1
|
Wang Y, Chen Z, Yang G, Yuan G. Unveiling the roles of LEMD proteins in cellular processes. Life Sci 2024; 357:123116. [PMID: 39374771 DOI: 10.1016/j.lfs.2024.123116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/09/2024]
Abstract
Proteins localized in the inner nuclear membrane (INM) engage in various fundamental cellular processes via their interactions with outer nuclear membrane (ONM) proteins and nuclear lamina. LAP2-emerin-MAN1 domain (LEMD) family proteins, predominantly positioned in the INM, participate in the maintenance of INM functions, including the reconstruction of the nuclear envelope during mitosis, mechanotransduction, and gene transcriptional modulation. Malfunction of LEMD proteins leads to severe tissue-restricted diseases, which may manifest as fatal deformities and defects. In this review, we summarize the significant roles of LEMD proteins in cellular processes, explains the mechanisms of LEMD protein-related diseases, and puts forward questions in less-explored areas like details in tissue-restricted phenotypes. It intends to sort out previous works about LEMD proteins and pave way for future researchers who might discover deeper mechanisms of and better treatment strategies for LEMD protein-related diseases.
Collapse
Affiliation(s)
- Yiyun Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Zhi Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Guobin Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Guohua Yuan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
2
|
Filipczak D, Souchet A, Georgiou K, Foisner R, Naetar N. Lamin chromatin binding is modulated by interactions of different LAP2α domains with lamins and chromatin. iScience 2024; 27:110869. [PMID: 39319273 PMCID: PMC11417337 DOI: 10.1016/j.isci.2024.110869] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/11/2024] [Accepted: 08/29/2024] [Indexed: 09/26/2024] Open
Abstract
Lamins A and C are components of the lamina at the nuclear periphery and associate with heterochromatin. A distinct, relatively mobile pool of lamin A/C in the nuclear interior associates with euchromatic regions and with lamin-associated polypeptide 2α (LAP2α). Here we show that phosphorylation-dependent impairment of lamin assembly had no effect on its chromatin association, while LAP2α depletion was sufficient to increase chromatin association of lamins. This suggests that complex interactions between LAP2α, chromatin, and lamins regulate lamin chromatin binding. Both the C terminus of LAP2α and its N-terminal LAP2-Emerin-MAN1 (LEM) domain, mediating interaction with lamin A/C indirectly via barrier-to-autointegration factor (BAF), are required for binding to lamins. The N-terminal LEM-like domain of LAP2α, but not its LEM domain, mediates chromatin association of LAP2α and requires LAP2α dimerization via its C terminus. Our data suggest that formation of several LAP2α-, lamin A/C-, and BAF-containing complexes in the nucleoplasm and on chromatin affects lamin chromatin association.
Collapse
Affiliation(s)
- Daria Filipczak
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, Vienna 1030, Austria
- Medical University of Vienna, Max Perutz Labs, Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, Vienna 1030, Austria
- Vienna BioCenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, Vienna A-1030, Austria
| | - Anna Souchet
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, Vienna 1030, Austria
- Medical University of Vienna, Max Perutz Labs, Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, Vienna 1030, Austria
| | - Konstantina Georgiou
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, Vienna 1030, Austria
- Medical University of Vienna, Max Perutz Labs, Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, Vienna 1030, Austria
- Vienna BioCenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, Vienna A-1030, Austria
| | - Roland Foisner
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, Vienna 1030, Austria
- Medical University of Vienna, Max Perutz Labs, Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, Vienna 1030, Austria
| | - Nana Naetar
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, Vienna 1030, Austria
- Medical University of Vienna, Max Perutz Labs, Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, Vienna 1030, Austria
| |
Collapse
|
3
|
La Torre M, Burla R, Saggio I. Preserving Genome Integrity: Unveiling the Roles of ESCRT Machinery. Cells 2024; 13:1307. [PMID: 39120335 PMCID: PMC11311930 DOI: 10.3390/cells13151307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) machinery is composed of an articulated architecture of proteins that assemble at multiple cellular sites. The ESCRT machinery is involved in pathways that are pivotal for the physiology of the cell, including vesicle transport, cell division, and membrane repair. The subunits of the ESCRT I complex are mainly responsible for anchoring the machinery to the action site. The ESCRT II subunits function to bridge and recruit the ESCRT III subunits. The latter are responsible for finalizing operations that, independently of the action site, involve the repair and fusion of membrane edges. In this review, we report on the data related to the activity of the ESCRT machinery at two sites: the nuclear membrane and the midbody and the bridge linking cells in the final stages of cytokinesis. In these contexts, the machinery plays a significant role for the protection of genome integrity by contributing to the control of the abscission checkpoint and to nuclear envelope reorganization and correlated resilience. Consistently, several studies show how the dysfunction of the ESCRT machinery causes genome damage and is a codriver of pathologies, such as laminopathies and cancer.
Collapse
Affiliation(s)
- Mattia La Torre
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, 00185 Rome, Italy; (M.L.T.); (R.B.)
| | - Romina Burla
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, 00185 Rome, Italy; (M.L.T.); (R.B.)
- CNR Institute of Molecular Biology and Pathology, 00185 Rome, Italy
| | - Isabella Saggio
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, 00185 Rome, Italy; (M.L.T.); (R.B.)
| |
Collapse
|
4
|
Fishburn AT, Florio CJ, Lopez NJ, Link NL, Shah PS. Molecular functions of ANKLE2 and its implications in human disease. Dis Model Mech 2024; 17:dmm050554. [PMID: 38691001 PMCID: PMC11103583 DOI: 10.1242/dmm.050554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024] Open
Abstract
Ankyrin repeat and LEM domain-containing 2 (ANKLE2) is a scaffolding protein with established roles in cell division and development, the dysfunction of which is increasingly implicated in human disease. ANKLE2 regulates nuclear envelope disassembly at the onset of mitosis and its reassembly after chromosome segregation. ANKLE2 dysfunction is associated with abnormal nuclear morphology and cell division. It regulates the nuclear envelope by mediating protein-protein interactions with barrier to autointegration factor (BANF1; also known as BAF) and with the kinase and phosphatase that modulate the phosphorylation state of BAF. In brain development, ANKLE2 is crucial for proper asymmetric division of neural progenitor cells. In humans, pathogenic loss-of-function mutations in ANKLE2 are associated with primary congenital microcephaly, a condition in which the brain is not properly developed at birth. ANKLE2 is also linked to other disease pathologies, including congenital Zika syndrome, cancer and tauopathy. Here, we review the molecular roles of ANKLE2 and the recent literature on human diseases caused by its dysfunction.
Collapse
Affiliation(s)
- Adam T. Fishburn
- Department of Microbiology and Molecular Genetics, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Cole J. Florio
- Department of Microbiology and Molecular Genetics, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Nick J. Lopez
- Department of Microbiology and Molecular Genetics, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Nichole L. Link
- Department of Neurobiology, University of Utah, 20 South 2030 East, Salt Lake City, UT 84112, USA
| | - Priya S. Shah
- Department of Microbiology and Molecular Genetics, University of California, One Shields Avenue, Davis, CA 95616, USA
- Department of Chemical Engineering, University of California, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
5
|
Lee GE, Byun J, Lee CJ, Cho YY. Molecular Mechanisms for the Regulation of Nuclear Membrane Integrity. Int J Mol Sci 2023; 24:15497. [PMID: 37895175 PMCID: PMC10607757 DOI: 10.3390/ijms242015497] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/19/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023] Open
Abstract
The nuclear membrane serves a critical role in protecting the contents of the nucleus and facilitating material and signal exchange between the nucleus and cytoplasm. While extensive research has been dedicated to topics such as nuclear membrane assembly and disassembly during cell division, as well as interactions between nuclear transmembrane proteins and both nucleoskeletal and cytoskeletal components, there has been comparatively less emphasis on exploring the regulation of nuclear morphology through nuclear membrane integrity. In particular, the role of type II integral proteins, which also function as transcription factors, within the nuclear membrane remains an area of research that is yet to be fully explored. The integrity of the nuclear membrane is pivotal not only during cell division but also in the regulation of gene expression and the communication between the nucleus and cytoplasm. Importantly, it plays a significant role in the development of various diseases. This review paper seeks to illuminate the biomolecules responsible for maintaining the integrity of the nuclear membrane. It will delve into the mechanisms that influence nuclear membrane integrity and provide insights into the role of type II membrane protein transcription factors in this context. Understanding these aspects is of utmost importance, as it can offer valuable insights into the intricate processes governing nuclear membrane integrity. Such insights have broad-reaching implications for cellular function and our understanding of disease pathogenesis.
Collapse
Affiliation(s)
- Ga-Eun Lee
- BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si 14662, Gyeonggi-do, Republic of Korea; (G.-E.L.); (J.B.)
| | - Jiin Byun
- BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si 14662, Gyeonggi-do, Republic of Korea; (G.-E.L.); (J.B.)
| | - Cheol-Jung Lee
- Research Center for Materials Analysis, Korea Basic Science Institute, 169-148, Gwahak-ro, Yuseong-gu, Daejeon 34133, Chungcheongnam-do, Republic of Korea
| | - Yong-Yeon Cho
- BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si 14662, Gyeonggi-do, Republic of Korea; (G.-E.L.); (J.B.)
- RCD Control and Material Research Institute, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si 14662, Gyeonggi-do, Republic of Korea
| |
Collapse
|
6
|
Loss of the Nuclear Envelope Protein LAP1B Disrupts the Myogenic Differentiation of Patient-Derived Fibroblasts. Int J Mol Sci 2022; 23:ijms232113615. [PMID: 36362402 PMCID: PMC9656778 DOI: 10.3390/ijms232113615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/10/2022] Open
Abstract
Lamina-associated polypeptide 1 (LAP1) is a ubiquitously expressed inner nuclear membrane protein encoded by TOR1AIP1, and presents as two isoforms in humans, LAP1B and LAP1C. While loss of both isoforms results in a multisystemic progeroid-like syndrome, specific loss of LAP1B causes muscular dystrophy and cardiomyopathy, suggesting that LAP1B has a critical role in striated muscle. To gain more insight into the molecular pathophysiology underlying muscular dystrophy caused by LAP1B, we established a patient-derived fibroblast line that was transdifferentiated into myogenic cells using inducible MyoD expression. Compared to the controls, we observed strongly reduced myogenic differentiation and fusion potentials. Similar defects were observed in the C2C12 murine myoblasts carrying loss-of-function LAP1A/B mutations. Using RNA sequencing, we found that, despite MyoD overexpression and efficient cell cycle exit, transcriptional reprogramming of the LAP1B-deficient cells into the myogenic lineage is impaired with delayed activation of MYOG and muscle-specific genes. Gene set enrichment analyses suggested dysregulations of protein metabolism, extracellular matrix, and chromosome organization. Finally, we found that the LAP1B-deficient cells exhibit nuclear deformations, such as an increased number of micronuclei and altered morphometric parameters. This study uncovers the phenotypic and transcriptomic changes occurring during myoconversion of patient-derived LAP1B-deficient fibroblasts and provides a useful resource to gain insights into the mechanisms implicated in LAP1B-associated nuclear envelopathies.
Collapse
|
7
|
Sidorenko E, Sokolova M, Pennanen AP, Kyheröinen S, Posern G, Foisner R, Vartiainen MK. Lamina-associated polypeptide 2α is required for intranuclear MRTF-A activity. Sci Rep 2022; 12:2306. [PMID: 35145145 PMCID: PMC8831594 DOI: 10.1038/s41598-022-06135-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/18/2022] [Indexed: 12/16/2022] Open
Abstract
Myocardin-related transcription factor A (MRTF-A), a coactivator of serum response factor (SRF), regulates the expression of many cytoskeletal genes in response to cytoplasmic and nuclear actin dynamics. Here we describe a novel mechanism to regulate MRTF-A activity within the nucleus by showing that lamina-associated polypeptide 2α (Lap2α), the nucleoplasmic isoform of Lap2, is a direct binding partner of MRTF-A, and required for the efficient expression of MRTF-A/SRF target genes. Mechanistically, Lap2α is not required for MRTF-A nuclear localization, unlike most other MRTF-A regulators, but is required for efficient recruitment of MRTF-A to its target genes. This regulatory step takes place prior to MRTF-A chromatin binding, because Lap2α neither interacts with, nor specifically influences active histone marks on MRTF-A/SRF target genes. Phenotypically, Lap2α is required for serum-induced cell migration, and deregulated MRTF-A activity may also contribute to muscle and proliferation phenotypes associated with loss of Lap2α. Our studies therefore add another regulatory layer to the control of MRTF-A-SRF-mediated gene expression, and broaden the role of Lap2α in transcriptional regulation.
Collapse
Affiliation(s)
| | - Maria Sokolova
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Antti P Pennanen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Salla Kyheröinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Guido Posern
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Roland Foisner
- Max Perutz Labs, Center for Medical Biochemistry, Medical University of Vienna, Vienna Biocenter Campus (VBC), Vienna, Austria
| | | |
Collapse
|
8
|
Rose M, Bai B, Tang M, Cheong CM, Beard S, Burgess JT, Adams MN, O'Byrne KJ, Richard DJ, Gandhi NS, Bolderson E. The Impact of Rare Human Variants on Barrier-To-Auto-Integration Factor 1 (Banf1) Structure and Function. Front Cell Dev Biol 2021; 9:775441. [PMID: 34820387 PMCID: PMC8606531 DOI: 10.3389/fcell.2021.775441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/18/2021] [Indexed: 11/23/2022] Open
Abstract
Barrier-to-Autointegration Factor 1 (Banf1/BAF) is a critical component of the nuclear envelope and is involved in the maintenance of chromatin structure and genome stability. Banf1 is a small DNA binding protein that is conserved amongst multicellular eukaryotes. Banf1 functions as a dimer, and binds non-specifically to the phosphate backbone of DNA, compacting the DNA in a looping process. The loss of Banf1 results in loss of nuclear envelope integrity and aberrant chromatin organisation. Significantly, mutations in Banf1 are associated with the severe premature ageing syndrome, Néstor–Guillermo Progeria Syndrome. Previously, rare human variants of Banf1 have been identified, however the impact of these variants on Banf1 function has not been explored. Here, using in silico modelling, biophysical and cell-based approaches, we investigate the effect of rare human variants on Banf1 structure and function. We show that these variants do not significantly alter the secondary structure of Banf1, but several single amino acid variants in the N- and C-terminus of Banf1 impact upon the DNA binding ability of Banf1, without altering Banf1 localisation or nuclear integrity. The functional characterisation of these variants provides further insight into Banf1 structure and function and may aid future studies examining the potential impact of Banf1 function on nuclear structure and human health.
Collapse
Affiliation(s)
- Maddison Rose
- Queensland University of Technology (QUT), Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Translational Research Institute (TRI), Brisbane, QLD, Australia
| | - Bond Bai
- Queensland University of Technology (QUT), Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Translational Research Institute (TRI), Brisbane, QLD, Australia
| | - Ming Tang
- Queensland University of Technology (QUT), Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Translational Research Institute (TRI), Brisbane, QLD, Australia
| | - Chee Man Cheong
- Queensland University of Technology (QUT), Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Translational Research Institute (TRI), Brisbane, QLD, Australia
| | - Sam Beard
- Queensland University of Technology (QUT), Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Translational Research Institute (TRI), Brisbane, QLD, Australia
| | - Joshua T Burgess
- Queensland University of Technology (QUT), Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Translational Research Institute (TRI), Brisbane, QLD, Australia
| | - Mark N Adams
- Queensland University of Technology (QUT), Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Translational Research Institute (TRI), Brisbane, QLD, Australia
| | - Kenneth J O'Byrne
- Queensland University of Technology (QUT), Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Translational Research Institute (TRI), Brisbane, QLD, Australia.,Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Derek J Richard
- Queensland University of Technology (QUT), Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Translational Research Institute (TRI), Brisbane, QLD, Australia
| | - Neha S Gandhi
- Queensland University of Technology (QUT), Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Translational Research Institute (TRI), Brisbane, QLD, Australia.,School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, Australia
| | - Emma Bolderson
- Queensland University of Technology (QUT), Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Translational Research Institute (TRI), Brisbane, QLD, Australia
| |
Collapse
|
9
|
Deolal P, Mishra K. Regulation of diverse nuclear shapes: pathways working independently, together. Commun Integr Biol 2021; 14:158-175. [PMID: 34262635 PMCID: PMC8259725 DOI: 10.1080/19420889.2021.1939942] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/16/2022] Open
Abstract
Membrane-bound organelles provide physical and functional compartmentalization of biological processes in eukaryotic cells. The characteristic shape and internal organization of these organelles is determined by a combination of multiple internal and external factors. The maintenance of the shape of nucleus, which houses the genetic material within a double membrane bilayer, is crucial for a seamless spatio-temporal control over nuclear and cellular functions. Dynamic morphological changes in the shape of nucleus facilitate various biological processes. Chromatin packaging, nuclear and cytosolic protein organization, and nuclear membrane lipid homeostasis are critical determinants of overall nuclear morphology. As such, a multitude of molecular players and pathways act together to regulate the nuclear shape. Here, we review the known mechanisms governing nuclear shape in various unicellular and multicellular organisms, including the non-spherical nuclei and non-lamin-related structural determinants. The review also touches upon cellular consequences of aberrant nuclear morphologies.
Collapse
Affiliation(s)
- Pallavi Deolal
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Krishnaveni Mishra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
10
|
Moser B, Basílio J, Gotzmann J, Brachner A, Foisner R. Comparative Interactome Analysis of Emerin, MAN1 and LEM2 Reveals a Unique Role for LEM2 in Nucleotide Excision Repair. Cells 2020; 9:cells9020463. [PMID: 32085595 PMCID: PMC7072835 DOI: 10.3390/cells9020463] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 12/19/2022] Open
Abstract
LAP2-Emerin-MAN1 (LEM) domain-containing proteins represent an abundant group of inner nuclear membrane proteins involved in diverse nuclear functions, but their functional redundancies remain unclear. Here, using the biotinylation-dependent proximity approach, we report proteome-wide comparative interactome analysis of the two structurally related LEM proteins MAN1 (LEMD3) and LEM2 (LEMD2), and the more distantly related emerin (EMD). While over 60% of the relatively small group of MAN1 and emerin interactors were also found in the LEM2 interactome, the latter included a large number of candidates (>85%) unique for LEM2. The interacting partners unique for emerin support and provide further insight into the previously reported role of emerin in centrosome positioning, and the MAN1-specific interactors suggest a role of MAN1 in ribonucleoprotein complex assembly. Interestingly, the LEM2-specific interactome contained several proteins of the nucleotide excision repair pathway. Accordingly, LEM2-depleted cells, but not MAN1- and emerin-depleted cells, showed impaired proliferation following ultraviolet-C (UV-C) irradiation and prolonged accumulation of γH2AX, similar to cells deficient in the nucleotide excision repair protein DNA damage-binding protein 1 (DDB1). These findings indicate impaired DNA damage repair in LEM2-depleted cells. Overall, this interactome study identifies new potential interaction partners of emerin, MAN1 and particularly LEM2, and describes a novel potential involvement of LEM2 in nucleotide excision repair at the nuclear periphery.
Collapse
Affiliation(s)
- Bernhard Moser
- Max Perutz Labs, Center of Medical Biochemistry, Medical University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria; (B.M.); (J.G.)
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - José Basílio
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Josef Gotzmann
- Max Perutz Labs, Center of Medical Biochemistry, Medical University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria; (B.M.); (J.G.)
| | - Andreas Brachner
- Max Perutz Labs, Center of Medical Biochemistry, Medical University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria; (B.M.); (J.G.)
- Correspondence: (A.B.); (R.F.)
| | - Roland Foisner
- Max Perutz Labs, Center of Medical Biochemistry, Medical University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria; (B.M.); (J.G.)
- Correspondence: (A.B.); (R.F.)
| |
Collapse
|
11
|
López-Escardó D, Grau-Bové X, Guillaumet-Adkins A, Gut M, Sieracki ME, Ruiz-Trillo I. Reconstruction of protein domain evolution using single-cell amplified genomes of uncultured choanoflagellates sheds light on the origin of animals. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190088. [PMID: 31587642 PMCID: PMC6792448 DOI: 10.1098/rstb.2019.0088] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2019] [Indexed: 12/25/2022] Open
Abstract
Understanding the origins of animal multicellularity is a fundamental biological question. Recent genome data have unravelled the role that co-option of pre-existing genes played in the origin of animals. However, there were also some important genetic novelties at the onset of Metazoa. To have a clear understanding of the specific genetic innovations and how they appeared, we need the broadest taxon sampling possible, especially among early-branching animals and their unicellular relatives. Here, we take advantage of single-cell genomics to expand our understanding of the genomic diversity of choanoflagellates, the sister-group to animals. With these genomes, we have performed an updated and taxon-rich reconstruction of protein evolution from the Last Eukaryotic Common Ancestor (LECA) to animals. Our novel data re-defines the origin of some genes previously thought to be metazoan-specific, like the POU transcription factor, which we show appeared earlier in evolution. Moreover, our data indicate that the acquisition of new genes at the stem of Metazoa was mainly driven by duplications and protein domain rearrangement processes at the stem of Metazoa. Furthermore, our analysis allowed us to reveal protein domains that are essential to the maintenance of animal multicellularity. Our analyses also demonstrate the utility of single-cell genomics from uncultured taxa to address evolutionary questions. This article is part of a discussion meeting issue 'Single cell ecology'.
Collapse
Affiliation(s)
- David López-Escardó
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain
- Institut de Ciències del Mar (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain
| | - Xavier Grau-Bové
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Amy Guillaumet-Adkins
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | | | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
12
|
Mandigo TR, Turcich BD, Anderson AJ, Hussey MR, Folker ES. Drosophila emerins control LINC complex localization and transcription to regulate myonuclear position. J Cell Sci 2019; 132:jcs.235580. [PMID: 31548202 DOI: 10.1242/jcs.235580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/16/2019] [Indexed: 01/06/2023] Open
Abstract
Mispositioned nuclei are a hallmark of skeletal muscle disease. Many of the genes that are linked to Emery-Dreifuss muscular dystrophy (EDMD) encode proteins that are critical for nuclear movement in various cells, suggesting that disruptions in nuclear movement and position may contribute to disease progression. However, how these genes are coordinated to move nuclei is not known. Here, we focussed on two different emerin proteins in Drosophila, Bocksbeutel and Otefin, and their effects on nuclear movement. Although nuclear position was dependent on both, elimination of either Bocksbeutel or Otefin produced distinct phenotypes that were based in differential effects on the KASH-domain protein Klarsicht. Specifically, loss of Bocksbeutel reduced Klarsicht localization to the nucleus and resulted in a disruption in nuclear separation. Loss of Otefin increased the transcription of Klarsicht and led to premature separation of nuclei and their positioning closer to the edge of the muscle. Consistent with opposing functions, nuclear position is normal in otefin; bocksbeutel double mutants. These data indicate emerin-dependent regulation of Klarsicht levels in the nuclear envelope is a critical determinant of nuclear position.
Collapse
Affiliation(s)
- Torrey R Mandigo
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | - Blake D Turcich
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | | | - Michael R Hussey
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | - Eric S Folker
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| |
Collapse
|
13
|
Kinugasa Y, Hirano Y, Sawai M, Ohno Y, Shindo T, Asakawa H, Chikashige Y, Shibata S, Kihara A, Haraguchi T, Hiraoka Y. The very-long-chain fatty acid elongase Elo2 rescues lethal defects associated with loss of the nuclear barrier function in fission yeast cells. J Cell Sci 2019; 132:jcs.229021. [PMID: 30975915 DOI: 10.1242/jcs.229021] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/03/2019] [Indexed: 12/21/2022] Open
Abstract
In eukaryotic cells, chromosomes are confined to the nucleus, which is compartmentalized by the nuclear membranes; these are continuous with the endoplasmic reticulum membranes. Maintaining the homeostasis of these membranes is an important cellular activity performed by lipid metabolic enzymes. However, how lipid metabolic enzymes affect nuclear membrane functions remains to be elucidated. We found that the very-long-chain fatty acid elongase Elo2 is located in the nuclear membrane and prevents lethal defects associated with nuclear membrane ruptures in mutants of the nuclear membrane proteins Lem2 and Bqt4 in the fission yeast Schizosaccharomyces pombe. Lipid composition analysis shows that t20:0/24:0 phytoceramide (a conjugate of C20:0 phytosphingosine and C24:0 fatty acid) is a major ceramide species in S. pombe The quantity of this ceramide is reduced in the absence of Lem2, and restored by increased expression of Elo2. Furthermore, loss of S. pombe Elo2 can be rescued by its human orthologs. These results suggest that the conserved very-long-chain fatty acid elongase producing the ceramide component is essential for nuclear membrane integrity and cell viability in eukaryotes.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Yasuha Kinugasa
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Yasuhiro Hirano
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Megumi Sawai
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Yusuke Ohno
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Tomoko Shindo
- Electron Microscope Laboratory, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Haruhiko Asakawa
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Yuji Chikashige
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| | - Shinsuke Shibata
- Electron Microscope Laboratory, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Akio Kihara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan.,Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan .,Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| |
Collapse
|
14
|
Dharmaraj T, Guan Y, Liu J, Badens C, Gaborit B, Wilson KL. Rare BANF1 Alleles and Relatively Frequent EMD Alleles Including 'Healthy Lipid' Emerin p.D149H in the ExAC Cohort. Front Cell Dev Biol 2019; 7:48. [PMID: 31024910 PMCID: PMC6459885 DOI: 10.3389/fcell.2019.00048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 03/19/2019] [Indexed: 01/05/2023] Open
Abstract
Emerin (EMD) and barrier to autointegration factor 1 (BANF1) each bind A-type lamins (LMNA) as fundamental components of nuclear lamina structure. Mutations in LMNA, EMD and BANF1 are genetically linked to many tissue-specific disorders including Emery-Dreifuss muscular dystrophy and cardiomyopathy (LMNA, EMD), lipodystrophy, insulin resistance and type 2 diabetes (LMNA) and progeria (LMNA, BANF1). To explore human genetic variation in these genes, we analyzed EMD and BANF1 alleles in the Exome Aggregation Consortium (ExAC) cohort of 60,706 unrelated individuals. We identified 13 rare heterozygous BANF1 missense variants (p.T2S, p.H7Y, p.D9N, p.S22R, p.G25E, p.D55N, p.D57Y, p.L63P, p.N70T, p.K72R, p.R75W, p.R75Q, p.G79R), and one homozygous variant (p.D9H). Several variants are known (p.G25E) or predicted (e.g., p.D9H, p.D9N, p.L63P) to perturb BANF1 and warrant further study. Analysis of EMD revealed two previously identified variants associated with adult-onset cardiomyopathy (p.K37del, p.E35K) and one deemed 'benign' in an Emery-Dreifuss patient (p.D149H). Interestingly p.D149H was the most frequent emerin variant in ExAC, identified in 58 individuals (overall allele frequency 0.06645%), of whom 55 were East Asian (allele frequency 0.8297%). Furthermore, p.D149H associated with four 'healthy' traits: reduced triglycerides (-0.336; p = 0.0368), reduced waist circumference (-0.321; p = 0.0486), reduced cholesterol (-0.572; p = 0.000346) and reduced LDL cholesterol (-0.599; p = 0.000272). These traits are distinct from LMNA-associated metabolic disorders and provide the first insight that emerin influences metabolism. We also identified one novel in-frame deletion (p.F39del) and 62 novel emerin missense variants, many of which were relatively frequent and potentially disruptive including p.N91S and p.S143F (∼0.041% and ∼0.034% of non-Finnish Europeans, respectively), p.G156S (∼0.39% of Africans), p.R204G (∼0.18% of Latinx), p.R207P (∼0.08% of South Asians) and p.R221L (∼0.15% of Latinx). Many novel BANF1 variants are predicted to disrupt dimerization or binding to DNA, histones, emerin or A-type lamins. Many novel emerin variants are predicted to disrupt emerin filament dynamics or binding to BANF1, HDAC3, A-type lamins or other partners. These new human variants provide a foundational resource for future studies to test the molecular mechanisms of BANF1 and emerin function, and to understand the link between emerin variant p.D149H and a 'healthy' lipid profile.
Collapse
Affiliation(s)
- Tejas Dharmaraj
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Youchen Guan
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Julie Liu
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | | | | | - Katherine L Wilson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
15
|
Dubińska-Magiera M, Kozioł K, Machowska M, Piekarowicz K, Filipczak D, Rzepecki R. Emerin Is Required for Proper Nucleus Reassembly after Mitosis: Implications for New Pathogenetic Mechanisms for Laminopathies Detected in EDMD1 Patients. Cells 2019; 8:E240. [PMID: 30871242 PMCID: PMC6468536 DOI: 10.3390/cells8030240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/26/2019] [Accepted: 03/05/2019] [Indexed: 12/29/2022] Open
Abstract
Emerin is an essential LEM (LAP2, Emerin, MAN1) domain protein in metazoans and an integral membrane protein associated with inner and outer nuclear membranes. Mutations in the human EMD gene coding for emerin result in the rare genetic disorder: Emery⁻Dreifuss muscular dystrophy type 1 (EDMD1). This disease belongs to a broader group called laminopathies-a heterogeneous group of rare genetic disorders affecting tissues of mesodermal origin. EDMD1 phenotype is characterized by progressive muscle wasting, contractures of the elbow and Achilles tendons, and cardiac conduction defects. Emerin is involved in many cellular and intranuclear processes through interactions with several partners: lamins; barrier-to-autointegration factor (BAF), β-catenin, actin, and tubulin. Our study demonstrates the presence of the emerin fraction which associates with mitotic spindle microtubules and centrosomes during mitosis and colocalizes during early mitosis with lamin A/C, BAF, and membranes at the mitotic spindle. Transfection studies with cells expressing EGFP-emerin protein demonstrate that the emerin fusion protein fraction also localizes to centrosomes and mitotic spindle microtubules during mitosis. Transient expression of emerin deletion mutants revealed that the resulting phenotypes vary and are mutant dependent. The most frequent phenotypes include aberrant nuclear shape, tubulin network mislocalization, aberrant mitosis, and mislocalization of centrosomes. Emerin deletion mutants demonstrated different chromatin binding capacities in an in vitro nuclear assembly assay and chromatin-binding properties correlated with the strength of phenotypic alteration in transfected cells. Aberrant tubulin staining and microtubule network phenotype appearance depended on the presence of the tubulin binding region in the expressed deletion mutants. We believe that the association with tubulin might help to "deliver" emerin and associated membranes to decondensing chromatin. Preliminary analyses of cells from Polish patients with EDMD1 revealed that for several mutations thought to be null for emerin protein, a truncated emerin protein was present. We infer that the EDMD1 phenotype may be strengthened by the toxicity of truncated emerin expressed in patients with certain nonsense mutations in EMD.
Collapse
Affiliation(s)
- Magda Dubińska-Magiera
- Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-383 Wroclaw, Poland.
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, Sienkiewicza 21, 50-335 Wroclaw, Poland.
| | - Katarzyna Kozioł
- Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Magdalena Machowska
- Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Katarzyna Piekarowicz
- Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Daria Filipczak
- Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Ryszard Rzepecki
- Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| |
Collapse
|
16
|
Iwamoto M, Fukuda Y, Osakada H, Mori C, Hiraoka Y, Haraguchi T. Identification of the evolutionarily conserved nuclear envelope proteins Lem2 and MicLem2 in Tetrahymena thermophila. Gene 2019; 721S:100006. [PMID: 32550543 PMCID: PMC7285967 DOI: 10.1016/j.gene.2019.100006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/18/2018] [Accepted: 01/11/2019] [Indexed: 11/26/2022]
Abstract
Lem2 family proteins, i.e. the LAP2-Emerin-MAN1 (LEM) domain-containing nuclear envelope proteins, are well-conserved from yeasts to humans, both of which belong to the Opisthokonta supergroup. However, whether their homologs are present in other eukaryotic phylogenies remains unclear. In this study, we identified two Lem2 homolog proteins, which we named as Lem2 and MicLem2, in a ciliate Tetrahymena thermophila belonging to the SAR supergroup. Lem2 was localized to the nuclear envelope of the macronucleus (MAC) and micronucleus (MIC), while MicLem2 was exclusively localized to the nuclear envelope of the MIC. Immunoelectron microscopy revealed that Lem2 in T. thermophila was localized to both the inner and outer nuclear envelopes of the MAC and MIC, while MicLem2 was mostly localized to the nuclear pores of the MIC. Molecular domain analysis using GFP-fused protein showed that the N-terminal and luminal domains, including the transmembrane segments, are responsible for nuclear envelope localization. During sexual reproduction, enrichment of Lem2 occurred in the nuclear envelopes of the MAC and MIC to be degraded, while MicLem2 was enriched in the nuclear envelope of the MIC that escaped degradation. These findings suggest the unique characteristics of Tetrahymena Lem2 proteins. Our findings provide insight into the evolutionary divergence of nuclear envelope proteins. Conserved nuclear envelope proteins Lem2 and MicLem2 are identified in Tetrahymena. Lem2 is localized to the nuclear envelope of the macronucleus and the micronucleus. MicLem2 is localized to the nuclear pore complex of the micronucleus. In sexual reproduction, Lem2 is enriched to the nuclei assigned to degradation. MicLem2 is enriched to the micronuclei that are escaped from degradation.
Collapse
Key Words
- BAF, barrier-to-autointegration factor
- DAPI, 4′,6‑diamidino‑2‑phenylindole
- DDW, double distilled water
- EDTA, ethylenediaminetetraacetic acid
- ER, endoplasmic reticulum
- GA, glutaraldehyde
- HeH domain
- HeH, helix-extension-helix
- LAP2, lamina associated polypeptide 2
- LEM domain
- LEM, LAP2-Emerin-MAN1
- MAC, macronucleus
- MIC, micronucleus
- MSC domain
- MSC, Man1-Src1p-C-terminal
- Man1
- Man1-Src1p-C-terminal domain
- NE, nuclear envelope
- NLS, nuclear localization signal
- NPC, nuclear pore complex
- Nuclear dimorphism
- Nuclear envelope
- ONM and INM, outer and inner nuclear membranes
- PB, phosphate buffer
- PBS, phosphate buffered saline
- Protist
- RRM, RNA recognition motif
- TM, transmembrane
Collapse
Affiliation(s)
- Masaaki Iwamoto
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| | - Yasuhiro Fukuda
- Graduate School of Agricultural Science, Tohoku University, Osaki, 989-6711, Japan
| | - Hiroko Osakada
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| | - Chie Mori
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| | - Yasushi Hiraoka
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe 651-2492, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Tokuko Haraguchi
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe 651-2492, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
17
|
Henry MP, Hawkins JR, Boyle J, Bridger JM. The Genomic Health of Human Pluripotent Stem Cells: Genomic Instability and the Consequences on Nuclear Organization. Front Genet 2019; 9:623. [PMID: 30719030 PMCID: PMC6348275 DOI: 10.3389/fgene.2018.00623] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/23/2018] [Indexed: 12/11/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) are increasingly used for cell-based regenerative therapies worldwide, with embryonic and induced pluripotent stem cells as potential treatments for debilitating and chronic conditions, such as age-related macular degeneration, Parkinson's disease, spinal cord injuries, and type 1 diabetes. However, with the level of genomic anomalies stem cells generate in culture, their safety may be in question. Specifically, hPSCs frequently acquire chromosomal abnormalities, often with gains or losses of whole chromosomes. This review discusses how important it is to efficiently and sensitively detect hPSC aneuploidies, to understand how these aneuploidies arise, consider the consequences for the cell, and indeed the individual to whom aneuploid cells may be administered.
Collapse
Affiliation(s)
- Marianne P Henry
- Advanced Therapies Division, National Institute for Biological Standards and Control, Potters Bar, United Kingdom.,Laboratory of Nuclear and Genomic Health, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, United Kingdom
| | - J Ross Hawkins
- Advanced Therapies Division, National Institute for Biological Standards and Control, Potters Bar, United Kingdom
| | - Jennifer Boyle
- Advanced Therapies Division, National Institute for Biological Standards and Control, Potters Bar, United Kingdom
| | - Joanna M Bridger
- Laboratory of Nuclear and Genomic Health, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, United Kingdom
| |
Collapse
|
18
|
Hirano Y, Kinugasa Y, Asakawa H, Chikashige Y, Obuse C, Haraguchi T, Hiraoka Y. Lem2 is retained at the nuclear envelope through its interaction with Bqt4 in fission yeast. Genes Cells 2018; 23:122-135. [PMID: 29292846 DOI: 10.1111/gtc.12557] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 12/04/2017] [Indexed: 12/31/2022]
Abstract
Inner nuclear membrane (INM) proteins are thought to play important roles in modulating nuclear organization and function through their interactions with chromatin. However, these INM proteins share redundant functions in metazoans that pose difficulties for functional studies. The fission yeast Schizosaccharomyces pombe exhibits a relatively small number of INM proteins, and molecular genetic tools are available to separate their redundant functions. In S. pombe, it has been reported that among potentially redundant INM proteins, Lem2 displays a unique genetic interaction with another INM protein, Bqt4, which is involved in anchoring telomeres to the nuclear envelope. Double mutations in the lem2 and bqt4 genes confer synthetic lethality during vegetative growth. Here, we show that Lem2 is retained at the nuclear envelope through its interaction with Bqt4, as the loss of Bqt4 results in the exclusive accumulation of Lem2 to the spindle pole body (SPB). An N-terminal nucleoplasmic region of Lem2 bears affinity to both Bqt4 and the SPB in a competitive manner. In contrast, the synthetic lethality of the lem2 bqt4 double mutant is suppressed by the C-terminal region of Lem2. These results indicate that the N-terminal and C-terminal domains of Lem2 show independent functions with respect to Bqt4.
Collapse
Affiliation(s)
- Yasuhiro Hirano
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Yasuha Kinugasa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Haruhiko Asakawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Yuji Chikashige
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Chikashi Obuse
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan.,Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.,Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.,Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| |
Collapse
|
19
|
Tange Y, Chikashige Y, Takahata S, Kawakami K, Higashi M, Mori C, Kojidani T, Hirano Y, Asakawa H, Murakami Y, Haraguchi T, Hiraoka Y. Inner nuclear membrane protein Lem2 augments heterochromatin formation in response to nutritional conditions. Genes Cells 2016; 21:812-32. [PMID: 27334362 DOI: 10.1111/gtc.12385] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/08/2016] [Indexed: 12/29/2022]
Abstract
Inner nuclear membrane proteins interact with chromosomes in the nucleus and are important for chromosome activity. Lem2 and Man1 are conserved members of the LEM-domain nuclear membrane protein family. Mutations of LEM-domain proteins are associated with laminopathy, but their cellular functions remain unclear. Here, we report that Lem2 maintains genome stability in the fission yeast Schizosaccharomyces pombe. S. pombe cells disrupted for the lem2(+) gene (lem2∆) showed slow growth and increased rate of the minichromosome loss. These phenotypes were prominent in the rich culture medium, but not in the minimum medium. Centromeric heterochromatin formation was augmented upon transfer to the rich medium in wild-type cells. This augmentation of heterochromatin formation was impaired in lem2∆ cells. Notably, lem2∆ cells occasionally exhibited spontaneous duplication of genome sequences flanked by the long-terminal repeats of retrotransposons. The resulting duplication of the lnp1(+) gene, which encodes an endoplasmic reticulum membrane protein, suppressed lem2∆ phenotypes, whereas the lem2∆ lnp1∆ double mutant showed a severe growth defect. A combination of mutations in Lem2 and Bqt4, which encodes a nuclear membrane protein that anchors telomeres to the nuclear membrane, caused synthetic lethality. These genetic interactions imply that Lem2 cooperates with the nuclear membrane protein network to regulate genome stability.
Collapse
Affiliation(s)
- Yoshie Tange
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871, Japan.,Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, 651-2492, Japan
| | - Yuji Chikashige
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, 651-2492, Japan
| | - Shinya Takahata
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Kei Kawakami
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Masato Higashi
- Graduate school of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-0810, Japan
| | - Chie Mori
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, 651-2492, Japan
| | - Tomoko Kojidani
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, 651-2492, Japan.,Laboratory of Electron Microscopy, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Yasuhiro Hirano
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871, Japan
| | - Haruhiko Asakawa
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871, Japan
| | - Yota Murakami
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871, Japan.,Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, 651-2492, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871, Japan.,Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, 651-2492, Japan
| |
Collapse
|
20
|
Zlopasa L, Brachner A, Foisner R. Nucleo-cytoplasmic shuttling of the endonuclease ankyrin repeats and LEM domain-containing protein 1 (Ankle1) is mediated by canonical nuclear export- and nuclear import signals. BMC Cell Biol 2016; 17:23. [PMID: 27245214 PMCID: PMC4888674 DOI: 10.1186/s12860-016-0102-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/19/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ankyrin repeats and LEM domain containing protein 1 (Ankle1) belongs to the LEM protein family, whose members share a chromatin-interacting LEM motif. Unlike most other LEM proteins, Ankle1 is not an integral protein of the inner nuclear membrane but shuttles between the nucleus and the cytoplasm. It contains a GIY-YIG-type nuclease domain, but its function is unknown. The mammalian genome encodes only one other GIY-YIG domain protein, termed Slx1. Slx1 has been described as a resolvase that processes Holliday junctions during homologous recombination-mediated DNA double strand break repair. Resolvase activity is regulated in a spatial and temporal manner during the cell cycle. We hypothesized that Ankle1 may have a similar function and its nucleo-cytoplasmic shuttling may contribute to the regulation of Ankle1 activity. Hence, we aimed at identifying the domains mediating Ankle1 shuttling and investigating whether cellular localization is affected during DNA damage response. RESULTS Sequence analysis predicts the presence of two canonical nuclear import and export signals in Ankle1. Immunofluorescence microscopy of cells expressing wild-type and various mutated Ankle1-fusion proteins revealed a C-terminally located classical monopartite nuclear localization signal and a centrally located CRM1-dependent nuclear export signal that mediate nucleo-cytoplasmic shuttling of Ankle1. These sequences are also functional in heterologous proteins. The predominant localization of Ankle1 in the cytoplasm, however, does not change upon induction of several DNA damage response pathways throughout the cell cycle. CONCLUSIONS We identified the domains mediating nuclear import and export of Ankle1. Ankle1's cellular localization was not affected following DNA damage.
Collapse
Affiliation(s)
- Livija Zlopasa
- Max F. Perutz Laboratories (MFPL), Department of Medical Biochemistry, Medical University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Andreas Brachner
- Max F. Perutz Laboratories (MFPL), Department of Medical Biochemistry, Medical University of Vienna, Vienna Biocenter (VBC), Vienna, Austria.
| | - Roland Foisner
- Max F. Perutz Laboratories (MFPL), Department of Medical Biochemistry, Medical University of Vienna, Vienna Biocenter (VBC), Vienna, Austria.
| |
Collapse
|
21
|
Hellberg T, Paßvogel L, Schulz KS, Klupp BG, Mettenleiter TC. Nuclear Egress of Herpesviruses: The Prototypic Vesicular Nucleocytoplasmic Transport. Adv Virus Res 2016; 94:81-140. [PMID: 26997591 DOI: 10.1016/bs.aivir.2015.10.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Herpesvirus particles mature in two different cellular compartments. While capsid assembly and packaging of the genomic linear double-stranded DNA occur in the nucleus, virion formation takes place in the cytoplasm by the addition of numerous tegument proteins as well as acquisition of the viral envelope by budding into cellular vesicles derived from the trans-Golgi network containing virally encoded glycoproteins. To gain access to the final maturation compartment, herpesvirus nucleocapsids have to cross a formidable barrier, the nuclear envelope (NE). Since the ca. 120 nm diameter capsids are unable to traverse via nuclear pores, herpesviruses employ a vesicular transport through both leaflets of the NE. This process involves proteins which support local dissolution of the nuclear lamina to allow access of capsids to the inner nuclear membrane (INM), drive vesicle formation from the INM and mediate inclusion of the capsid as well as scission of the capsid-containing vesicle (also designated as "primary virion"). Fusion of the vesicle membrane (i.e., the "primary envelope") with the outer nuclear membrane subsequently results in release of the nucleocapsid into the cytoplasm for continuing virion morphogenesis. While this process has long been thought to be unique for herpesviruses, a similar pathway for nuclear egress of macromolecular complexes has recently been observed in Drosophila. Thus, herpesviruses may have coopted a hitherto unrecognized cellular mechanism of vesicle-mediated nucleocytoplasmic transport. This could have far reaching consequences for our understanding of cellular functions as again unraveled by the study of viruses.
Collapse
Affiliation(s)
- Teresa Hellberg
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Lars Paßvogel
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Katharina S Schulz
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Barbara G Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.
| |
Collapse
|
22
|
Boone PM, Yuan B, Gu S, Ma Z, Gambin T, Gonzaga-Jauregui C, Jain M, Murdock TJ, White JJ, Jhangiani SN, Walker K, Wang Q, Muzny DM, Gibbs RA, Hejtmancik JF, Lupski JR, Posey JE, Lewis RA. Hutterite-type cataract maps to chromosome 6p21.32-p21.31, cosegregates with a homozygous mutation in LEMD2, and is associated with sudden cardiac death. Mol Genet Genomic Med 2015; 4:77-94. [PMID: 26788539 PMCID: PMC4707028 DOI: 10.1002/mgg3.181] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 09/22/2015] [Accepted: 09/28/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Juvenile-onset cataracts are known among the Hutterites of North America. Despite being identified over 30 years ago, this autosomal recessive condition has not been mapped, and the disease gene is unknown. METHODS We performed whole exome sequencing of three Hutterite-type cataract trios and follow-up genotyping and mapping in four extended kindreds. RESULTS Trio exomes enabled genome-wide autozygosity mapping, which localized the disease gene to a 9.5-Mb region on chromosome 6p. This region contained two candidate variants, LEMD2 c.T38G and MUC21 c.665delC. Extended pedigrees recruited for variant genotyping revealed multiple additional relatives with juvenile-onset cataract, as well as six deceased relatives with both cataracts and sudden cardiac death. The candidate variants were genotyped in 84 family members, including 17 with cataracts; only the variant in LEMD2 cosegregated with cataracts (LOD = 9.62). SNP-based fine mapping within the 9.5 Mb linked region supported this finding by refining the cataract locus to a 0.5- to 2.9-Mb subregion (6p21.32-p21.31) containing LEMD2 but not MUC21. LEMD2 is expressed in mouse and human lenses and encodes a LEM domain-containing protein; the c.T38G missense mutation is predicted to mutate a highly conserved residue within this domain (p.Leu13Arg). CONCLUSION We performed a genetic and genomic study of Hutterite-type cataract and found evidence for an association of this phenotype with sudden cardiac death. Using combined genetic and genomic approaches, we mapped cataracts to a small portion of chromosome 6 and propose that they result from a homozygous missense mutation in LEMD2.
Collapse
Affiliation(s)
- Philip M Boone
- Department of Molecular and Human Genetics Baylor College of Medicine Houston Texas
| | - Bo Yuan
- Department of Molecular and Human Genetics Baylor College of Medicine Houston Texas
| | - Shen Gu
- Department of Molecular and Human Genetics Baylor College of Medicine Houston Texas
| | - Zhiwei Ma
- Ophthalmic Genetics and Visual Function Branch National Eye Institute Rockville Maryland
| | - Tomasz Gambin
- Department of Molecular and Human Genetics Baylor College of Medicine Houston Texas
| | | | - Mahim Jain
- Department of Molecular and Human Genetics Baylor College of Medicine Houston Texas
| | | | - Janson J White
- Department of Molecular and Human Genetics Baylor College of Medicine Houston Texas
| | | | - Kimberly Walker
- Human Genome Sequencing Center Baylor College of Medicine Houston Texas
| | - Qiaoyan Wang
- Human Genome Sequencing Center Baylor College of Medicine Houston Texas
| | - Donna M Muzny
- Human Genome Sequencing Center Baylor College of Medicine Houston Texas
| | - Richard A Gibbs
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexas; Human Genome Sequencing CenterBaylor College of MedicineHoustonTexas
| | - J Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch National Eye Institute Rockville Maryland
| | - James R Lupski
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexas; Human Genome Sequencing CenterBaylor College of MedicineHoustonTexas; Department of PediatricsBaylor College of MedicineHoustonTexas; Texas Children's HospitalHoustonTexas
| | - Jennifer E Posey
- Department of Molecular and Human Genetics Baylor College of Medicine Houston Texas
| | - Richard A Lewis
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexas; Department of PediatricsBaylor College of MedicineHoustonTexas; Texas Children's HospitalHoustonTexas; Department of OphthalmologyBaylor College of MedicineHoustonTexas; Department of MedicineBaylor College of MedicineHoustonTexas
| |
Collapse
|
23
|
Yuan J, Xue B. Role of structural flexibility in the evolution of emerin. J Theor Biol 2015; 385:102-11. [PMID: 26319992 DOI: 10.1016/j.jtbi.2015.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 08/07/2015] [Accepted: 08/17/2015] [Indexed: 02/07/2023]
Abstract
Emerin is a short inner nuclear membrane protein with an LEM-domain at the N-terminal end and a transmembrane domain at the C-terminal end. The middle region of human emerin contains multiple binding motifs. Since emerin is often found in evolutionarily newer species, the functional conservation of emerin becomes an interesting topic. In this study, we have demonstrated that most of the functional motifs of emerin are intrinsically disordered or highly flexible. Many post-translational modification sites and mutation sites are associated with these disordered regions. The averaged substitution rates of most functional motifs between species correlate positively with the averaged disorder scores of those functional motifs. Human emerin sequence may have acquired new functions on protein-protein interaction through the formation of hydrophobic motifs in the middle region, which is resulted from accumulated mutations during the evolution process.
Collapse
Affiliation(s)
- Jia Yuan
- Department of Cell Biology, Microbiology and Molecular Biology, School of Natural Sciences and Mathematics, College of Arts and Sciences, University of South Florida, 4202 E. Fowler Ave, ISA 2015, Tampa, FL 33620, USA
| | - Bin Xue
- Department of Cell Biology, Microbiology and Molecular Biology, School of Natural Sciences and Mathematics, College of Arts and Sciences, University of South Florida, 4202 E. Fowler Ave, ISA 2015, Tampa, FL 33620, USA.
| |
Collapse
|
24
|
Abstract
LAP2-emerin-MAN1 (LEM)-domain proteins are modular proteins characterized by the presence of a conserved motif of about 50 residues. Most LEM-domain proteins localize at the inner nuclear membrane, but some are also found in the endoplasmic reticulum or nuclear interior. Their architecture has been analyzed by predicting the limits of their globular domains, determining the 3D structure of these domains and in a few cases calculating the 3D structure of specific domains bound to biological targets. The LEM domain adopts an α-helical fold also found in SAP and HeH domains of prokaryotes and unicellular eukaryotes. The LEM domain binds to BAF (barrier-to-autointegration factor; BANF1), which interacts with DNA and tethers chromatin to the nuclear envelope. LAP2 isoforms also share an N-terminal LEM-like domain, which binds DNA. The structure and function of other globular domains that distinguish LEM-domain proteins from each other have been characterized, including the C-terminal dimerization domain of LAP2α and C-terminal WH and UHM domains of MAN1. LEM-domain proteins also have large intrinsically disordered regions that are involved in intra- and intermolecular interactions and are highly regulated by posttranslational modifications in vivo.
Collapse
|
25
|
Jamin A, Wiebe MS. Barrier to Autointegration Factor (BANF1): interwoven roles in nuclear structure, genome integrity, innate immunity, stress responses and progeria. Curr Opin Cell Biol 2015; 34:61-8. [PMID: 26072104 DOI: 10.1016/j.ceb.2015.05.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 05/20/2015] [Accepted: 05/27/2015] [Indexed: 11/24/2022]
Abstract
The Barrier to Autointegration Factor (BAF or BANF1) is an abundant, highly conserved DNA binding protein. BAF is involved in multiple pathways including mitosis, nuclear assembly, viral infection, chromatin and gene regulation and the DNA damage response. BAF is also essential for early development in metazoans and relevant to human physiology; BANF1 mutations cause a progeroid syndrome, placing BAF within the laminopathy disease spectrum. This review summarizes previous knowledge about BAF in the context of recent discoveries about its protein partners, posttranslational regulation, dynamic subcellular localizations and roles in disease, innate immunity, transposable elements and genome integrity.
Collapse
Affiliation(s)
- Augusta Jamin
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE 68583-0900, USA; Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583-0900, USA
| | - Matthew S Wiebe
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE 68583-0900, USA; Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583-0900, USA.
| |
Collapse
|
26
|
Gruenbaum Y, Foisner R. Lamins: nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation. Annu Rev Biochem 2015; 84:131-64. [PMID: 25747401 DOI: 10.1146/annurev-biochem-060614-034115] [Citation(s) in RCA: 368] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lamins are intermediate filament proteins that form a scaffold, termed nuclear lamina, at the nuclear periphery. A small fraction of lamins also localize throughout the nucleoplasm. Lamins bind to a growing number of nuclear protein complexes and are implicated in both nuclear and cytoskeletal organization, mechanical stability, chromatin organization, gene regulation, genome stability, differentiation, and tissue-specific functions. The lamin-based complexes and their specific functions also provide insights into possible disease mechanisms for human laminopathies, ranging from muscular dystrophy to accelerated aging, as observed in Hutchinson-Gilford progeria and atypical Werner syndromes.
Collapse
Affiliation(s)
- Yosef Gruenbaum
- Department of Genetics, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | | |
Collapse
|
27
|
Carmosino M, Torretta S, Procino G, Gerbino A, Forleo C, Favale S, Svelto M. Role of nuclear Lamin A/C in cardiomyocyte functions. Biol Cell 2014; 106:346-58. [PMID: 25055884 DOI: 10.1111/boc.201400033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/16/2014] [Indexed: 12/21/2022]
Abstract
Lamin A/C is a structural protein of the nuclear envelope (NE) and cardiac involvement in Lamin A/C mutations was one of the first phenotypes to be reported in humans, suggesting a crucial role of this protein in the cardiomyocytes function. Mutations in LMNA gene cause a class of pathologies generically named 'Lamanopathies' mainly involving heart and skeletal muscles. Moreover, the well-known disease called Hutchinson-Gilford Progeria Syndrome due to extensive mutations in LMNA gene, in addition to the systemic phenotype of premature aging, is characterised by the death of patients at around 13 typically for a heart attack or stroke, suggesting again the heart as the main site sensitive to Lamin A/C disfunction. Indeed, the identification of the roles of the Lamin A/C in cardiomyocytes function is a key area of exploration. One of the primary biological roles recently conferred to Lamin A/C is to affect contractile cells lineage determination and senescence. Then, in differentiated adult cardiomyocytes both the 'structural' and 'gene expression hypothesis' could explain the role of Lamin A in the function of cardiomyocytes. In fact, recent advances in the field propose that the structural weakness/stiffness of the NE, regulated by Lamin A/C amount in NE, can 'consequently' alter gene expression.
Collapse
Affiliation(s)
- Monica Carmosino
- Department of Sciences, University of Basilicata, Potenza, Italy; Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | | | | | | | | | | | | |
Collapse
|
28
|
Milbradt J, Kraut A, Hutterer C, Sonntag E, Schmeiser C, Ferro M, Wagner S, Lenac T, Claus C, Pinkert S, Hamilton ST, Rawlinson WD, Sticht H, Couté Y, Marschall M. Proteomic analysis of the multimeric nuclear egress complex of human cytomegalovirus. Mol Cell Proteomics 2014; 13:2132-46. [PMID: 24969177 DOI: 10.1074/mcp.m113.035782] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Herpesviral capsids are assembled in the host cell nucleus before being translocated into the cytoplasm for further maturation. The crossing of the nuclear envelope represents a major event that requires the formation of the nuclear egress complex (NEC). Previous studies demonstrated that human cytomegalovirus (HCMV) proteins pUL50 and pUL53, as well as their homologs in all members of Herpesviridae, interact with each other at the nuclear envelope and form the heterodimeric core of the NEC. In order to characterize further the viral and cellular protein content of the multimeric NEC, the native complex was isolated from HCMV-infected human primary fibroblasts at various time points and analyzed using quantitative proteomics. Previously postulated components of the HCMV-specific NEC, as well as novel potential NEC-associated proteins such as emerin, were identified. In this regard, interaction and colocalization between emerin and pUL50 were confirmed by coimmunoprecipitation and confocal microscopy analyses, respectively. A functional validation of viral and cellular NEC constituents was achieved through siRNA-mediated knockdown experiments. The important role of emerin in NEC functionality was demonstrated by a reduction of viral replication when emerin expression was down-regulated. Moreover, under such conditions, reduced production of viral proteins and deregulation of viral late cytoplasmic maturation were observed. Combined, these data prove the functional importance of emerin as an NEC component, associated with pUL50, pUL53, pUL97, p32/gC1qR, and further regulatory proteins. Summarized, our findings provide the first proteomics-based characterization and functional validation of the HCMV-specific multimeric NEC.
Collapse
Affiliation(s)
- Jens Milbradt
- From the Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Alexandra Kraut
- Université Grenoble Alpes, iRTSV-BGE, F-38000 Grenoble, France; ¶CEA, iRTSV-BGE, F-38000 Grenoble, France; INSERM, BGE, F-38000 Grenoble, France
| | - Corina Hutterer
- From the Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Eric Sonntag
- From the Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Cathrin Schmeiser
- From the Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Myriam Ferro
- Université Grenoble Alpes, iRTSV-BGE, F-38000 Grenoble, France; ¶CEA, iRTSV-BGE, F-38000 Grenoble, France; INSERM, BGE, F-38000 Grenoble, France
| | - Sabrina Wagner
- From the Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Tihana Lenac
- **Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Claudia Claus
- ‡‡Institute for Virology, University of Leipzig, 04103 Leipzig, Germany
| | - Sandra Pinkert
- §§Institute of Biotechnology, University of Technology Berlin, 13353 Berlin, Germany
| | - Stuart T Hamilton
- ¶¶Virology Division, SEALS Microbiology, Prince of Wales Hospital, University of New South Wales, 2052 Sydney, Australia
| | - William D Rawlinson
- ¶¶Virology Division, SEALS Microbiology, Prince of Wales Hospital, University of New South Wales, 2052 Sydney, Australia
| | - Heinrich Sticht
- ‖‖Division of Bioinformatics, Institute of Biochemistry, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Yohann Couté
- Université Grenoble Alpes, iRTSV-BGE, F-38000 Grenoble, France; ¶CEA, iRTSV-BGE, F-38000 Grenoble, France; INSERM, BGE, F-38000 Grenoble, France;
| | - Manfred Marschall
- From the Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, 91054 Erlangen, Germany;
| |
Collapse
|
29
|
Laba JK, Steen A, Veenhoff LM. Traffic to the inner membrane of the nuclear envelope. Curr Opin Cell Biol 2014; 28:36-45. [DOI: 10.1016/j.ceb.2014.01.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/17/2014] [Accepted: 01/19/2014] [Indexed: 11/27/2022]
|
30
|
Deroyer C, Rénert AF, Merville MP, Fillet M. New role for EMD (emerin), a key inner nuclear membrane protein, as an enhancer of autophagosome formation in the C16-ceramide autophagy pathway. Autophagy 2014; 10:1229-40. [PMID: 24819607 DOI: 10.4161/auto.28777] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
To date, precise roles of EMD (emerin) remain poorly described. In this paper, we investigated the role of EMD in the C16-ceramide autophagy pathway. Ceramides are bioactive signaling molecules acting notably in the regulation of cell growth, differentiation, or cell death. However, the mechanisms by which they mediate these pathways are not fully understood. We found that C16-ceramide induces EMD phosphorylation on its LEM domain through PRKACA. Upon ceramide treatment, phosphorylated EMD binds MAP1LC3B leading to an increase of autophagosome formation. These data suggest a new role of EMD as an enhancer of autophagosome formation in the C16-ceramide autophagy pathway in colon cancer cells.
Collapse
Affiliation(s)
- Céline Deroyer
- GIGA-R Proteomic Unit; University of Liège; Liège, Belgium
| | | | - Marie-Paule Merville
- Department of Clinical Chemistry; Centre Hospitalier Universitaire de Liège; Liège, Belgium
| | - Marianne Fillet
- GIGA-R Proteomic Unit; University of Liège; Liège, Belgium; Department of Analytical Pharmaceutical Chemistry; Department of Pharmacy; Centre Interfacultaire de Recherche du Médicament; University of Liège; Liège, Belgium
| |
Collapse
|
31
|
Abstract
The nuclear lamina is an extensive protein network that contributes to nuclear structure and function. LEM domain (LAP2, emerin, MAN1 domain, LEM-D) proteins are components of the nuclear lamina, identified by a shared ∼45-amino-acid motif that binds Barrier-to-autointegration factor (BAF), a chromatin-interacting protein. Drosophila melanogaster has three nuclear lamina LEM-D proteins, named Otefin (Ote), Bocksbeutel (Bocks), and dMAN1. Although these LEM-D proteins are globally expressed, loss of either Ote or dMAN1 causes tissue-specific defects in adult flies that differ from each other. The reason for such distinct tissue-restricted defects is unknown. Here, we generated null alleles of bocks, finding that loss of Bocks causes no overt adult phenotypes. Next, we defined phenotypes associated with lem-d double mutants. Although the absence of individual LEM-D proteins does not affect viability, loss of any two proteins causes lethality. Mutant phenotypes displayed by lem-d double mutants differ from baf mutants, suggesting that BAF function is retained in animals with a single nuclear lamina LEM-D protein. Interestingly, lem-d double mutants displayed distinct developmental and cellular mutant phenotypes, suggesting that Drosophila LEM-D proteins have developmental functions that are differentially shared with other LEM-D family members. This conclusion is supported by studies showing that ectopically produced LEM-D proteins have distinct capacities to rescue the tissue-specific phenotypes found in single lem-d mutants. Our findings predict that cell-specific mutant phenotypes caused by loss of LEM-D proteins reflect both the constellation of LEM-D proteins within the nuclear lamina and the capacity of functional compensation of the remaining LEM-D proteins.
Collapse
|
32
|
Nuclear Envelope Regulation of Signaling Cascades. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 773:187-206. [DOI: 10.1007/978-1-4899-8032-8_9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Abstract
There are many ways that the nuclear envelope can influence the cell cycle. In addition to roles of lamins in regulating the master cell cycle regulator pRb and nuclear envelope breakdown in mitosis, many other nuclear envelope proteins influence the cell cycle through regulatory or structural functions. Of particular note among these are the nuclear envelope transmembrane proteins (NETs) that appear to influence cell cycle regulation through multiple separate mechanisms. Some NETs and other nuclear envelope proteins accumulate on the mitotic spindle, suggesting functional or structural roles in the cell cycle. In interphase exogenous overexpression of some NETs promotes an increase in G1 populations, while others promote an increase in G2/M populations, sometimes associated with the induction of senescence. Intriguingly, most of the NETs linked to the cell cycle are highly restricted in their tissue expression; thus, their misregulation in cancer could contribute to the many tissue-specific types of cancer.
Collapse
|
34
|
Reil M, Dabauvalle MC. Essential roles of LEM-domain protein MAN1 during organogenesis in Xenopus laevis and overlapping functions of emerin. Eur J Cell Biol 2013; 92:280-94. [PMID: 24252515 DOI: 10.1016/j.ejcb.2013.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 10/23/2013] [Accepted: 10/25/2013] [Indexed: 11/26/2022] Open
Abstract
Mutations in nuclear envelope proteins are linked to an increasing number of human diseases, called envelopathies. Mutations in the inner nuclear membrane protein emerin lead to X-linked Emery-Dreifuss muscular dystrophy, characterized by muscle weakness or wasting. Conversely, mutations in nuclear envelope protein MAN1 are linked to bone and skin disorders. Both proteins share a highly conserved domain, called LEM-domain. LEM proteins are known to interact with Barrier-to-autointegration factor and several transcription factors. Most envelopathies are tissue-specific, but knowledge on the physiological roles of related LEM proteins is still unclear. For this reason, we investigated the roles of MAN1 and emerin during Xenopus laevis organogenesis. Morpholino-mediated knockdown of MAN1 revealed that MAN1 is essential for the formation of eye, skeletal and cardiac muscle tissues. The MAN1 knockdown could be compensated by ectopic expression of emerin, leading to a proper organ development. Further investigations revealed that MAN1 is involved in regulation of genes essential for organ development and tissue homeostasis. Thereby our work supports that LEM proteins might be involved in signalling essential for organ development during early embryogenesis and suggests that loss of MAN1 may cause muscle and retina specific diseases.
Collapse
Affiliation(s)
- Michael Reil
- Division of Electron Microscopy, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany.
| | | |
Collapse
|
35
|
Kondratyev MS, Lunin SM, Kabanov AV, Samchenko AA, Komarov VM, Fesenko EE, Novoselova EG. Structural and dynamic properties of thymopoietin mimetics. J Biomol Struct Dyn 2013; 32:1793-801. [PMID: 24024467 DOI: 10.1080/07391102.2013.834851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We propose a hypothesis that the T-cell receptor is a possible target of thymic hormones. We modelled the conformational dynamics of thymopentin and its structural variants in solution, as well as the interactions of these short peptides with the proposed molecular target. Thymopentin is a five-amino-acid fragment of the thymic hormone thymopoietin (residues 32 to 36) that reproduces the immunomodulatory activity of the complete hormone. Using molecular dynamics and flexible docking methods, we demonstrated high-affinity binding of thymopentin and its prospective mimetics with the T-cell receptor. The calculated biological activity spectra of thymopentin and its two promising modifications can be used in immunomodulatory activity screenings with live systems.
Collapse
Affiliation(s)
- Maxim S Kondratyev
- a Institute of Cell Biophysics, Russian Academy of Sciences , Moscow region, Institutskaya street, 3, Pushchino , 142290 , Russia
| | | | | | | | | | | | | |
Collapse
|
36
|
Bourgeois B, Gilquin B, Tellier-Lebègue C, Östlund C, Wu W, Pérez J, El Hage P, Lallemand F, Worman HJ, Zinn-Justin S. Inhibition of TGF-β signaling at the nuclear envelope: characterization of interactions between MAN1, Smad2 and Smad3, and PPM1A. Sci Signal 2013; 6:ra49. [PMID: 23779087 DOI: 10.1126/scisignal.2003411] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Signaling by transforming growth factor-β (TGF-β) is critical for various developmental processes and culminates in the activation of the transcription factors Smad2 and Smad3. MAN1, an integral protein of the inner nuclear membrane, inhibits TGF-β signaling by binding to Smad2 and Smad3. Depletion of the gene LEMD3 encoding MAN1 leads to developmental anomalies in mice, and heterozygous loss-of-function mutations in LEMD3 in humans cause sclerosing bone dysplasia. We modeled the three-dimensional structure of the MAN1-Smad2 complex from nuclear magnetic resonance and small-angle x-ray scattering data. As predicted by this model, we found that MAN1 competed in vitro and in cells with the transcription factor FAST1 (forkhead activin signal transducer 1) for binding to Smad2. The model further predicted that MAN1 bound to activated Smad2-Smad4 or Smad3-Smad4 complexes, which was confirmed by in vitro experiments; however, in cells, MAN1 bound only to Smad2 and Smad3 and not to the Smad4-containing complexes. Overexpression of MAN1 led to dephosphorylation of Smad2 and Smad3, thus hindering their recognition by Smad4, and MAN1 bound directly in vitro to the phosphatase PPM1A, which catalyzes the dephosphorylation of Smad2/3. These results demonstrate a nuclear envelope-localized mechanism of inactivating TGF-β signaling in which MAN1 competes with transcription factors for binding to Smad2 and Smad3 and facilitates their dephosphorylation by PPM1A.
Collapse
Affiliation(s)
- Benjamin Bourgeois
- Laboratoire de Biologie Structurale et Radiobiologie, URA CNRS 2096, CEA Saclay, 91190 Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
The nuclear envelope in eukaryotic cells has important roles in chromatin organization. The inner nuclear membrane contains over 60 transmembrane proteins. LEM [LAP2 (lamina-associated polypeptide 2)/emerin/MAN1] domain-containing proteins of the inner nuclear membrane are involved in tethering chromatin to the nuclear envelope and affect gene expression. They contain a common structural, bihelical motif, the so-called LEM domain, which mediates binding to a conserved chromatin protein, BAF (barrier to autointegration factor). Interestingly, this domain is highly related to other bihelical motifs, termed HeH (helix-extension-helix) and SAP {SAF (scaffold attachment factor)/acinus/PIAS [protein inhibitor of activated STAT (signal transducer and activator of transcription)]} motifs, which are directly linked to DNA. In the present paper, we summarize evidence that the LEM motif evolved from the HeH and SAP domains concomitantly with BAF. In addition, we discuss the potential evolution of HeH/SAP and LEM domain-containing proteins and their role in chromatin tethering and gene regulation from unicellular eukaryotes to mammals.
Collapse
|
38
|
Brachner A, Braun J, Ghodgaonkar M, Castor D, Zlopaša L, Ehrlich V, Jiricny J, Gotzmann J, Knasmüller S, Foisner R. The endonuclease Ankle1 requires its LEM and GIY-YIG motifs for DNA cleavage in vivo. J Cell Sci 2012; 125:1048-57. [PMID: 22399800 PMCID: PMC4335191 DOI: 10.1242/jcs.098392] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The LEM domain (for lamina-associated polypeptide, emerin, MAN1 domain) defines a group of nuclear proteins that bind chromatin through interaction of the LEM motif with the conserved DNA crosslinking protein, barrier-to-autointegration factor (BAF). Here, we describe a LEM protein annotated in databases as 'Ankyrin repeat and LEM domain-containing protein 1' (Ankle1). We show that Ankle1 is conserved in metazoans and contains a unique C-terminal GIY-YIG motif that confers endonuclease activity in vitro and in vivo. In mammals, Ankle1 is predominantly expressed in hematopoietic tissues. Although most characterized LEM proteins are components of the inner nuclear membrane, ectopic Ankle1 shuttles between cytoplasm and nucleus. Ankle1 enriched in the nucleoplasm induces DNA cleavage and DNA damage response. This activity requires both the catalytic C-terminal GIY-YIG domain and the LEM motif, which binds chromatin via BAF. Hence, Ankle1 is an unusual LEM protein with a GIY-YIG-type endonuclease activity in higher eukaryotes.
Collapse
Affiliation(s)
- Andreas Brachner
- Max F. Perutz Laboratories, Medical University of Vienna, Dr. Bohr-Gasse 9, Vienna, Austria
| | - Juliane Braun
- Max F. Perutz Laboratories, Medical University of Vienna, Dr. Bohr-Gasse 9, Vienna, Austria
| | - Medini Ghodgaonkar
- Institute of Molecular Cancer Research, University of Zurich, Switzerland
| | - Dennis Castor
- Institute of Molecular Cancer Research, University of Zurich, Switzerland
| | - Livija Zlopaša
- Max F. Perutz Laboratories, Medical University of Vienna, Dr. Bohr-Gasse 9, Vienna, Austria
| | - Veronika Ehrlich
- Institute of Cancer Research, Inner Medicine I, Medical University of Vienna, Austria
| | - Josef Jiricny
- Institute of Molecular Cancer Research, University of Zurich, Switzerland
| | - Josef Gotzmann
- Max F. Perutz Laboratories, Medical University of Vienna, Dr. Bohr-Gasse 9, Vienna, Austria
| | - Siegfried Knasmüller
- Institute of Cancer Research, Inner Medicine I, Medical University of Vienna, Austria
| | - Roland Foisner
- Max F. Perutz Laboratories, Medical University of Vienna, Dr. Bohr-Gasse 9, Vienna, Austria
| |
Collapse
|
39
|
Inner nuclear membrane proteins: impact on human disease. Chromosoma 2012; 121:153-67. [DOI: 10.1007/s00412-012-0360-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 01/02/2012] [Accepted: 01/03/2012] [Indexed: 02/01/2023]
|
40
|
Abstract
The evolution of the nucleus, the defining feature of eukaryotic cells, was long shrouded in speculation and mystery. There is now strong evidence that nuclear pore complexes (NPCs) and nuclear membranes coevolved with the endomembrane system, and that the last eukaryotic common ancestor (LECA) had fully functional NPCs. Recent studies have identified many components of the nuclear envelope in living Opisthokonts, the eukaryotic supergroup that includes fungi and metazoan animals. These components include diverse chromatin-binding membrane proteins, and membrane proteins with adhesive lumenal domains that may have contributed to the evolution of nuclear membrane architecture. Further discoveries about the nucleoskeleton suggest that the evolution of nuclear structure was tightly coupled to genome partitioning during mitosis.
Collapse
Affiliation(s)
- Katherine L Wilson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
41
|
Celedon A, Hale CM, Wirtz D. Magnetic manipulation of nanorods in the nucleus of living cells. Biophys J 2012; 101:1880-6. [PMID: 22004741 DOI: 10.1016/j.bpj.2011.09.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 09/02/2011] [Accepted: 09/08/2011] [Indexed: 01/06/2023] Open
Abstract
The organization of chromatin in the cell nucleus is crucial for gene expression regulation. However, physically probing the nuclear interior is challenging because high forces have to be applied using minimally invasive techniques. Here, magnetic nanorods embedded in the nucleus of living cells are subjected to controlled rotational forces, producing micron-sized displacements in the nuclear interior. The resulting time-dependent rotation of the nanorods is analyzed in terms of viscoelastic parameters of the nucleus, in wild-type and Lamin A/C deficient cells. This method and analysis reveal that Lamin A/C knockout, together perhaps with other changes that result from the knockout, induce significant decreases in the nuclear viscosity and elasticity.
Collapse
Affiliation(s)
- Alfredo Celedon
- Department of Mechanical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | | | | |
Collapse
|
42
|
Barkan R, Zahand AJ, Sharabi K, Lamm AT, Feinstein N, Haithcock E, Wilson KL, Liu J, Gruenbaum Y. Ce-emerin and LEM-2: essential roles in Caenorhabditis elegans development, muscle function, and mitosis. Mol Biol Cell 2011; 23:543-52. [PMID: 22171324 PMCID: PMC3279384 DOI: 10.1091/mbc.e11-06-0505] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
ETOC: Caenorhabditis elegans lacking both Ce-emerin and LEM-2 show that these proteins are essential for development of specific lineages, mitosis in somatic cells, and smooth muscle activity. Reduced life span and smooth muscle activity of LEM-2–null worms predicts human LEM2 gene links to diseases more severe than Emery-Dreifuss muscular dystrophy. Emerin and LEM2 are ubiquitous inner nuclear membrane proteins conserved from humans to Caenorhabditis elegans. Loss of human emerin causes Emery-Dreifuss muscular dystrophy (EDMD). To test the roles of emerin and LEM2 in somatic cells, we used null alleles of both genes to generate C. elegans animals that were either hypomorphic (LEM-2–null and heterozygous for Ce-emerin) or null for both proteins. Single-null and hypomorphic animals were viable and fertile. Double-null animals used the maternal pool of Ce-emerin to develop to the larval L2 stage, then arrested. Nondividing somatic cell nuclei appeared normal, whereas dividing cells had abnormal nuclear envelope and chromatin organization and severe defects in postembryonic cell divisions, including the mesodermal lineage. Life span was unaffected by loss of Ce-emerin alone but was significantly reduced in LEM-2–null animals, and double-null animals had an even shorter life span. In addition to striated muscle defects, double-null animals and LEM-2–null animals showed unexpected defects in smooth muscle activity. These findings implicate human LEM2 mutations as a potential cause of EDMD and further suggest human LEM2 mutations might cause distinct disorders of greater severity, since C. elegans lacking only LEM-2 had significantly reduced life span and smooth muscle activity.
Collapse
Affiliation(s)
- Rachel Barkan
- Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Hiraoka Y, Maekawa H, Asakawa H, Chikashige Y, Kojidani T, Osakada H, Matsuda A, Haraguchi T. Inner nuclear membrane protein Ima1 is dispensable for intranuclear positioning of centromeres. Genes Cells 2011; 16:1000-11. [DOI: 10.1111/j.1365-2443.2011.01544.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Abstract
Nuclear intermediate filaments formed by A- and B-type lamins are central components of the nucleoskeleton and are required for the architecture and integrity of the nucleus. There is growing evidence that lamins are also involved in regulatory pathways controlling cell proliferation and differentiation. Lamins affect the activity of several transcription factors, such as retinoblastoma protein and c-Fos, and signalling pathways, such as the ERK1/2 (extracellular-signal-regulated kinase 1/2) and Notch pathways, which are key regulators of cell-cycle progression and differentiation. During mitosis, lamins are dynamically reorganized and play active roles in spindle matrix formation and in post-mitotic nuclear reassembly. Several of the cell-cycle-regulating functions of lamins may be impaired in the diseases linked to mutations in lamins and lamin-associated proteins, including striated muscle diseases, lipodystrophies and premature aging syndromes, and contribute to the tissue-specific disease pathologies.
Collapse
|
45
|
Abstract
A- and B-type lamins are the major intermediate filaments of the nucleus. Lamins engage in a plethora of stable and transient interactions, near the inner nuclear membrane and throughout the nucleus. Lamin-binding proteins serve an amazingly diverse range of functions. Numerous inner-membrane proteins help anchor lamin filaments to the nuclear envelope, serving as part of the nuclear "lamina" network that is essential for nuclear architecture and integrity. Certain lamin-binding proteins of the inner membrane bind partners in the outer membrane and mechanically link lamins to the cytoskeleton. Inside the nucleus, lamin-binding proteins appear to serve as the "adaptors" by which the lamina organizes chromatin, influences gene expression and epigenetic regulation, and modulates signaling pathways. Transient interactions of lamins with key components of the transcription and replication machinery may provide an additional level of regulation or support to these essential events.
Collapse
Affiliation(s)
- Katherine L Wilson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
46
|
Schulze SR, Curio-Penny B, Speese S, Dialynas G, Cryderman DE, McDonough CW, Nalbant D, Petersen M, Budnik V, Geyer PK, Wallrath LL. A comparative study of Drosophila and human A-type lamins. PLoS One 2009; 4:e7564. [PMID: 19855837 PMCID: PMC2762312 DOI: 10.1371/journal.pone.0007564] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 10/04/2009] [Indexed: 11/24/2022] Open
Abstract
Nuclear intermediate filament proteins, called lamins, form a meshwork that lines the inner surface of the nuclear envelope. Lamins contain three domains: an N-terminal head, a central rod and a C-terminal tail domain possessing an Ig-fold structural motif. Lamins are classified as either A- or B-type based on structure and expression pattern. The Drosophila genome possesses two genes encoding lamins, Lamin C and lamin Dm0, which have been designated A- and B-type, respectively, based on their expression profile and structural features. In humans, mutations in the gene encoding A-type lamins are associated with a spectrum of predominantly tissue-specific diseases known as laminopathies. Linking the disease phenotypes to cellular functions of lamins has been a major challenge. Drosophila is being used as a model system to identify the roles of lamins in development. Towards this end, we performed a comparative study of Drosophila and human A-type lamins. Analysis of transgenic flies showed that human lamins localize predictably within the Drosophila nucleus. Consistent with this finding, yeast two-hybrid data demonstrated conservation of partner-protein interactions. Drosophila lacking A-type lamin show nuclear envelope defects similar to those observed with human laminopathies. Expression of mutant forms of the A-type Drosophila lamin modeled after human disease-causing amino acid substitutions revealed an essential role for the N-terminal head and the Ig-fold in larval muscle tissue. This tissue-restricted sensitivity suggests a conserved role for lamins in muscle biology. In conclusion, we show that (1) localization of A-type lamins and protein-partner interactions are conserved between Drosophila and humans, (2) loss of the Drosophila A-type lamin causes nuclear defects and (3) muscle tissue is sensitive to the expression of mutant forms of A-type lamin modeled after those causing disease in humans. These studies provide new insights on the role of lamins in nuclear biology and support Drosophila as a model for studies of human laminopathies involving muscle dysfunction.
Collapse
Affiliation(s)
- Sandra R. Schulze
- Department of Biology, Western Washington University, Bellingham, Washington, United States of America
| | - Beatrice Curio-Penny
- Department of Biochemistry, University of Iowa, Iowa City, Iowa, United States of America
| | - Sean Speese
- Department of Neurobiology, University of Massachusetts, Wochester, Massachusetts, United States of America
| | - George Dialynas
- Department of Biochemistry, University of Iowa, Iowa City, Iowa, United States of America
| | - Diane E. Cryderman
- Department of Biochemistry, University of Iowa, Iowa City, Iowa, United States of America
| | - Caitrin W. McDonough
- Department of Biochemistry, University of Iowa, Iowa City, Iowa, United States of America
| | - Demet Nalbant
- Department of Biochemistry, University of Iowa, Iowa City, Iowa, United States of America
| | - Melissa Petersen
- Department of Biology, Western Washington University, Bellingham, Washington, United States of America
| | - Vivian Budnik
- Department of Neurobiology, University of Massachusetts, Wochester, Massachusetts, United States of America
| | - Pamela K. Geyer
- Department of Biochemistry, University of Iowa, Iowa City, Iowa, United States of America
| | - Lori L. Wallrath
- Department of Biochemistry, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
47
|
Suzuki R, Shindo H, Tase A, Kikuchi Y, Shimizu M, Yamazaki T. Solution structures and DNA binding properties of the N-terminal SAP domains of SUMO E3 ligases from Saccharomyces cerevisiae and Oryza sativa. Proteins 2009; 75:336-47. [PMID: 18831036 DOI: 10.1002/prot.22243] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SUMO E3 ligase of the Siz/PIAS family that promotes sumoylation of target proteins contains SAP motif in its N-terminal region. The SAP motif with a consensus sequence of 35 residues was first proposed to be as a new DNA binding motif found in diverse nuclear proteins involved in chromosomal organization. We have determined solution structures of the SAP domains of SUMO ligases Siz1 from yeast and rice by NMR spectroscopy, showing that the structure of the SAP domain (residues 2-105) of rice Siz1 is a four-helix bundle with an up-down-extended loop-down-up topology, whereas the SAP domain (residues 1-111) of yeast Siz1 is comprised of five helices where the fifth helix alpha5 causes a significant change in the alignment of the four-helix bundle characteristic to the SAP domains of the Siz/PIAS family. We have also demonstrated that both SAP domains have binding ability to an A/T-rich DNA, but that binding affinity of yeast Siz1 SAP is at least by an order of magnitude higher than that of rice Siz1 SAP. Our NMR titration experiments clearly showed that yeast Siz1 SAP uses alpha2-helix for DNA binding more effectively than rice Siz1 SAP, which would result from the dislocation of this helix due to the existence of the extra helix alpha5. In addition, based on the structures of the SAP domains determined here and registered in Protein Data Bank, general features of structures of the SAP domains are discussed in conjunction with equivocal nature of their DNA binding.
Collapse
Affiliation(s)
- Rintaro Suzuki
- Protein Research Unit, National Institute of Agrobiological Sciences, Ibaraki 305-8602, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
The nuclear lamina represents a protein network required for nuclear structure and function. One family of lamina proteins is defined by an approximately 40-aa LAP2, Emerin, and MAN1 (LEM) domain (LEM-D) that binds the nonspecific DNA-binding protein, barrier-to-autointegration factor (BAF). Through interactions with BAF, LEM-D proteins serve as a bridge between chromosomes and the nuclear envelope. Mutations in genes encoding LEM-D proteins cause human laminopathies that are associated with tissue-restricted pathologies. Drosophila has five genes that encode proteins with LEM homology. Using yeast two-hybrid analyses, we demonstrate that four encode proteins that bind Drosophila (d)BAF. In addition to dBAF, dMAN1 associates with lamins, the LEM-D protein Bocksbeutel, and the receptor-regulated Smads, demonstrating parallel protein interactions with vertebrate homologs. P-element mobilization was used to generate null dMAN1 alleles. These mutants showed decreased viability, with surviving adults displaying male sterility, decreased female fertility, wing patterning and positioning defects, flightlessness, and locomotion difficulties that became more severe with age. Increased phospho-Smad staining in dMAN1 mutant wing discs is consistent with a role in transforming growth factor (TGF)-beta/bone morphogenic protein (BMP) signaling. The tissue-specific, age-enhanced dMAN1 mutant phenotypes are reminiscent of human laminopathies, suggesting that studies in Drosophila will provide insights into lamina dysfunction associated with disease.
Collapse
|
49
|
Experimental techniques for study of chromatin mechanics in intact nuclei and living cells. Chromosome Res 2008; 16:499-510. [DOI: 10.1007/s10577-008-1232-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
50
|
Burke B, Stewart CL. The laminopathies: the functional architecture of the nucleus and its contribution to disease. Annu Rev Genomics Hum Genet 2008; 7:369-405. [PMID: 16824021 DOI: 10.1146/annurev.genom.7.080505.115732] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most inherited diseases are associated with mutations in a specific gene. Often, mutations in two or more different genes result in diseases with a similar phenotype. Rarely do different mutations in the same gene result in a multitude of seemingly different and unrelated diseases. Mutations in the Lamin A gene (LMNA), which encodes largely ubiquitously expressed nuclear proteins (A-type lamins), are associated with at least eight different diseases, collectively called the laminopathies. Studies examining how different tissue-specific diseases arise from unique LMNA mutations are providing unanticipated insights into the structural organization of the nucleus, and how disruption of this organization relates to novel mechanisms of disease.
Collapse
Affiliation(s)
- Brian Burke
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, Florida 32610
| | | |
Collapse
|