1
|
Fernández I, Bontems F, Brun D, Coquin Y, Goverde CA, Correia BE, Gessain A, Buseyne F, Rey FA, Backovic M. Structures of the Foamy virus fusion protein reveal an unexpected link with the F protein of paramyxo- and pneumoviruses. SCIENCE ADVANCES 2024; 10:eado7035. [PMID: 39392890 PMCID: PMC11468914 DOI: 10.1126/sciadv.ado7035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 09/06/2024] [Indexed: 10/13/2024]
Abstract
Foamy viruses (FVs) constitute a subfamily of retroviruses. Their envelope (Env) glycoprotein drives the merger of viral and cellular membranes during entry into cells. The only available structures of retroviral Envs are those from human and simian immunodeficiency viruses from the subfamily of orthoretroviruses, which are only distantly related to the FVs. We report the cryo-electron microscopy structures of the FV Env ectodomain in the pre- and post-fusion states, which unexpectedly demonstrate structural similarity with the fusion protein (F) of paramyxo- and pneumoviruses, implying an evolutionary link between the viral fusogens. We describe the structural features that are unique to the FV Env and propose a mechanistic model for its conformational change, highlighting how the interplay of its structural elements could drive membrane fusion and viral entry. The structural knowledge on the FV Env now provides a framework for functional investigations, which can benefit the design of FV Env variants with improved features for use as gene therapy vectors.
Collapse
Affiliation(s)
- Ignacio Fernández
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité de Virologie Structurale, 75015 Paris, France
| | - François Bontems
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité de Virologie Structurale, 75015 Paris, France
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris Saclay, 91190 Gif-sur-Yvette, France
| | - Delphine Brun
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité de Virologie Structurale, 75015 Paris, France
| | - Youna Coquin
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, 75015 Paris, France
| | - Casper A. Goverde
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Bruno E. Correia
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Antoine Gessain
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, 75015 Paris, France
| | - Florence Buseyne
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, 75015 Paris, France
| | - Felix A. Rey
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité de Virologie Structurale, 75015 Paris, France
| | - Marija Backovic
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité de Virologie Structurale, 75015 Paris, France
| |
Collapse
|
2
|
Gonzalez KJ, Yim KC, Blanco JCG, Boukhvalova MS, Strauch EM. Systematic computer-aided disulfide design as a general strategy to stabilize prefusion class I fusion proteins. Front Immunol 2024; 15:1406929. [PMID: 39114655 PMCID: PMC11303214 DOI: 10.3389/fimmu.2024.1406929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024] Open
Abstract
Numerous enveloped viruses, such as coronaviruses, influenza, and respiratory syncytial virus (RSV), utilize class I fusion proteins for cell entry. During this process, the proteins transition from a prefusion to a postfusion state, undergoing substantial and irreversible conformational changes. The prefusion conformation has repeatedly shown significant potential in vaccine development. However, the instability of this state poses challenges for its practical application in vaccines. While non-native disulfides have been effective in maintaining the prefusion structure, identifying stabilizing disulfide bonds remains an intricate task. Here, we present a general computational approach to systematically identify prefusion-stabilizing disulfides. Our method assesses the geometric constraints of disulfide bonds and introduces a ranking system to estimate their potential in stabilizing the prefusion conformation. We hypothesized that disulfides restricting the initial stages of the conformational switch could offer higher stability to the prefusion state than those preventing unfolding at a later stage. The implementation of our algorithm on the RSV F protein led to the discovery of prefusion-stabilizing disulfides that supported our hypothesis. Furthermore, the evaluation of our top design as a vaccine candidate in a cotton rat model demonstrated robust protection against RSV infection, highlighting the potential of our approach for vaccine development.
Collapse
Affiliation(s)
- Karen J. Gonzalez
- Institute of Bioinformatics, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, United States
- Department of Medicine, School of Medicine, Washington University, St. Louis, MO, United States
| | - Kevin C. Yim
- Sigmovir Biosystems, Inc., Rockville, MD, United States
| | | | | | - Eva-Maria Strauch
- Institute of Bioinformatics, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, United States
- Department of Medicine, School of Medicine, Washington University, St. Louis, MO, United States
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, United States
| |
Collapse
|
3
|
Liu Y, Pan H, Wang H, Yuan Y, Cao F, Song W, Wang Z. Mutations in the NDV fusion protein HR4 region decreased fusogenic activity due to failed protein expression. Microb Pathog 2024; 192:106713. [PMID: 38810765 DOI: 10.1016/j.micpath.2024.106713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/28/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024]
Abstract
Newcastle disease virus (NDV) is the pathogen of a zoonosis that is primarily transmitted by poultry and has severe infectivity and a high fatality rate. Many studies have focused on the role of the NDV fusion (F) protein in the cell-cell membrane fusion process. However, little attention has been given to the heptad repeat region, HR4, which is located in the NDV F2 subunit. Here, site-directed mutants were constructed to study the function of the NDV F protein HR4 region and identify the key amino acids in this region. Nine conserved amino acids were substituted with alanine or the corresponding amino acid of other aligned paramyxoviruses. The desired mutants were examined for changes in fusogenic activity through three kinds of membrane fusion assays and expression and proteolysis through IFA, FACS and WB. The results showed that when conserved amino acids (L81, Y84, L88, L91, L92, P94, L95 and I99) were replaced with alanine, the fusogenic activity of the F protein was abolished, possibly because of failed protein expression not only on the cell surface but also inside cells. These data indicated that the conserved amino acids above in NDV F HR4 are critical for normal protein synthesis and expression, possibly for the stability of the F protein monomer, formation of trimer and conformational changes.
Collapse
Affiliation(s)
- Yaqing Liu
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China; Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250014, China
| | - Huazheng Pan
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Hongwei Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yuan Yuan
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Fangfang Cao
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Wei Song
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Zhiyu Wang
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250014, China.
| |
Collapse
|
4
|
Zyla DS, Della Marca R, Niemeyer G, Zipursky G, Stearns K, Leedale C, Sobolik EB, Callaway HM, Hariharan C, Peng W, Parekh D, Marcink TC, Diaz Avalos R, Horvat B, Mathieu C, Snijder J, Greninger AL, Hastie KM, Niewiesk S, Moscona A, Porotto M, Ollmann Saphire E. A neutralizing antibody prevents postfusion transition of measles virus fusion protein. Science 2024; 384:eadm8693. [PMID: 38935733 DOI: 10.1126/science.adm8693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/28/2024] [Indexed: 06/29/2024]
Abstract
Measles virus (MeV) presents a public health threat that is escalating as vaccine coverage in the general population declines and as populations of immunocompromised individuals, who cannot be vaccinated, increase. There are no approved therapeutics for MeV. Neutralizing antibodies targeting viral fusion are one potential therapeutic approach but have not yet been structurally characterized or advanced to clinical use. We present cryo-electron microscopy (cryo-EM) structures of prefusion F alone [2.1-angstrom (Å) resolution], F complexed with a fusion-inhibitory peptide (2.3-Å resolution), F complexed with the neutralizing and protective monoclonal antibody (mAb) 77 (2.6-Å resolution), and an additional structure of postfusion F (2.7-Å resolution). In vitro assays and examination of additional EM classes show that mAb 77 binds prefusion F, arrests F in an intermediate state, and prevents transition to the postfusion conformation. These structures shed light on antibody-mediated neutralization that involves arrest of fusion proteins in an intermediate state.
Collapse
Affiliation(s)
- Dawid S Zyla
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Roberta Della Marca
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," 81100 Caserta, Italy
| | - Gele Niemeyer
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Luebeck, D-23538 Luebeck, Germany
| | - Gillian Zipursky
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Kyle Stearns
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Cameron Leedale
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Elizabeth B Sobolik
- Department of Laboratory Medicine and Pathology Virology Division, University of Washington, Seattle, WA 98109, USA
| | - Heather M Callaway
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Chitra Hariharan
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Weiwei Peng
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, Netherlands
- Netherlands Proteomics Center, 3584 CH Utrecht, Netherlands
| | - Diptiben Parekh
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Tara C Marcink
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Ruben Diaz Avalos
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Branka Horvat
- Immunobiology of Viral Infections, International Center for Infectiology Research-CIRI, INSERM U1111, CNRS UMR5308, University Lyon 1, ENS de Lyon, 69007 Lyon, France
| | - Cyrille Mathieu
- Centre International de Recherche en Infectiologie équipe Neuro-Invasion, TROpism and VIRal Encephalitis (NITROVIRE), INSERM U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, 69007 Lyon, France
| | - Joost Snijder
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, Netherlands
- Netherlands Proteomics Center, 3584 CH Utrecht, Netherlands
| | - Alexander L Greninger
- Department of Laboratory Medicine and Pathology Virology Division, University of Washington, Seattle, WA 98109, USA
| | - Kathryn M Hastie
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Stefan Niewiesk
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Anne Moscona
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Matteo Porotto
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," 81100 Caserta, Italy
| | - Erica Ollmann Saphire
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
5
|
Langedijk JPM, Cox F, Johnson NV, van Overveld D, Le L, van den Hoogen W, Voorzaat R, Zahn R, van der Fits L, Juraszek J, McLellan JS, Bakkers MJG. Universal paramyxovirus vaccine design by stabilizing regions involved in structural transformation of the fusion protein. Nat Commun 2024; 15:4629. [PMID: 38821950 PMCID: PMC11143371 DOI: 10.1038/s41467-024-48059-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/19/2024] [Indexed: 06/02/2024] Open
Abstract
The Paramyxoviridae family encompasses medically significant RNA viruses, including human respiroviruses 1 and 3 (RV1, RV3), and zoonotic pathogens like Nipah virus (NiV). RV3, previously known as parainfluenza type 3, for which no vaccines or antivirals have been approved, causes respiratory tract infections in vulnerable populations. The RV3 fusion (F) protein is inherently metastable and will likely require prefusion (preF) stabilization for vaccine effectiveness. Here we used structure-based design to stabilize regions involved in structural transformation to generate a preF protein vaccine antigen with high expression and stability, and which, by stabilizing the coiled-coil stem region, does not require a heterologous trimerization domain. The preF candidate induces strong neutralizing antibody responses in both female naïve and pre-exposed mice and provides protection in a cotton rat challenge model (female). Despite the evolutionary distance of paramyxovirus F proteins, their structural transformation and local regions of instability are conserved, which allows successful transfer of stabilizing substitutions to the distant preF proteins of RV1 and NiV. This work presents a successful vaccine antigen design for RV3 and provides a toolbox for future paramyxovirus vaccine design and pandemic preparedness.
Collapse
Affiliation(s)
- Johannes P M Langedijk
- Janssen Vaccines & Prevention BV, Leiden, The Netherlands
- ForgeBio, Amsterdam, The Netherlands
| | - Freek Cox
- Janssen Vaccines & Prevention BV, Leiden, The Netherlands
| | - Nicole V Johnson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | | | - Lam Le
- Janssen Vaccines & Prevention BV, Leiden, The Netherlands
| | | | | | - Roland Zahn
- Janssen Vaccines & Prevention BV, Leiden, The Netherlands
| | | | - Jarek Juraszek
- Janssen Vaccines & Prevention BV, Leiden, The Netherlands
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Mark J G Bakkers
- Janssen Vaccines & Prevention BV, Leiden, The Netherlands.
- ForgeBio, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Haddas R. Newcastle Disease Virus. Infect Dis (Lond) 2023. [DOI: 10.1007/978-1-0716-2463-0_1093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
7
|
Endotoxin-free gram-negative bacterium as a system for production and secretion of recombinant proteins. Appl Microbiol Biotechnol 2022; 107:287-298. [DOI: 10.1007/s00253-022-12295-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022]
|
8
|
Salman MI, Al-Shammari AM, Emran MA. 3-Dimensional coculture of breast cancer cell lines with adipose tissue–Derived stem cells reveals the efficiency of oncolytic Newcastle disease virus infection via labeling technology. Front Mol Biosci 2022; 9:754100. [PMID: 36172043 PMCID: PMC9511405 DOI: 10.3389/fmolb.2022.754100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/16/2022] [Indexed: 11/30/2022] Open
Abstract
Oncolytic virotherapy is one of the emerging biological therapeutics that needs a more efficient in vitro tumor model to overcome the two-dimensional (2D) monolayer tumor cell culture model’s inability to maintain tissue-specific structure. This is to offer significant prognostic preclinical assessment findings. One of the best models that can mimic the in vivo model in vitro are the three-dimensional (3D) tumor–normal cell coculture systems, which can be employed in preclinical oncolytic virus therapeutics. Thus, we developed our 3D coculture system in vitro using two types of breast cancer cell lines showing different receptor statuses cocultured with adipose tissue–derived mesenchymal stem cells. The cells were cultured in a floater tissue culture plate to allow spheroids formation, and then the spheroids were collected and transferred to a scaffold spheroids dish. These 3D culture systems were used to evaluate oncolytic Newcastle disease virus AMHA1 strain infectivity and antitumor activity using a tracking system of the Newcastle disease virus (NDV) labeled with fluorescent PKH67 linker to follow the virus entry into target cells. This provides evidence that the NDV AMHA1 strain is an efficient oncolytic agent. The fluorescently detected virus particles showed high intensity in both coculture spheres. Strategies for chemically introducing fluorescent dyes into NDV particles extract quantitative information from the infected cancer models. In conclusion, the results indicate that the NDV AMHA1 strain efficiently replicates and induces an antitumor effect in cancer–normal 3D coculture systems, indicating efficient clinical outcomes.
Collapse
Affiliation(s)
- Marwa Ibrahim Salman
- Department of Biotechnology, College of Science, University of Baghdad, Baghdad, Iraq
| | - Ahmed Majeed Al-Shammari
- Department of Experimental Therapy, Iraqi Center for Cancer and Medical Genetic Research, Mustansiriyah University, Baghdad, Iraq
- *Correspondence: Ahmed Majeed Al-Shammari,
| | - Mahfodha Abbas Emran
- Department of Biotechnology, College of Science, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
9
|
Chen X, Jia Y, Wei N, Ye C, Hao H, Xiao S, Wang X, Liu H, Yang Z. Identification of a new amino acid mutation in the HN protein of NDV involved in pathogenicity. Vet Res 2021; 52:147. [PMID: 34930432 PMCID: PMC8686287 DOI: 10.1186/s13567-021-01019-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 11/22/2021] [Indexed: 11/14/2022] Open
Abstract
The fusion (F) and haemagglutinin-neuraminidase (HN) proteins of Newcastle disease virus (NDV) are viral entry proteins and are recognized as the major virulence determinants. Previously, a lentogenic NDV virus (CE16) was derived from a mesogenic strain (CI10) through sequential passages in chick embryos. Whole-genome sequence analysis revealed that the two homologous strains shared the same F protein but differed in HN with two amino acid (aa) substitutions (A215G and T430A). To elucidate the molecular reasons for virulence attenuation, two original plasmids (HN-CI10 and HN-CE16) and two single-point mutants (G215A and A430T) reverse-mutated from HN-CE16 were constructed to analyse the known biological functions of HN. The results showed that the A430T substitution significantly weakened the haemadsorption (HAd) activity, increased the neuraminidase (NA) activity, improved the fusion-promoting activity, and enhanced the cleavage-promoting activity of HN-CE16. However, G215A failed to induce obvious functional changes. Therefore, the aa residue HN430 may play a key role in determining virulence. To test this hypothesis, further studies on A430T were conducted through reverse genetics using an infectious cDNA clone. At the viral level, the A430T-mutated virus showed dramatic promotion of viral plaque formation, propagation, and pathogenicity in vitro and in vivo. This study demonstrates a new virulence site associated with HN protein functions, viral propagation, and pathogenicity. All these findings could lay a foundation for illuminating the molecular mechanism of NDV virulence.
Collapse
Affiliation(s)
- Xi Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Yanqing Jia
- Department of Animal Engineering, Yangling Vocational & Technical College, Yangling, 712100, Shaanxi, China
| | - Ning Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chao Ye
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Huafang Hao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Sa Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Haijin Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
10
|
Omony JB, Wanyana A, Mugimba KK, Kirunda H, Nakavuma JL, Otim-Onapa M, Byarugaba DK. Epitope Peptide-Based Predication and Other Functional Regions of Antigenic F and HN Proteins of Waterfowl and Poultry Avian Avulavirus Serotype-1 Isolates From Uganda. Front Vet Sci 2021; 8:610375. [PMID: 34212016 PMCID: PMC8240872 DOI: 10.3389/fvets.2021.610375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 04/30/2021] [Indexed: 11/13/2022] Open
Abstract
Uganda is a Newcastle disease (ND) endemic country where the disease is controlled by vaccination using live LaSota (genotype II) and I2 (genotype I) vaccine strains. Resurgent outbreak episodes call for an urgent need to understand the antigenic diversity of circulating wild Avian Avulavirus serotype-1 (AAvV-1) strains. High mutation rates and the continuous emergence of genetic and antigenic variants that evade immunity make non-segmented RNA viruses difficult to control. Antigenic and functional analysis of the key viral surface proteins is a crucial step in understanding the antigen diversity between vaccine lineages and the endemic wild ND viruses in Uganda and designing ND peptide vaccines. In this study, we used computational analysis, phylogenetic characterization, and structural modeling to detect evolutionary forces affecting the predicted immune-dominant fusion (F) and hemagglutinin-neuraminidase (HN) proteins of AAvV-1 isolates from waterfowl and poultry in Uganda compared with that in LaSota vaccine strain. Our findings indicate that mutational amino acid variations at the F protein in LaSota strain, 25 poultry wild-type and 30 waterfowl wild-type isolates were distributed at regions including the functional domains of B-cell epitopes or N-glycosylation sites, cleavage site, fusion site that account for strain variations. Similarly, conserved regions of HN protein in 25 Ugandan domestic fowl isolates and the representative vaccine strain varied at the flanking regions and potential linear B-cell epitope. The fusion sites, signal peptides, cleavage sites, transmembrane domains, potential B-cell epitopes, and other specific regions of the two protein types in vaccine and wild viruses varied considerably at structure by effective online epitope prediction programs. Cleavage site of the waterfowl isolates had a typical avirulent motif of 111GGRQGR'L117 with the exception of one isolate which showed a virulent motif of 111GGRQKR'F117. All the poultry isolates showed the 111GRRQKR'F117 motif corresponding to virulent strains. Amino acid sequence variations in both HN and F proteins of AAvV-1 isolates from poultry, waterfowl, and vaccine strain were distributed over the length of the proteins with no detectable pattern, but using the experimentally derived 3D structure data revealed key-mapped mutations on the surfaces of the predicted conformational epitopes encompassing the experimental major neutralizing epitopes. The phylogenic tree constructed using the full F gene and partial F gene sequences of the isolates from poultry and waterfowl respectively, showed that Ugandan ND aquatic bird and poultry isolates share some functional amino acids in F sequences yet do remain unique at structure and the B-cell epitopes. Recombination analyses showed that the C-terminus and the rest of the F gene in poultry isolates originated from prevalent velogenic strains. Altogether, these could provide rationale for antigenic diversity in wild ND isolates of Uganda compared with the current ND vaccine strains.
Collapse
Affiliation(s)
- John Bosco Omony
- Department of Microbiology and Biotechnology, Uganda Industrial Research Institute, Kampala, Uganda.,College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Agnes Wanyana
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Kizito K Mugimba
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Halid Kirunda
- Mbarara Zonal Agricultural Research and Development Institute, National Agricultural Research Organization, Mbarara, Uganda
| | - Jessica L Nakavuma
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Maxwell Otim-Onapa
- Directorate of Science, Research and Innovation, Ministry of Science, Technology and Innovation, Kampala, Uganda
| | - Denis K Byarugaba
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| |
Collapse
|
11
|
Newcastle Disease Virus Entry into Chicken Macrophages via a pH-Dependent, Dynamin and Caveola-Mediated Endocytic Pathway That Requires Rab5. J Virol 2021; 95:e0228820. [PMID: 33762417 DOI: 10.1128/jvi.02288-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The cellular entry pathways and the mechanisms of Newcastle disease virus (NDV) entry into cells are poorly characterized. In this study, we demonstrated that chicken interferon-induced transmembrane protein 1 (chIFITM1), which is located in the early endosomes, could limit the replication of NDV in chicken macrophage cell line HD11, suggesting the endocytic entry of NDV into chicken macrophages. Then, we presented a systematic study about the entry mechanism of NDV into chicken macrophages. First, we demonstrated that a low-pH condition and dynamin were required during NDV entry. However, NDV entry into chicken macrophages was independent of clathrin-mediated endocytosis. We also found that NDV entry was dependent on membrane cholesterol. The NDV entry and replication were significantly reduced by nystatin and phorbol 12-myristate 13-acetate treatment, overexpression of dominant-negative (DN) caveolin-1, or knockdown of caveolin-1, suggesting that NDV entry depends on caveola-mediated endocytosis. However, macropinocytosis did not play a role in NDV entry into chicken macrophages. In addition, we found that Rab5, rather than Rab7, was involved in the entry and traffic of NDV. The colocalization of NDV with Rab5 and early endosome suggested that NDV virion was transported to early endosomes in a Rab5-dependent manner after internalization. Of particular note, the caveola-mediated endocytosis was also utilized by NDV to enter primary chicken macrophages. Moreover, NDV entered different cell types using different pathways. Collectively, our findings demonstrate for the first time that NDV virion enters chicken macrophages via a pH-dependent, dynamin and caveola-mediated endocytosis pathway and that Rab5 is involved in the traffic and location of NDV. IMPORTANCE Although the pathogenesis of Newcastle disease virus (NDV) has been extensively studied, the detailed mechanism of NDV entry into host cells is largely unknown. Macrophages are the first-line defenders of host defense against infection of pathogens. Chicken macrophages are considered one of the main types of target cells during NDV infection. Here, we comprehensively investigated the entry mechanism of NDV in chicken macrophages. This is the first report to demonstrate that NDV enters chicken macrophages via a pH-dependent, dynamin and caveola-mediated endocytosis pathway that requires Rab5. The result is important for our understanding of the entry of NDV in chicken macrophages, which will further advance the knowledge of NDV pathogenesis and provide useful clues for the development of novel preventive or therapeutic strategies against NDV infection. In addition, this information will contribute to our further understanding of pathogenesis with regard to other members of the Avulavirus genus in the Paramyxoviridae family.
Collapse
|
12
|
Sendai Virus-Vectored Vaccines That Express Envelope Glycoproteins of Respiratory Viruses. Viruses 2021; 13:v13061023. [PMID: 34072332 PMCID: PMC8230104 DOI: 10.3390/v13061023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/10/2021] [Accepted: 05/21/2021] [Indexed: 01/01/2023] Open
Abstract
Human respiratory syncytial virus (HRSV), human metapneumovirus (HMPV), and human parainfluenza viruses (HPIVs) are leading causes of respiratory disease in young children, the elderly, and individuals of all ages with immunosuppression. Vaccination strategies against these pneumoviruses and paramyxoviruses are vast in number, yet no licensed vaccines are available. Here, we review development of Sendai virus (SeV), a versatile pediatric vaccine that can (a) serve as a Jennerian vaccine against HPIV1, (b) serve as a recombinant vaccine against HRSV, HPIV2, HPIV3, and HMPV, (c) accommodate foreign genes for viral glycoproteins in multiple intergenic positions, (d) induce durable, mucosal, B-cell, and T-cell immune responses without enhanced immunopathology, (e) protect cotton rats, African green monkeys, and chimpanzees from infection, and (f) be formulated into a vaccine cocktail. Clinical phase I safety trials of SeV have been completed in adults and 3–6-year-old children. Clinical testing of SeVRSV, an HRSV fusion (F) glycoprotein gene recombinant, has also been completed in adults. Positive results from these studies, and collaborative efforts with the National Institutes of Health and the Serum Institute of India assist advanced development of SeV-based vaccines. Prospects are now good for vaccine successes in infants and consequent protection against serious viral disease.
Collapse
|
13
|
Liu Y, Liu Y, Huang Y, Wen H, Zhao L, Song Y, Wang Z. The effect of the HRB linker of Newcastle disease virus fusion protein on the fusogenic activity. J Microbiol 2021; 59:513-521. [PMID: 33779959 DOI: 10.1007/s12275-021-0539-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 10/21/2022]
Abstract
Newcastle disease, designated a class A disease of poultry by the Office international des epizooties (OIE), is an acute infection caused by Newcastle disease virus (NDV). The merging of the envelope of NDV with the membrane of a target host cell is the key step in the infection pathway, which is driven by the concerted action of two glycoproteins: haemagglutinin-neuraminidase (HN) and fusion (F) protein. When the HN protein binds to the host cell surface receptor, the F protein is activated to mediate fusion. The three-dimensional structure of the F protein has been reported to have low electron density between the DIII domain and the HRB domain, and this electron-poor region is defined as the HRB linker. To clarify the contributing role of the HRB linker in the NDV F protein-mediated fusion process, 6 single amino acid mutants were obtained by site-directed mutagenesis of the HRB linker. The expression of the mutants and their abilities to mediate fusion were analysed, and the key amino acids in the HRB linker were identified as L436, E439, I450, and S453, as they can modulate the fusion ability or expression of the active form to a certain extent. The data shed light on the crucial role of the F protein HRB linker in the acquisition of a normal fusogenic phenotype.
Collapse
Affiliation(s)
- Yaqing Liu
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250014, China
| | - Ying Liu
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250014, China
| | - Yanan Huang
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250014, China
| | - Hongling Wen
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250014, China
| | - Li Zhao
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250014, China
| | - Yanyan Song
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250014, China
| | - Zhiyu Wang
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250014, China.
| |
Collapse
|
14
|
Fitness selection of hyperfusogenic measles virus F proteins associated with neuropathogenic phenotypes. Proc Natl Acad Sci U S A 2021; 118:2026027118. [PMID: 33903248 DOI: 10.1073/pnas.2026027118] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Measles virus (MeV) is resurgent and caused >200,000 deaths in 2019. MeV infection can establish a chronic latent infection of the brain that can recrudesce months to years after recovery from the primary infection. Recrudescent MeV leads to fatal subacute sclerosing panencephalitis (SSPE) or measles inclusion body encephalitis (MIBE) as the virus spreads across multiple brain regions. Most clinical isolates of SSPE/MIBE strains show mutations in the fusion (F) gene that result in a hyperfusogenic phenotype in vitro and allow for efficient spread in primary human neurons. Wild-type MeV receptor-binding protein is indispensable for manifesting these mutant F phenotypes, even though neurons lack canonical MeV receptors (CD150/SLAMF1 or nectin-4). How such hyperfusogenic F mutants are selected and whether they confer a fitness advantage for efficient neuronal spread is unresolved. To better understand the fitness landscape that allows for the selection of such hyperfusogenic F mutants, we conducted a screen of ≥3.1 × 105 MeV-F point mutants in their genomic context. We rescued and amplified our genomic MeV-F mutant libraries in BSR-T7 cells under conditions in which MeV-F-T461I (a known SSPE mutant), but not wild-type MeV, can spread. We recovered known SSPE mutants but also characterized at least 15 hyperfusogenic F mutations with an SSPE phenotype. Structural mapping of these mutants onto the prefusion MeV-F trimer confirm and extend our understanding of the F regulatory domains in MeV-F. Our list of hyperfusogenic F mutants is a valuable resource for future studies into MeV neuropathogenesis and the regulation of paramyxovirus F.
Collapse
|
15
|
Novel Roles of the N1 Loop and N4 Alpha-Helical Region of the Nipah Virus Fusion Glycoprotein in Modulating Early and Late Steps of the Membrane Fusion Cascade. J Virol 2021; 95:JVI.01707-20. [PMID: 33568505 DOI: 10.1128/jvi.01707-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 01/27/2021] [Indexed: 11/20/2022] Open
Abstract
Nipah virus (NiV) is a zoonotic bat henipavirus in the family Paramyxoviridae NiV is deadly to humans, infecting host cells by direct fusion of the viral and host cell plasma membranes. This membrane fusion process is coordinated by the receptor-binding attachment (G) and fusion (F) glycoproteins. Upon G-receptor binding, F fuses membranes via a cascade that sequentially involves F-triggering, fusion pore formation, and viral or genome entry into cells. Using NiV as an important paramyxoviral model, we identified two novel regions in F that modulate the membrane fusion cascade. For paramyxoviruses and other viral families with class I fusion proteins, the heptad repeat 1 (HR1) and HR2 regions in the fusion protein prefusion conformation bind to form a six-helix bundle in the postfusion conformation. Here, structural comparisons between the F prefusion and postfusion conformations revealed that a short loop region (N1) undergoes dramatic spatial reorganization and a short alpha helix (N4) undergoes secondary structural changes. The roles of the N1 and N4 regions during the membrane fusion cascade, however, remain unknown for henipaviruses and paramyxoviruses. By performing alanine scanning mutagenesis and various functional analyses, we report that specific residues within these regions alter various steps in the membrane fusion cascade. While the N1 region affects early F-triggering, the N4 region affects F-triggering, F thermostability, and extensive fusion pore expansion during syncytium formation, also uncovering a link between F-G interactions and F-triggering. These novel mechanistic roles expand our understanding of henipaviral and paramyxoviral F-triggering, viral entry, and cell-cell fusion (syncytia), a pathognomonic feature of paramyxoviral infections.IMPORTANCE Henipaviruses infect bats, agriculturally important animals, and humans, with high mortality rates approaching ∼75% in humans. Known human outbreaks have been concentrated in Southeast Asia and Australia. Furthermore, about 20 new henipaviral species have been recently discovered in bats, with geographical spans in Asia, Africa, and South America. The development of antiviral therapeutics requires a thorough understanding of the mechanism of viral entry into host cells. In this study, we discovered novel roles of two regions within the fusion protein of the deadly henipavirus NiV. Such roles were in allowing viral entry into host cells and cell-cell fusion, a pathological hallmark of this and other paramyxoviruses. These novel roles were in the previously undescribed N1 and N4 regions within the fusion protein, modulating early and late steps of these important processes of viral infection and henipaviral disease. Notably, this knowledge may apply to other henipaviruses and more broadly to other paramyxoviruses.
Collapse
|
16
|
Hidaka C, Soda K, Nomura F, Kashiwabara Y, Ito H, Ito T. The chicken-derived velogenic Newcastle disease virus can acquire high pathogenicity in domestic ducks via serial passaging. Avian Pathol 2021; 50:1-12. [PMID: 33576245 DOI: 10.1080/03079457.2021.1889461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/08/2021] [Indexed: 10/22/2022]
Abstract
Velogenic Newcastle disease virus (NDV) strains, which show high mortality in chickens, generally do not cause severe disease in waterfowl such as ducks. To elucidate the difference in the pathogenic mechanisms of NDV between chickens and ducks, a chicken-derived velogenic strain (9a5b) was passaged in domestic ducks five times in their air sacs, followed by 20 times in their brains. Eventually, 9a5b acquired higher intracerebral and intranasal pathogenicity in ducks. The intracerebral pathogenicity index (ICPI) value increased from 1.10 to 1.88. All one-week-old ducks intranasally inoculated with the passaged virus (d5a20b) died by 5 days post-inoculation, whereas 70% of the ducks inoculated with parental 9a5b survived for 8 days. The d5a20b strain replicated in broader systemic tissues in ducks compared with the 9a5b strain. The velogenic profile of 9a5b in chickens was maintained after passaging in ducks. The d5a20b suppressed IFN-β gene expression in duck embryo fibroblasts and replicated more rapidly than 9a5b. A total of 11 amino acid substitutions were found in the P, V, M, F, HN, and L proteins of d5a20b. These results suggest that chicken-derived velogenic NDVs have the potential to become virulent in both chickens and ducks during circulation in domesticated waterfowl populations. RESEARCH HIGHLIGHTSChicken-derived NDV acquired high pathogenicity in ducks with serial passaging.The passaged NDV showed intracerebral and intranasal pathogenicity in ducks.The passaged NDV efficiently replicated in systemic tissues in ducks.Of 11 amino acid substitutions some or all are likely involved in pathogenicity.
Collapse
Affiliation(s)
- Chiharu Hidaka
- Department of Joint Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - Kosuke Soda
- Department of Joint Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
- Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Fumie Nomura
- Department of Joint Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Yukie Kashiwabara
- Department of Joint Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Hiroshi Ito
- Department of Joint Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
- Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Toshihiro Ito
- Department of Joint Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
- Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori, Japan
| |
Collapse
|
17
|
Chang H, Feng S, Wang Y, Li F, Su Q, Wang B, Du J, He H. Isolation and Pathogenic Characterization of Pigeon Paramyxovirus Type 1 via Different Inoculation Routes in Pigeons. Front Vet Sci 2021; 7:569901. [PMID: 33681314 PMCID: PMC7925627 DOI: 10.3389/fvets.2020.569901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/28/2020] [Indexed: 11/19/2022] Open
Abstract
Pigeon paramyxovirus type I (PPMV-1) causes regular outbreaks in pigeons and even poses a pandemic threat among chickens and other birds. The birds infected with PPMV-1 mainly show a pathological damage in the respiratory system, digestive system, and nervous system. However, there were few reports on the efficiency of the virus entering the host via routes of different systems. In the present study, a PPMV-1 strain was obtained from a dead wild pigeon in 2016 in Beijing, China. The mean death time (MDT) and the intracerebral pathogenicity (ICPI) of our isolate showed medium virulence. Phylogenetic analysis based on F gene sequence showed that the isolate belonged to subgenotype VIb, class II, which dominated in China in recent years. Then, we evaluated the infection efficiency of different routes. Pigeons were randomly divided into five groups of six as follows: intracephalic (IC), intranasal (IN), and intraoral (IO) infection routes, cohabitation infection (CO), and negative control (N negative). All pigeons were inoculated with 100 μl·106 EID50 PPMV-1 virus. After infection, pathological lesions, virus shedding, body weight change, survival rate, and tissue tropism were tested to compare the efficiency of the different infected routes. The mortality of groups IC, IN, IO, and CO were 100, 66.7, 50, and 33.3%, respectively. Weight loss in group IC was higher than the other groups, followed by groups IN and IO. The lesions observed in PPMV-1-infected pigeons were severe, especially in the lung and intestine in group IC. Viral shedding was observed from 2 dpi in groups IC and IN, but the shedding rate was higher in group IN than group IC. The longest period was in group CO. Tissue tropism experiment showed that our isolate has a wide range of tissue distribution, and the virus titer in the heart and intestine of group IC and in the brain of group IN was higher. Our data may help us to evaluate the risk of transmission of PPMV-1.
Collapse
Affiliation(s)
- Han Chang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shengyong Feng
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yutian Wang
- Department of Microbiology, Beijing General Station of Animal Husbandry, Beijing, China
| | - Fuhuang Li
- Department of Microbiology, Beijing General Station of Animal Husbandry, Beijing, China
| | - Qianqian Su
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bo Wang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Juan Du
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hongxuan He
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Shokeen K, Srivathsan A, Kumar S. Lithium chloride functions as Newcastle disease virus-induced ER-stress modulator and confers anti-viral effect. Virus Res 2020; 292:198223. [PMID: 33166563 DOI: 10.1016/j.virusres.2020.198223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 10/23/2022]
Abstract
Newcastle disease is a severe clinical manifestation of avian species caused by Newcastle disease virus (NDV). Although several vaccination strategies are available to protect poultry against NDV infection, even then, outbreaks have been reported in the vaccinated birds. The lack of therapeutics against NDV makes the need for effective anti-viral drugs is of utmost importance. Lithium Chloride (LiCl) is a widely prescribed drug for the treatment of bipolar disorder, acute brain injuries, and chronic neurodegenerative diseases. Also, LiCl has been repurposed as an effective anti-viral drug for some viral infections. In the present work, we have investigated the efficacy of LiCl to inhibit NDV replication using in vitro, in ovo, and in vivo models. Our results collectively showed the modulation of NDV replication after the LiCl treatment. We also demonstrated that NDV induces endoplasmic reticulum stress (ER-stress), and a stress-inducible ER chaperone, glucose-regulating protein 78 (GRP78), was found to be over-expressed after NDV infection. Subsequently, the treatment of NDV infected cells with LiCl significantly reduced the transcript and protein levels of GRP78. Finally, we concluded that LiCl treatment protects the cells from ER-stress induced by the NDV infection.
Collapse
Affiliation(s)
- Kamal Shokeen
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Ariktha Srivathsan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
19
|
Sun J, Han Z, Zhao R, Ai H, Chen L, Li L, Liu S. Protection of chicks from Newcastle disease by combined vaccination with a plasmid DNA and the pre-fusion protein of the virulent genotype VII of Newcastle disease virus. Vaccine 2020; 38:7337-7349. [PMID: 32981778 DOI: 10.1016/j.vaccine.2020.09.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/07/2020] [Accepted: 09/13/2020] [Indexed: 01/03/2023]
Abstract
In this study, four codon optimized plasmids (designated as pCAG-optiF-1, 2, -3, and -4) containing modified F genes from the epidemic and virulent NDV genotype VII strain isolated in China that is expected to express the pre-fusion conformation of the F protein were constructed. The expression of these F variants in chicken-derived cells was detected by an indirect immunofluorescence assay and western blot analysis. Two soluble F variants (roptiF-1 and 2) potentially with the pre-fusion conformation were expressed and purified from suspended cells. Vaccination with each of the plasmids as a DNA vaccine conferred partial clinical protection to chicks against NDV. Comparatively, the plasmid pCAG-optiF-2 encoded a soluble protein with a mutant cleavage site and the potential pre-fusion conformation provided better protection than the other plasmids. Further investigation of the combined vaccinations with the plasmid DNA pCAG-optiF-2 prime + protein roptiF-2 boost vaccination strategy elicited more robust immunity, as confirmed by the detection of antibodies against NDV using enzyme-linked immunosorbent assay and virus neutralization assay, as compared to those vaccinated with only the plasmid pCAG-optiF-2 or protein roptiF-2. More importantly, the DNA prime + protein boost vaccination provided more efficacious protection against virulent NDV challenge, as evidenced by the complete clinical protection, reduced viral shedding, and limited virus replication in tissues of the challenge chicks. These results indicated that the pre-fusion conformation of the F protein could be considered as the target immunogen for the development of novel NDV vaccines.
Collapse
Affiliation(s)
- Junfeng Sun
- Division of Avian Infectious Diseases, The State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, People's Republic of China
| | - Zongxi Han
- Division of Avian Infectious Diseases, The State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, People's Republic of China
| | - Ran Zhao
- Division of Avian Infectious Diseases, The State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, People's Republic of China
| | - Hui Ai
- Division of Avian Infectious Diseases, The State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, People's Republic of China
| | - Linna Chen
- Division of Avian Infectious Diseases, The State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, People's Republic of China
| | - Le Li
- Division of Avian Infectious Diseases, The State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, People's Republic of China
| | - Shengwang Liu
- Division of Avian Infectious Diseases, The State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, People's Republic of China.
| |
Collapse
|
20
|
Third Helical Domain of the Nipah Virus Fusion Glycoprotein Modulates both Early and Late Steps in the Membrane Fusion Cascade. J Virol 2020; 94:JVI.00644-20. [PMID: 32669342 DOI: 10.1128/jvi.00644-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/08/2020] [Indexed: 01/21/2023] Open
Abstract
Medically important paramyxoviruses, such as measles, mumps, parainfluenza, Nipah, and Hendra viruses, infect host cells by directing fusion of the viral and cellular plasma membranes. Upon infection, paramyxoviruses cause a second type of membrane fusion, cell-cell fusion (syncytium formation), which is linked to pathogenicity. Host cell receptor binding causes conformational changes in the attachment glycoprotein (HN, H, or G) that trigger a conformational cascade in the fusion (F) glycoprotein that mediates membrane fusion. F, a class I fusion protein, contains the archetypal heptad repeat regions 1 (HR1) and 2 (HR2). It is well established that binding of HR1 and HR2 is key to fusing viral and cellular membranes. In this study, we uncovered a novel fusion-modulatory role of a third structurally conserved helical region (HR3) in F. Based on its location within the F structure, and structural differences between its prefusion and postfusion conformations, we hypothesized that the HR3 modulates triggering of the F conformational cascade (still requiring G). We used the deadly Nipah virus (NiV) as an important paramyxoviral model to perform alanine scan mutagenesis and a series of multidisciplinary structural/functional analyses that dissect the various states of the membrane fusion cascade. Remarkably, we found that specific residues within the HR3 modulate not only early F-triggering but also late extensive fusion pore expansion steps in the membrane fusion cascade. Our results characterize these novel fusion-modulatory roles of the F HR3, improving our understanding of the membrane fusion process for NiV and likely for the related Henipavirus genus and possibly Paramyxoviridae family members.IMPORTANCE The Paramyxoviridae family includes important human and animal pathogens, such as measles, mumps, and parainfluenza viruses and the deadly henipaviruses Nipah (NiV) and Hendra (HeV) viruses. Paramyxoviruses infect the respiratory tract and the central nervous system (CNS) and can be highly infectious. Most paramyxoviruses have a limited host range. However, the biosafety level 4 NiV and HeV are highly pathogenic and have a wide mammalian host range. Nipah viral infections result in acute respiratory syndrome and severe encephalitis in humans, leading to 40 to 100% mortality rates. The lack of licensed vaccines or therapeutic approaches against NiV and other important paramyxoviruses underscores the need to understand viral entry mechanisms. In this study, we uncovered a novel role of a third helical region (HR3) of the NiV fusion glycoprotein in the membrane fusion process that leads to viral entry. This discovery sets HR3 as a new candidate target for antiviral strategies for NiV and likely for related viruses.
Collapse
|
21
|
Developments in single-molecule and single-particle fluorescence-based approaches for studying viral envelope glycoprotein dynamics and membrane fusion. Adv Virus Res 2019; 104:123-146. [PMID: 31439147 DOI: 10.1016/bs.aivir.2019.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Fusion of viral and cellular membranes is an essential step in the entry pathway of all enveloped viruses. This is a dynamic and multistep process, which has been extensively studied, resulting in the endpoints of the reaction being firmly established, and many essential cellular factors identified. What remains is to elucidate the dynamic events that underlie this process, including the order and timing of glycoprotein conformational changes, receptor-binding events, and movement of the glycoprotein on the surface of the virion. Due to the inherently asynchronous nature of these dynamics, there has been an increased focus on the study of single virions and single molecules. These techniques provide researchers the high precision and resolution necessary to bridge the gaps in our understanding of viral membrane fusion. This review highlights the advancement of single-molecule and single-particle fluorescence-based techniques, with a specific focus on how these techniques have been used to study the dynamic nature of the viral fusion pathway.
Collapse
|
22
|
Mutations in the DI–DII linker of the NDV fusion protein conferred hemagglutinin-neuraminidase-independent cell fusion promotion. J Gen Virol 2019; 100:958-967. [DOI: 10.1099/jgv.0.001278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
23
|
Chi M, Xie W, Liu Y, Zhang C, Liu Y, Wen H, Zhao L, Song Y, Liu N, Chi L, Wang Z. Conserved amino acids around the DIII-DI linker region of the Newcastle disease virus fusion protein are critical for protein folding and fusion activity. Biosci Trends 2019; 13:225-233. [PMID: 31142702 DOI: 10.5582/bst.2019.01070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Newcastle disease virus (NDV), an avian paramyxovirus, causes Newcastle disease (ND) which is a highly contagious and fatal viral disease affecting poultry and most species of birds. The fusion (F) protein of NDV mediates membrane fusion, which is essential to the processes of viral entry, replication, and dissemination. Although several domains of NDV F are known to have important effects on regulating the membrane fusion activity, the role of the region around domain III (DIII) and domain I (DI) still remains ill-defined. Site-directed mutagenesis was utilized to change the conserved amino acids at 269, 274, 277, 286, 287, 290, 295, and 297 to alanine in order to investigate the effects of these conserved amino acids around the DIII and DI linker region of the NDV F protein on fusion activity. It was found that five of these substitutions almost abolished fusion activity except for mutants I269A, Q286A, and N297A, which showed 57.1%, 161.1%, and 97.7% of the wt F level, respectively. Four (I274A, D277A, V287A, and P290A) of these five mutants likely result in interfering with folding or transporting of the molecule since these proteins were minimally expressed at the cell surface, formed aggregates, or not proteolytically cleaved. However, mutant L295A almost abolished fusion activity even with a similar level of cell surface expression. These data indicated that conserved amino acids around the DIII-DI linker region are critical for the folding of the F protein and have an important influence on fusion activity.
Collapse
Affiliation(s)
- Miaomiao Chi
- Department of Virology, School of Public Health, Shandong University
| | - Wenyan Xie
- Department of Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University
| | - Ying Liu
- Department of Virology, School of Public Health, Shandong University
| | - Chi Zhang
- Department of Virology, School of Public Health, Shandong University
| | - Yaqing Liu
- Department of Virology, School of Public Health, Shandong University
| | - Hongling Wen
- Department of Virology, School of Public Health, Shandong University
| | - Li Zhao
- Department of Virology, School of Public Health, Shandong University
| | - Yanyan Song
- Department of Virology, School of Public Health, Shandong University
| | - Na Liu
- Department of Virology, School of Public Health, Shandong University
| | - Lianli Chi
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University
| | - Zhiyu Wang
- Department of Virology, School of Public Health, Shandong University.,The Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University
| |
Collapse
|
24
|
Shah M, Bharadwaj MSK, Gupta A, Kumar R, Kumar S. Chicken viperin inhibits Newcastle disease virus infection in vitro: A possible interaction with the viral matrix protein. Cytokine 2019; 120:28-40. [PMID: 31003187 DOI: 10.1016/j.cyto.2019.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/28/2019] [Accepted: 04/12/2019] [Indexed: 02/06/2023]
Abstract
Viperin is an interferon-inducible protein that helps in protecting mammals against various virus infections. Viperin is a highly conserved member of the interferon-stimulated genes (ISG) family in many species. Viperin has been shown to play a pivotal role in the innate immunity of chicken; however, its role has not been explored in its antiviral potential. Newcastle disease virus (NDV) is the causative agent of an infectious disease in poultry. In the present study, we have shown the anti-NDV effect of chicken viperin (cViperin). The impact of cViperin upon NDV infection was investigated in chicken embryo fibroblast. The modeling of the cViperin protein was done using I-TASSER and ZDOCK is used to predict the possible interaction with the matrix protein of NDV. The interaction was further confirmed by co-immunoprecipitation assay using recombinant matrix protein of NDV with the recombinant cViperin. The recombinant NDV expressing cViperin showed reduced replication of the virus upon its growth kinetics. Our results suggest downregulation of NDV replication in the presence of cViperin. The study will be critical to elaborate our understanding of the chicken innate immune system which could help develop antiviral strategies against NDV infection.
Collapse
Affiliation(s)
- Manisha Shah
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - M S K Bharadwaj
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Anjali Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Rakesh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| |
Collapse
|
25
|
Rey FA, Lok SM. Common Features of Enveloped Viruses and Implications for Immunogen Design for Next-Generation Vaccines. Cell 2019. [PMID: 29522750 PMCID: PMC7112304 DOI: 10.1016/j.cell.2018.02.054] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Enveloped viruses enter cells by inducing fusion of viral and cellular membranes, a process catalyzed by a specialized membrane-fusion protein expressed on their surface. This review focuses on recent structural studies of viral fusion proteins with an emphasis on their metastable prefusion form and on interactions with neutralizing antibodies. The fusion glycoproteins have been difficult to study because they are present in a labile, metastable form at the surface of infectious virions. Such metastability is a functional requirement, allowing these proteins to refold into a lower energy conformation while transferring the difference in energy to catalyze the membrane fusion reaction. Structural studies have shown that stable immunogens presenting the same antigenic sites as the labile wild-type proteins efficiently elicit potently neutralizing antibodies, providing a framework with which to engineer the antigens for stability, as well as identifying key vulnerability sites that can be used in next-generation subunit vaccine design.
Collapse
Affiliation(s)
- Felix A Rey
- Institut Pasteur, Structural Virology Unit, CNRS UMR3569, 25-28 rue du Dr. Roux, 75015 Paris, France.
| | - Shee-Mei Lok
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore AND Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore.
| |
Collapse
|
26
|
Motamedi MJ, Shahsavandi S, Amani J, Kazemi R, Takrim S, Jafari M, Salmanian AH. Immunogenicity of the Multi-Epitopic Recombinant Glycoproteins of Newcastle Disease Virus: Implications for the Serodiagnosis Applications. IRANIAN JOURNAL OF BIOTECHNOLOGY 2018; 16:e1749. [PMID: 31457034 PMCID: PMC6697832 DOI: 10.21859/ijb.1749] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 05/19/2018] [Accepted: 05/28/2018] [Indexed: 11/27/2022]
Abstract
Background Newcastle disease virus (NDV) is a dangerous viral disease, infecting a broad range of birds, and has a fatal effect on the poultry industries. The attachment and consequently fusion of the virus to the host cell membrane is directed by the two superficial glycoproteins, the hemagglutinin-neuraminidase (HN) and the fusion (F) which is considered as the important targets for the poultry immune response. Objectives The principal goal of this investigation was to realize the potential efficacy of the E. coli expression system for the production of the multi-epitopic HN, and F proteins with respect to the ability for the stimulation of the immune system and production of the cross-reactive antibodies in mice. Materials and Methods The recombinant HN and F (rHN, rF) have accumulated almost 40% of the total bacterial proteins. The presence of rHN and rF proteins recognized by the Western blotting with specific anti-HN, anti-F, anti-Newcastle B1, and anti-poly 6x His-tag antibodies. Furthermore, both rHN and rF have shown the specific reactivity against the Newcastle B1 antiserum as a standard strain. Results The ELISA analysis showed that the higher dilutions of the antibody against Newcastle B1 could react with the as least quantity as 100 ng of the purified rHN, and rF. Cross-reactivity analysis of the sera from the mice immunized with Newcastle B1 in two time points indicated that the raise of anti-Newcastle B1, anti-HN and anti-F antibodies peaked at 28 days post immunization (dpi). Moreover, temporal variation in IgG titration between both time points was significant at 5% probability level. Conclusion The results provided valuable information about the cross-reactivity patterns and biological activity of the multi-epitopic proteins compared to the NDV standard strain which was determined by the Western blotting and ELISA.
Collapse
Affiliation(s)
- Mohammad Javad Motamedi
- Department of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Shahla Shahsavandi
- Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization, Karaj, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Rouhollah Kazemi
- Department of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Somayeh Takrim
- Department of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mahyat Jafari
- Department of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ali-Hatef Salmanian
- Department of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
27
|
Falanga A, Galdiero M, Morelli G, Galdiero S. Membranotropic peptides mediating viral entry. Pept Sci (Hoboken) 2018; 110:e24040. [PMID: 32328541 PMCID: PMC7167733 DOI: 10.1002/pep2.24040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/27/2017] [Accepted: 12/20/2017] [Indexed: 02/06/2023]
Abstract
The means used by enveloped viruses to bypass cellular membranes are well characterized; however, the mechanisms used by non-enveloped viruses to deliver their genome inside the cell remain unresolved and poorly defined. The discovery of short, membrane interacting, amphipathic or hydrophobic sequences (known as membranotropic peptides) in both enveloped and non-enveloped viruses suggests that these small peptides are strongly involved in breaching the host membrane and in the delivery of the viral genome into the host cell. Thus, in spite of noticeable differences in entry, this short stretches of membranotropic peptides are probably associated with similar entry-related events. This review will uncover the intrinsic features of viral membranotropic peptides involved in viral entry of both naked viruses and the ones encircled with a biological membrane with the objective to better elucidate their different functional properties and possible applications in the biomedical field.
Collapse
Affiliation(s)
- Annarita Falanga
- Department of Pharmacy, School of MedicineNaples80134Italy
- CIRPEB University of Naples Federico II, Via Mezzocannone 16Naples80134Italy
| | - Massimiliano Galdiero
- CIRPEB University of Naples Federico II, Via Mezzocannone 16Naples80134Italy
- Department of Experimental MedicineUniversity of Campania “Luigi Vanvitelli,” Via de CrecchioNaples80134Italy
| | - Giancarlo Morelli
- Department of Pharmacy, School of MedicineNaples80134Italy
- CIRPEB University of Naples Federico II, Via Mezzocannone 16Naples80134Italy
| | - Stefania Galdiero
- Department of Pharmacy, School of MedicineNaples80134Italy
- CIRPEB University of Naples Federico II, Via Mezzocannone 16Naples80134Italy
| |
Collapse
|
28
|
Rahman AU, Habib M, Shabbir MZ. Adaptation of Newcastle Disease Virus (NDV) in Feral Birds and their Potential Role in Interspecies Transmission. Open Virol J 2018; 12:52-68. [PMID: 30288195 PMCID: PMC6142666 DOI: 10.2174/1874357901812010052] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 03/14/2018] [Accepted: 06/11/2018] [Indexed: 12/19/2022] Open
Abstract
Introduction: Newcastle Disease (ND), caused by Avian avulavirus 1 (AAvV 1, avulaviruses), is a notifiable disease throughout the world due to the economic impact on trading restrictions and its embargoes placed in endemic regions. The feral birds including aquatic/migratory birds and other wild birds may act as natural reservoir hosts of ND Viruses (NDVs) and may play a remarkable role in the spread of the virus in environment. In addition, other 19 avulaviruses namely: AAvV 2 to 20, have been potentially recognized from feral avian species. Expalantion: Many previous studies have investigated the field prevailing NDVs to adapt a wide range of susceptible host. Still the available data is not enough to declare the potential role of feral birds in transmission of the virus to poultry and/or other avian birds. In view of the latest evidence related to incidences of AAvVs in susceptible avian species, it is increasingly important to understand the potential of viruses to transmit within the domestic poultry and other avian hosts. Genomic and phylogenomic analysis of several investigations has shown the same (RK/RQRR↓F) motif cleavage site among NDV isolates with same genotypes from domestic poultry and other wild hosts. So, the insight of this, various semi-captive/free-ranging wild avian species could play a vital role in the dissemination of the virus, which is an important consideration to control the disease outbreaks. Insufficient data on AAvV 1 transmission from wild birds to poultry and vice versa is the main constraint to understand about its molecular biology and genomic potential to cause infection in all susceptible hosts. Conclusion: The current review details the pertinent features of several historical and contemporary aspects of NDVs and the vital role of feral birds in its molecular epidemiology and ecology.
Collapse
Affiliation(s)
- Aziz-Ul- Rahman
- Department of Microbiology, University of Veterinary and Animal Sciences, 54000, Lahore, Pakistan
| | - Momena Habib
- Department of Microbiology, University of Veterinary and Animal Sciences, 54000, Lahore, Pakistan
| | - Muhammad Zubair Shabbir
- Quality Operations Laboratory, University of Veterinary and Animal Sciences, 54000, Lahore, Pakistan
| |
Collapse
|
29
|
Selim KM, Selim A, Arafa A, Hussein HA, Elsanousi AA. Molecular characterization of full fusion protein (F) of Newcastle disease virus genotype VIId isolated from Egypt during 2012-2016. Vet World 2018; 11:930-938. [PMID: 30147262 PMCID: PMC6097568 DOI: 10.14202/vetworld.2018.930-938] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/29/2018] [Indexed: 01/03/2023] Open
Abstract
Aim: The aim of this work was to study the full F gene sequence of Newcastle disease virus (NDV) in regard to pathotyping and genotyping and to study the evolution of this NDV in Egypt. Materials and Methods: The present study was conducted using samples from seven suspected NDV flocks of vaccinated chickens during 2012-2016 from six governorates in Egypt. The NDV was successfully isolated from pathological specimens through inoculation in specific pathogen-free embryonated chicken eggs. Results: Pathogenicity of the NDV isolates has been estimated through intracerebral pathogenicity index and ranged from 1.66 to 1.73 which indicates the velogenic type of NDV isolates. Pathotyping and genotyping of these isolates were done through sequencing of full-length F gene. Results indicated that the seven NDV isolates showed characteristic cleavage site motif (112RRQKRF117) for the velogenic strains of NDV. Phylogenetic analysis of the F gene clustered these isolates within Group I of genotype VIId within Israeli strains NDV/IS/2015, NDV-Ch/SD883, and most of the Middle East strains. Six of seven sequenced isolates have six potential N-linked glycosylation sites. The neutralization epitope on the five antigenic sites of fusion is conserved in all Egyptian strains of this study except NDV-KFR-B7-2012 which has a substitution at D 170 N in epitope A4. In all our strains, 10 cysteine residues are recorded, except one loss of cysteine at residue 370 in both NDV-EG-35-2014 and NDV-GHB-328F-2016. Conclusion: All viruses in this study have 52 amino acid substitutions within fusion gene in compared with Lasota strain that reveals importance for its antigenic and structural function. The present work highlights the important need to sequence F gene of NDV genotype VIId to investigate the evolution of this NDV in Egypt.
Collapse
Affiliation(s)
- Karim M Selim
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, P.O. Box 264-Dokki, Giza 12618, Egypt
| | - Abdullah Selim
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, P.O. Box 264-Dokki, Giza 12618, Egypt
| | - Abdelsatar Arafa
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, P.O. Box 264-Dokki, Giza 12618, Egypt
| | - Hussein A Hussein
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ahmed A Elsanousi
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
30
|
Shahar E, Haddas R, Goldenberg D, Lublin A, Bloch I, Bachner Hinenzon N, Pitcovski J. Newcastle disease virus: is an updated attenuated vaccine needed? Avian Pathol 2018; 47:467-478. [PMID: 29897786 DOI: 10.1080/03079457.2018.1488240] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Newcastle disease virus (NDV) is a major cause of infectious mortality and morbidity in poultry worldwide. It is an enveloped virus with two outer-membrane proteins-haemagglutinin-neuraminidase (HN) and fusion protein (F)-that induce neutralizing antibodies. All NDV strains belong to one serotype. Yet, NDV vaccines, derived from genotype II, do not fully prevent infection or shedding of viruses from other genotypes. The aim of this study was to test if an updated vaccine is required. For this purpose, NDVs isolated from infected, albeit heavily vaccinated, flocks were genetically and immunologically characterized. Amino acid differences in F and HN protein sequences were identified between the vaccine strain and each of the isolates, some specifically at the neutralization sites. Whereas all tested isolates showed similar haemagglutination-inhibition (HI) titres, 100-100,000 times higher antibody-to-virus ratios were needed to neutralize viral propagation in embryos by the field isolates versus the vaccine strain. As a result, a model and an equation were developed to explain the phenomenon of escape in one-serotype viruses and to calculate the HI values needed for protection, depending on variation rate at key positions. In conclusion, to confer full protection against NDVs that differ from the vaccine strain at the neutralizing epitopes, very high levels of antibodies should be raised and maintained to compensate for the reduction in the number of effective epitopes; alternatively, an adjusted attenuated vaccine should be developed-a task made possible in the current era of reverse vaccinology.
Collapse
Affiliation(s)
- Ehud Shahar
- a MIGAL - Galilee Technology Center , Kiryat Shmona , Israel
| | - Ruth Haddas
- b Division of Avian Diseases , Kimron Veterinary Institute , Bet-Dagan , Israel
| | - Dana Goldenberg
- a MIGAL - Galilee Technology Center , Kiryat Shmona , Israel
| | - Avishai Lublin
- b Division of Avian Diseases , Kimron Veterinary Institute , Bet-Dagan , Israel
| | - Itai Bloch
- a MIGAL - Galilee Technology Center , Kiryat Shmona , Israel
| | | | - Jacob Pitcovski
- a MIGAL - Galilee Technology Center , Kiryat Shmona , Israel.,c Department of Biotechnology , Tel-Hai Academic College , Kiryat Shmona , Israel
| |
Collapse
|
31
|
Yu GM, Zu SL, Zhou WW, Wang XJ, Shuai L, Wang XL, Ge JY, Bu ZG. Chimeric rabies glycoprotein with a transmembrane domain and cytoplasmic tail from Newcastle disease virus fusion protein incorporates into the Newcastle disease virion at reduced levels. J Vet Sci 2018; 18:351-359. [PMID: 27515260 PMCID: PMC5583423 DOI: 10.4142/jvs.2017.18.s1.351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 04/29/2016] [Accepted: 07/21/2016] [Indexed: 11/20/2022] Open
Abstract
Rabies remains an important worldwide health problem. Newcastle disease virus (NDV) was developed as a vaccine vector in animals by using a reverse genetics approach. Previously, our group generated a recombinant NDV (LaSota strain) expressing the complete rabies virus G protein (RVG), named rL-RVG. In this study, we constructed the variant rL-RVGTM, which expresses a chimeric rabies virus G protein (RVGTM) containing the ectodomain of RVG and the transmembrane domain (TM) and a cytoplasmic tail (CT) from the NDV fusion glycoprotein to study the function of RVG's TM and CT. The RVGTM did not detectably incorporate into NDV virions, though it was abundantly expressed at the surface of infected BHK-21 cells. Both rL-RVG and rL-RVGTM induced similar levels of NDV virus-neutralizing antibody (VNA) after initial and secondary vaccination in mice, whereas rabies VNA induction by rL-RVGTM was markedly lower than that induced by rL-RVG. Though rL-RVG could spread from cell to cell like that in rabies virus, rL-RVGTM lost this ability and spread in a manner similar to the parental NDV. Our data suggest that the TM and CT of RVG are essential for its incorporation into NDV virions and for spreading of the recombinant virus from the initially infected cells to surrounding cells.
Collapse
Affiliation(s)
- Gui Mei Yu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Shu Long Zu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Wei Wei Zhou
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Xi Jun Wang
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Lei Shuai
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Xue Lian Wang
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Jin Ying Ge
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Zhi Gao Bu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| |
Collapse
|
32
|
Shimizu K, Cao W, Saad G, Shoji M, Terada T. Comparative analysis of membrane protein structure databases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1077-1091. [PMID: 29331638 DOI: 10.1016/j.bbamem.2018.01.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 12/28/2017] [Accepted: 01/04/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Membrane proteins play important roles in cell survival and cell communication, as they function as transporters, receptors, anchors and enzymes. They are also potential targets for drugs that block receptors or inhibit enzymes related to diseases. Although the number of known structures of membrane proteins is still small relative to the size of the proteome as a whole, many new membrane protein structures have been determined recently. SCOPE OF THE ARTICLE We compared and analyzed the widely used membrane protein databases, mpstruc, Orientations of Proteins in Membranes (OPM), and PDBTM, as well as the extended dataset of mpstruc based on sequence similarity, the PDB structures whose classification field indicates that they are "membrane proteins" and the proteins with Structural Classification of Proteins (SCOP) class-f domains. We evaluated the relationships between these databases or datasets based on the overlap in their contents and the degree of consistency in the structural, topological, and functional classifications and in the transmembrane domain assignment. MAJOR CONCLUSIONS The membrane databases differ from each other in their coverage, and in the criteria that they use for annotation and classification. To ensure the efficient use of these databases, it is important to understand their differences and similarities. The establishment of more detailed and consistent annotations for the sequence, structure, membrane association, and function of membrane proteins is still required. GENERAL SIGNIFICANCE Considering the recent growth of experimentally determined structures, a broad survey and cumulative analysis of the sum of knowledge as presented in the membrane protein structure databases can be helpful to elucidate structures and functions of membrane proteins. We also aim to provide a framework for future research and classification of membrane proteins.
Collapse
Affiliation(s)
- Kentaro Shimizu
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| | - Wei Cao
- Faculty of Information Networking for Innovation and Design, Toyo University, Tokyo, Japan.
| | - Gull Saad
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| | - Michiru Shoji
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| | - Tohru Terada
- Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
33
|
Ha MN, Delpeut S, Noyce RS, Sisson G, Black KM, Lin LT, Bilimoria D, Plemper RK, Privé GG, Richardson CD. Mutations in the Fusion Protein of Measles Virus That Confer Resistance to the Membrane Fusion Inhibitors Carbobenzoxy-d-Phe-l-Phe-Gly and 4-Nitro-2-Phenylacetyl Amino-Benzamide. J Virol 2017; 91:e01026-17. [PMID: 28904193 PMCID: PMC5686717 DOI: 10.1128/jvi.01026-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 08/27/2017] [Indexed: 11/20/2022] Open
Abstract
The inhibitors carbobenzoxy (Z)-d-Phe-l-Phe-Gly (fusion inhibitor peptide [FIP]) and 4-nitro-2-phenylacetyl amino-benzamide (AS-48) have similar efficacies in blocking membrane fusion and syncytium formation mediated by measles virus (MeV). Other homologues, such as Z-d-Phe, are less effective but may act through the same mechanism. In an attempt to map the site of action of these inhibitors, we generated mutant viruses that were resistant to the inhibitory effects of Z-d-Phe-l-Phe-Gly. These 10 mutations were localized to the heptad repeat B (HRB) region of the fusion protein, and no changes were observed in the viral hemagglutinin, which is the receptor attachment protein. Mutations were validated in a luciferase-based membrane fusion assay, using transfected fusion and hemagglutinin expression plasmids or with syncytium-based assays in Vero, Vero-SLAM, and Vero-Nectin 4 cell lines. The changes I452T, D458N, D458G/V459A, N462K, N462H, G464E, and I483R conferred resistance to both FIP and AS-48 without compromising membrane fusion. The inhibitors did not block hemagglutinin protein-mediated binding to the target cell. Edmonston vaccine/laboratory and IC323 wild-type strains were equally affected by the inhibitors. Escape mutations were mapped upon a three-dimensional (3D) structure modeled from the published crystal structure of parainfluenzavirus 5 fusion protein. The most effective mutations were situated in a region located near the base of the globular head and its junction with the alpha-helical stalk of the prefusion protein. We hypothesize that the fusion inhibitors could interfere with the structural changes that occur between the prefusion and postfusion conformations of the fusion protein.IMPORTANCE Due to lapses in vaccination worldwide that have caused localized outbreaks, measles virus (MeV) has regained importance as a pathogen. Antiviral agents against measles virus are not commercially available but could be useful in conjunction with MeV eradication vaccine programs and as a safeguard in oncolytic viral therapy. Three decades ago, the small hydrophobic peptide Z-d-Phe-l-Phe-Gly (FIP) was shown to block MeV infections and syncytium formation in monkey kidney cell lines. The exact mechanism of its action has yet to be determined, but it does appear to have properties similar to those of another chemical inhibitor, AS-48, which appears to interfere with the conformational change in the viral F protein that is required to elicit membrane fusion. Escape mutations were used to map the site of action for FIP. Knowledge gained from these studies could help in the design of new inhibitors against morbilliviruses and provide additional knowledge concerning the mechanism of virus-mediated membrane fusion.
Collapse
Affiliation(s)
- Michael N Ha
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Pediatrics, IWK Health Centre, Canadian Center for Vaccinology, Goldbloom Pavilion, Halifax, Nova Scotia, Canada
| | - Sébastien Delpeut
- Department of Pediatrics, IWK Health Centre, Canadian Center for Vaccinology, Goldbloom Pavilion, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ryan S Noyce
- Department of Pediatrics, IWK Health Centre, Canadian Center for Vaccinology, Goldbloom Pavilion, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | - Gary Sisson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Karen M Black
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Darius Bilimoria
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Vertex Pharmaceuticals (Canada) Incorporated, Laval, Quebec, Canada
| | - Richard K Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Gilbert G Privé
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Christopher D Richardson
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Pediatrics, IWK Health Centre, Canadian Center for Vaccinology, Goldbloom Pavilion, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
34
|
Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion. Proc Natl Acad Sci U S A 2017; 114:11157-11162. [PMID: 29073020 DOI: 10.1073/pnas.1708727114] [Citation(s) in RCA: 419] [Impact Index Per Article: 59.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The tremendous pandemic potential of coronaviruses was demonstrated twice in the past few decades by two global outbreaks of deadly pneumonia. The coronavirus spike (S) glycoprotein initiates infection by promoting fusion of the viral and cellular membranes through conformational changes that remain largely uncharacterized. Here we report the cryoEM structure of a coronavirus S glycoprotein in the postfusion state, showing large-scale secondary, tertiary, and quaternary rearrangements compared with the prefusion trimer and rationalizing the free-energy landscape of this conformational machine. We also biochemically characterized the molecular events associated with refolding of the metastable prefusion S glycoprotein to the postfusion conformation using limited proteolysis, mass spectrometry, and single-particle EM. The observed similarity between postfusion coronavirus S and paramyxovirus F structures demonstrates that a conserved refolding trajectory mediates entry of these viruses and supports the evolutionary relatedness of their fusion subunits. Finally, our data provide a structural framework for understanding the mode of neutralization of antibodies targeting the fusion machinery and for engineering next-generation subunit vaccines or inhibitors against this medically important virus family.
Collapse
|
35
|
Ji Y, Liu T, Jia Y, Liu B, Yu Q, Cui X, Guo F, Chang H, Zhu Q. Two single mutations in the fusion protein of Newcastle disease virus confer hemagglutinin-neuraminidase independent fusion promotion and attenuate the pathogenicity in chickens. Virology 2017. [PMID: 28646649 DOI: 10.1016/j.virol.2017.06.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The fusion (F) protein of Newcastle disease virus (NDV) affects viral infection and pathogenicity through mediating membrane fusion. Previously, we found NDV with increased fusogenic activity in which contained T458D or G459D mutation in the F protein. Here, we investigated the effects of these two mutations on viral infection, fusogenicity and pathogenicity. Syncytium formation assays indicated that T458D or G459D increased the F protein cleavage activity and enhanced cell fusion with or without the presence of HN protein. The T458D- or G459D-mutated NDV resulted in a decrease in virus replication or release from cells. The animal study showed that the pathogenicity of the mutated NDVs was attenuated in chickens. These results indicate that these two single mutations in F altered or diminished the requirement of HN for promoting membrane fusion. The increased fusogenic activity may disrupt the cellular machinery and consequently decrease the virus replication and pathogenicity in chickens.
Collapse
Affiliation(s)
- Yanhong Ji
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Tao Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Yane Jia
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Bin Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Qingzhong Yu
- United States Department of Agriculture, Agriculture Research Service, US National Poultry Research Center, Southeast Poultry Research Laboratory, Athens, GA 30605, USA
| | - Xiaole Cui
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Fengfeng Guo
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Huiyun Chang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China.
| | - Qiyun Zhu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China.
| |
Collapse
|
36
|
Turmagambetova AS, Alexyuk MS, Bogoyavlenskiy AP, Linster M, Alexyuk PG, Zaitceva IA, Smith GJD, Berezin VE. Monitoring of Newcastle disease virus in environmental samples. Arch Virol 2017; 162:2843-2846. [PMID: 28577214 DOI: 10.1007/s00705-017-3433-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/23/2017] [Indexed: 01/28/2023]
Abstract
Newcastle disease virus (NDV) is an important pathogen in poultry. Waterfowl and a number of other avian species serve as the host for NDV. Severity of the disease is variable and infected animals mainly develop respiratory and neurological symptoms. Outbreaks of NDV in poultry are recorded regularly in the Republic of Kazakhstan despite the widespread use of vaccines. Here we present evidence that nucleic acid found in open water bodies in Kazakhstan can be detected by means of next-generation sequencing and belongs to at least three distinct genotypes of NDV.
Collapse
Affiliation(s)
- Aizhan S Turmagambetova
- Institute of Microbiology and Virology, 103, Bogenbai Batyr Street, Almaty, 050010, Kazakhstan.
| | - Madina S Alexyuk
- Institute of Microbiology and Virology, 103, Bogenbai Batyr Street, Almaty, 050010, Kazakhstan
| | - Andrey P Bogoyavlenskiy
- Institute of Microbiology and Virology, 103, Bogenbai Batyr Street, Almaty, 050010, Kazakhstan
| | - Martin Linster
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Pavel G Alexyuk
- Institute of Microbiology and Virology, 103, Bogenbai Batyr Street, Almaty, 050010, Kazakhstan
| | - Irina A Zaitceva
- Institute of Microbiology and Virology, 103, Bogenbai Batyr Street, Almaty, 050010, Kazakhstan
| | - Gavin J D Smith
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.,Duke Global Health Institute, Duke University, Durham, NC, USA
| | - Vladimir E Berezin
- Institute of Microbiology and Virology, 103, Bogenbai Batyr Street, Almaty, 050010, Kazakhstan
| |
Collapse
|
37
|
Genome-wide associations of CD46 and IFI44L genetic variants with neutralizing antibody response to measles vaccine. Hum Genet 2017; 136:421-435. [PMID: 28289848 DOI: 10.1007/s00439-017-1768-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 02/14/2017] [Indexed: 12/27/2022]
Abstract
Population-based studies have revealed 2-10% measles vaccine failure rate even after two vaccine doses. While the mechanisms behind this remain unknown, we hypothesized that host genetic factors are likely to be involved. We performed a genome-wide association study of measles specific neutralizing antibody and IFNγ ELISPOT response in a combined sample of 2872 subjects. We identified two distinct chromosome 1 regions (previously associated with MMR-related febrile seizures), associated with vaccine-induced measles neutralizing antibody titers. The 1q32 region contained 20 significant SNPs in/around the measles virus receptor-encoding CD46 gene, including the intronic rs2724384 (p value = 2.64 × 10-09) and rs2724374 (p value = 3.16 × 10-09) SNPs. The 1q31.1 region contained nine significant SNPs in/around IFI44L, including the intronic rs1333973 (p value = 1.41 × 10-10) and the missense rs273259 (His73Arg, p value = 2.87 × 10-10) SNPs. Analysis of differential exon usage with mRNA-Seq data and RT-PCR suggests the involvement of rs2724374 minor G allele in the CD46 STP region exon B skipping, resulting in shorter CD46 isoforms. Our study reveals common CD46 and IFI44L SNPs associated with measles-specific humoral immunity, and highlights the importance of alternative splicing/virus cellular receptor isoform usage as a mechanism explaining inter-individual variation in immune response after live measles vaccine.
Collapse
|
38
|
Site-specific glycosylation of the Newcastle disease virus haemagglutinin-neuraminidase. Glycoconj J 2016; 34:181-197. [DOI: 10.1007/s10719-016-9750-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 12/14/2022]
|
39
|
Abstract
The family Paramyxoviridae includes many viruses that significantly affect human and animal health. An essential step in the paramyxovirus life cycle is viral entry into host cells, mediated by virus-cell membrane fusion. Upon viral entry, infection results in expression of the paramyxoviral glycoproteins on the infected cell surface. This can lead to cell-cell fusion (syncytia formation), often linked to pathogenesis. Thus membrane fusion is essential for both viral entry and cell-cell fusion and an attractive target for therapeutic development. While there are important differences between viral-cell and cell-cell membrane fusion, many aspects are conserved. The paramyxoviruses generally utilize two envelope glycoproteins to orchestrate membrane fusion. Here, we discuss the roles of these glycoproteins in distinct steps of the membrane fusion process. These findings can offer insights into evolutionary relationships among Paramyxoviridae genera and offer future targets for prophylactic and therapeutic development.
Collapse
|
40
|
K A S, Venkata Subbaiah KC, Lavanya R, Chandrasekhar K, Chamarti NR, Kumar MS, Wudayagiri R, Valluru L. Design, Synthesis and Biological Evaluation of Novel Phosphorylated Abacavir Derivatives as Antiviral Agents Against Newcastle Disease Virus Infection in Chicken. Appl Biochem Biotechnol 2016; 180:361-81. [PMID: 27142273 DOI: 10.1007/s12010-016-2104-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/24/2016] [Indexed: 10/21/2022]
Abstract
Newcastle disease virus is the most devastating virus in poultry industry. It can eradicate the entire poultry flocks once infected. This study is aimed to investigate the antiviral efficacy of novel phosphorylated analogues of the drug abacavir (ABC) against Newcastle disease virus (NDV). About 16 analogues of ABC were designed and docking was performed against fusion protein of NDV. Three compounds were identified and selected for synthesis and biological evaluation based on binding affinity and docking scores. The compounds were synthesized and characterized by IR, (1)H, (13)C, (31)P and CHN analysis and mass spectra. These compounds were tested for antiviral efficacy against NDV-infected DF-1 cells. Compound ABC-1 had shown potent antiviral activity as evidenced by significant reduction in plaque units and cytopathic effect. Therefore, ABC-1 was selected to test for NDV-infected chicken survival rate. Effective dose50 concentrations were determined for ABC-1. Antioxidant enzyme levels in brain, liver and lung tissues were estimated. Superoxide dismutase and catalase were significantly raised and lipid peroxidation and HA titer levels were decreased upon treatment with 2 mg/kg body weight ABC-1. Histopathological modifications were also restored in the ABC-1-treated group. These findings demonstrated ABC-1 as a potential antiviral agent against NDV in chicken.
Collapse
Affiliation(s)
- Suresh K A
- Department of Biotechnology, Dravidian University, Kuppam, 517426, India
| | | | - Rayapu Lavanya
- Department of Biotechnology, Dravidian University, Kuppam, 517426, India
| | | | - Naga Raju Chamarti
- Department of Chemistry, Sri Venkateswara University, Tirupati, 517502, India
| | - M Suresh Kumar
- Centre for Bioinformatics, Pondicherry University, Pondicherry, 605014, India
| | | | - Lokanatha Valluru
- Department of Biotechnology, Dravidian University, Kuppam, 517426, India.
| |
Collapse
|
41
|
Suresh KA, Kadiam VSC, Basha TSK, Chamarti NR, Kumar SM, Wudayagiri R, Valluru L. Synthesis and Antiviral Activity of Novel Phosphorylated Derivatives of Didanosine Against Newcastle Disease Virus in Chicken. Arch Pharm (Weinheim) 2016; 349:442-55. [PMID: 27128998 DOI: 10.1002/ardp.201600038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/07/2016] [Accepted: 04/11/2016] [Indexed: 12/23/2022]
Abstract
A series of novel phosphorylated derivatives of didanosine were designed and docking studies were performed with a fusion protein of the Newcastle disease virus (NDV), to develop antiviral compounds against NDV. Based on the docking scores and binding affinities, three derivatives were selected. These compounds were synthesized and characterized by IR, (1) H, (13) C, (31) P, and CHN analysis and mass spectra. They were assessed for their in vitro antiviral activity in DF-1 cells; DDI-10 showed better antiviral activity as evidenced by significant reduction in plaque formation and cytopathic effects. DDI-10 was further evaluated in NDV-infected chicken; the survival rates and antioxidant enzyme levels in brain, liver, and lung tissues were estimated. Superoxide dismutase and catalase were significantly raised, and lipid peroxidation and HA titer levels were decreased upon treatment with 1.5 mg/kg body weight of DDI-10 than with 3 mg/kg body weight of DDI. Further histopathological alterations in NDV-infected tissues were restored in chicken treated with DDI-10. Thus, based on the results from in silico, in vitro, and in vivo assays, the novel phosphorylated DDI-10 might be considered as potent antiviral compound for NDV infection in chicken.
Collapse
Affiliation(s)
| | | | - Thaslim S K Basha
- Department of Chemistry, Sri Venkateswara University, Tirupati, India
| | | | - Suresh M Kumar
- Centre for Bioinformatics, Pondicherry University, Pondicherry, India
| | | | | |
Collapse
|
42
|
Measles Virus Fusion Protein: Structure, Function and Inhibition. Viruses 2016; 8:112. [PMID: 27110811 PMCID: PMC4848605 DOI: 10.3390/v8040112] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/26/2016] [Accepted: 04/14/2016] [Indexed: 01/02/2023] Open
Abstract
Measles virus (MeV), a highly contagious member of the Paramyxoviridae family, causes measles in humans. The Paramyxoviridae family of negative single-stranded enveloped viruses includes several important human and animal pathogens, with MeV causing approximately 120,000 deaths annually. MeV and canine distemper virus (CDV)-mediated diseases can be prevented by vaccination. However, sub-optimal vaccine delivery continues to foster MeV outbreaks. Post-exposure prophylaxis with antivirals has been proposed as a novel strategy to complement vaccination programs by filling herd immunity gaps. Recent research has shown that membrane fusion induced by the morbillivirus glycoproteins is the first critical step for viral entry and infection, and determines cell pathology and disease outcome. Our molecular understanding of morbillivirus-associated membrane fusion has greatly progressed towards the feasibility to control this process by treating the fusion glycoprotein with inhibitory molecules. Current approaches to develop anti-membrane fusion drugs and our knowledge on drug resistance mechanisms strongly suggest that combined therapies will be a prerequisite. Thus, discovery of additional anti-fusion and/or anti-attachment protein small-molecule compounds may eventually translate into realistic therapeutic options.
Collapse
|
43
|
A Y527A mutation in the fusion protein of Newcastle disease virus strain LaSota leads to a hyperfusogenic virus with increased replication and immunogenicity. J Gen Virol 2016; 97:287-292. [DOI: 10.1099/jgv.0.000350] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
44
|
Shen S, Wang M, Li X, Li S, van Oers MM, Vlak JM, Braakman I, Hu Z, Deng F, Wang H. Mutational and functional analysis of N-linked glycosylation of envelope fusion protein F of Helicoverpa armigera nucleopolyhedrovirus. J Gen Virol 2016; 97:988-999. [PMID: 26769631 DOI: 10.1099/jgv.0.000404] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The envelope fusion (F) protein of baculoviruses is a heavily N-glycosylated protein that plays a significant role in the virus infection cycle. N-Linked glycosylation of virus envelope glycoprotein is important for virus envelope glycoprotein folding and its function in general. There are six predicted N-glycosylation sites in the F (HaF) protein of Helicoverpa armigera nucleopolyhedrovirus (HearNPV). The N-glycosylation site located in the F(2) subunit (N104) of HaF has been identified and functionally characterized previously (Long et al., 2007). In this study, the other five potential N-glycosylation sites located in the HaF1 subunit, namely, N293, N361, N526, N571 and N595, were analysed extensively to examine their N-glycosylation and relative importance to the function of HaF. The results showed that four of these five potential glycosylation sites in the F(1) subunit, N293, N361, N526 and N571, were N-glycosylated in F proteins of mature HearNPV budded viruses (BVs) but that N595 was not. In general, the conserved site N526 was critical to the functioning of HaF, as absence of N-glycosylation of N526 reduced the efficiency of HaF folding and trafficking, consequently decreased fusogenicity and modified the subcellular localization of HaF proteins, and thus impaired virus production and infectivity. The absence of N-glycosylation at other individual sites was found to have different effects on the fusogenicity and subcelluar distribution of HaF proteins in HzAM1 cells. In summary, N-glycosylation plays comprehensive roles in HaF function and virus infectivity, which is further discussed.
Collapse
Affiliation(s)
- Shu Shen
- State Key Laboratory of Virology, and Joint Laboratory of Invertebrate Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PRChina
| | - Manli Wang
- State Key Laboratory of Virology, and Joint Laboratory of Invertebrate Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PRChina
| | - Xin Li
- State Key Laboratory of Virology, and Joint Laboratory of Invertebrate Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PRChina.,Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, The Netherlands
| | - Shufen Li
- State Key Laboratory of Virology, and Joint Laboratory of Invertebrate Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PRChina
| | | | - Just M Vlak
- Laboratory of Virology, Wageningen University, The Netherlands
| | - Ineke Braakman
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, The Netherlands
| | - Zhihong Hu
- State Key Laboratory of Virology, and Joint Laboratory of Invertebrate Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PRChina
| | - Fei Deng
- State Key Laboratory of Virology, and Joint Laboratory of Invertebrate Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PRChina
| | - Hualin Wang
- State Key Laboratory of Virology, and Joint Laboratory of Invertebrate Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PRChina
| |
Collapse
|
45
|
Chen XQ, Li ZB, Hu GX, Gu SZ, Zhang S, Ying Y, Gao FS. Isolation, Identification, and Sequencing of a Goose-Derived Newcastle Disease Virus and Determination of Its Pathogenicity. Avian Dis 2015; 59:235-43. [PMID: 26473673 DOI: 10.1637/10957-100914-reg] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In August 2010, geese in the Meihekou area of Jilin province in China were found to be infected by a pathogen that caused a disease similar to Newcastle disease. To determine the causative agent of the infections, a virus was isolated from liver tissues of infected geese, followed by a pathogenicity determination. The isolated virus was named NDV/White Goose/China/Jilin(Meihekou)/MHK-1/2010. Specific primers were designed to amplify the whole genome of the MHK-1 virus, followed by sequencing and splicing of the entire genome. Sequencing and phylogenetic analysis of MHK-1 showed that the isolate was a virulent strain of Newcastle disease virus. The MHK-1 genome is 15,192 nucleotides long, and it belongs to the class II branch of Newcastle disease viruses, as evidenced by the amino acid sequence (112R-R-Q-K-R-F117) of the F protein. The hemagglutinin titer was 1:128 to 1:512. The chicken embryo mean death time, the intracerebral pathogenicity index, and the median lethal dose of chicken embryos of MHK-1 were 43 hr, 1.63, and 10(9)/ml, respectively, which revealed that the newly isolated MHK-1 strain is strongly pathogenic to geese.
Collapse
Affiliation(s)
- Xiao-Qing Chen
- A Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Zi-Bing Li
- A Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Gui-Xue Hu
- A Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Song-Zhi Gu
- A Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Shuang Zhang
- A Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Ying Ying
- A Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Feng-Shan Gao
- A Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin 130118, China.,C Department of Bioengineering, College of Life Science and Technology, Dalian University, Dalian, Liaoning 116622, China
| |
Collapse
|
46
|
Fourrier M, Lester K, Markussen T, Falk K, Secombes CJ, McBeath A, Collet B. Dual Mutation Events in the Haemagglutinin-Esterase and Fusion Protein from an Infectious Salmon Anaemia Virus HPR0 Genotype Promote Viral Fusion and Activation by an Ubiquitous Host Protease. PLoS One 2015; 10:e0142020. [PMID: 26517828 PMCID: PMC4627773 DOI: 10.1371/journal.pone.0142020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/15/2015] [Indexed: 11/24/2022] Open
Abstract
In Infectious salmon anaemia virus (ISAV), deletions in the highly polymorphic region (HPR) in the near membrane domain of the haemagglutinin-esterase (HE) stalk, influence viral fusion. It is suspected that selected mutations in the associated Fusion (F) protein may also be important in regulating fusion activity. To better understand the underlying mechanisms involved in ISAV fusion, several mutated F proteins were generated from the Scottish Nevis and Norwegian SK779/06 HPR0. Co-transfection with constructs encoding HE and F were performed, fusion activity assessed by content mixing assay and the degree of proteolytic cleavage by western blot. Substitutions in Nevis F demonstrated that K276 was the most likely cleavage site in the protein. Furthermore, amino acid substitutions at three sites and two insertions, all slightly upstream of K276, increased fusion activity. Co-expression with HE harbouring a full-length HPR produced high fusion activities when trypsin and low pH were applied. In comparison, under normal culture conditions, groups containing a mutated HE with an HPR deletion were able to generate moderate fusion levels, while those with a full length HPR HE could not induce fusion. This suggested that HPR length may influence how the HE primes the F protein and promotes fusion activation by an ubiquitous host protease and/or facilitate subsequent post-cleavage refolding steps. Variations in fusion activity through accumulated mutations on surface glycoproteins have also been reported in other orthomyxoviruses and paramyxoviruses. This may in part contribute to the different virulence and tissue tropism reported for HPR0 and HPR deleted ISAV genotypes.
Collapse
Affiliation(s)
- Mickael Fourrier
- Aquaculture and Fish Health, Marine Scotland Science, Aberdeen, United Kingdom
- * E-mail:
| | - Katherine Lester
- Aquaculture and Fish Health, Marine Scotland Science, Aberdeen, United Kingdom
| | | | - Knut Falk
- Epidemiology, Norwegian Veterinary Institute, Oslo, Norway
| | | | - Alastair McBeath
- Aquaculture and Fish Health, Marine Scotland Science, Aberdeen, United Kingdom
| | - Bertrand Collet
- Aquaculture and Fish Health, Marine Scotland Science, Aberdeen, United Kingdom
| |
Collapse
|
47
|
Effect of amino acid sequence variations at position 149 on the fusogenic activity of the subtype B avian metapneumovirus fusion protein. Arch Virol 2015; 160:2445-53. [PMID: 26175070 DOI: 10.1007/s00705-015-2524-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 07/03/2015] [Indexed: 10/23/2022]
Abstract
The entry of enveloped viruses into host cells requires the fusion of viral and cell membranes. These membrane fusion reactions are mediated by virus-encoded glycoproteins. In the case of avian metapneumovirus (aMPV), the fusion (F) protein alone can mediate virus entry and induce syncytium formation in vitro. To investigate the fusogenic activity of the aMPV F protein, we compared the fusogenic activities of three subtypes of aMPV F proteins using a TCSD50 assay developed in this study. Interestingly, we found that the F protein of aMPV subtype B (aMPV/B) strain VCO3/60616 (aMPV/vB) was hyperfusogenic when compared with F proteins of aMPV/B strain aMPV/f (aMPV/fB), aMPV subtype A (aMPV/A), and aMPV subtype C (aMPV/C). We then further demonstrated that the amino acid (aa) residue 149F contributed to the hyperfusogenic activity of the aMPV/vB F protein. Moreover, we revealed that residue 149F had no effect on the fusogenic activities of aMPV/A, aMPV/C, and human metapneumovirus (hMPV) F proteins. Collectively, we provide the first evidence that the amino acid at position 149 affects the fusogenic activity of the aMPV/B F protein, and our findings will provide new insights into the fusogenic mechanism of this protein.
Collapse
|
48
|
Palgen JL, Jurgens EM, Moscona A, Porotto M, Palermo LM. Unity in diversity: shared mechanism of entry among paramyxoviruses. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 129:1-32. [PMID: 25595799 DOI: 10.1016/bs.pmbts.2014.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Paramyxoviridae family includes many viruses that are pathogenic in humans, including parainfluenza viruses, measles virus, respiratory syncytial virus, and the emerging zoonotic Henipaviruses. No effective treatments are currently available for these viruses, and there is a need for efficient antiviral therapies. Paramyxoviruses enter the target cell by binding to a cell surface receptor and then fusing the viral envelope with the target cell membrane, allowing the release of the viral genome into the cytoplasm. Blockage of these crucial steps prevents infection and disease. Binding and fusion are driven by two virus-encoded glycoproteins, the receptor-binding protein and the fusion protein, that together form the viral "fusion machinery." The development of efficient antiviral drugs requires a deeper understanding of the mechanism of action of the Paramyxoviridae fusion machinery, which is still controversial. Here, we review recent structural and functional data on these proteins and the current understanding of the mechanism of the paramyxovirus cell entry process.
Collapse
Affiliation(s)
- Jean-Louis Palgen
- Department of Pediatrics, Weill Cornell Medical College, Cornell University, New York, USA; Department of Biology, Ecole Normale Supérieure, Lyon, France
| | - Eric M Jurgens
- Department of Pediatrics, Weill Cornell Medical College, Cornell University, New York, USA
| | - Anne Moscona
- Department of Pediatrics, Weill Cornell Medical College, Cornell University, New York, USA; Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, USA
| | - Matteo Porotto
- Department of Pediatrics, Weill Cornell Medical College, Cornell University, New York, USA.
| | - Laura M Palermo
- Department of Pediatrics, Weill Cornell Medical College, Cornell University, New York, USA; Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, USA
| |
Collapse
|
49
|
Dey S, Chellappa MM, Gaikwad S, Kataria JM, Vakharia VN. Genotype characterization of commonly used Newcastle disease virus vaccine strains of India. PLoS One 2014; 9:e98869. [PMID: 24897503 PMCID: PMC4045777 DOI: 10.1371/journal.pone.0098869] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 05/08/2014] [Indexed: 12/29/2022] Open
Abstract
Newcastle disease is an avian pathogen causing severe economic losses to the Indian poultry industry due to recurring outbreaks in vaccinated and unvaccinated flocks. India being an endemic country, advocates vaccination against the virus using lentogenic and mesogenic strains. Two virus strains which are commonly used for vaccination are strain F (a lentogenic virus) and strain R2B (a mesogenic virus). Strain F is given to 0-7 days old chicks and R2B is given to older birds which are around 6-8 weeks old. To understand the genetic makeup of these two strains, a complete genome study and phylogenetic analysis of the F, HN genes of these vaccine strains were carried out. Both the viral strains had a genome length of 15,186 nucleotides and consisted of six genes with conserved complimentary 3' leader and 5' trailer regions. The fusion protein cleavage site of strain F is GGRQGRL and strain R2B is RRQKRF. Although both the viral strains had different virulence attributes, the length of the HN protein was similar with 577 amino acids. Phylogenetic analysis of F, HN and complete genome sequences grouped these two strains in genotype II category which are considered as early genotypes and corroborated with their years of isolation.
Collapse
Affiliation(s)
- Sohini Dey
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Madhan Mohan Chellappa
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Satish Gaikwad
- OIE Reference Laboratory for Newcastle Disease, Avian Diseases Section, Animal and Plant Quarantine Agency, Anyang, South Korea
| | | | - Vikram N. Vakharia
- Institute of Marine and Environmental Technology, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
| |
Collapse
|
50
|
Fernandes CC, Varani AM, Lemos EGM, de Miranda VFO, Silva KR, Fernando FS, Montassier MFS, Montassier HJ. Molecular and phylogenetic characterization based on the complete genome of a virulent pathotype of Newcastle disease virus isolated in the 1970s in Brazil. INFECTION GENETICS AND EVOLUTION 2014; 26:160-7. [PMID: 24865799 DOI: 10.1016/j.meegid.2014.05.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 05/07/2014] [Accepted: 05/14/2014] [Indexed: 10/25/2022]
Abstract
Newcastle disease (ND) is caused by the avian paramyxovirus type 1 (APMV-1) or Newcastle disease virus (NDV) that comprises a diverse group of viruses with a single-stranded, negative-sense RNA genome. ND is one of the most important diseases of chickens, because it severely affects poultry production worldwide. In the 1970s, outbreaks of virulent ND were recorded in Brazil, and the strain APMV-1/Chicken/Brazil/SJM/75 (SJM) of NDV was isolated. This strain was characterized as highly pathogenic for chickens but not pathogenic for other bird species. Here we present the complete genome of NDV strain SJM and investigate the phylogenetic relationships of this virus with other NDV strains in terms of genome and proteins composition, as well as characterizing its evolution process. The NDV strain SJM is categorized as a velogenic virus and the complete genome is 15,192 nucleotides in length, consisting of six genes in the order 3'-NP-P-M-F-HN-L-5'. The presence of the major pathogenic determinant of NDV strains ((112)R-R-Q-K-R↓F(117)) was identified in the Fusion protein of the NDV strain SJM. In addition, phylogenetic analysis classified the NDV strain SJM as a member of class II, genotype V, and indicates that this virus help us in the understanding of the evolutionary process of strains belonging to this genotype. This study contributes to the growing interest involving the characterization of NDV isolates to improve our current understanding about the epidemiology, surveillance and evolution of the pathogenic strains.
Collapse
Affiliation(s)
- Camila C Fernandes
- Faculdade de Ciências Agrárias e Veterinárias, UNESP - Univ Estadual Paulista, Campus Jaboticabal, Departamento de Patologia, Laboratório de Imunologia e Virologia, 14884-900 Jaboticabal, SP, Brazil.
| | - Alessandro M Varani
- Faculdade de Ciências Agrárias e Veterinárias, UNESP - Univ Estadual Paulista, Campus Jaboticabal, Departamento de Tecnologia, 14884-900 Jaboticabal, SP, Brazil
| | - Eliana G M Lemos
- Faculdade de Ciências Agrárias e Veterinárias, UNESP - Univ Estadual Paulista, Campus Jaboticabal, Departamento de Tecnologia, 14884-900 Jaboticabal, SP, Brazil
| | - Vitor Fernandes O de Miranda
- Faculdade de Ciências Agrárias e Veterinárias, UNESP - Univ Estadual Paulista, Campus Jaboticabal, Departamento de Biologia Aplicada à Agropecuária, 14884-900 Jaboticabal, SP, Brazil
| | - Ketherson R Silva
- Faculdade de Ciências Agrárias e Veterinárias, UNESP - Univ Estadual Paulista, Campus Jaboticabal, Departamento de Patologia, Laboratório de Imunologia e Virologia, 14884-900 Jaboticabal, SP, Brazil
| | - Filipe S Fernando
- Faculdade de Ciências Agrárias e Veterinárias, UNESP - Univ Estadual Paulista, Campus Jaboticabal, Departamento de Patologia, Laboratório de Imunologia e Virologia, 14884-900 Jaboticabal, SP, Brazil
| | - Maria F S Montassier
- Faculdade de Ciências Agrárias e Veterinárias, UNESP - Univ Estadual Paulista, Campus Jaboticabal, Departamento de Patologia, Laboratório de Imunologia e Virologia, 14884-900 Jaboticabal, SP, Brazil
| | - Helio J Montassier
- Faculdade de Ciências Agrárias e Veterinárias, UNESP - Univ Estadual Paulista, Campus Jaboticabal, Departamento de Patologia, Laboratório de Imunologia e Virologia, 14884-900 Jaboticabal, SP, Brazil.
| |
Collapse
|