1
|
Luthuli SD, Shonhai A. The multi-faceted roles of R2TP complex span across regulation of gene expression, translation, and protein functional assembly. Biophys Rev 2023; 15:1951-1965. [PMID: 38192347 PMCID: PMC10771493 DOI: 10.1007/s12551-023-01127-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/27/2023] [Indexed: 01/10/2024] Open
Abstract
Macromolecular complexes play essential roles in various cellular processes. The assembly of macromolecular assemblies within the cell must overcome barriers imposed by a crowded cellular environment which is characterized by an estimated concentration of biological macromolecules amounting to 100-450 g/L that take up approximately 5-40% of the cytoplasmic volume. The formation of the macromolecular assemblies is facilitated by molecular chaperones in cooperation with their co-chaperones. The R2TP protein complex has emerged as a co-chaperone of Hsp90 that plays an important role in macromolecular assembly. The R2TP complex is composed of a heterodimer of RPAP3:P1H1DI that is in turn complexed to members of the ATPase associated with diverse cellular activities (AAA +), RUVBL1 and RUVBL2 (R1 and R2) families. What makes the R2TP co-chaperone complex particularly important is that it is involved in a wide variety of cellular processes including gene expression, translation, co-translational complex assembly, and posttranslational protein complex formation. The functional versatility of the R2TP co-chaperone complex makes it central to cellular development; hence, it is implicated in various human diseases. In addition, their roles in the development of infectious disease agents has become of interest. In the current review, we discuss the roles of these proteins as co-chaperones regulating Hsp90 and its partnership with Hsp70. Furthermore, we highlight the structure-function features of the individual proteins within the R2TP complex and describe their roles in various cellular processes.
Collapse
Affiliation(s)
- Sifiso Duncan Luthuli
- Department of Biochemistry and Microbiology, University of Venda, Thohoyandou, South Africa
| | - Addmore Shonhai
- Department of Biochemistry and Microbiology, University of Venda, Thohoyandou, South Africa
| |
Collapse
|
2
|
Abstract
Ring-shaped hexameric helicases are essential motor proteins that separate duplex nucleic acid strands for DNA replication, recombination, and transcriptional regulation. Two evolutionarily distinct lineages of these enzymes, predicated on RecA and AAA+ ATPase folds, have been identified and characterized to date. Hexameric helicases couple NTP hydrolysis with conformational changes that move nucleic acid substrates through a central pore in the enzyme. How hexameric helicases productively engage client DNA or RNA segments and use successive rounds of NTPase activity to power translocation and unwinding have been longstanding questions in the field. Recent structural and biophysical findings are beginning to reveal commonalities in NTP hydrolysis and substrate translocation by diverse hexameric helicase families. Here, we review these molecular mechanisms and highlight aspects of their function that are yet to be understood.
Collapse
|
3
|
Yin Y, Kovach A, Hsu HC, Darwin KH, Li H. The mycobacterial proteasomal ATPase Mpa forms a gapped ring to engage the 20S proteasome. J Biol Chem 2021; 296:100713. [PMID: 33930464 PMCID: PMC8142254 DOI: 10.1016/j.jbc.2021.100713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/17/2021] [Accepted: 04/26/2021] [Indexed: 11/25/2022] Open
Abstract
Although many bacterial species do not possess proteasome systems, the actinobacteria, including the human pathogen Mycobacterium tuberculosis, use proteasome systems for targeted protein removal. Previous structural analyses of the mycobacterial proteasome ATPase Mpa revealed a general structural conservation with the archaeal proteasome-activating nucleotidase and eukaryotic proteasomal Rpt1–6 ATPases, such as the N-terminal coiled-coil domain, oligosaccharide-/oligonucleotide-binding domain, and ATPase domain. However, Mpa has a unique β-grasp domain that in the ADP-bound crystal structure appears to interfere with the docking to the 20S proteasome core particle (CP). Thus, it is unclear how Mpa binds to proteasome CPs. In this report, we show by cryo-EM that the Mpa hexamer in the presence of a degradation substrate and ATP forms a gapped ring, with two of its six ATPase domains being highly flexible. We found that the linkers between the oligonucleotide-binding and ATPase domains undergo conformational changes that are important for function, revealing a previously unappreciated role of the linker region in ATP hydrolysis–driven protein unfolding. We propose that this gapped ring configuration is an intermediate state that helps rearrange its β-grasp domains and activating C termini to facilitate engagement with proteasome CPs. This work provides new insights into the crucial process of how an ATPase interacts with a bacterial proteasome protease.
Collapse
Affiliation(s)
- Yanting Yin
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Amanda Kovach
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Hao-Chi Hsu
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan, USA
| | - K Heran Darwin
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan, USA.
| |
Collapse
|
4
|
Baytshtok V, Fei X, Shih TT, Grant RA, Santos JC, Baker TA, Sauer RT. Heat activates the AAA+ HslUV protease by melting an axial autoinhibitory plug. Cell Rep 2021; 34:108639. [PMID: 33472065 PMCID: PMC7849044 DOI: 10.1016/j.celrep.2020.108639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/24/2020] [Accepted: 12/21/2020] [Indexed: 12/03/2022] Open
Abstract
At low temperatures, protein degradation by the AAA+ HslUV protease is very slow. New crystal structures reveal that residues in the intermediate domain of the HslU6 unfoldase can plug its axial channel, blocking productive substrate binding and subsequent unfolding, translocation, and degradation by the HslV12 peptidase. Biochemical experiments with wild-type and mutant enzymes support a model in which heat-induced melting of this autoinhibitory plug activates HslUV proteolysis. Baytshtok et al. demonstrate that the activity of HslUV, a AAA+ heat shock protease, is regulated by thermal melting of its autoinhibitory axial plug, which activates ATP hydrolysis, substrate binding, and energy-dependent proteolysis and ensures that robust protein degradation by HslUV occurs only at elevated temperatures in the cell.
Collapse
Affiliation(s)
- Vladimir Baytshtok
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xue Fei
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tsai-Ting Shih
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert A Grant
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Justin C Santos
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tania A Baker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert T Sauer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
5
|
Ahel J, Lehner A, Vogel A, Schleiffer A, Meinhart A, Haselbach D, Clausen T. Moyamoya disease factor RNF213 is a giant E3 ligase with a dynein-like core and a distinct ubiquitin-transfer mechanism. eLife 2020; 9:e56185. [PMID: 32573437 PMCID: PMC7311170 DOI: 10.7554/elife.56185] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/19/2020] [Indexed: 12/24/2022] Open
Abstract
RNF213 is the major susceptibility factor for Moyamoya disease, a progressive cerebrovascular disorder that often leads to brain stroke in adults and children. Characterization of disease-associated mutations has been complicated by the enormous size of RNF213. Here, we present the cryo-EM structure of mouse RNF213. The structure reveals the intricate fold of the 584 kDa protein, comprising an N-terminal stalk, a dynein-like core with six ATPase units, and a multidomain E3 module. Collaboration with UbcH7, a cysteine-reactive E2, points to an unexplored ubiquitin-transfer mechanism that proceeds in a RING-independent manner. Moreover, we show that pathologic MMD mutations cluster in the composite E3 domain, likely interfering with substrate ubiquitination. In conclusion, the structure of RNF213 uncovers a distinct type of an E3 enzyme, highlighting the growing mechanistic diversity in ubiquitination cascades. Our results also provide the molecular framework for investigating the emerging role of RNF213 in lipid metabolism, hypoxia, and angiogenesis.
Collapse
Affiliation(s)
- Juraj Ahel
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
| | - Anita Lehner
- Vienna BioCenter Core Facilities, Vienna BioCenter, Vienna, Austria
| | - Antonia Vogel
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
| | - Alexander Schleiffer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
| | - Anton Meinhart
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
| | - David Haselbach
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
| | - Tim Clausen
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
- Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Steele TE, Glynn SE. Mitochondrial AAA proteases: A stairway to degradation. Mitochondrion 2019; 49:121-127. [PMID: 31377246 DOI: 10.1016/j.mito.2019.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 07/31/2019] [Indexed: 12/22/2022]
Abstract
Mitochondrial protein quality control requires the action of proteases to remove damaged or unnecessary proteins and perform key regulatory cleavage events. Important components of the quality control network are the mitochondrial AAA proteases, which capture energy from ATP hydrolysis to destabilize and degrade protein substrates on both sides of the inner membrane. Dysfunction of these proteases leads to the breakdown of mitochondrial proteostasis and is linked to the development of severe human diseases. In this review, we will describe recent insights into the structure and motions of the mitochondrial AAA proteases and related enzymes. Together, these studies have revealed the mechanics of ATP-driven protein destruction and significantly advanced our understanding of how these proteases maintain mitochondrial health.
Collapse
Affiliation(s)
- Tyler E Steele
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA; Center for Structural Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Steven E Glynn
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA; Center for Structural Biology, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
7
|
The HslV Protease from Leishmania major and Its Activation by C-terminal HslU Peptides. Int J Mol Sci 2019; 20:ijms20051021. [PMID: 30813632 PMCID: PMC6429459 DOI: 10.3390/ijms20051021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/11/2019] [Accepted: 02/20/2019] [Indexed: 12/31/2022] Open
Abstract
HslVU is an ATP-dependent proteolytic complex present in certain bacteria and in the mitochondrion of some primordial eukaryotes, including deadly parasites such as Leishmania. It is formed by the dodecameric protease HslV and the hexameric ATPase HslU, which binds via the C-terminal end of its subunits to HslV and activates it by a yet unclear allosteric mechanism. We undertook the characterization of HslV from Leishmania major (LmHslV), a trypanosomatid that expresses two isoforms for HslU, LmHslU1 and LmHslU2. Using a novel and sensitive peptide substrate, we found that LmHslV can be activated by peptides derived from the C-termini of both LmHslU1 and LmHslU2. Truncations, Ala- and D-scans of the C-terminal dodecapeptide of LmHslU2 (LmC12-U2) showed that five out of the six C-terminal residues of LmHslU2 are essential for binding to and activating HslV. Peptide cyclisation with a lactam bridge allowed shortening of the peptide without loss of potency. Finally, we found that dodecapeptides derived from HslU of other parasites and bacteria are able to activate LmHslV with similar or even higher efficiency. Importantly, using electron microscopy approaches, we observed that the activation of LmHslV was accompanied by a large conformational remodeling, which represents a yet unidentified layer of control of HslV activation.
Collapse
|
8
|
Specific regions of the SulA protein recognized and degraded by the ATP-dependent ClpYQ (HslUV) protease in Escherichia coli. Microbiol Res 2018; 220:21-31. [PMID: 30744816 DOI: 10.1016/j.micres.2018.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/27/2018] [Accepted: 12/09/2018] [Indexed: 10/27/2022]
Abstract
In Escherichia coli, ClpYQ (HslUV) is a two-component ATP-dependent protease, in which ClpQ is the peptidase subunit and ClpY is the ATPase and unfoldase. ClpY functions to recognize protein substrates, and denature and translocate the unfolded polypeptides into the proteolytic site of ClpQ for degradation. However, it is not clear how the natural substrates are recognized by the ClpYQ protease and the mechanism by which the substrates are selected, unfolded and translocated by ClpY into the interior site of ClpQ hexamers. Both Lon and ClpYQ proteases can degrade SulA, a cell division inhibitor, in bacterial cells. In this study, using yeast two-hybrid and in vivo degradation analyses, we first demonstrated that the C-terminal internal hydrophobic region (139th∼149th aa) of SulA is necessary for binding and degradation by ClpYQ. A conserved region, GFIMRP, between 142th and 147th residues of SulA, were identified among various Gram-negative bacteria. By using MBP-SulA(F143Y) (phenylalanine substituted with tyrosine) as a substrate, our results showed that this conserved residue of SulA is necessary for recognition and degradation by ClpYQ. Supporting these data, MBP-SulA(F143Y), MBP-SulA(F143N) (phenylalanine substituted with asparagine) led to a longer half-life with ClpYQ protease in vivo. In contrast, MBP-SulA(F143D) and MBP-SulA(F143S) both have shorter half-lives. Therefore, in the E. coli ClpYQ protease complex, ClpY recognizes the C-terminal region of SulA, and F143 of SulA plays an important role for the recognition and degradation by ClpYQ protease.
Collapse
|
9
|
Uthoff M, Baumann U. Conformational flexibility of pore loop-1 gives insights into substrate translocation by the AAA + protease FtsH. J Struct Biol 2018; 204:199-206. [PMID: 30118817 DOI: 10.1016/j.jsb.2018.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/07/2018] [Accepted: 08/09/2018] [Indexed: 10/28/2022]
Abstract
Two crystal structures of a transmembrane helix-lacking FtsH construct from Aquifex aeolicus have been determined at 2.9 Å and 3.3 Å resolution in space groups R32 and P312, respectively. Both structures are virtually identical despite different crystal packing contacts. In both structures, the FtsH hexamer is created from two different subunits of the asymmetric unit by the threefold symmetry of the crystals. Similar to other published structures, all subunits are loaded with ADP and the two subunit in the asymmetric unit resemble the already known open and closed conformations. Within the ATPase cycle while the whole subunit switches from the opened to the closed state, pore loop-1 interacts with the substrate and translocates it into the proteolytic chamber. Unique to our models is a presumably inactive conformation of the pore loop which allows the closed conformation to switch back to the opened state without pushing the substrate out again. Our structures give further insights on how this new pore loop conformation is induced and how it is linked to the intersubunit signalling network.
Collapse
Affiliation(s)
- Matthias Uthoff
- Institute of Biochemistry, University of Cologne, Zuelpicher Str. 47, Cologne, North Rhine-Westphalia 50674, Germany
| | - Ulrich Baumann
- Institute of Biochemistry, University of Cologne, Zuelpicher Str. 47, Cologne, North Rhine-Westphalia 50674, Germany.
| |
Collapse
|
10
|
Song G. Symmetry in normal modes and its strong dependence on symmetry in structure. J Mol Graph Model 2017; 75:32-41. [DOI: 10.1016/j.jmgm.2017.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 10/19/2022]
|
11
|
Song G. The finite number of global motion patterns available to symmetric protein complexes. Proteins 2017; 85:1741-1758. [DOI: 10.1002/prot.25331] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 05/18/2017] [Accepted: 06/07/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Guang Song
- Graduate Program of Bioinformatics and Computational Biology; Iowa State University; Ames Iowa
- Department of Computer Science; Iowa State University; Ames Iowa
- L. H. Baker Center for Bioinformatics and Biological Statistics, Iowa State University; Ames Iowa
| |
Collapse
|
12
|
Wu Y, Hu K, Li D, Bai L, Yang S, Jastrab JB, Xiao S, Hu Y, Zhang S, Darwin KH, Wang T, Li H. Mycobacterium tuberculosis proteasomal ATPase Mpa has a β-grasp domain that hinders docking with the proteasome core protease. Mol Microbiol 2017; 105:227-241. [PMID: 28419599 DOI: 10.1111/mmi.13695] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2017] [Indexed: 12/21/2022]
Abstract
Mycobacterium tuberculosis (Mtb) has a proteasome system that is essential for its ability to cause lethal infections in mice. A key component of the system is the proteasomal adenosine triphosphatase (ATPase) Mpa, which captures, unfolds, and translocates protein substrates into the Mtb proteasome core particle for degradation. Here, we report the crystal structures of near full-length hexameric Mtb Mpa in apo and ADP-bound forms. Surprisingly, the structures revealed a ubiquitin-like β-grasp domain that precedes the proteasome-activating carboxyl terminus. This domain, which was only found in bacterial proteasomal ATPases, buries the carboxyl terminus of each protomer in the central channel of the hexamer and hinders the interaction of Mpa with the proteasome core protease. Thus, our work reveals the structure of a bacterial proteasomal ATPase in the hexameric form, and the structure finally explains why Mpa is unable to stimulate robust protein degradation in vitro in the absence of other, yet-to-be-identified co-factors.
Collapse
Affiliation(s)
- Yujie Wu
- Department of Biology, Southern University of Science and Technology, 1088 Xueyuan Road, Nanshan District, Shenzhen, 518055, China
| | - Kuan Hu
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, MI, 49503, USA.,Biochemistry and Structural Biology Graduate Program, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Defeng Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China
| | - Lin Bai
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Shaoqing Yang
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Jordan B Jastrab
- Department of Microbiology, New York University School of Medicine, 450 East 29th Street, New York, NY, 10016, USA
| | - Shuhao Xiao
- Department of Biology, Southern University of Science and Technology, 1088 Xueyuan Road, Nanshan District, Shenzhen, 518055, China
| | - Yonglin Hu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China
| | - Susan Zhang
- Department of Microbiology, New York University School of Medicine, 450 East 29th Street, New York, NY, 10016, USA
| | - K Heran Darwin
- Department of Microbiology, New York University School of Medicine, 450 East 29th Street, New York, NY, 10016, USA
| | - Tao Wang
- Department of Biology, Southern University of Science and Technology, 1088 Xueyuan Road, Nanshan District, Shenzhen, 518055, China.,SZCDC-SUSTech Joint Key Laboratory for Tropical Diseases, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Huilin Li
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| |
Collapse
|
13
|
Lin S, Liang R, Zhang T, Yuan Y, Shen S, Ye H. Microarray analysis of the transcriptome of theEscherichia coli(E. coli) regulated by cinnamaldehyde (CMA). FOOD AGR IMMUNOL 2017. [DOI: 10.1080/09540105.2017.1300875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Songyi Lin
- College of Food Science and Technology, Jilin University, Changchun, People’s Republic of China
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, People’s Republic of China
| | - Rong Liang
- College of Food Science and Technology, Jilin University, Changchun, People’s Republic of China
| | - Tiehua Zhang
- College of Food Science and Technology, Jilin University, Changchun, People’s Republic of China
| | - Yuan Yuan
- College of Food Science and Technology, Jilin University, Changchun, People’s Republic of China
| | - Suxia Shen
- College of Food Science and Technology, Jilin University, Changchun, People’s Republic of China
| | - Haiqing Ye
- College of Food Science and Technology, Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
14
|
Baytshtok V, Chen J, Glynn SE, Nager AR, Grant RA, Baker TA, Sauer RT. Covalently linked HslU hexamers support a probabilistic mechanism that links ATP hydrolysis to protein unfolding and translocation. J Biol Chem 2017; 292:5695-5704. [PMID: 28223361 DOI: 10.1074/jbc.m116.768978] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/07/2017] [Indexed: 11/06/2022] Open
Abstract
The HslUV proteolytic machine consists of HslV, a double-ring self-compartmentalized peptidase, and one or two AAA+ HslU ring hexamers that hydrolyze ATP to power the unfolding of protein substrates and their translocation into the proteolytic chamber of HslV. Here, we use genetic tethering and disulfide bonding strategies to construct HslU pseudohexamers containing mixtures of ATPase active and inactive subunits at defined positions in the hexameric ring. Genetic tethering impairs HslV binding and degradation, even for pseudohexamers with six active subunits, but disulfide-linked pseudohexamers do not have these defects, indicating that the peptide tether interferes with HslV interactions. Importantly, pseudohexamers containing different patterns of hydrolytically active and inactive subunits retain the ability to unfold protein substrates and/or collaborate with HslV in their degradation, supporting a model in which ATP hydrolysis and linked mechanical function in the HslU ring operate by a probabilistic mechanism.
Collapse
Affiliation(s)
| | | | | | | | | | - Tania A Baker
- From the Department of Biology and.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | | |
Collapse
|
15
|
Tang WK, Xia D. Mutations in the Human AAA + Chaperone p97 and Related Diseases. Front Mol Biosci 2016; 3:79. [PMID: 27990419 PMCID: PMC5131264 DOI: 10.3389/fmolb.2016.00079] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/18/2016] [Indexed: 12/12/2022] Open
Abstract
A number of neurodegenerative diseases have been linked to mutations in the human protein p97, an abundant cytosolic AAA+ (ATPase associated with various cellular activities) ATPase, that functions in a large number of cellular pathways. With the assistance of a variety of cofactors and adaptor proteins, p97 couples the energy of ATP hydrolysis to conformational changes that are necessary for its function. Disease-linked mutations, which are found at the interface between two main domains of p97, have been shown to alter the function of the protein, although the pathogenic mutations do not appear to alter the structure of individual subunit of p97 or the formation of the hexameric biological unit. While exactly how pathogenic mutations alter the cellular function of p97 remains unknown, functional, biochemical and structural differences between wild-type and pathogenic mutants of p97 are being identified. Here, we summarize recent progress in the study of p97 pathogenic mutants.
Collapse
Affiliation(s)
- Wai Kwan Tang
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health Bethesda, MD, USA
| | - Di Xia
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health Bethesda, MD, USA
| |
Collapse
|
16
|
Heuck A, Schitter-Sollner S, Suskiewicz MJ, Kurzbauer R, Kley J, Schleiffer A, Rombaut P, Herzog F, Clausen T. Structural basis for the disaggregase activity and regulation of Hsp104. eLife 2016; 5. [PMID: 27901467 PMCID: PMC5130295 DOI: 10.7554/elife.21516] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/22/2016] [Indexed: 11/13/2022] Open
Abstract
The Hsp104 disaggregase is a two-ring ATPase machine that rescues various forms of non-native proteins including the highly resistant amyloid fibers. The structural-mechanistic underpinnings of how the recovery of toxic protein aggregates is promoted and how this potent unfolding activity is prevented from doing collateral damage to cellular proteins are not well understood. Here, we present structural and biochemical data revealing the organization of Hsp104 from Chaetomium thermophilum at 3.7 Å resolution. We show that the coiled-coil domains encircling the disaggregase constitute a ‘restraint mask’ that sterically controls the mobility and thus the unfolding activity of the ATPase modules. In addition, we identify a mechanical linkage that coordinates the activity of the two ATPase rings and accounts for the high unfolding potential of Hsp104. Based on these findings, we propose a general model for how Hsp104 and related chaperones operate and are kept under control until recruited to appropriate substrates. DOI:http://dx.doi.org/10.7554/eLife.21516.001
Collapse
Affiliation(s)
- Alexander Heuck
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | | | | | - Robert Kurzbauer
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - Juliane Kley
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | | | - Pascaline Rombaut
- Gene Center and Department of Biochemistry, Ludwig-Maximilians University, Munich, Germany
| | - Franz Herzog
- Gene Center and Department of Biochemistry, Ludwig-Maximilians University, Munich, Germany
| | - Tim Clausen
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| |
Collapse
|
17
|
Na H, Song G. Predicting the functional motions of p97 using symmetric normal modes. Proteins 2016; 84:1823-1835. [PMID: 27653958 DOI: 10.1002/prot.25164] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/09/2016] [Accepted: 09/15/2016] [Indexed: 01/01/2023]
Abstract
p97 is a protein complex of the AAA+ family. Although functions of p97 are well understood, the mechanism by which p97 performs its unfolding activities remains unclear. In this work, we present a novel way of applying normal mode analysis to study this six-fold symmetric molecular machine. By selecting normal modes that are axial symmetric and give the largest movements at D1 or D2 pore residues, we are able to predict the functional motions of p97, which are then validated by experimentally observed conformational changes. Our results shed light and provide new understandings on several key steps of the p97 functional process that were previously unclear or controversial, and thus are able to reconcile multiple previous findings. Specifically, our results reveal that (i) a venous valve-like mechanism is used at D2 pore to ensure a one-way exit-only traffic of substrates; (ii) D1 pore remains shut during the functional process; (iii) the "swing-up" motion of the N domain is closely coupled with the vertical motion of the D1 pore along the pore axis; (iv) because of the shut D1 pore and the one-way traffic at D2 pore, it is highly likely that substrates enter the chamber through the gaps at the D1/D2 interface. The limited chamber volume inside p97 suggests that a substrate may be pulling out from D2 while at the same time being pulling in at the interface; (v) lastly, p97 uses a series of actions that alternate between twisting and pulling to remove the substrate. Proteins 2016; 84:1823-1835. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hyuntae Na
- Department of Computer Science, Penn State Harrisburg, Middletown, Pennsylvania, 17057
| | - Guang Song
- Department of Computer Science, Iowa State University, Ames, Iowa, 50011.,Program of Bioinformatics and Computational Biology, Iowa State University, Ames, Iowa, 50011.,L. H. Baker Center for Bioinformatics and Biological Statistics Iowa State University, Ames, Iowa, 50011
| |
Collapse
|
18
|
Baytshtok V, Fei X, Grant RA, Baker TA, Sauer RT. A Structurally Dynamic Region of the HslU Intermediate Domain Controls Protein Degradation and ATP Hydrolysis. Structure 2016; 24:1766-1777. [PMID: 27667691 DOI: 10.1016/j.str.2016.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/02/2016] [Accepted: 08/06/2016] [Indexed: 11/30/2022]
Abstract
The I domain of HslU sits above the AAA+ ring and forms a funnel-like entry to the axial pore, where protein substrates are engaged, unfolded, and translocated into HslV for degradation. The L199Q I-domain substitution, which was originally reported as a loss-of-function mutation, resides in a segment that appears to adopt multiple conformations as electron density is not observed in HslU and HslUV crystal structures. The L199Q sequence change does not alter the structure of the AAA+ ring or its interactions with HslV but increases I-domain susceptibility to limited endoproteolysis. Notably, the L199Q mutation increases the rate of ATP hydrolysis substantially, results in slower degradation of some proteins but faster degradation of other substrates, and markedly changes the preference of HslUV for initiating degradation at the N or C terminus of model substrates. Thus, a structurally dynamic region of the I domain plays a key role in controlling protein degradation by HslUV.
Collapse
Affiliation(s)
- Vladimir Baytshtok
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xue Fei
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert A Grant
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tania A Baker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert T Sauer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
19
|
Fundamental Characteristics of AAA+ Protein Family Structure and Function. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2016; 2016:9294307. [PMID: 27703410 PMCID: PMC5039278 DOI: 10.1155/2016/9294307] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 07/21/2016] [Indexed: 12/22/2022]
Abstract
Many complex cellular events depend on multiprotein complexes known as molecular machines to efficiently couple the energy derived from adenosine triphosphate hydrolysis to the generation of mechanical force. Members of the AAA+ ATPase superfamily (ATPases Associated with various cellular Activities) are critical components of many molecular machines. AAA+ proteins are defined by conserved modules that precisely position the active site elements of two adjacent subunits to catalyze ATP hydrolysis. In many cases, AAA+ proteins form a ring structure that translocates a polymeric substrate through the central channel using specialized loops that project into the central channel. We discuss the major features of AAA+ protein structure and function with an emphasis on pivotal aspects elucidated with archaeal proteins.
Collapse
|
20
|
Lin CC, Su SC, Su MY, Liang PH, Feng CC, Wu SH, Chang CI. Structural Insights into the Allosteric Operation of the Lon AAA+ Protease. Structure 2016; 24:667-675. [PMID: 27041592 DOI: 10.1016/j.str.2016.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/21/2016] [Accepted: 03/04/2016] [Indexed: 11/28/2022]
Abstract
The Lon AAA+ protease (LonA) is an evolutionarily conserved protease that couples the ATPase cycle into motion to drive substrate translocation and degradation. A hallmark feature shared by AAA+ proteases is the stimulation of ATPase activity by substrates. Here we report the structure of LonA bound to three ADPs, revealing the first AAA+ protease assembly where the six protomers are arranged alternately in nucleotide-free and bound states. Nucleotide binding induces large coordinated movements of conserved pore loops from two pairs of three non-adjacent protomers and shuttling of the proteolytic groove between the ATPase site and a previously unknown Arg paddle. Structural and biochemical evidence supports the roles of the substrate-bound proteolytic groove in allosteric stimulation of ATPase activity and the conserved Arg paddle in driving substrate degradation. Altogether, this work provides a molecular framework for understanding how ATP-dependent chemomechanical movements drive allosteric processes for substrate degradation in a major protein-destruction machine.
Collapse
Affiliation(s)
- Chien-Chu Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan 11529, ROC; Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan 30013, ROC
| | - Shih-Chieh Su
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan 11529, ROC; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan 10617, ROC
| | - Ming-Yuan Su
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan 11529, ROC
| | - Pi-Hui Liang
- School of Pharmacy, National Taiwan University, Taipei, Taiwan 10051, ROC
| | - Chia-Cheng Feng
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan 11529, ROC
| | - Shih-Hsiung Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan 11529, ROC; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan 10617, ROC
| | - Chung-I Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan 11529, ROC; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan 10617, ROC.
| |
Collapse
|
21
|
Chang CY, Hu HT, Tsai CH, Wu WF. The degradation of RcsA by ClpYQ(HslUV) protease in Escherichia coli. Microbiol Res 2016; 184:42-50. [PMID: 26856452 DOI: 10.1016/j.micres.2016.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 12/21/2015] [Accepted: 01/09/2016] [Indexed: 01/30/2023]
Abstract
In Escherichia coli, RcsA, a positive activator for transcription of cps (capsular polysaccharide synthesis) genes, is degraded by the Lon protease. In lon mutant, the accumulation of RcsA leads to overexpression of capsular polysaccharide. In a previous study, overproduction of ClpYQ(HslUV) protease represses the expression of cpsB∷lacZ, but there has been no direct observation demonstrating that ClpYQ degrades RcsA. By means of a MBP-RcsA fusion protein, we showed that RcsA activated cpsB∷lacZ expression and could be rapidly degraded by Lon protease in SG22622 (lon(+)). Subsequently, the comparative half-life experiments performed in the bacterial strains SG22623 (lon) and AC3112 (lon clpY clpQ) indicated that the RcsA turnover rate in AC3112 was relatively slow and RcsA was stable at 30°C or 41°C. In addition, ClpY could interact with RscA in an in vitro pull-down assay, and the more rapid degradation of RcsA was observed in the presence of ClpYQ protease at 41°C. Thus, we conclude that RcsA is indeed proteolized by ClpYQ protease.
Collapse
Affiliation(s)
- Chun-Yang Chang
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University, Taipei, Taiwan, ROC
| | - Hui-Ting Hu
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University, Taipei, Taiwan, ROC
| | - Chih-Hsuan Tsai
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University, Taipei, Taiwan, ROC
| | - Whei-Fen Wu
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University, Taipei, Taiwan, ROC.
| |
Collapse
|
22
|
Kravats AN, Tonddast-Navaei S, Stan G. Coarse-Grained Simulations of Topology-Dependent Mechanisms of Protein Unfolding and Translocation Mediated by ClpY ATPase Nanomachines. PLoS Comput Biol 2016; 12:e1004675. [PMID: 26734937 PMCID: PMC4703411 DOI: 10.1371/journal.pcbi.1004675] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/25/2015] [Indexed: 01/30/2023] Open
Abstract
Clp ATPases are powerful ring shaped nanomachines which participate in the degradation pathway of the protein quality control system, coupling the energy from ATP hydrolysis to threading substrate proteins (SP) through their narrow central pore. Repetitive cycles of sequential intra-ring ATP hydrolysis events induce axial excursions of diaphragm-forming central pore loops that effect the application of mechanical forces onto SPs to promote unfolding and translocation. We perform Langevin dynamics simulations of a coarse-grained model of the ClpY ATPase-SP system to elucidate the molecular details of unfolding and translocation of an α/β model protein. We contrast this mechanism with our previous studies which used an all-α SP. We find conserved aspects of unfolding and translocation mechanisms by allosteric ClpY, including unfolding initiated at the tagged C-terminus and translocation via a power stroke mechanism. Topology-specific aspects include the time scales, the rate limiting steps in the degradation pathway, the effect of force directionality, and the translocase efficacy. Mechanisms of ClpY-assisted unfolding and translocation are distinct from those resulting from non-allosteric mechanical pulling. Bulk unfolding simulations, which mimic Atomic Force Microscopy-type pulling, reveal multiple unfolding pathways initiated at the C-terminus, N-terminus, or simultaneously from both termini. In a non-allosteric ClpY ATPase pore, mechanical pulling with constant velocity yields larger effective forces for SP unfolding, while pulling with constant force results in simultaneous unfolding and translocation. Cell survival is critically dependent on tightly regulated protein quality control, which includes chaperone-mediated folding and degradation. In the degradation pathway, AAA+ nanomachines, such as bacterial Clp proteases, use ATP-driven mechanisms to mechanically unfold, translocate, and destroy excess or defective proteins. Understanding these remodeling mechanisms is of central importance for deciphering the details of essential cellular processes. We perform coarse-grained computer simulations to extensively probe the effect of substrate protein topology on unfolding and translocation actions of the ClpY ATPase nanomachine. We find that, independent of SP topology, unfolding proceeds from the tagged C-terminus, which is engaged by the ATPase, and translocation involves coordinated steps. Topology-specific aspects include more complex unfolding and translocation pathways of the α/β SP compared with the all-α SP due to high stability of β-hairpins and interplay of tertiary contacts. In addition, directionality of the mechanical force applied by the Clp ATPase gives rise to distinct unfolding pathways.
Collapse
Affiliation(s)
- Andrea N. Kravats
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Sam Tonddast-Navaei
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - George Stan
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
23
|
Hazra S, Henderson JN, Liles K, Hilton MT, Wachter RM. Regulation of ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) activase: product inhibition, cooperativity, and magnesium activation. J Biol Chem 2015; 290:24222-36. [PMID: 26283786 PMCID: PMC4591810 DOI: 10.1074/jbc.m115.651745] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 08/04/2015] [Indexed: 12/24/2022] Open
Abstract
In many photosynthetic organisms, tight-binding Rubisco inhibitors are released by the motor protein Rubisco activase (Rca). In higher plants, Rca plays a pivotal role in regulating CO2 fixation. Here, the ATPase activity of 0.005 mm tobacco Rca was monitored under steady-state conditions, and global curve fitting was utilized to extract kinetic constants. The kcat was best fit by 22.3 ± 4.9 min(-1), the Km for ATP by 0.104 ± 0.024 mm, and the Ki for ADP by 0.037 ± 0.007 mm. Without ADP, the Hill coefficient for ATP hydrolysis was extracted to be 1.0 ± 0.1, indicating noncooperative behavior of homo-oligomeric Rca assemblies. However, the addition of ADP was shown to introduce positive cooperativity between two or more subunits (Hill coefficient 1.9 ± 0.2), allowing for regulation via the prevailing ATP/ADP ratio. ADP-mediated activation was not observed, although larger amounts led to competitive product inhibition of hydrolytic activity. The catalytic efficiency increased 8.4-fold upon cooperative binding of a second magnesium ion (Hill coefficient 2.5 ± 0.5), suggesting at least three conformational states (ATP-bound, ADP-bound, and empty) within assemblies containing an average of about six subunits. The addition of excess Rubisco (24:1, L8S8/Rca6) and crowding agents did not modify catalytic rates. However, high magnesium provided for thermal Rca stabilization. We propose that magnesium mediates the formation of closed hexameric toroids capable of high turnover rates and amenable to allosteric regulation. We suggest that in vivo, the Rca hydrolytic activity is tuned by fluctuating [Mg(2+)] in response to changes in available light.
Collapse
Affiliation(s)
- Suratna Hazra
- From the Department of Chemistry and Biochemistry and Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, Arizona 85287
| | - J Nathan Henderson
- From the Department of Chemistry and Biochemistry and Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, Arizona 85287
| | - Kevin Liles
- From the Department of Chemistry and Biochemistry and Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, Arizona 85287
| | - Matthew T Hilton
- From the Department of Chemistry and Biochemistry and Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, Arizona 85287
| | - Rebekka M Wachter
- From the Department of Chemistry and Biochemistry and Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, Arizona 85287
| |
Collapse
|
24
|
Dey S, Biswas M, Sen U, Dasgupta J. Unique ATPase site architecture triggers cis-mediated synchronized ATP binding in heptameric AAA+-ATPase domain of flagellar regulatory protein FlrC. J Biol Chem 2015; 290:8734-47. [PMID: 25688103 DOI: 10.1074/jbc.m114.611434] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Indexed: 11/06/2022] Open
Abstract
Bacterial enhancer-binding proteins (bEBPs) oligomerize through AAA(+) domains and use ATP hydrolysis-driven energy to isomerize the RNA polymerase-σ(54) complex during transcriptional initiation. Here, we describe the first structure of the central AAA(+) domain of the flagellar regulatory protein FlrC (FlrC(C)), a bEBP that controls flagellar synthesis in Vibrio cholerae. Our results showed that FlrC(C) forms heptamer both in nucleotide (Nt)-free and -bound states without ATP-dependent subunit remodeling. Unlike the bEBPs such as NtrC1 or PspF, a novel cis-mediated "all or none" ATP binding occurs in the heptameric FlrC(C), because constriction at the ATPase site, caused by loop L3 and helix α7, restricts the proximity of the trans-protomer required for Nt binding. A unique "closed to open" movement of Walker A, assisted by trans-acting "Glu switch" Glu-286, facilitates ATP binding and hydrolysis. Fluorescence quenching and ATPase assays on FlrC(C) and mutants revealed that although Arg-349 of sensor II, positioned by trans-acting Glu-286 and Tyr-290, acts as a key residue to bind and hydrolyze ATP, Arg-319 of α7 anchors ribose and controls the rate of ATP hydrolysis by retarding the expulsion of ADP. Heptameric state of FlrC(C) is restored in solution even with the transition state mimicking ADP·AlF3. Structural results and pulldown assays indicated that L3 renders an in-built geometry to L1 and L2 causing σ(54)-FlrC(C) interaction independent of Nt binding. Collectively, our results underscore a novel mechanism of ATP binding and σ(54) interaction that strives to understand the transcriptional mechanism of the bEBPs, which probably interact directly with the RNA polymerase-σ(54) complex without DNA looping.
Collapse
Affiliation(s)
- Sanjay Dey
- From the Department of Biotechnology, St. Xavier's College, 30 Park Street, Kolkata 700016 and
| | - Maitree Biswas
- From the Department of Biotechnology, St. Xavier's College, 30 Park Street, Kolkata 700016 and
| | - Udayaditya Sen
- the Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064, India
| | - Jhimli Dasgupta
- From the Department of Biotechnology, St. Xavier's College, 30 Park Street, Kolkata 700016 and
| |
Collapse
|
25
|
Kuriata AM, Chakraborty M, Henderson JN, Hazra S, Serban AJ, Pham TVT, Levitus M, Wachter RM. ATP and magnesium promote cotton short-form ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase hexamer formation at low micromolar concentrations. Biochemistry 2014; 53:7232-46. [PMID: 25357088 DOI: 10.1021/bi500968h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We report a fluorescence correlation spectroscopy (FCS) study of the assembly pathway of the AAA+ protein ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase (Rca), a ring-forming ATPase responsible for activation of inhibited Rubisco complexes for biological carbon fixation. A thermodynamic characterization of simultaneously populated oligomeric states appears critical in understanding Rca structure and function. Using cotton β-Rca, we demonstrate that apparent diffusion coefficients vary as a function of concentration, nucleotide, and cation. Using manual fitting procedures, we provide estimates for the equilibrium constants for the stepwise assembly and find that in the presence of ATPγS, the Kd for hexamerization is 10-fold lower than with ADP (∼0.1 vs ∼1 μM). Hexamer fractions peak at 30 μM and dominate at 8-70 μM Rca, where they comprise 60-80% of subunits with ATPγS, compared with just 30-40% with ADP. Dimer fractions peak at 1-4 μM Rca, where they comprise 15-18% with ATPγS and 26-28% with ADP. At 30 μM Rca, large aggregates begin to form that comprise ∼10% of total protein with ATPγS and ∼25% with ADP. FCS data collected on the catalytically impaired WalkerB-D173N variant in the presence of ATP provided strong support for these results. Titration with free magnesium ions lead to the disaggregation of larger complexes in favor of hexameric forms, suggesting that a second magnesium binding site with a Kd value of 1-3 mM mediates critical subunit contacts. We propose that closed-ring toroidal hexameric forms are stabilized by binding of Mg·ATP plus Mg2+, whereas Mg·ADP promotes continuous assembly to supramolecular aggregates such as spirals.
Collapse
Affiliation(s)
- Agnieszka M Kuriata
- Department of Chemistry and Biochemistry and Center for Bioenergy and Photosynthesis, Arizona State University , Tempe, Arizona 85287, United States
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Sung KH, Song HK. Insights into the molecular evolution of HslU ATPase through biochemical and mutational analyses. PLoS One 2014; 9:e103027. [PMID: 25050622 PMCID: PMC4106860 DOI: 10.1371/journal.pone.0103027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 06/26/2014] [Indexed: 11/18/2022] Open
Abstract
The ATP-dependent HslVU complexes are found in all three biological kingdoms. A single HslV protease exists in each species of prokaryotes, archaea, and eukaryotes, but two HslUs (HslU1 and HslU2) are present in the mitochondria of eukaryotes. Previously, a tyrosine residue at the C-terminal tail of HslU2 has been identified as a key determinant of HslV activation in Trypanosoma brucei and a phenylalanine at the equivalent position to E. coli HslU is found in T. brucei HslU1. Unexpectedly, we found that an F441Y mutation in HslU enhanced the peptidase and caseinolytic activity of HslV in E. coli but it showed partially reduced ATPase and SulA degradation activity. Previously, only the C-terminal tail of HslU has been the focus of HslV activation studies. However, the Pro315 residue interacting with Phe441 in free HslU has also been found to be critical for HslV activation. Hence, our current biochemical analyses explore the importance of the loop region just before Pro315 for HslVU complex functionality. The proline and phenylalanine pair in prokaryotic HslU was replaced with the threonine and tyrosine pair from the functional eukaryotic HslU2. Sequence comparisons between multiple HslUs from three different biological kingdoms in combination with biochemical analysis of E. coli mutants have uncovered important new insights into the molecular evolutionary pathway of HslU.
Collapse
Affiliation(s)
| | - Hyun Kyu Song
- Department of Life Sciences, Korea University, Seoul, Korea
- * E-mail:
| |
Collapse
|
27
|
Essential function of the N-termini tails of the proteasome for the gating mechanism revealed by molecular dynamics simulations. Proteins 2014; 82:1985-99. [DOI: 10.1002/prot.24553] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 02/24/2014] [Accepted: 03/04/2014] [Indexed: 11/07/2022]
|
28
|
Abstract
The ubiquitin proteasome system (UPS) is the main ATP-dependent protein degradation pathway in the cytosol and nucleus of eukaryotic cells. At its centre is the 26S proteasome, which degrades regulatory proteins and misfolded or damaged proteins. In a major breakthrough, several groups have determined high-resolution structures of the entire 26S proteasome particle in different nucleotide conditions and with and without substrate using cryo-electron microscopy combined with other techniques. These structures provide some surprising insights into the functional mechanism of the proteasome and will give invaluable guidance for genetic and biochemical studies of this key regulatory system.
Collapse
|
29
|
Kravats AN, Tonddast-Navaei S, Bucher RJ, Stan G. Asymmetric processing of a substrate protein in sequential allosteric cycles of AAA+ nanomachines. J Chem Phys 2013; 139:121921. [DOI: 10.1063/1.4817410] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
30
|
Roberts AJ, Kon T, Knight PJ, Sutoh K, Burgess SA. Functions and mechanics of dynein motor proteins. Nat Rev Mol Cell Biol 2013; 14:713-26. [PMID: 24064538 DOI: 10.1038/nrm3667] [Citation(s) in RCA: 367] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Fuelled by ATP hydrolysis, dyneins generate force and movement on microtubules in a wealth of biological processes, including ciliary beating, cell division and intracellular transport. The large mass and complexity of dynein motors have made elucidating their mechanisms a sizable task. Yet, through a combination of approaches, including X-ray crystallography, cryo-electron microscopy, single-molecule assays and biochemical experiments, important progress has been made towards understanding how these giant motor proteins work. From these studies, a model for the mechanochemical cycle of dynein is emerging, in which nucleotide-driven flexing motions within the AAA+ ring of dynein alter the affinity of its microtubule-binding stalk and reshape its mechanical element to generate movement.
Collapse
Affiliation(s)
- Anthony J Roberts
- 1] Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK. [2] Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
31
|
Park E, Lee JW, Yoo HM, Ha BH, An JY, Jeon YJ, Seol JH, Eom SH, Chung CH. Structural alteration in the pore motif of the bacterial 20S proteasome homolog HslV leads to uncontrolled protein degradation. J Mol Biol 2013; 425:2940-54. [PMID: 23707406 DOI: 10.1016/j.jmb.2013.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/29/2013] [Accepted: 05/15/2013] [Indexed: 11/27/2022]
Abstract
In all cells, ATP-dependent proteases play central roles in the controlled degradation of short-lived regulatory or misfolded proteins. A hallmark of these enzymes is that proteolytic active sites are sequestered within a compartmentalized space, which is accessible to substrates only when they are fed into the cavity by protein-unfolding ATPases. HslVU is a prototype of such enzymes, consisting of the hexameric HslU ATPase and the dodecameric HslV protease. HslV forms a barrel-shaped proteolytic chamber with two constricted axial pores. Here, we report that structural alterations of HslV's pore motif dramatically affect the proteolytic activities of both HslV and HslVU complexes. Mutations of a conserved pore residue in HslV (Leu88 to Ala, Gly, or Ser) led to a tighter binding between HslV and HslU and a dramatic stimulation of both the proteolytic and ATPase activities. Furthermore, the HslV mutants alone showed a marked increase of basal hydrolytic activities toward small peptides and unstructured proteins. A synthetic peptide of the HslU C-terminal tail further stimulated the proteolytic activities of these mutants, even allowing degradation of certain folded proteins in the absence of HslU. Moreover, expression of the L88A mutant in Escherichia coli inhibited cell growth, suggesting that HslV pore mutations dysregulate the protease through relaxing the pore constriction, which normally prevents essential cellular proteins from random degradation. Consistent with these observations, an X-ray crystal structure shows that the pore loop of L88A-HslV is largely disordered. Collectively, these results suggest that substrate degradation by HslV is controlled by gating of its pores.
Collapse
Affiliation(s)
- Eunyong Park
- School of Biological Sciences, Seoul National University, Seoul 151-742, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Affiliation(s)
- Artur Gora
- Loschmidt Laboratories,
Department
of Experimental Biology and Research Centre for Toxic Compounds in
the Environment, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
| | - Jan Brezovsky
- Loschmidt Laboratories,
Department
of Experimental Biology and Research Centre for Toxic Compounds in
the Environment, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories,
Department
of Experimental Biology and Research Centre for Toxic Compounds in
the Environment, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Centre for Clinical
Research, St. Anne’s University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| |
Collapse
|
33
|
Liao JH, Ihara K, Kuo CI, Huang KF, Wakatsuki S, Wu SH, Chang CI. Structures of an ATP-independent Lon-like protease and its complexes with covalent inhibitors. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1395-402. [PMID: 23897463 DOI: 10.1107/s0907444913008214] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 03/25/2013] [Indexed: 11/10/2022]
Abstract
The Lon proteases are a unique family of chambered proteases with a built-in AAA+ (ATPases associated with diverse cellular activities) module. Here, crystal structures of a unique member of the Lon family with no intrinsic ATPase activity in the proteolytically active form are reported both alone and in complexes with three covalent inhibitors: two peptidomimetics and one derived from a natural product. This work reveals the unique architectural features of an ATP-independent Lon that selectively degrades unfolded protein substrates. Importantly, these results provide mechanistic insights into the recognition of inhibitors and polypeptide substrates within the conserved proteolytic chamber, which may aid the development of specific Lon-protease inhibitors.
Collapse
Affiliation(s)
- Jiahn-Haur Liao
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | | | | | | | | | | | | |
Collapse
|
34
|
Sung KH, Lee SY, Song HK. Structural and biochemical analyses of the eukaryotic heat shock locus V (HslV) from Trypanosoma brucei. J Biol Chem 2013; 288:23234-43. [PMID: 23818520 DOI: 10.1074/jbc.m113.484832] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In many bacteria, heat shock locus V (HslV) functions as a protease, which is activated by heat shock locus U (HslU). The primary sequence and structure of HslV are well conserved with those of the β-subunit of the 20 S proteasome core particle in eukaryotes. To date, the HslVU complex has only been characterized in the prokaryotic system. Recently, however, the coexistence of a 20 S proteasome with HslV protease in the same living organism has been reported. In Trypanosoma brucei, a protozoan parasite that causes human sleeping sickness in Africa, HslV is localized in the mitochondria, where it has a novel function in regulating mitochondrial DNA replication. Although the prokaryotic HslVU system has been studied extensively, little is known regarding its eukaryotic counterpart. Here, we report the biochemical characteristics of an HslVU complex from T. brucei. In contrast to the prokaryotic system, T. brucei possesses two potential HslU molecules, and we found that only one of them activates HslV. A key activating residue, Tyr(494), was identified in HslU2 by biochemical and mutational studies. Furthermore, to our knowledge, this study is the first to report the crystal structure of a eukaryotic HslV, determined at 2.4 Å resolution. Drawing on our comparison of the biochemical and structural data, we discuss herein the differences and similarities between eukaryotic and prokaryotic HslVs.
Collapse
Affiliation(s)
- Kwang Hoon Sung
- Department of Life Sciences, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-701, Korea
| | | | | |
Collapse
|
35
|
The role of bacterial enhancer binding proteins as specialized activators of σ54-dependent transcription. Microbiol Mol Biol Rev 2013; 76:497-529. [PMID: 22933558 DOI: 10.1128/mmbr.00006-12] [Citation(s) in RCA: 249] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial enhancer binding proteins (bEBPs) are transcriptional activators that assemble as hexameric rings in their active forms and utilize ATP hydrolysis to remodel the conformation of RNA polymerase containing the alternative sigma factor σ(54). We present a comprehensive and detailed summary of recent advances in our understanding of how these specialized molecular machines function. The review is structured by introducing each of the three domains in turn: the central catalytic domain, the N-terminal regulatory domain, and the C-terminal DNA binding domain. The role of the central catalytic domain is presented with particular reference to (i) oligomerization, (ii) ATP hydrolysis, and (iii) the key GAFTGA motif that contacts σ(54) for remodeling. Each of these functions forms a potential target of the signal-sensing N-terminal regulatory domain, which can act either positively or negatively to control the activation of σ(54)-dependent transcription. Finally, we focus on the DNA binding function of the C-terminal domain and the enhancer sites to which it binds. Particular attention is paid to the importance of σ(54) to the bacterial cell and its unique role in regulating transcription.
Collapse
|
36
|
Abstract
Bacteria are frequently exposed to changes in environmental conditions, such as fluctuations in temperature, pH or the availability of nutrients. These assaults can be detrimental to cell as they often result in a proteotoxic stress, which can cause the accumulation of unfolded proteins. In order to restore a productive folding environment in the cell, bacteria have evolved a network of proteins, known as the protein quality control (PQC) network, which is composed of both chaperones and AAA+ proteases. These AAA+ proteases form a major part of this PQC network, as they are responsible for the removal of unwanted and damaged proteins. They also play an important role in the turnover of specific regulatory or tagged proteins. In this review, we describe the general features of an AAA+ protease, and using two of the best-characterised AAA+ proteases in Escherichia coli (ClpAP and ClpXP) as a model for all AAA+ proteases, we provide a detailed mechanistic description of how these machines work. Specifically, the review examines the physiological role of these machines, as well as the substrates and the adaptor proteins that modulate their substrate specificity.
Collapse
|
37
|
Abstract
Archaea contain, both a functional proteasome and an ubiquitin-like protein conjugation system (termed sampylation) that is related to the ubiquitin proteasome system (UPS) of eukaryotes. Archaeal proteasomes have served as excellent models for understanding how proteins are degraded by the central energy-dependent proteolytic machine of eukaryotes, the 26S proteasome. While sampylation has only recently been discovered, it is thought to be linked to proteasome-mediated degradation in archaea. Unlike eukaryotes, sampylation only requires an E1 enzyme homolog of the E1-E2-E3 ubiquitylation cascade to mediate protein conjugation. Furthermore, recent evidence suggests that archaeal and eurkaryotic E1 enzyme homologs can serve dual roles in mediating protein conjugation and activating sulfur for incorporation into biomolecules. The focus of this book chapter is the energy-dependent proteasome and sampylation systems of Archaea.
Collapse
Affiliation(s)
- Julie A Maupin-Furlow
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32611-0700, USA,
| |
Collapse
|
38
|
Hwang W, Lang MJ. Nucleotide-dependent control of internal strains in ring-shaped AAA+ motors. Cell Mol Bioeng 2012; 6:65-73. [PMID: 23526741 DOI: 10.1007/s12195-012-0264-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The AAA+ (ATPase Associated with various cellular Activities) machinery represents an extremely successful and widely used design plan for biological motors. Recently found crystal structures are beginning to reveal nucleotide-dependent conformational changes in the canonical hexameric rings of the AAA+ motors. However, the physical mechanism by which ATP binding on one subunit allosterically propagates across the entire ring remains to be found. Here we analyze and compare structural organization of three ring-shaped AAA+ motors, ClpX, HslU, and dynein. By constructing multimers using subunits of identical conformations, we find that individual subunits locally possess helical geometries with varying pitch, radius, chirality, and symmetry number. These results suggest that binding of an ATP to a subunit imposes conformational constraint that must be accommodated by more flexible nucleotide-free subunits to relieve mechanical strain on the ring. Local deformation of the ring contour and subsequent propagation of strains may be a general strategy that AAA+ motors adopt to generate force while achieving functional diversity.
Collapse
Affiliation(s)
- Wonmuk Hwang
- Department of Biomedical Engineering, Materials Science & Engineering Program, Texas A&M University, College Station, TX 77843, U.S.A
| | | |
Collapse
|
39
|
Kelch BA, Makino DL, O'Donnell M, Kuriyan J. How a DNA polymerase clamp loader opens a sliding clamp. Science 2012; 334:1675-80. [PMID: 22194570 DOI: 10.1126/science.1211884] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Processive chromosomal replication relies on sliding DNA clamps, which are loaded onto DNA by pentameric clamp loader complexes belonging to the AAA+ family of adenosine triphosphatases (ATPases). We present structures for the ATP-bound state of the clamp loader complex from bacteriophage T4, bound to an open clamp and primer-template DNA. The clamp loader traps a spiral conformation of the open clamp so that both the loader and the clamp match the helical symmetry of DNA. One structure reveals that ATP has been hydrolyzed in one subunit and suggests that clamp closure and ejection of the loader involves disruption of the ATP-dependent match in symmetry. The structures explain how synergy among the loader, the clamp, and DNA can trigger ATP hydrolysis and release of the closed clamp on DNA.
Collapse
Affiliation(s)
- Brian A Kelch
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
40
|
Sundar S, Baker TA, Sauer RT. The I domain of the AAA+ HslUV protease coordinates substrate binding, ATP hydrolysis, and protein degradation. Protein Sci 2012; 21:188-98. [PMID: 22102327 DOI: 10.1002/pro.2001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 11/09/2011] [Accepted: 11/10/2011] [Indexed: 11/11/2022]
Abstract
In the AAA+ HslUV protease, substrates are bound and unfolded by a ring hexamer of HslU, before translocation through an axial pore and into the HslV degradation chamber. Here, we show that the N-terminal residues of an Arc substrate initially bind in the HslU axial pore, with key contacts mediated by a pore loop that is highly conserved in all AAA+ unfoldases. Disordered loops from the six intermediate domains of the HslU hexamer project into a funnel-shaped cavity above the pore and are positioned to contact protein substrates. Mutations in these I-domain loops increase K(M) and decrease V(max) for degradation, increase the mobility of bound substrates, and prevent substrate stimulation of ATP hydrolysis. HslU-ΔI has negligible ATPase activity. Thus, the I domain plays an active role in coordinating substrate binding, ATP hydrolysis, and protein degradation by the HslUV proteolytic machine.
Collapse
Affiliation(s)
- Shankar Sundar
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
41
|
Kakihara Y, Houry WA. The R2TP complex: Discovery and functions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:101-7. [DOI: 10.1016/j.bbamcr.2011.08.016] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 08/30/2011] [Accepted: 08/30/2011] [Indexed: 10/17/2022]
|
42
|
Abstract
Like other energy-dependent proteases, proteasomes, which are found across the three domains of life, are self-compartmentalized and important in the early steps of proteolysis. Proteasomes degrade improperly synthesized, damaged or misfolded proteins and hydrolyse regulatory proteins that must be specifically removed or cleaved for cell signalling. In eukaryotes, proteins are typically targeted for proteasome-mediated destruction through polyubiquitylation, although ubiquitin-independent pathways also exist. Interestingly, actinobacteria and archaea also covalently attach small proteins (prokaryotic ubiquitin-like protein (Pup) and small archaeal modifier proteins (Samps), respectively) to certain proteins, and this may serve to target the modified proteins for degradation by proteasomes.
Collapse
Affiliation(s)
- Julie Maupin-Furlow
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611-0700, USA.
| |
Collapse
|
43
|
Hill CP, Babst M. Structure and function of the membrane deformation AAA ATPase Vps4. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:172-81. [PMID: 21925211 DOI: 10.1016/j.bbamcr.2011.08.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 08/29/2011] [Accepted: 08/30/2011] [Indexed: 11/15/2022]
Abstract
The ATPase Vps4 belongs to the type-I AAA family of proteins. Vps4 functions together with a group of proteins referred to as ESCRTs in membrane deformation and fission events. These cellular functions include vesicle formation at the endosome, cytokinesis and viral budding. The highly dynamic quaternary structure of Vps4 and its interactions with a network of regulators and co-factors has made the analysis of this ATPase challenging. Nevertheless, recent advances in the understanding of the cell biology of Vps4 together with structural information and in vitro studies are guiding mechanistic models of this ATPase.
Collapse
Affiliation(s)
- Christopher P Hill
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112-5650, USA.
| | | |
Collapse
|
44
|
Langklotz S, Baumann U, Narberhaus F. Structure and function of the bacterial AAA protease FtsH. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:40-8. [PMID: 21925212 DOI: 10.1016/j.bbamcr.2011.08.015] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Revised: 08/24/2011] [Accepted: 08/30/2011] [Indexed: 10/17/2022]
Abstract
Proteolysis of regulatory proteins or key enzymes of biosynthetic pathways is a universal mechanism to rapidly adjust the cellular proteome to particular environmental needs. Among the five energy-dependent AAA(+) proteases in Escherichia coli, FtsH is the only essential protease. Moreover, FtsH is unique owing to its anchoring to the inner membrane. This review describes the structural and functional properties of FtsH. With regard to its role in cellular quality control and regulatory circuits, cytoplasmic and membrane substrates of the FtsH protease are depicted and mechanisms of FtsH-dependent proteolysis are discussed.
Collapse
Affiliation(s)
- Sina Langklotz
- Lehrstuhl für Biologie der Mikroorganismen, Ruhr-Universität Bochum, Germany
| | | | | |
Collapse
|
45
|
Stepwise activity of ClpY (HslU) mutants in the processive degradation of Escherichia coli ClpYQ (HslUV) protease substrates. J Bacteriol 2011; 193:5465-76. [PMID: 21803990 DOI: 10.1128/jb.05128-11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli, ClpYQ (HslUV) is a two-component ATP-dependent protease composed of ClpY (HslU), an ATPase with unfolding activity, and ClpQ (HslV), a peptidase. In the ClpYQ proteolytic complex, the hexameric rings of ClpY (HslU) are responsible for protein recognition, unfolding, and translocation into the proteolytic inner chamber of the dodecameric ClpQ (HslV). Each of the three domains, N, I, and C, in ClpY has its own distinct activity. The double loops (amino acids [aa] 137 to 150 and 175 to 209) in domain I of ClpY are necessary for initial recognition/tethering of natural substrates such as SulA, a cell division inhibitor protein. The highly conserved sequence GYVG (aa 90 to 93) pore I site, along with the GESSG pore II site (aa 265 to 269), contribute to the central pore of ClpY in domain N. These two central loops of ClpY are in the center of its hexameric ring in which the energy of ATP hydrolysis allows substrate translocation and then degradation by ClpQ. However, no data have been obtained to determine the effect of the central loops on substrate binding or as part of the processivity of the ClpYQ complex. Thus, we probed the features of ClpY important for substrate engagement and protease processivity via random PCR or site-specific mutagenesis. In yeast two-hybrid analysis and pulldown assays, using isolated ClpY mutants and the pore I or pore II site of ClpY, each was examined for its influence on the adjoining structural regions of the substrates. The pore I site is essential for the translocation of the engaged substrates. Our in vivo study of the ClpY mutants also revealed that an ATP-binding site in domain N, separate from its role in polypeptide (ClpY) oligomerization, is required for complex formation with ClpQ. Additionally, we found that the tyrosine residue at position 408 in ClpY is critical for stabilization of hexamer formation between subunits. Therefore, our studies suggest that stepwise activities of the ClpYQ protease are necessary to facilitate the processive degradation of its natural substrates.
Collapse
|
46
|
Bar-Nun S, Glickman MH. Proteasomal AAA-ATPases: structure and function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:67-82. [PMID: 21820014 DOI: 10.1016/j.bbamcr.2011.07.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 07/07/2011] [Accepted: 07/18/2011] [Indexed: 01/18/2023]
Abstract
The 26S proteasome is a chambered protease in which the majority of selective cellular protein degradation takes place. Throughout evolution, access of protein substrates to chambered proteases is restricted and depends on AAA-ATPases. Mechanical force generated through cycles of ATP binding and hydrolysis is used to unfold substrates, open the gated proteolytic chamber and translocate the substrate into the active proteases within the cavity. Six distinct AAA-ATPases (Rpt1-6) at the ring base of the 19S regulatory particle of the proteasome are responsible for these three functions while interacting with the 20S catalytic chamber. Although high resolution structures of the eukaryotic 26S proteasome are not yet available, exciting recent studies shed light on the assembly of the hetero-hexameric Rpt ring and its consequent spatial arrangement, on the role of Rpt C-termini in opening the 20S 'gate', and on the contribution of each individual Rpt subunit to various cellular processes. These studies are illuminated by paradigms generated through studying PAN, the simpler homo-hexameric AAA-ATPase of the archaeal proteasome. The similarities between PAN and Rpts highlight the evolutionary conserved role of AAA-ATPase in protein degradation, whereas unique properties of divergent Rpts reflect the increased complexity and tighter regulation attributed to the eukaryotic proteasome.
Collapse
Affiliation(s)
- Shoshana Bar-Nun
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | | |
Collapse
|
47
|
Lyubimov AY, Strycharska M, Berger JM. The nuts and bolts of ring-translocase structure and mechanism. Curr Opin Struct Biol 2011; 21:240-8. [PMID: 21282052 DOI: 10.1016/j.sbi.2011.01.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 12/30/2010] [Accepted: 01/03/2011] [Indexed: 01/27/2023]
Abstract
Ring-shaped, oligomeric translocases are multisubunit enzymes that couple the hydrolysis of Nucleoside TriPhosphates (NTPs) to directed movement along extended biopolymer substrates. These motors help unwind nucleic acid duplexes, unfold protein chains, and shepherd nucleic acids between cellular and/or viral compartments. Substrates are translocated through a central pore formed by a circular array of catalytic subunits. Cycles of nucleotide binding, hydrolysis, and product release help reposition translocation loops in the pore to direct movement. How NTP turnover allosterically induces these conformational changes, and the extent of mechanistic divergence between motor families, remain outstanding problems. This review examines the current models for ring-translocase function and highlights the fundamental gaps remaining in our understanding of these molecular machines.
Collapse
Affiliation(s)
- Artem Y Lyubimov
- Department of Molecular and Cell Biology, University of California, Berkeley, 360 Stanley Hall, Berkeley, CA, USA
| | | | | |
Collapse
|
48
|
Unfolding and translocation pathway of substrate protein controlled by structure in repetitive allosteric cycles of the ClpY ATPase. Proc Natl Acad Sci U S A 2011; 108:2234-9. [PMID: 21266546 DOI: 10.1073/pnas.1014278108] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Clp ATPases are ring-shaped AAA+ motors in the degradation pathway that perform critical actions of unfolding and translocating substrate proteins (SPs) through narrow pores to deliver them to peptidase components. These actions are effected by conserved diaphragm-forming loops found in the central channel of the Clp ATPase hexamer. Conformational changes, that take place in the course of repetitive ATP-driven cycles, result in mechanical forces applied by the central channel loops onto the SP. We use coarse-grained simulations to elucidate allostery-driven mechanisms of unfolding and translocation of a tagged four-helix bundle protein by the ClpY ATPase. Unfolding is initiated at the tagged C-terminal region via an obligatory intermediate. The resulting nonnative conformation is competent for translocation, which proceeds on a different time scale than unfolding and involves sharp stepped transitions. Completion of the translocation process requires assistance from the ClpQ peptidase. These mechanisms contrast nonallosteric mechanical unfolding of the SP. In atomic force microscopy experiments, multiple unfolding pathways are available and large mechanical forces are required to unravel the SP relative to those exerted by the central channel loops of ClpY. SP threading through a nonallosteric ClpY nanopore involves simultaneous unfolding and translocation effected by strong pulling forces.
Collapse
|
49
|
Chapman E, Fry AN, Kang M. The complexities of p97 function in health and disease. MOLECULAR BIOSYSTEMS 2010; 7:700-10. [PMID: 21152665 DOI: 10.1039/c0mb00176g] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
p97 is a homohexameric, toroidal machine that harnesses the energy of ATP binding and hydrolysis to effect structural reorganization of a diverse and primarily uncharacterized set of substrate proteins. This action has been linked to endoplasmic reticulum associated degradation (ERAD), homotypic membrane fusion, transcription factor control, cell cycle progression, DNA repair, and post-mitotic spindle disassembly. Exactly how these diverse processes use p97 is not fully understood, but it is clear that binding sites, primarily on the N- and C-domains of p97, facilitate this diversity by coordinating a growing collection of cofactors. These cofactors act at the levels of mechanism, sub-cellular localization, and substrate modification. Another unifying theme is the use of ubiquitylation. Both p97 and many of the associated cofactors have demonstrable ubiquitin-binding competence. The present review will discuss some of the current mechanistic studies and controversies and how these relate to cofactors as well as discussing potential therapeutic targeting of p97.
Collapse
Affiliation(s)
- Eli Chapman
- Department of Molecular Biology, The Scripps Research Institute, Skaggs Molecular Biology Building, 10596 Torrey Pines Road, Rm. 203, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
50
|
Sundar S, McGinness KE, Baker TA, Sauer RT. Multiple sequence signals direct recognition and degradation of protein substrates by the AAA+ protease HslUV. J Mol Biol 2010; 403:420-9. [PMID: 20837023 DOI: 10.1016/j.jmb.2010.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 09/02/2010] [Accepted: 09/03/2010] [Indexed: 11/25/2022]
Abstract
Proteolysis is important for protein quality control and for the proper regulation of many intracellular processes in prokaryotes and eukaryotes. Discerning substrates from other cellular proteins is a key aspect of proteolytic function. The Escherichia coli HslUV protease is a member of a major family of ATP-dependent AAA+ degradation machines. HslU hexamers recognize and unfold native protein substrates and then translocate the polypeptide into the degradation chamber of the HslV peptidase. Although a wealth of structural information is available for this system, relatively little is known about mechanisms of substrate recognition. Here, we demonstrate that mutations in the unstructured N-terminal and C-terminal sequences of two model substrates alter HslUV recognition and degradation kinetics, including changes in V(max). By introducing N- or C-terminal sequences that serve as recognition sites for specific peptide-binding proteins, we show that blocking either terminus of the substrate interferes with HslUV degradation, with synergistic effects when both termini are obstructed. These results support a model in which one terminus of the substrate is tethered to the protease and the other terminus is engaged by the translocation/unfolding machinery in the HslU pore. Thus, degradation appears to consist of discrete steps, which involve the interaction of different terminal sequence signals in the substrate with different receptor sites in the HslUV protease.
Collapse
Affiliation(s)
- Shankar Sundar
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|