
|
Yadav J, Singh H, Pal SK, Das S, Srivastava VK, Jyoti A, Sharma V, Kumar S, Kaushik S. Exploring the molecular interaction of Pheniramine with Enterococcus faecalis Homoserine Kinase: In-silico and in vitro studies. J Mol Recognit 2022; 35:e2979. [PMID: 35642097 DOI: 10.1002/jmr.2979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 05/03/2022] [Accepted: 05/26/2022] [Indexed: 11/07/2022]
Abstract
Infections caused by the bacteria Enterococcus faecalis (also known as E. faecalis) are common in hospitals. This bacterium is resistant to a wide range of medicines and causes a variety of nosocomial infections. An increase in the number of infections caused by multidrug-resistant (MDR) bacteria is causing substantial economic and health issues around the world. Consequently, new therapeutic techniques to tackle the growing threat of E. faecalis infections must be developed as soon as possible. In this regard, we have targeted a protein that is regarded to be critical for the survival of bacteria in this experiment. Homoserine kinase (HSK) is a threonine metabolism enzyme that belongs to the GHMP kinase superfamily. It is a crucial enzyme in threonine metabolism. This enzyme is responsible for a critical step in the threonine biosynthesis pathway. Given the important function that E. faecalis Homoserine Kinase (ESK) plays in bacterial metabolism, we proposed that E. faecalis HSK be cloned, overexpressed, purified, and subjected to structural analyses using homology modelling. In addition, we have reported on the model's molecular docking and Molecular Dynamic Stimulation (MD Stimulation) investigations to validate the results of the docking experiments. The results were promising. In silico investigations came up with the conclusion: pheniramine has good binding affinity for the E. faecalis HSK.
Collapse
Affiliation(s)
- Jyoti Yadav
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Harpreet Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Sudhir Kumar Pal
- Centre for Bioseparation Technology, VIT University, Vellore, India
| | - Satyajeet Das
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | | | - Anupam Jyoti
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Chandigarh, India
| | - Vinay Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Sanjit Kumar
- Centre for Bioseparation Technology, VIT University, Vellore, India
| | - Sanket Kaushik
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| |
Collapse
|
9
|
Zhang X, Low YC, Lawton MA, Simon JE, Di R. CRISPR-Editing of Sweet Basil ( Ocimum basilicum L.) Homoserine Kinase Gene for Improved Downy Mildew Disease Resistance. Front Genome Ed 2021; 3:629769. [PMID: 34713253 PMCID: PMC8525366 DOI: 10.3389/fgeed.2021.629769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 04/13/2021] [Indexed: 11/13/2022] Open
Abstract
Sweet basil (Ocimum basilicum L.) downy mildew disease (DM) caused by Peronospora belbahrii is a worldwide threat to the basil industry due to the lack of natural genetic resistance in sweet basil germplasm collections. In this study, we used CRISPR-gene editing to modify the sweet basil DM susceptibility gene homoserine kinase (ObHSK). Gene-edited plants challenged with P. belbahrii displayed a significantly reduced susceptibility to DM, based on phenotypic disease indices and on in planta pathogen load. These results suggest that ObHSK plays a role in conditioning DM susceptibility, similar to that observed for the AtHSK gene in Arabidopsis. These results demonstrate the utility of CRISPR-gene editing in enhancing DM resistance and contributing to sweet basil breeding programs.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Yee Chen Low
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Michael A Lawton
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - James E Simon
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Rong Di
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
10
|
Tamzil MS, Alfiko Y, Mubarok AF, Purwantomo S, Suwanto A, Budiarti S. Development of Auxotrophic Agrobacterium tumefaciens AGL1 by Tn5 Transposon for Rice (Oryza sativa L.) Transformation. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0244-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Meshram RJ, Shirsath A, Aouti S, Bagul K, Gacche RN. Molecular modeling and simulation study of homoserine kinase as an effective leishmanial drug target. J Mol Model 2020; 26:218. [PMID: 32720228 DOI: 10.1007/s00894-020-04473-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 07/14/2020] [Indexed: 11/25/2022]
Abstract
Leishmaniasis is a tropical neglected disease that imposes major health concerns in many endemic countries worldwide and requires urgent attention to the identification of new drug targets as well as drug candidates. In the current study, we propose homoserine kinase (HSK) inhibition as a strategy to induce pathogen mortality via generating threonine deficiency. We introduce a homology-based molecular model of leishmanial HSK that appears to possess all conserved structural as well as functional features in the GHMP kinase family. Furthermore, 200 ns molecular dynamics data of the enzyme in open and closed state attempts to provide the mechanistic details involved in the substrate as well as phosphate binding to this enzyme. We discuss the structural and functional significance of movements involved in various loops (motif 1, 2, 3) and lips (upper and lower) in the transition of leishmanial HSK from closed to open state. Virtual screening data of more than 40,000 compounds from the present investigation tries to identify a few potential HSK inhibitors that possess important features to act as efficient HSK inhibitors. These compounds can be considered an effective starting point for the identification of novel drug-like scaffolds. We hope the structural wealth that is offered in this report will be utilized in designing competent experimental and therapeutic interventions for leishmaniasis management. Graphical abstract.
Collapse
Affiliation(s)
- Rohan J Meshram
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India.
| | - Akshay Shirsath
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| | - Snehal Aouti
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| | - Kamini Bagul
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| | - Rajesh N Gacche
- Department of Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| |
Collapse
|
12
|
Gao S, Radadiya A, Li W, Liu H, Zhu W, de Crécy-Lagard V, Richards NGJ, Naismith JH. Uncovering the chemistry of C-C bond formation in C-nucleoside biosynthesis: crystal structure of a C-glycoside synthase/PRPP complex. Chem Commun (Camb) 2020; 56:7617-7620. [PMID: 32515440 PMCID: PMC8183095 DOI: 10.1039/d0cc02834g] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 05/14/2020] [Indexed: 12/19/2022]
Abstract
The enzyme ForT catalyzes C-C bond formation between 5'-phosphoribosyl-1'-pyrophosphate (PRPP) and 4-amino-1H-pyrazole-3,5-dicarboxylate to make a key intermediate in the biosynthesis of formycin A 5'-phosphate by Streptomyces kaniharaensis. We report the 2.5 Å resolution structure of the ForT/PRPP complex and locate active site residues critical for PRPP recognition and catalysis.
Collapse
Affiliation(s)
- Sisi Gao
- Research Complex at Harwell, Didcot, OX11 0FA, UK and BSRC, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Ashish Radadiya
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK
| | - Wenbo Li
- Division of Structural Biology, University of Oxford, Oxford, OX3 7BN, UK.
| | - Huanting Liu
- BSRC, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Wen Zhu
- Department of Chemistry and California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
| | | | - Nigel G J Richards
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK and Foundation for Applied Molecular Evolution, Alachua, FL 32615, USA
| | - James H Naismith
- Division of Structural Biology, University of Oxford, Oxford, OX3 7BN, UK. and The Rosalind Franklin Institute, Didcot, OX11 0FA, UK
| |
Collapse
|
13
|
McClory J, Hui C, Zhang J, Huang M. The phosphorylation mechanism of mevalonate diphosphate decarboxylase: a QM/MM study. Org Biomol Chem 2020; 18:518-529. [PMID: 31854421 DOI: 10.1039/c9ob02254f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mevalonate diphosphate decarboxylase (MDD) catalyses a crucial step of the mevalonate pathway via Mg2+-ATP-dependent phosphorylation and decarboxylation reactions to ultimately produce isopentenyl diphosphate, the precursor of isoprenoids, which is essential to bacterial functions and provides ideal building blocks for the biosynthesis of isopentenols. However, the metal ion(s) in MDD has not been unambiguously resolved, which limits the understanding of the catalytic mechanism and the exploitation of enzymes for the development of antibacterial therapies or the mevalonate metabolic pathway for the biosynthesis of biofuels. Here by analogizing structurally related kinases and molecular dynamics simulations, we constructed a model of the MDD-substrate-ATP-Mg2+ complex and proposed that MDD requires two Mg2+ ions for maintaining a catalytically active conformation. Subsequent QM/MM studies indicate that MDD catalyses the phosphorylation of its substrate mevalonate diphosphate (MVAPP) via a direct phosphorylation reaction, instead of the previously assumed catalytic base mechanism. The results here would shed light on the active conformation of MDD-related enzymes and their catalytic mechanisms and therefore be useful for developing novel antimicrobial therapies or reconstructing mevalonate metabolic pathways for the biosynthesis of biofuels.
Collapse
Affiliation(s)
- James McClory
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, Northern Ireland, UK.
| | | | | | | |
Collapse
|
14
|
Kaushik S, Singh H, Das S, Gupta P, Batra S, Prakash R, Srivastava V, Jyoti A, Gupta V, Kothari SL. Binding of metronidazole to Enterococcus faecalis homoserine kinase: Binding studies, docking studies, and molecular dynamics simulation studies. Pharmacogn Mag 2020. [DOI: 10.4103/pm.pm_99_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
15
|
Bechard ME, Farahani P, Greene D, Pham A, Orry A, Rasche ME. Purification, kinetic characterization, and site-directed mutagenesis of Methanothermobacter thermautotrophicus RFAP Synthase Produced in Escherichia coli. AIMS Microbiol 2019; 5:186-204. [PMID: 31663056 PMCID: PMC6787355 DOI: 10.3934/microbiol.2019.3.186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/15/2019] [Indexed: 11/18/2022] Open
Abstract
Methane-producing archaea are among a select group of microorganisms that utilize tetrahydromethanopterin (H4MPT) as a one-carbon carrier instead of tetrahydrofolate. In H4MPT biosynthesis, β-ribofuranosylaminobenzene 5'-phosphate (RFAP) synthase catalyzes the production of RFAP, CO2, and pyrophosphate from p-aminobenzoic acid (pABA) and phosphoribosyl-pyrophosphate (PRPP). In this work, to gain insight into amino acid residues required for substrate binding, RFAP synthase from Methanothermobacter thermautotrophicus was produced in Escherichia coli, and site-directed mutagenesis was used to alter arginine 26 (R26) and aspartic acid 19 (D19), located in a conserved sequence of amino acids resembling the pABA binding site of dihydropteroate synthase. Replacement of R26 with lysine increased the KM for pABA by an order of magnitude relative to wild-type enzyme without substantially altering the KM for PRPP. Although replacement of D19 with alanine produced inactive enzyme, asparagine substitution allowed retention of some activity, and the K M for pABA increased about threefold relative to wild-type enzyme. A molecular model developed by threading RFAP synthase onto the crystal structure of homoserine kinase places R26 in the proposed active site. In the static model, D19 is located close to the active site, yet appears too far away to influence ligand binding directly. This may be indicative of the protein conformational change predicted previously in the Bi-Ter kinetic mechanism and/or formation of the active site at the interface of two subunits. Due to the vital role of RFAP synthase in H4MPT biosynthesis, insights into the mode of substrate binding and mechanism could be beneficial for developing RFAP synthase inhibitors designed to reduce the production of methane as a greenhouse gas.
Collapse
Affiliation(s)
- Matthew E Bechard
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Payam Farahani
- Chemistry and Biochemistry Department, California State University at Fullerton, 800 North State College Blvd., Fullerton, CA 92834
| | - Dina Greene
- Northern California Regional Laboratories, The Permanente Medical Group, Berkeley, CA 94710
| | - Anna Pham
- Chemistry and Biochemistry Department, California State University at Fullerton, 800 North State College Blvd., Fullerton, CA 92834
| | - Andrew Orry
- Molsoft L.L.C., 11199 Sorrento Valley Road, S209, San Diego, CA 92121
| | - Madeline E Rasche
- Chemistry and Biochemistry Department, California State University at Fullerton, 800 North State College Blvd., Fullerton, CA 92834
| |
Collapse
|
16
|
Massoud R, Khosravi-Darani K, Bagheri SM, Mortazavian AM, Sohrabvandi S. Vitamin B12: From Deficiency to Biotechnological Solution. CURRENT NUTRITION & FOOD SCIENCE 2019. [DOI: 10.2174/1573401314666171207145429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vitamin B12 production by using propionibacteria and enriching food to produce functional foods is an important subject for researches. Some microorganisms have the potential to produce a wide range of components that are health promoting for human. Among them Propionibacteria has been identified as an effective producer of vitamin B12 and anti-microbial compounds such as propionic acid for decades. In this study at first, the structure, health beneficial effects and properties of vitamin B12 as well as scaled up production of vitamin are mentioned. Then biotechnological strategy is described as a solution to overcome vitamin deficiency and production of functional food. Finally, the specification of propionibacteria and its growth condition as well as bacterium ability to produce some other interesting metabolite in human food as byproduct are discussed.
Collapse
Affiliation(s)
- Ramona Massoud
- Department of Food Research, Standards Organization, Tehran, Iran
| | - Kianoush Khosravi-Darani
- Research Department of Food Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, P.O. Box: 19395-4741, Tehran, Iran
| | - Seyed M.H. Bagheri
- Department of Food Sciences and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir M. Mortazavian
- Department of Food Sciences and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Sohrabvandi
- Research Department of Food Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, P.O. Box: 19395-4741, Tehran, Iran
| |
Collapse
|
17
|
McClory J, Lin JT, Timson DJ, Zhang J, Huang M. Catalytic mechanism of mevalonate kinase revisited, a QM/MM study. Org Biomol Chem 2019; 17:2423-2431. [PMID: 30735219 DOI: 10.1039/c8ob03197e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mevalonate Kinase (MVK) catalyses the ATP-Mg2+ mediated phosphate transfer of mevalonate to produce mevalonate 5-phosphate and is a key kinase in the mevalonate pathway in the biosynthesis of isopentenyl diphosphate, the precursor of isoprenoid-based biofuels. However, the crystal structure in complex with the native substrate mevalonate, ATP and Mg2+ has not been resolved, which has limited the understanding of its reaction mechanism and therefore its application in the production of isoprenoid-based biofuels. Here using molecular docking, molecular dynamics (MD) simulations and a hybrid QM/MM study, we revisited the location of Mg2+ resolved in the crystal structure of MVK and determined a catalytically competent MVK structure in complex with the native substrate mevalonate and ATP. We demonstrated that significant conformational change on a flexible loop connecting the α6 and α7 helix is induced by the substrate binding. Further, we found that Asp204 is coordinated to the Mg2+ ion. Arg241 plays a crucial role in organizing the triphosphoryl tail of ATP for in-line phosphate transfer and stabilizing the negative charge that accumulates at the β,γ-bridging oxygen of ATP upon bond cleavage. Remarkably, we revealed that the phosphorylation of mevalonate catalyzed by MVK occurs via a direct phosphorylation mechanism, instead of the conventionally postulated catalytic base mechanism. The catalytically competent complex structure of MVK as well as the mechanism of reaction will pave the way for the rational engineering of MVK to exploit its applications in the production of biofuels.
Collapse
Affiliation(s)
- James McClory
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, Northern Ireland, UK.
| | | | | | | | | |
Collapse
|
18
|
Hu X, Zhang YQ, Lee OW, Liu L, Tang M, Lai K, Boxer MB, Hall MD, Shen M. Discovery of novel inhibitors of human galactokinase by virtual screening. J Comput Aided Mol Des 2019; 33:405-417. [PMID: 30806949 DOI: 10.1007/s10822-019-00190-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/07/2019] [Indexed: 10/27/2022]
Abstract
Classic Galactosemia is a potentially lethal autosomal recessive metabolic disorder caused by deficient galactose-1-phosphate uridyltransferase (GALT) that results in the buildup of galactose-1-phosphate (gal-1-p) in cells. Galactokinase (GALK1) is the enzyme responsible for converting galactose into gal-1-p. A pharmacological inhibitor of GALK1 is hypothesized to be therapeutic strategy for treating galactosemia by reducing production of gal-1-p. In this study, we report the discovery of novel series of GALK1 inhibitors by structure-based virtual screening (VS). Followed by an extensive structural modeling and binding mode analysis of the active compounds identified from quantitative high-throughput screen (qHTS), we developed an efficient pharmacophore-based VS approach and applied for a large-scale in silico database screening. Out of 230,000 compounds virtually screened, 350 compounds were cherry-picked based on multi-factor prioritization procedure, and 75 representing a diversity of chemotypes exhibited inhibitory activity in GALK1 biochemical assay. Furthermore, a phenylsulfonamide series with excellent in vitro ADME properties was selected for downstream characterization and demonstrated its ability to lower gal-1-p in primary patient fibroblasts. The compounds described herein should provide a starting point for further development of drug candidates for the GALK1 modulation in the Classic Galactosemia.
Collapse
Affiliation(s)
- Xin Hu
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Ya-Qin Zhang
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Olivia W Lee
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Li Liu
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Manshu Tang
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Kent Lai
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Matthew B Boxer
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
- Nexus Discovery Advisors, 7820B Wormans Mill Road, Suite 208, Frederick, MD, 21701, USA
| | - Matthew D Hall
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Min Shen
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA.
| |
Collapse
|
19
|
Petit C, Kim Y, Lee SK, Brown J, Larsen E, Ronning DR, Suh JW, Kang CM. Reduction of Feedback Inhibition in Homoserine Kinase (ThrB) of Corynebacterium glutamicum Enhances l-Threonine Biosynthesis. ACS OMEGA 2018; 3:1178-1186. [PMID: 30023797 PMCID: PMC6045374 DOI: 10.1021/acsomega.7b01597] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/11/2018] [Indexed: 06/08/2023]
Abstract
l-Threonine is an important supplement in the food industry. It is currently produced through fermentation of Escherichia coli but requires additional purification steps to remove E. coli endotoxin. To avoid these steps, it is desirable to use Corynebacterium glutamicum, a microorganism generally regarded as safe. Engineering of C. glutamicum to increase production of l-threonine has mainly focused on gene regulation as well as l-threonine export or carbon flux depletion. In this study, we focus on the negative feedback inhibition produced by l-threonine on the enzyme homoserine kinase (ThrB). Although l-threonine binds to allosteric sites of aspartate kinase (LysC) and homoserine dehydrogenase (Hom), serving as a noncompetitive inhibitor, it acts as a competitive inhibitor on ThrB. This is problematic when attempting to engineer enzymes that are nonresponsive to increasing cellular concentrations of l-threonine. Using primary structure alignment as well as analysis of the Methanocaldococcus jannaschii ThrB (MjaThrB) active site in complex with l-threonine (inhibitor of ThrB) and l-homoserine (substrate of ThrB), a conserved active-site alanine residue (A20) in C. glutamicum ThrB (CglThrB) was predicted to be important for differential interactions with l-threonine and l-homoserine. Through site-directed mutagenesis, we show that one variant of C. glutamicum ThrB, CglThrB-A20G, retains wild-type enzymatic activity, with dramatically decreased feedback inhibition by l-threonine. Additionally, by solving the first Corynebacterium X-ray crystal structure of homoserine kinase, we can confirm that the changes in l-threonine affinity to the CglThrB-A20G active site derive from loss of van der Waals interactions.
Collapse
Affiliation(s)
- Cecile Petit
- Department
of Chemistry and Biochemistry, University
of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United
States
| | - Younghwa Kim
- School
of Food Science and Biotechnology, Kyungsung
University, 309 Suyeong-ro,
Daeyeon 3-dong, Nam-gu, Busan 608-736, Republic of Korea
| | - Sung-Kwon Lee
- Division
of Bioscience and Bioinformatics, Myongji
University, 116 Myongji-ro, Cheoin-gu, Yongin 03674, Gyeonggi-do, Republic of Korea
| | - Jake Brown
- Department
of Biological Sciences, California State
University, Stanislaus, One University Cir, Turlock, California 95382, United States
| | - Erik Larsen
- Department
of Biological Sciences, California State
University, Stanislaus, One University Cir, Turlock, California 95382, United States
| | - Donald R. Ronning
- Department
of Chemistry and Biochemistry, University
of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United
States
| | - Joo-Won Suh
- Division
of Bioscience and Bioinformatics, Myongji
University, 116 Myongji-ro, Cheoin-gu, Yongin 03674, Gyeonggi-do, Republic of Korea
| | - Choong-Min Kang
- Department
of Biological Sciences, California State
University, Stanislaus, One University Cir, Turlock, California 95382, United States
| |
Collapse
|
20
|
Central catalytic domain of BRAP (RNF52) recognizes the types of ubiquitin chains and utilizes oligo-ubiquitin for ubiquitylation. Biochem J 2017; 474:3207-3226. [PMID: 28768733 PMCID: PMC5628404 DOI: 10.1042/bcj20161104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 07/31/2017] [Accepted: 08/02/2017] [Indexed: 12/02/2022]
Abstract
Really interesting new gene (RING)-finger protein 52 (RNF52), an E3 ubiquitin ligase, is found in eukaryotes from yeast to humans. Human RNF52 is known as breast cancer type 1 susceptibility protein (BRCA1)-associated protein 2 (BRAP or BRAP2). The central catalytic domain of BRAP comprises four subdomains: nucleotide-binding α/β plait (NBP), really interesting new gene (RING) zinc finger, ubiquitin-specific protease (UBP)-like zinc finger (ZfUBP), and coiled-coil (CC). This domain architecture is conserved in RNF52 orthologs; however, the domain's function in the ubiquitin system has not been delineated. In the present study, we discovered that the RNF52 domain, comprising NBP–RING–ZfUBP–CC, binds to ubiquitin chains (oligo-ubiquitin) but not to the ubiquitin monomers, and can utilize various ubiquitin chains for ubiquitylation and auto-ubiquitylation. The RNF52 domain preferentially bound to M1- and K63-linked di-ubiquitin chains, weakly to K27-linked chains, but not to K6-, K11-, or K48-linked chains. The binding preferences of the RNF52 domain for ubiquitin-linkage types corresponded to ubiquitin usage in the ubiquitylation reaction, except for K11-, K29-, and K33-linked chains. Additionally, the RNF52 domain directly ligated the intact M1-linked, tri-, and tetra-ubiquitin chains and recognized the structural alterations caused by the phosphomimetic mutation of these ubiquitin chains. Full-length BRAP had nearly the same specificity for the ubiquitin-chain types as the RNF52 domain alone. Mass spectrometry analysis of oligomeric ubiquitylation products, mediated by the RNF52 domain, revealed that the ubiquitin-linkage types and auto-ubiquitylation sites depend on the length of ubiquitin chains. Here, we propose a model for the oligomeric ubiquitylation process, controlled by the RNF52 domain, which is not a sequential assembly process involving monomers.
Collapse
|
21
|
Chai J, Wang D, Peng Y, Zhao X, Zhang Q, Li P, Fang X, Wang M, Cai X. Molecular cloning, expression and immunolocalization analysis of diphosphomevalonate decarboxylase involved in terpenoid biosynthesis from Euphorbia helioscopia L. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1370677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Jia Chai
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’ an, China
| | - Dou Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’ an, China
| | - Yong Peng
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’ an, China
| | - Xueyan Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’ an, China
| | - Qing Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’ an, China
| | - Peng Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’ an, China
| | - Xiaoai Fang
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’ an, China
| | - Meng Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’ an, China
| | - Xia Cai
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’ an, China
| |
Collapse
|
22
|
Reconstruction of amino acid biosynthetic pathways increases the productivity of 2-keto-l-gulonic acid in Ketogulonicigenium vulgare-Bacillus endophyticus consortium via genes screening. ACTA ACUST UNITED AC 2017; 44:1031-1040. [DOI: 10.1007/s10295-017-1928-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 02/22/2017] [Indexed: 01/26/2023]
Abstract
Abstract
Defect in the amino acid biosynthetic pathways of Ketogulonicigenium vulgare, the producing strain for 2-keto-l-gulonic acid (2-KGA), is the key reason for its poor growth and low productivity. In this study, five different strains were firstly reconstructed by expressing absent genes in threonine, proline and histidine biosynthetic pathways for better 2-KGA productivity. When mono-cultured in the shake flasks, the strain SyBE_Kv02080002 expressing hsk from Gluconobacter oxydans in threonine biosynthetic pathway achieved the highest biomass and the titer increased by 25.13%. When co-cultured with Bacillus endophyticus, the fermentation cycle decreased by 28.57% than that of the original consortium in 5-L fermenter. Furthermore, reconstruction of threonine biosynthetic pathway resulted in up-regulation of genes encoding sorbosone dehydrogenase and idonate-dehydrogenase, which increased the 2-KGA productivity in SyBE_Kv02080002. This study shows that reconstruction of absent biosynthetic pathways in bacteria is an effective way to enhance the productivity of target products.
Collapse
|
23
|
McAuley M, Huang M, Timson DJ. Insight into the mechanism of galactokinase: Role of a critical glutamate residue and helix/coil transitions. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:321-328. [PMID: 27789348 DOI: 10.1016/j.bbapap.2016.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/19/2016] [Accepted: 10/21/2016] [Indexed: 11/24/2022]
Abstract
Galactokinase, the enzyme which catalyses the first committed step in the Leloir pathway, has attracted interest due to its potential as a biocatalyst and as a possible drug target in the treatment of type I galactosemia. The mechanism of the enzyme is not fully elucidated. Molecular dynamics (MD) simulations of galactokinase with the active site residues Arg-37 and Asp-186 altered predicted that two regions (residues 174-179 and 231-240) had different dynamics as a consequence. Interestingly, the same two regions were also affected by alterations in Arg-105, Glu-174 and Arg-228. These three residues were identified as important in catalysis in previous computational studies on human galactokinase. Alteration of Arg-105 to methionine resulted in a modest reduction in activity with little change in stability. When Arg-228 was changed to methionine, the enzyme's interaction with both ATP and galactose was affected. This variant was significantly less stable than the wild-type protein. Changing Glu-174 to glutamine (but not to aspartate) resulted in no detectable activity and a less stable enzyme. Overall, these combined in silico and in vitro studies demonstrate the importance of a negative charge at position 174 and highlight the critical role of the dynamics in to key regions of the protein. We postulate that these regions may be critical for mediating the enzyme's structure and function.
Collapse
Affiliation(s)
- Margaret McAuley
- School of Biological Sciences, Queen's University Belfast, Medical Biology Building, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Meilan Huang
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, UK
| | - David J Timson
- School of Biological Sciences, Queen's University Belfast, Medical Biology Building, 97 Lisburn Road, Belfast BT9 7BL, UK; School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, UK.
| |
Collapse
|
24
|
Huang M, Wei K, Li X, McClory J, Hu G, Zou JW, Timson D. Phosphorylation Mechanism of Phosphomevalonate Kinase: Implications for Rational Engineering of Isoprenoid Biosynthetic Pathway Enzymes. J Phys Chem B 2016; 120:10714-10722. [DOI: 10.1021/acs.jpcb.6b08480] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Meilan Huang
- School
of Chemistry and Chemical Engineering, Queen’s University Belfast, David
Keir Building, Stranmillis Road, Belfast, BT9 5AG, Northern Ireland, United Kingdom
| | - Kexin Wei
- School
of Chemistry and Chemical Engineering, Queen’s University Belfast, David
Keir Building, Stranmillis Road, Belfast, BT9 5AG, Northern Ireland, United Kingdom
| | - Xiao Li
- School
of Chemistry and Chemical Engineering, Queen’s University Belfast, David
Keir Building, Stranmillis Road, Belfast, BT9 5AG, Northern Ireland, United Kingdom
| | - James McClory
- School
of Chemistry and Chemical Engineering, Queen’s University Belfast, David
Keir Building, Stranmillis Road, Belfast, BT9 5AG, Northern Ireland, United Kingdom
| | - Guixiang Hu
- School
of Biotechnology and Chemical Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China
| | - Jian-Wei Zou
- School
of Biotechnology and Chemical Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China
| | - David Timson
- School
of Pharmacy and Biomolecular Sciences, The University of Brighton, Huxley Building, Lewes Road, Brighton, BN2 4GJ, United Kingdom
| |
Collapse
|
25
|
Vinokur JM, Korman TP, Sawaya MR, Collazo M, Cascio D, Bowie JU. Structural analysis of mevalonate-3-kinase provides insight into the mechanisms of isoprenoid pathway decarboxylases. Protein Sci 2014; 24:212-20. [PMID: 25422158 DOI: 10.1002/pro.2607] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 11/19/2014] [Indexed: 11/06/2022]
Abstract
In animals, cholesterol is made from 5-carbon building blocks produced by the mevalonate pathway. Drugs that inhibit the mevalonate pathway such as atorvastatin (lipitor) have led to successful treatments for high cholesterol in humans. Another potential target for the inhibition of cholesterol synthesis is mevalonate diphosphate decarboxylase (MDD), which catalyzes the phosphorylation of (R)-mevalonate diphosphate, followed by decarboxylation to yield isopentenyl pyrophosphate. We recently discovered an MDD homolog, mevalonate-3-kinase (M3K) from Thermoplasma acidophilum, which catalyzes the identical phosphorylation of (R)-mevalonate, but without concomitant decarboxylation. Thus, M3K catalyzes half the reaction of the decarboxylase, allowing us to separate features of the active site that are required for decarboxylation from features required for phosphorylation. Here we determine the crystal structure of M3K in the apo form, and with bound substrates, and compare it to MDD structures. Structural and mutagenic analysis reveals modifications that allow M3K to bind mevalonate rather than mevalonate diphosphate. Comparison to homologous MDD structures show that both enzymes employ analogous Arg or Lys residues to catalyze phosphate transfer. However, an invariant active site Asp/Lys pair of MDD previously thought to play a role in phosphorylation is missing in M3K with no functional replacement. Thus, we suggest that the invariant Asp/Lys pair in MDD may be critical for decarboxylation rather than phosphorylation.
Collapse
Affiliation(s)
- Jeffrey M Vinokur
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, Molecular Biology Institute, University of California, Los Angeles, California, 90095-1570
| | | | | | | | | | | |
Collapse
|
26
|
Ong HB, Lee WS, Patterson S, Wyllie S, Fairlamb AH. Homoserine and quorum-sensing acyl homoserine lactones as alternative sources of threonine: a potential role for homoserine kinase in insect-stage Trypanosoma brucei. Mol Microbiol 2014; 95:143-56. [PMID: 25367138 PMCID: PMC4460637 DOI: 10.1111/mmi.12853] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2014] [Indexed: 12/29/2022]
Abstract
De novo synthesis of threonine from aspartate occurs via the β-aspartyl phosphate pathway in plants, bacteria and fungi. However, the Trypanosoma brucei genome encodes only the last two steps in this pathway: homoserine kinase (HSK) and threonine synthase. Here, we investigated the possible roles for this incomplete pathway through biochemical, genetic and nutritional studies. Purified recombinant TbHSK specifically phosphorylates L-homoserine and displays kinetic properties similar to other HSKs. HSK null mutants generated in bloodstream forms displayed no growth phenotype in vitro or loss of virulence in vivo. However, following transformation into procyclic forms, homoserine, homoserine lactone and certain acyl homoserine lactones (AHLs) were found to substitute for threonine in growth media for wild-type procyclics, but not HSK null mutants. The tsetse fly is considered to be an unlikely source of these nutrients as it feeds exclusively on mammalian blood. Bioinformatic studies predict that tsetse endosymbionts possess part (up to homoserine in Wigglesworthia glossinidia) or all of the β-aspartyl phosphate pathway (Sodalis glossinidius). In addition S. glossinidius is known to produce 3-oxohexanoylhomoserine lactone which also supports trypanosome growth. We propose that T. brucei has retained HSK and threonine synthase in order to salvage these nutrients when threonine availability is limiting.
Collapse
Affiliation(s)
- Han B Ong
- Division of Biological Chemistry & Drug Discovery, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | | | | | | | | |
Collapse
|
27
|
Affiliation(s)
| | - Salim Al-Babili
- BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Eleanore T. Wurtzel
- The Graduate School and University Center, The City University of New York, New York, New York, USA
- Department of Biological Sciences, Lehman College, The City University of New York, Bronx, New York, USA
| |
Collapse
|
28
|
Reinhardt LA, Thoden JB, Peters GS, Holden HM, Cleland WW. pH-rate profiles support a general base mechanism for galactokinase (Lactococcus lactis). FEBS Lett 2013; 587:2876-81. [PMID: 23872454 DOI: 10.1016/j.febslet.2013.07.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 07/06/2013] [Accepted: 07/08/2013] [Indexed: 11/16/2022]
Abstract
Galactokinase (GALK), a member the Leloir pathway for normal galactose metabolism, catalyzes the conversion of α-d-galactose to galactose-1-phosphate. For this investigation, we studied the kinetic mechanism and pH profiles of the enzyme from Lactococcus lactis. Our results show that the mechanism for its reaction is sequential in both directions. Mutant proteins D183A and D183N are inactive (< 10000 fold), supporting the role of Asp183 as a catalytic base that deprotonates the C-1 hydroxyl group of galactose. The pH-kcat profile of the forward reaction has a pKa of 6.9 ± 0.2 that likely is due to Asp183. The pH-k(cat)/K(Gal) profile of the reverse reaction further substantiates this role as it is lacking a key pKa required for a direct proton transfer mechanism. The R36A and R36N mutant proteins show over 100-fold lower activity than that for the wild-type enzyme, thus suggesting that Arg36 lowers the pKa of the C-1 hydroxyl to facilitate deprotonation.
Collapse
Affiliation(s)
- Laurie A Reinhardt
- Institute For Enzyme Research and Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53726, USA.
| | | | | | | | | |
Collapse
|
29
|
Tyagi N, Srinivasan N. Recognition of nontrivial remote homology relationships involving proteins of Helicobacter pylori: implications for function recognition. Methods Mol Biol 2013; 993:155-175. [PMID: 23568470 DOI: 10.1007/978-1-62703-342-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This chapter explains techniques for recognition of nontrivial remote homology relationships involving proteins of Helicobacter pylori and their implications for function recognition. Using the remote homology detection method, employing multiple-profile representations for every protein domain family, remotely related domain family information has been assigned for the 122, 77, and 95 protein sequences of 26695, and J99, and HPAG1 strains of H. pylori, respectively. Relationships for some of the H. pylori protein sequences with Pfam domain families are reported for the first time. In publicly available domain databases such as Pfam, for some of the H. pylori protein sequences functional domain information is associated only with part(s) of the proteins. In the current study other parts of such proteins have been shown to be remotely related to known domain families, raising the possibility of identifying functions for parts of the proteins that do not yet have domains assigned. Further, homologues of enzymes that potentially catalyze step(s) in various metabolic processes in H. pylori have been identified for the first time.
Collapse
Affiliation(s)
- Nidhi Tyagi
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
30
|
Oruganty K, Kannan N. Design principles underpinning the regulatory diversity of protein kinases. Philos Trans R Soc Lond B Biol Sci 2012; 367:2529-39. [PMID: 22889905 PMCID: PMC3415841 DOI: 10.1098/rstb.2012.0015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Protein phosphorylation in eukaryotes is carried out by a large and diverse family of protein kinases, which display remarkable diversity and complexity in their modes of regulation. The complex modes of regulation have evolved as a consequence of natural selection operating on protein kinase sequences for billions of years. Here we describe how quantitative comparisons of protein kinase sequences from diverse organisms, in particular prokaryotes, have contributed to our understanding of the structural organization and evolution of allosteric regulation in the protein kinase domain. An emerging view from these studies is that regulatory diversity and complexity in the protein kinase domain evolved in a ‘modular’ fashion through elaboration of an ancient core component, which existed before the emergence of eukaryotes. The core component provided the conformational flexibility required for ATP binding and phosphoryl transfer in prokaryotic kinases, but evolved into a highly regulatable domain in eukaryotes through the addition of exaggerated structural features that facilitated tight allosteric control. Family and group-specific features are built upon the core component in eukaryotes to provide additional layers of control. We propose that ‘modularity’ and ‘conformational flexibility’ are key evolvable traits of the protein kinase domain that contributed to its extensive regulatory diversity and complexity.
Collapse
Affiliation(s)
- Krishnadev Oruganty
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
31
|
Barta ML, McWhorter WJ, Miziorko HM, Geisbrecht BV. Structural basis for nucleotide binding and reaction catalysis in mevalonate diphosphate decarboxylase. Biochemistry 2012; 51:5611-21. [PMID: 22734632 DOI: 10.1021/bi300591x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mevalonate diphosphate decarboxylase (MDD) catalyzes the final step of the mevalonate pathway, the Mg(2+)-ATP dependent decarboxylation of mevalonate 5-diphosphate (MVAPP), producing isopentenyl diphosphate (IPP). Synthesis of IPP, an isoprenoid precursor molecule that is a critical intermediate in peptidoglycan and polyisoprenoid biosynthesis, is essential in Gram-positive bacteria (e.g., Staphylococcus, Streptococcus, and Enterococcus spp.), and thus the enzymes of the mevalonate pathway are ideal antimicrobial targets. MDD belongs to the GHMP superfamily of metabolite kinases that have been extensively studied for the past 50 years, yet the crystallization of GHMP kinase ternary complexes has proven to be difficult. To further our understanding of the catalytic mechanism of GHMP kinases with the purpose of developing broad spectrum antimicrobial agents that target the substrate and nucleotide binding sites, we report the crystal structures of wild-type and mutant (S192A and D283A) ternary complexes of Staphylococcus epidermidis MDD. Comparison of apo, MVAPP-bound, and ternary complex wild-type MDD provides structural information about the mode of substrate binding and the catalytic mechanism. Structural characterization of ternary complexes of catalytically deficient MDD S192A and D283A (k(cat) decreased 10(3)- and 10(5)-fold, respectively) provides insight into MDD function. The carboxylate side chain of invariant Asp(283) functions as a catalytic base and is essential for the proper orientation of the MVAPP C3-hydroxyl group within the active site funnel. Several MDD amino acids within the conserved phosphate binding loop ("P-loop") provide key interactions, stabilizing the nucleotide triphosphoryl moiety. The crystal structures presented here provide a useful foundation for structure-based drug design.
Collapse
Affiliation(s)
- Michael L Barta
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | | | | | | |
Collapse
|
32
|
Upadhyay SK, Sasidhar YU. Molecular simulation and docking studies of Gal1p and Gal3p proteins in the presence and absence of ligands ATP and galactose: implication for transcriptional activation of GAL genes. J Comput Aided Mol Des 2012; 26:847-64. [PMID: 22639079 DOI: 10.1007/s10822-012-9579-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 05/01/2012] [Indexed: 10/28/2022]
Abstract
The Gal4p mediated transcriptional activation of GAL genes requires the interaction between Gal3p bound with ATP and galactose and Gal80p. Though numerous studies suggest that galactose and ATP activate Gal3p/Gal1p interaction with Gal80p, neither the mechanism of activation nor the interacting surface that binds to Gal80p is well understood. In this study we investigated the dynamics of Gal3p and Gal1p in the presence and absence of ligands ATP and galactose to understand the role played by dynamics in the function of these proteins through molecular dynamics simulation and protein-protein docking studies. We performed simulations totaling to 510 ns on both Gal1p and Gal3p proteins in the presence and absence of ligands ATP and galactose. We find that, while binding of ligands ATP and galactose to Gal3p/Gal1p do not affect the global conformation of proteins, some local conformational changes around upper-lip helix including insertion domain are observed. We observed that only in the presence of ATP and galactose, Gal3p displays opening and closing motion between the two domains. And because of this motion, a binding interface, which is largely hydrophobic, opens up on the surface of Gal3p and this surface can bind to Gal80p. From our simulation studies we infer probable docking sites for Gal80p on Gal3p/Gal1p, which were further ascertained by the docking of Gal80p on to ligand bound Gal1p and Gal3p proteins, and the residues at the interface between Gal3p and Gal80p are identified. Our results correlate quite well with the existing body of literature on functional and dynamical aspects of Gal1p and Gal3p proteins.
Collapse
Affiliation(s)
- Sanjay K Upadhyay
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | | |
Collapse
|
33
|
Shan S, Chen X. Crystallization and preliminary X-ray analysis of 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase (IspE) from Mycobacterium tuberculosis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:821-3. [PMID: 21795803 DOI: 10.1107/s1744309111019567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 05/23/2011] [Indexed: 11/10/2022]
Abstract
The 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase (IspE) from Mycobacterium tuberculosis, an enzyme from the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway, is crucial and essential for the survival of this pathogenic bacterium. IspE catalyzes the conversion of 4-diphosphocytidyl-2-C-methyl-D-erythritol (CDP-ME) to 4-diphosphocytidyl-2-C-methyl-D-erythritol 2-phosphate (CDP-ME2P) in an ATP-dependent manner. Solving the crystal structure of M. tuberculosis IspE will shed light on its structural details and mechanism of action and may provide the basis for the future design of drugs for the treatment of multidrug-resistant and extremely drug-resistant M. tuberculosis strains. Recombinant M. tuberculosis IspE was crystallized at 291 K using NaCl or Li2SO4 as a precipitant. A 2.1 Å resolution native data set was collected from a single flash-cooled crystal (100 K) belonging to space group P2(1)2(1)2(1), with unit-cell parameters a=52.5, b=72.3, c=107.3 Å. One molecule was assumed per asymmetric unit, which gives a Matthews coefficient of 3.4 Å3 Da(-1) with 63% solvent content.
Collapse
Affiliation(s)
- Shan Shan
- Structural Biology Laboratory, Tsinghua University, Beijing 100084, People's Republic of China
| | | |
Collapse
|
34
|
The role of the active site residues in human galactokinase: implications for the mechanisms of GHMP kinases. Bioorg Chem 2011; 39:120-6. [PMID: 21474160 DOI: 10.1016/j.bioorg.2011.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 03/01/2011] [Accepted: 03/02/2011] [Indexed: 11/20/2022]
Abstract
Galactokinase catalyses the phosphorylation of galactose at the expense of ATP. Like other members of the GHMP family of kinases it is postulated to function through an active site base mechanism in which Asp-186 abstracts a proton from galactose. This asparate residue was altered to alanine and to asparagine by site-directed mutagenesis of the corresponding gene. This resulted in variant enzyme with no detectable galactokinase activity. Alteration of Arg-37, which lies adjacent to Asp-186 and is postulated to assist the catalytic base, to lysine resulted in an active enzyme. However, alteration of this residue to glutamate abolished activity. All the variant enzymes, except the arginine to lysine substitution, were structurally unstable (as judged by native gel electrophoresis in the presence of urea) compared to the wild type. This suggests that the lack of activity results from this structural instability, in addition to any direct effects on the catalytic mechanism. Computational estimations of the pK(a) values of the arginine and aspartate residues, suggest that Arg-37 remains protonated throughout the catalytic cycle whereas Asp-186 has an abnormally high pK(a) value (7.18). Quantum mechanics/molecular mechanics (QM/MM) calculations suggest that Asp-186 moves closer to the galactose molecule during catalysis. The experimental and theoretical studies presented here argue for a mechanism in which the C(1)-OH bond in the sugar is weakened by the presence of Asp-186 thus facilitating nucleophilic attack by the oxygen atom on the γ-phosphorus of ATP.
Collapse
|
35
|
Shan S, Chen X, Liu T, Zhao H, Rao Z, Lou Z. Crystal structure of 4‐diphosphocytidyl‐2‐C‐methyl‐D‐erythritol kinase (IspE) from
Mycobacterium tuberculosis. FASEB J 2011; 25:1577-84. [DOI: 10.1096/fj.10-175786] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shan Shan
- Structural Biology LaboratoryTsinghua UniversityBeijingChina
- MOE Laboratory of Protein ScienceTsinghua UniversityBeijingChina
| | - Xuehui Chen
- National Laboratory of MacromoleculesInstitute of BiophysicsChinese Academy of ScienceBeijingChina
| | - Ting Liu
- National Laboratory of MacromoleculesInstitute of BiophysicsChinese Academy of ScienceBeijingChina
| | - Hanchao Zhao
- Structural Biology LaboratoryTsinghua UniversityBeijingChina
- MOE Laboratory of Protein ScienceTsinghua UniversityBeijingChina
| | - Zihe Rao
- Structural Biology LaboratoryTsinghua UniversityBeijingChina
- MOE Laboratory of Protein ScienceTsinghua UniversityBeijingChina
- National Laboratory of MacromoleculesInstitute of BiophysicsChinese Academy of ScienceBeijingChina
- High-Throughput Molecular Drug Discovery CenterTianjin Joint Academy of Biotechnology and MedicineTianjinChina
| | - Zhiyong Lou
- Structural Biology LaboratoryTsinghua UniversityBeijingChina
- MOE Laboratory of Protein ScienceTsinghua UniversityBeijingChina
- High-Throughput Molecular Drug Discovery CenterTianjin Joint Academy of Biotechnology and MedicineTianjinChina
| |
Collapse
|
36
|
Menon KMJ, Menon B, Wang L, Gulappa T, Harada M. Molecular regulation of gonadotropin receptor expression: relationship to sterol metabolism. Mol Cell Endocrinol 2010; 329:26-32. [PMID: 20570710 PMCID: PMC2946426 DOI: 10.1016/j.mce.2010.05.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 05/26/2010] [Accepted: 05/26/2010] [Indexed: 11/21/2022]
Abstract
We have identified a specific LHR mRNA binding protein that selectively binds to the polypyrimidine-rich bipartite sequence in the coding region of the LHR mRNA and accelerates its degradation. This process has been shown to be one of the mechanisms that is responsible for the loss of the steady-state levels of LHR mRNA following the preovulatory LH surge or the down regulation of the receptor in response to the administration of a pharmacological dose of LH or hCG. The trans factor, designated as the LHR mRNA binding protein (LRBP), was purified and its identity was established as being mevalonate kinase, an enzyme involved in cholesterol biosynthesis. When mevalonate kinase expression was abolished by treating cultured luteal cells with 25-hydroxycholesterol, the ability to undergo LH-induced down regulation of LHR mRNA was completely abrogated. Examination of the crystal structure of mevalonate kinase coupled with mutagenesis of the critical residues in the catalytic site revealed that the catalytic site is in close proximity to the LHR mRNA binding site. Further studies revealed that mevalonate kinase causes LHR mRNA degradation by acting as a translational suppressor by forming an untranslatable ribonucleoprotein (RNP) complex which is then targeted for degradation. These studies show that LHR expression in the ovary is regulated by a post-transcriptional mechanism mediated by mevalonate kinase thereby linking LHR expression with cholesterol metabolism.
Collapse
Affiliation(s)
- K M J Menon
- Department of Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, MI 48109-0617, United States.
| | | | | | | | | |
Collapse
|
37
|
Agnew A, Timson D. Mechanistic studies on human N-acetylgalactosamine kinase. J Enzyme Inhib Med Chem 2010; 25:370-6. [PMID: 19874134 DOI: 10.3109/14756360903179492] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
N-Acetylgalactosamine kinase (GALK2) is a small molecule kinase from the GHMP family which phosphorylates N-acetylgalactosamine at the expense of ATP. Recombinant GALK2 expressed in, and purified from, Escherichia coli was shown to be active with the following kinetic parameters: Michaelis constant for ATP, 14 +/- 3 microM; Michaelis constant for N-acetylgalactosamine, 40 +/- 14 microM; and turnover number, 1.0 +/- 0.1 s(-1). The combination of substrate inhibition by N-acetylgalactosamine and alpha-methylgalactopyranoside acting as an uncompetitive inhibitor with respect to ATP suggested that the enzyme has an ordered ternary complex mechanism in which ATP is the first substrate to bind. The effects of pH on the kinetic parameters provided evidence for ionizable residues playing a role in substrate binding and catalysis. These results are discussed in the context of the mechanisms of the GHMP kinases.
Collapse
Affiliation(s)
- Andrew Agnew
- Queen's University Belfast, Belfast, United Kingdom
| | | |
Collapse
|
38
|
Eoh H, Narayanasamy P, Brown AC, Parish T, Brennan PJ, Crick DC. Expression and characterization of soluble 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase from bacterial pathogens. ACTA ACUST UNITED AC 2010; 16:1230-9. [PMID: 20064433 DOI: 10.1016/j.chembiol.2009.10.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 10/09/2009] [Accepted: 10/21/2009] [Indexed: 11/17/2022]
Abstract
Many bacterial pathogens utilize the 2-C-methyl-D-erythritol 4-phosphate pathway for biosynthesizing isoprenoid precursors, a pathway that is vital for bacterial survival and absent from human cells, providing a potential source of drug targets. However, the characterization of 4-diphosphocytidyl-2-C-methyl-D-erythritol (CDP-ME) kinase (IspE) has been hindered due to a lack of enantiopure CDP-ME and difficulty in obtaining pure IspE. Here, enantiopure CDP-ME was chemically synthesized and recombinant IspE from bacterial pathogens were purified and characterized. Although gene disruption was not possible in Mycobacterium tuberculosis, IspE is essential in Mycobacterium smegmatis. The biochemical and kinetic characteristics of IspE provide the basis for development of a high throughput screen and structural characterization.
Collapse
Affiliation(s)
- Hyungjin Eoh
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | | | | | |
Collapse
|
39
|
Thoden JB, Cook PD, Schäffer C, Messner P, Holden HM. Structural and functional studies of QdtC: an N-acetyltransferase required for the biosynthesis of dTDP-3-acetamido-3,6-dideoxy-alpha-D-glucose. Biochemistry 2009; 48:2699-709. [PMID: 19191736 DOI: 10.1021/bi802313n] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
3-Acetamido-3,6-dideoxy-alpha-D-glucose or Quip3NAc is an unusual dideoxy sugar found in the O-antigens of various Gram-negative bacteria and in the S-layer glycoprotein glycans of some Gram-positive bacteria. It is produced in these organisms as a dTDP-linked sugar, with five enzymes ultimately required for its biosynthesis. The focus of this investigation is on the enzyme QdtC, a CoA-dependent N-acetyltransferase that catalyzes the last step in the Quip3NAc biosynthetic pathway. For this analysis, three crystal structures were determined: the wild-type enzyme in the presence of acetyl-CoA and two ternary complexes of the enzyme with CoA and either dTDP-D-Quip3N or dTDP-3-amino-3,6-didexoy-alpha-D-galactose (dTDP-D-Fucp3N). Each subunit of the trimeric enzyme is dominated by a left-handed beta-helix motif with 11 turns. The three active sites are located at the subunit-subunit interfaces, and the two dTDP-sugar ligands employed in this study bind to the protein in nearly identical manners. Those residues responsible for anchoring the hexose moieties of the dTDP-sugars to the protein include Glu 141, Asn 159, and Asp 160 from one subunit and His 134 from another subunit. To probe the roles of various amino acid residues in the catalytic mechanism of the enzyme, 10 site-directed mutant proteins were constructed and their kinetic parameters measured. On the basis of these data, a catalytic mechanism is proposed for QdtC in which the acetylation of the sugar amino group does not require a catalytic base provided by the protein. Rather, the sulfur of CoA functions as the ultimate proton acceptor.
Collapse
Affiliation(s)
- James B Thoden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
40
|
Saldías MS, Valvano MA. Interactions of Burkholderia cenocepacia and other Burkholderia cepacia complex bacteria with epithelial and phagocytic cells. Microbiology (Reading) 2009; 155:2809-2817. [DOI: 10.1099/mic.0.031344-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Burkholderia cenocepacia is a member of the B. cepacia complex (Bcc), a group of opportunistic bacteria that infect the airways of patients with cystic fibrosis (CF) and are extraordinarily resistant to almost all clinically useful antibiotics. Infections in CF patients with Bcc bacteria generally lead to a more rapid decline in lung function, and in some cases to the ‘cepacia syndrome’, a virtually deadly exacerbation of the lung infection with systemic manifestations. These characteristics of Bcc bacteria contribute to higher morbidity and mortality in infected CF patients. In the last 10 years considerable progress has been made in understanding the interactions between Bcc bacteria and mammalian host cells. Bcc isolates can survive either intracellularly within eukaryotic cells or extracellularly in host tissues. They survive within phagocytes and respiratory epithelial cells, and they have the ability to breach the respiratory epithelium layer. Survival and persistence of Bcc bacteria within host cells and tissues are believed to play a key role in pulmonary infection and to contribute to the persistent inflammation observed in patients with CF. This review summarizes recent findings concerning the interaction between Bcc bacteria and epithelial and phagocytic cells.
Collapse
Affiliation(s)
- M. Soledad Saldías
- Infectious Diseases Research Group, Siebens-Drake Research Institute, Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Miguel A. Valvano
- Department of Medicine, University of Western Ontario, London, ON N6A 5C1, Canada
- Infectious Diseases Research Group, Siebens-Drake Research Institute, Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
41
|
Andreassi JL, Vetting MW, Bilder PW, Roderick SL, Leyh TS. Structure of the ternary complex of phosphomevalonate kinase: the enzyme and its family. Biochemistry 2009; 48:6461-8. [PMID: 19485344 PMCID: PMC2913249 DOI: 10.1021/bi900537u] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The galacto-, homoserine-, mevalonate-, phosphomevalonate-kinase (GHMP) superfamily encompases a wide-range of protein function. Three members of the family (mevalonate kinase, phosphomevalonate kinase, and diphosphomevalonate decarboxylase) comprise the mevalonate pathway found in S. pneumoniae and other organisms. We have determined the 1.9 A crystal structure of phosphomevalonate kinase (PMK) from S. pneumoniae in complex with phosphomevalonate and AMPPNP.Mg(2+). Comparison of the apo and ternary PMK structures suggests that ligand binding reverses the side-chain orientations of two antiparallel lysines residues (100 and 101) with the result that Lys101 is switched into a position in which its ammonium ion is in direct contact with the beta,gamma-bridging atom of the nucleotide, where it is expected to stabilize both the ground and transition states of the reaction. Analysis of all available GHMP kinase ternary complex structures reveals that while their C(alpha)-scaffolds are highly conserved, their substrates bind in one of two conformations, which appear to be either reactive or nonreactive. The active site of PMK seems spacious enough to accommodate interconversion of the reactive and nonreactive conformers. A substantial fraction of the PMK active site is occupied by ordered water, which clusters near the charged regions of the substrate. Notably, a water pentamer that interacts extensively with the reactive groups of both substrates was discovered at the active site.
Collapse
Affiliation(s)
- John L. Andreassi
- DuPont Crop Protection, Stine-Haskell Research Center, Newark, Delaware 19711
| | - Matthew W. Vetting
- The Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, New York 10461-1926
| | - Patrick W. Bilder
- The Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, New York 10461-1926
| | - Steven L. Roderick
- The Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, New York 10461-1926
| | - Thomas S. Leyh
- The Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, New York 10461-1926
| |
Collapse
|
42
|
van Damme M, Zeilmaker T, Elberse J, Andel A, de Sain-van der Velden M, van den Ackerveken G. Downy mildew resistance in Arabidopsis by mutation of HOMOSERINE KINASE. THE PLANT CELL 2009; 21:2179-89. [PMID: 19622802 PMCID: PMC2729605 DOI: 10.1105/tpc.109.066811] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Plant disease resistance is commonly triggered by early pathogen recognition and activation of immunity. An alternative form of resistance is mediated by recessive downy mildew resistant 1 (dmr1) alleles in Arabidopsis thaliana. Map-based cloning revealed that DMR1 encodes homoserine kinase (HSK). Six independent dmr1 mutants each carry a different amino acid substitution in the HSK protein. Amino acid analysis revealed that dmr1 mutants contain high levels of homoserine that is undetectable in wild-type plants. Surprisingly, the level of amino acids downstream in the aspartate (Asp) pathway was not reduced in dmr1 mutants. Exogenous homoserine does not directly affect pathogen growth but induces resistance when infiltrated in Arabidopsis. We provide evidence that homoserine accumulation in the chloroplast triggers a novel form of downy mildew resistance that is independent of known immune responses.
Collapse
Affiliation(s)
- Mireille van Damme
- Plant-Microbe Interactions, Department of Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
43
|
Fan C, Fromm HJ, Bobik TA. Kinetic and functional analysis of L-threonine kinase, the PduX enzyme of Salmonella enterica. J Biol Chem 2009; 284:20240-8. [PMID: 19509296 DOI: 10.1074/jbc.m109.027425] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The PduX enzyme of Salmonella enterica is an l-threonine kinase used for the de novo synthesis of coenzyme B(12) and the assimilation of cobyric acid. PduX with an N-terminal histidine tag (His(8)-PduX) was produced in Escherichiacoli and purified. The recombinant enzyme was soluble and active. Kinetic analysis indicated a steady-state Ordered Bi Bi complex mechanism in which ATP is the first substrate to bind. Based on a multiple sequence alignment of PduX homologues and other GHMP (galactokinase, homoserine kinase, mevalonate kinase, and phosphomevalonate kinase) family members, 14 PduX variants having changes at 10 conserved serine/threonine and aspartate/glutamate sites were constructed by site-directed mutagenesis. Each variant was produced in E. coli and purified. Comparison of the circular dichroism spectra and kinetic properties of the PduX variants with those of the wild-type enzyme indicated that Glu-24 and Asp-135 are needed for proper folding, Ser-99 and Glu-132 are used for ATP binding, and Ser-253 and Ser-255 are critical to l-threonine binding whereas Ser-100 is essential to catalysis, but its precise role is uncertain. The studies reported here are the first to investigate the kinetic and catalytic mechanisms of l-threonine kinase from any organism.
Collapse
Affiliation(s)
- Chenguang Fan
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | | | | |
Collapse
|
44
|
Intracellular location of the early steps of the isoprenoid biosynthetic pathway in the trypanosomatids Leishmania major and Trypanosoma brucei. Int J Parasitol 2009; 39:307-14. [DOI: 10.1016/j.ijpara.2008.08.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 07/31/2008] [Accepted: 08/08/2008] [Indexed: 11/17/2022]
|
45
|
Voynova NE, Fu Z, Battaile KP, Herdendorf TJ, Kim JJP, Miziorko HM. Human mevalonate diphosphate decarboxylase: characterization, investigation of the mevalonate diphosphate binding site, and crystal structure. Arch Biochem Biophys 2008; 480:58-67. [PMID: 18823933 PMCID: PMC2709241 DOI: 10.1016/j.abb.2008.08.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 08/22/2008] [Accepted: 08/25/2008] [Indexed: 10/21/2022]
Abstract
Expression in Escherichia coli of his-tagged human mevalonate diphosphate decarboxylase (hMDD) has expedited enzyme isolation, characterization, functional investigation of the mevalonate diphosphate binding site, and crystal structure determination (2.4A resolution). hMDD exhibits V(max)=6.1+/-0.5 U/mg; K(m) for ATP is 0.69+/-0.07 mM and K(m) for (R,S) mevalonate diphosphate is 28.9+/-3.3 microM. Conserved polar residues predicted to be in the hMDD active site were mutated to test functional importance. R161Q exhibits a approximately 1000-fold diminution in specific activity, while binding the fluorescent substrate analog, TNP-ATP, comparably to wild-type enzyme. Diphosphoglycolyl proline (K(i)=2.3+/-0.3 uM) and 6-fluoromevalonate 5-diphosphate (K(i)=62+/-5 nM) are competitive inhibitors with respect to mevalonate diphosphate. N17A exhibits a V(max)=0.25+/-0.0 2U/mg and a 15-fold inflation in K(m) for mevalonate diphosphate. N17A's K(i) values for diphosphoglycolyl proline and fluoromevalonate diphosphate are inflated (>70-fold and 40-fold, respectively) in comparison with wild-type enzyme. hMDD structure indicates the proximity (2.8A) between R161 and N17, which are located in an interior pocket of the active site cleft. The data suggest the functional importance of R161 and N17 in the binding and orientation of mevalonate diphosphate.
Collapse
Affiliation(s)
- Natalia E Voynova
- Division of Molecular Biology and Biochemistry, University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO 64110, USA
| | | | | | | | | | | |
Collapse
|
46
|
Eoh H, Brennan PJ, Crick DC. The Mycobacterium tuberculosis MEP (2C-methyl-d-erythritol 4-phosphate) pathway as a new drug target. Tuberculosis (Edinb) 2008; 89:1-11. [PMID: 18793870 DOI: 10.1016/j.tube.2008.07.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 07/15/2008] [Accepted: 07/23/2008] [Indexed: 10/21/2022]
Abstract
Tuberculosis (TB) is still a major public health problem, compounded by the human immunodeficiency virus (HIV)-TB co-infection and recent emergence of multidrug-resistant (MDR) and extensively drug resistant (XDR)-TB. Novel anti-TB drugs are urgently required. In this context, the 2C-methyl-d-erythritol 4-phosphate (MEP) pathway of Mycobacterium tuberculosis has drawn attention; it is one of several pathways vital for M. tuberculosis viability and the human host lacks homologous enzymes. Thus, the MEP pathway promises bacterium-specific drug targets and the potential for identification of lead compounds unencumbered by target-based toxicity. Indeed, fosmidomycin is now known to inhibit the second step in the MEP pathway. This review describes the cardinal features of the main enzymes of the MEP pathway in M. tuberculosis and how these can be manipulated in high throughput screening campaigns in the search for new anti-infectives against TB.
Collapse
Affiliation(s)
- Hyungjin Eoh
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | |
Collapse
|
47
|
Nair AK, Young MA, Menon KMJ. Regulation of luteinizing hormone receptor mRNA expression by mevalonate kinase--role of the catalytic center in mRNA recognition. FEBS J 2008; 275:3397-407. [PMID: 18494797 DOI: 10.1111/j.1742-4658.2008.06490.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We have shown that hormone-induced downregulation of luteinizing hormone receptor (LHR) in the ovary is post-transcriptionally regulated by an mRNA binding protein. This protein, later identified as mevalonate kinase (MVK), binds to the coding region of LHR mRNA, suppresses its translation, and the resulting ribonucleoprotein complex is targeted for degradation. Mutagenesis and crystallographic studies of rat MVK have established Ser146, Glu193, Asp204 and Lys13 as being crucial for its catalytic function. The present study examined the structural aspects of MVK required for LHR mRNA recognition and translational suppression. Single MVK mutants (S146A, E193Q, D204N and K13A) were overexpressed in 293T cells. Cytosolic fractions were examined for LHR mRNA binding activities by RNA electrophoretic mobility shift analysis. All the single MVK mutants showed decreased LHR mRNA binding activity compared with the wild-type MVK. Double mutants (S146A & E193Q, E193Q & D204N and E193Q & K13A) of MVK also showed a significant decrease in binding to LHR mRNA, suggesting that the residues required for catalytic function are also involved in LHR mRNA recognition. Mutation of the residues outside the catalytic site (D316A and S314A) did not cause any change in LHR mRNA binding activity of MVK when compared with wild-type MVK. To examine the biological effects of these mutants on LHR mRNA expression, a full-length capped rat LHR mRNA was synthesized and translated using a rabbit reticulocyte lysate system in the presence or absence of the MVK mutant proteins. The results showed that mutations of the active site residues of MVK abrogated the inhibitory effect on LHR mRNA translation. Therefore, these data indicate that an intact active site of MVK is required for its binding to rat LHR mRNA and for its translational suppressor function.
Collapse
Affiliation(s)
- Anil K Nair
- Department of Obstetrics/Gynecology, University of Michigan Medical Center, Ann Arbor, MI 48109-0617, USA
| | | | | |
Collapse
|
48
|
Wierenga KJ, Lai K, Buchwald P, Tang M. High-throughput screening for human galactokinase inhibitors. ACTA ACUST UNITED AC 2008; 13:415-23. [PMID: 18490662 DOI: 10.1177/1087057108318331] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Inherited deficiency of galactose-1-phosphate uridyltransferase (GALT) can result in a potentially lethal disorder called classic galactosemia. Although the neonatal lethality associated with this disease can be prevented through early diagnosis and a galactose-restricted diet, the lack of effective therapy continues to have consequences: developmental delay, neurological disorders, and premature ovarian failure are common sequelae in childhood and adulthood. Several lines of evidence indicate that an elevated level of galactose-1-phosphate (gal-1-p), the product of galactokinase (GALK), is a major, if not sole, pathogenic mechanism in patients with classic galactosemia. The authors hypothesize that elimination of gal-1-p production by inhibiting GALK will relieve GALT-deficient cells from galactose toxicity. To test this hypothesis, they obtained human GALK using a bacterial expression system. They developed a robust, miniaturized, high-throughput GALK assay (Z' factor = 0.91) and used this assay to screen against libraries composed of 50,000 chemical compounds with diverse structural scaffolds. They selected 150 compounds that, at an average concentration of 33.3 microM, inhibited GALK activity in vitro more than 86.5% and with a reproducibility score of at least 0.7 for a confirmatory screen under identical experimental conditions. Of these 150 compounds, 34 were chosen for further characterization. Preliminary results indicated that these 34 compounds have potential to serve as leads to the development of more effective therapy of classic galactosemia.
Collapse
Affiliation(s)
- Klaas J Wierenga
- Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida 33101, USA
| | | | | | | |
Collapse
|
49
|
Sgraja T, Alphey MS, Ghilagaber S, Marquez R, Robertson MN, Hemmings JL, Lauw S, Rohdich F, Bacher A, Eisenreich W, Illarionova V, Hunter WN. Characterization of Aquifex aeolicus 4-diphosphocytidyl-2C-methyl-d-erythritol kinase - ligand recognition in a template for antimicrobial drug discovery. FEBS J 2008; 275:2779-94. [PMID: 18422643 PMCID: PMC2655357 DOI: 10.1111/j.1742-4658.2008.06418.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
4-Diphosphocytidyl-2C-methyl-d-erythritol kinase (IspE) catalyses the ATP-dependent conversion of 4-diphosphocytidyl-2C-methyl-d-erythritol (CDPME) to 4-diphosphocytidyl-2C-methyl-d-erythritol 2-phosphate with the release of ADP. This reaction occurs in the non-mevalonate pathway of isoprenoid precursor biosynthesis and because it is essential in important microbial pathogens and absent from mammals it represents a potential target for anti-infective drugs. We set out to characterize the biochemical properties, determinants of molecular recognition and reactivity of IspE and report the cloning and purification of recombinant Aquifex aeolicus IspE (AaIspE), kinetic data, metal ion, temperature and pH dependence, crystallization and structure determination of the enzyme in complex with CDP, CDPME and ADP. In addition, 4-fluoro-3,5-dihydroxy-4-methylpent-1-enylphosphonic acid (compound 1) was designed to mimic a fragment of the substrate, a synthetic route to 1 was elucidated and the complex structure determined. Surprisingly, this ligand occupies the binding site for the ATP α-phosphate not the binding site for the methyl-d-erythritol moiety of CDPME. Gel filtration and analytical ultracentrifugation indicate that AaIspE is a monomer in solution. The enzyme displays the characteristic α/β galacto-homoserine-mevalonate-phosphomevalonate kinase fold, with the catalytic centre positioned in a deep cleft between the ATP- and CDPME-binding domains. Comparisons indicate a high degree of sequence conservation on the IspE active site across bacterial species, similarities in structure, specificity of substrate recognition and mechanism. The biochemical characterization, attainment of well-ordered and reproducible crystals and the models resulting from the analyses provide reagents and templates to support the structure-based design of broad-spectrum antimicrobial agents.
Collapse
Affiliation(s)
- Tanja Sgraja
- Division of Biological Chemistry and Drug Discovery, University of Dundee, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Genetic evidence for sites of interaction between the Gal3 and Gal80 proteins of the Saccharomyces cerevisiae GAL gene switch. Genetics 2008; 178:725-36. [PMID: 18245852 DOI: 10.1534/genetics.107.074799] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Galactose-activated transcription of the Saccharomyces cerevisiae GAL genes occurs when Gal3 binds the Gal4 inhibitor, Gal80. Noninteracting variants of Gal3 or Gal80 render the GAL genes noninducible. To identify the binding determinants for Gal3's interaction with Gal80 we carried out GAL3-GAL80 intergenic suppression analyses and selected for new GAL3 mutations that impair the Gal3-Gal80 interaction. We show that a GAL3(C)-D368V mutation can suppress the noninducibility due to a GAL80(S-1)-G323R mutation, and a GAL80-M350C mutation can suppress the noninducibility due to a gal3-D111C mutation. A reverse two-hybrid selection for GAL3 mutations that impair the Gal3-Gal80 interaction yielded 12 single-amino-acid substitutions at residues that are predicted to be surface exposed on Gal3. The majority of the affected Gal3 residues localized to a composite surface that includes D111 and a sequence motif containing D368, which has been implicated in interaction with Gal80. The striking colocalization of intergenic suppressor residues and Gal80 nonbinder residues identifies a Gal3 surface that likely interacts with Gal80.
Collapse
|