1
|
Guerreiro BM, Dionísio MM, Lima JC, Silva JC, Freitas F. Cryoprotective Polysaccharides with Ordered Gel Structures Induce Ice Growth Anticipation and Survival Enhancement during Cell Cryopreservation. Biomacromolecules 2024; 25:3384-3397. [PMID: 38739855 DOI: 10.1021/acs.biomac.4c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
This work cross-correlated rheological, thermodynamic, and conformational features of several natural polysaccharides to their cryoprotective performance. The basis of cryoprotection of FucoPol, pectin, and agar revealed a causal combination of (i) an emerging sol-gel transition (p = 0.014) at near-hypothermia (4 °C), (ii) noncolligative attenuated supercooling of the kinetic freezing point of water (p = 0.026) supporting ice growth anticipation, and (iii) increased conformational order (p < 0.0001), where helix-/sheet-like features boost cryoprotection. FucoPol, of highest cryoprotective performance, revealed a predominantly helical structure (α/β = 1.5) capable of forming a gel state at 4 °C and the highest degree of supercooling attenuation (TH = 6.2 °C). Ice growth anticipation with gel-like polysaccharides suggests that the gel matrix neutralizes elastic deformations and lethal cell volumetric fluctuations during freezing, thus preventing the loss of homeostasis and increasing post-thaw viability. Ultimately, structured gels capable of attenuated supercooling enable cryoprotective action at the polymer-cell interface, in addition to polymer-ice interactions. This rationale potentiates implementing alternative, biobased, noncytotoxic polymers in cryobiology.
Collapse
Affiliation(s)
- Bruno M Guerreiro
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal
| | - M Madalena Dionísio
- LAQV-REQUIMTE, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal
| | - João Carlos Lima
- LAQV-REQUIMTE, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal
| | - Jorge Carvalho Silva
- CENIMAT/I3N, Department of Physics, School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal
| | - Filomena Freitas
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal
| |
Collapse
|
2
|
Melnik BS, Glukhova KA, Sokolova (Voronova) EA, Balalaeva IV, Garbuzynskiy SO, Finkelstein AV. Physics of Ice Nucleation and Antinucleation: Action of Ice-Binding Proteins. Biomolecules 2023; 14:54. [PMID: 38254654 PMCID: PMC10813080 DOI: 10.3390/biom14010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/09/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Ice-binding proteins are crucial for the adaptation of various organisms to low temperatures. Some of these, called antifreeze proteins, are usually thought to inhibit growth and/or recrystallization of ice crystals. However, prior to these events, ice must somehow appear in the organism, either coming from outside or forming inside it through the nucleation process. Unlike most other works, our paper is focused on ice nucleation and not on the behavior of the already-nucleated ice, its growth, etc. The nucleation kinetics is studied both theoretically and experimentally. In the theoretical section, special attention is paid to surfaces that bind ice stronger than water and thus can be "ice nucleators", potent or relatively weak; but without them, ice cannot be nucleated in any way in calm water at temperatures above -30 °C. For experimental studies, we used: (i) the ice-binding protein mIBP83, which is a previously constructed mutant of a spruce budworm Choristoneura fumiferana antifreeze protein, and (ii) a hyperactive ice-binding antifreeze protein, RmAFP1, from a longhorn beetle Rhagium mordax. We have shown that RmAFP1 (but not mIBP83) definitely decreased the ice nucleation temperature of water in test tubes (where ice originates at much higher temperatures than in bulk water and thus the process is affected by some ice-nucleating surfaces) and, most importantly, that both of the studied ice-binding proteins significantly decreased the ice nucleation temperature that had been significantly raised in the presence of potent ice nucleators (CuO powder and ice-nucleating bacteria Pseudomonas syringae). Additional experiments on human cells have shown that mIBP83 is concentrated in some cell regions of the cooled cells. Thus, the ice-binding protein interacts not only with ice, but also with other sites that act or potentially may act as ice nucleators. Such ice-preventing interaction may be the crucial biological task of ice-binding proteins.
Collapse
Affiliation(s)
- Bogdan S. Melnik
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (K.A.G.); (S.O.G.)
| | - Ksenia A. Glukhova
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (K.A.G.); (S.O.G.)
| | - Evgeniya A. Sokolova (Voronova)
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia (I.V.B.)
| | - Irina V. Balalaeva
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia (I.V.B.)
| | - Sergiy O. Garbuzynskiy
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (K.A.G.); (S.O.G.)
| | - Alexei V. Finkelstein
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (K.A.G.); (S.O.G.)
- Faculty of Biotechnology, Lomonosov Moscow State University, 142290 Pushchino, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia
| |
Collapse
|
3
|
Aina A, Hsueh SCC, Gibbs E, Peng X, Cashman NR, Plotkin SS. De Novo Design of a β-Helix Tau Protein Scaffold: An Oligomer-Selective Vaccine Immunogen Candidate for Alzheimer's Disease. ACS Chem Neurosci 2023; 14:2603-2617. [PMID: 37458595 DOI: 10.1021/acschemneuro.3c00007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
Tau pathology is associated with many neurodegenerative disorders, including Alzheimer's disease (AD), where the spatio-temporal pattern of tau neurofibrillary tangles strongly correlates with disease progression, which motivates therapeutics selective for misfolded tau. Here, we introduce a new avidity-enhanced, multi-epitope approach for protein-misfolding immunogen design, which is predicted to mimic the conformational state of an exposed epitope in toxic tau oligomers. A predicted oligomer-selective tau epitope 343KLDFK347 was scaffolded by designing a β-helix structure that incorporated multiple instances of the 16-residue tau fragment 339VKSEKLDFKDRVQSKI354. Large-scale conformational ensemble analyses involving Jensen-Shannon Divergence and the embedding depth D showed that the multi-epitope scaffolding approach, employed in designing the β-helix scaffold, was predicted to better discriminate toxic tau oligomers than other "monovalent" strategies utilizing a single instance of an epitope for vaccine immunogen design. Using Rosetta, 10,000 sequences were designed and screened for the linker portions of the β-helix scaffold, along with a C-terminal stabilizing α-helix that interacts with the linkers, to optimize the folded structure and stability of the scaffold. Structures were ranked by energy, and the lowest 1% (82 unique sequences) were verified using AlphaFold. Several selection criteria involving AlphaFold are implemented to obtain a lead-designed sequence. The structure was further predicted to have free energetic stability by using Hamiltonian replica exchange molecular dynamics (MD) simulations. The synthesized β-helix scaffold showed direct binding in surface plasmon resonance (SPR) experiments to several antibodies that were raised to the structured epitope using a designed cyclic peptide. Moreover, the strength of binding of these antibodies to in vitro tau oligomers correlated with the strength of binding to the β-helix construct, suggesting that the construct presents an oligomer-like conformation and may thus constitute an effective oligomer-selective immunogen.
Collapse
Affiliation(s)
- Adekunle Aina
- Department of Physics and Astronomy, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Shawn C C Hsueh
- Department of Physics and Astronomy, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Ebrima Gibbs
- Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Xubiao Peng
- Department of Physics and Astronomy, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Neil R Cashman
- Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Steven S Plotkin
- Department of Physics and Astronomy, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
- Genome Science and Technology Program, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
4
|
Aich R, Pal P, Chakraborty S, Jana B. Preferential Ordering and Organization of Hydration Water Favor Nucleation of Ice by Ice-Nucleating Proteins over Antifreeze Proteins. J Phys Chem B 2023; 127:6038-6048. [PMID: 37395194 DOI: 10.1021/acs.jpcb.3c01641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Bacteria containing ice-nucleating proteins (INPs) evolved in nature to nucleate ice at the high sub-zero ambiance. The ability of the INPs to induce order in the hydration layer and their aggregation propensity appear to be key factors of their ice nucleation abilities. However, the mechanism of the process of ice nucleation by INPs is yet to be understood clearly. Here, we have performed all-atom molecular dynamics simulations and analyzed the structure and dynamics of the hydration layer around the proposed ice-nucleating surface of a model INP. Results are compared with the hydration of a topologically similar non-ice-binding protein (non-IBP) and another ice-growth inhibitory antifreeze protein (sbwAFP). We observed that the hydration structure around the ice-nucleating surface of INP is highly ordered and the dynamics of the hydration water are slower, compared to the non-IBP. Even the ordering of the hydration layer is more evident around the ice-binding surface of INP, compared to the antifreeze protein sbwAFP. Particularly with increasing repeat units of INP, we observe an increased population of ice-like water. Interestingly, the distances between the hydroxyl groups of the threonine ladder and its associated channel water of the ice-binding surface (IBS) of INP in the X and Y direction mimic the oxygen atom distances of the basal plane of hexagonal ice. However, the structural synergies between the hydroxyl group distances of the threonine ladder and its associated channel water of the IBS of sbwAFP and oxygen atom distances of the basal plane are less evident. This difference makes the IBS of the INP a better template for ice nucleation than AFP, although both of them bind to the ice surface efficiently.
Collapse
Affiliation(s)
- Rahul Aich
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Prasun Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Sandipan Chakraborty
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institution of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 5000046, India
| | - Biman Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
5
|
Pal P, Aich R, Chakraborty S, Jana B. Molecular Factors of Ice Growth Inhibition for Hyperactive and Globular Antifreeze Proteins: Insights from Molecular Dynamics Simulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15132-15144. [PMID: 36450094 DOI: 10.1021/acs.langmuir.2c02149] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The molecular mechanism behind the ice growth inhibition by antifreeze proteins (AFPs) is yet to be understood completely. Also, what physical parameters differentiate between the AFP and non-AFP are largely unknown. Thus, to get an atomistic overview of the differential antifreeze activities of different classes of AFPs, we have studied ice growth from different ice surfaces in the presence of a moderately active globular type III AFP and a hyperactive spruce budworm (sbw) AFP. Results are compared with the observations of ice growth simulations in the presence of topologically similar non-AFPs using all-atom molecular dynamics simulations. Simulation data suggest that the ice surface coverage is a critical factor in ice growth inhibition. Due to the presence of an ice binding surface (IBS), AFPs form a high affinity complex with ice, accompanied by a transition of hydration water around the IBS from clathrate-like to ice-like. Several residues around the periphery of the IBS anchor the AFP to the curved ice surface mediated by multiple strong hydrogen bonds, stabilizing the complex immensely. In the high surface coverage regime, the slow unbinding kinetics dominates over the ice growth kinetics and thus facilitates the ice growth inhibition. Due to the non-availability of a proper IBS, non-AFPs form a low-affinity complex with the growing ice surface. As a result, the non-AFPs are continuously repelled by the surface. If the concentration of AFPs is low, then the effective surface coverage is reduced significantly. In this low surface coverage regime, AFPs can also behave like impurities and are engulfed by the growing ice crystal.
Collapse
Affiliation(s)
- Prasun Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Rahul Aich
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Sandipan Chakraborty
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, India
| | - Biman Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
6
|
Finkelstein AV, Garbuzynskiy SO, Melnik BS. How Can Ice Emerge at 0 °C? Biomolecules 2022; 12:981. [PMID: 35883537 PMCID: PMC9313213 DOI: 10.3390/biom12070981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/02/2022] [Accepted: 07/12/2022] [Indexed: 12/02/2022] Open
Abstract
The classical nucleation theory shows that bulk water freezing does not occur at temperatures above ≈ -30 °C, and that at higher temperatures ice nucleation requires the presence of some ice-binding surfaces. The temperature and rate of ice nucleation depend on the size and level of complementarity between the atomic structure of these surfaces and various H-bond-rich/depleted crystal planes. In our experiments, the ice nucleation temperature was within a range from -8 °C to -15 °C for buffer and water in plastic test tubes. Upon the addition of ice-initiating substances (i.e., conventional AgI or CuO investigated here), ice appeared in a range from -3 °C to -7 °C, and in the presence of the ice-nucleating bacterium Pseudomonas syringae from -1 °C to -2 °C. The addition of an antifreeze protein inhibited the action of the tested ice-initiating agents.
Collapse
Affiliation(s)
- Alexei V. Finkelstein
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.O.G.); (B.S.M.)
- Faculty of Biotechnology, Lomonosov Moscow State University, 142290 Pushchino, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Sergiy O. Garbuzynskiy
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.O.G.); (B.S.M.)
| | - Bogdan S. Melnik
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.O.G.); (B.S.M.)
| |
Collapse
|
7
|
Béliveau C, Gagné P, Picq S, Vernygora O, Keeling CI, Pinkney K, Doucet D, Wen F, Spencer Johnston J, Maaroufi H, Boyle B, Laroche J, Dewar K, Juretic N, Blackburn G, Nisole A, Brunet B, Brandão M, Lumley L, Duan J, Quan G, Lucarotti CJ, Roe AD, Sperling FAH, Levesque RC, Cusson M. The Spruce Budworm Genome: Reconstructing the Evolutionary History of Antifreeze Proteins. Genome Biol Evol 2022; 14:evac087. [PMID: 35668612 PMCID: PMC9210311 DOI: 10.1093/gbe/evac087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Insects have developed various adaptations to survive harsh winter conditions. Among freeze-intolerant species, some produce "antifreeze proteins" (AFPs) that bind to nascent ice crystals and inhibit further ice growth. Such is the case of the spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae), a destructive North American conifer pest that can withstand temperatures below -30°C. Despite the potential importance of AFPs in the adaptive diversification of Choristoneura, genomic tools to explore their origins have until now been limited. Here we present a chromosome-scale genome assembly for C. fumiferana, which we used to conduct comparative genomic analyses aimed at reconstructing the evolutionary history of tortricid AFPs. The budworm genome features 16 genes homologous to previously reported C. fumiferana AFPs (CfAFPs), 15 of which map to a single region on chromosome 18. Fourteen of these were also detected in five congeneric species, indicating Choristoneura AFP diversification occurred before the speciation event that led to C. fumiferana. Although budworm AFPs were previously considered unique to the genus Choristoneura, a search for homologs targeting recently sequenced tortricid genomes identified seven CfAFP-like genes in the distantly related Notocelia uddmanniana. High structural similarity between Notocelia and Choristoneura AFPs suggests a common origin, despite the absence of homologs in three related tortricids. Interestingly, one Notocelia AFP formed the C-terminus of a "zonadhesin-like" protein, possibly representing the ancestral condition from which tortricid AFPs evolved. Future work should clarify the evolutionary path of AFPs between Notocelia and Choristoneura and assess the role of the "zonadhesin-like" protein as precursor of tortricid AFPs.
Collapse
Affiliation(s)
- Catherine Béliveau
- Laurentian Forestry Centre, Natural Resources Canada, Quebec City, Quebec, Canada
| | - Patrick Gagné
- Laurentian Forestry Centre, Natural Resources Canada, Quebec City, Quebec, Canada
| | - Sandrine Picq
- Laurentian Forestry Centre, Natural Resources Canada, Quebec City, Quebec, Canada
| | - Oksana Vernygora
- Department of Entomology, University of Kentucky, Lexington, Kentucky, USA
| | - Christopher I Keeling
- Laurentian Forestry Centre, Natural Resources Canada, Quebec City, Quebec, Canada
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Quebec City, Quebec, Canada
| | - Kristine Pinkney
- Great Lakes Forestry Centre, Natural Resources Canada, Sault Ste. Marie, Ontario, Canada
| | - Daniel Doucet
- Great Lakes Forestry Centre, Natural Resources Canada, Sault Ste. Marie, Ontario, Canada
| | - Fayuan Wen
- Great Lakes Forestry Centre, Natural Resources Canada, Sault Ste. Marie, Ontario, Canada
- Center for Sickle Cell Disease, College of Medicine, Howard University, Washington DC, USA
| | - J Spencer Johnston
- Department of Entomology, Texas A&M University, 2475 College Station, Texas, USA
| | - Halim Maaroufi
- Institut de biologie intégrative et des systèmes, Université Laval, Quebec City, Quebec, Canada
| | - Brian Boyle
- Institut de biologie intégrative et des systèmes, Université Laval, Quebec City, Quebec, Canada
| | - Jérôme Laroche
- Institut de biologie intégrative et des systèmes, Université Laval, Quebec City, Quebec, Canada
| | - Ken Dewar
- Quantitative Life Sciences, McGill University, Montreal, Quebec, Canada
| | - Nikoleta Juretic
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Gwylim Blackburn
- Pacific Forestry Centre, Natural Resources Canada, Victoria, British Columbia, Canada
| | - Audrey Nisole
- Laurentian Forestry Centre, Natural Resources Canada, Quebec City, Quebec, Canada
| | - Bryan Brunet
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Marcelo Brandão
- Laboratório de Biologia Integrativa e Sistêmica - CBMEG/UNICAMP, Campinas, Brazil
| | - Lisa Lumley
- Alberta Biodiversity Monitoring Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Jun Duan
- Great Lakes Forestry Centre, Natural Resources Canada, Sault Ste. Marie, Ontario, Canada
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Guoxing Quan
- Great Lakes Forestry Centre, Natural Resources Canada, Sault Ste. Marie, Ontario, Canada
| | | | - Amanda D Roe
- Great Lakes Forestry Centre, Natural Resources Canada, Sault Ste. Marie, Ontario, Canada
| | - Felix A H Sperling
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Roger C Levesque
- Institut de biologie intégrative et des systèmes, Université Laval, Quebec City, Quebec, Canada
| | - Michel Cusson
- Laurentian Forestry Centre, Natural Resources Canada, Quebec City, Quebec, Canada
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Quebec City, Quebec, Canada
- Institut de biologie intégrative et des systèmes, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
8
|
Abstract
Abstract
Antifreeze proteins, expressed in cold-blooded organisms, prevent ice formation in their bodies, and thus help them to survive in extremely cold winter temperatures. However, the mechanism of action of these proteins is still not clear. In any case, it is not simply a decrease in the temperature of normal ice formation. In this work, investigating the ice-binding protein (a mutant form of the antifreeze protein cfAFP from the spruce budworm Choristoneura fumiferana, which overwinters in needles), we showed that this antifreeze protein does not at all lower the freezing point of water and, paradoxically, increases the melting point of ice. On the other hand, calculations based on the theory of crystallization show that at temperatures of 0 ° to –30°C ice can only appear on surfaces that contact water, but not in the body of water. These facts suggest a new perspective on the role of antifreeze proteins: their task is not (as it is commonly believed) to bind with nascent ice crystals already formed in the organism and stop their growth, but to bind to those surfaces, on which ice nuclei can appear, and thus completely inhibit the ice formation in supercooled water or biological fluid.
Collapse
|
9
|
Deeva AA, Glukhova KA, Isoyan LS, Okulova YD, Uversky VN, Melnik BS. Design and Analysis of a Mutant form of the Ice-Binding Protein from Choristoneura fumiferana. Protein J 2022; 41:304-314. [PMID: 35366124 DOI: 10.1007/s10930-022-10049-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2022] [Indexed: 10/18/2022]
Abstract
Ice-binding proteins are expressed in the cells of some cold adapted organisms, helping them to survive at extremely low temperatures. One of the problems in studying such proteins is the difficulty of their isolation and purification. For example, eight cysteine residues in the cfAF (antifreeze protein from the eastern spruce budworm Choristoneura fumiferana) form intermolecular bridges during the overexpression of this protein. This impedes the process of the protein purification dramatically. To overcome this issue, in this work, we designed a mutant form of the ice-binding protein cfAFP, which is much easier to isolate that the wild-type protein. The mutant form named mIBP83 did not lose the ability to bind to ice surface. Besides, observation of the processes of freezing and melting of ice in the presence of mIBP83 showed that this protein affects the process of ice melting, increasing its melting temperature, and does not decrease the water freezing temperature.
Collapse
Affiliation(s)
- Anna A Deeva
- Biophysics Department, Siberian Federal University, Svobodny 79, Krasnoyarsk, Russia, 660041
| | - Ksenia A Glukhova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Puschino, Russia
| | - Lala S Isoyan
- Biophysics Department, Siberian Federal University, Svobodny 79, Krasnoyarsk, Russia, 660041
| | - Yuliya D Okulova
- Institute of Protein Research of the Russian Academy of Sciences, 4 Institutskaya Str., Pushchino, Moscow Region, Russia, 142290
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institure, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Bogdan S Melnik
- Institute of Protein Research of the Russian Academy of Sciences, 4 Institutskaya Str., Pushchino, Moscow Region, Russia, 142290.
| |
Collapse
|
10
|
Ekpo MD, Xie J, Hu Y, Liu X, Liu F, Xiang J, Zhao R, Wang B, Tan S. Antifreeze Proteins: Novel Applications and Navigation towards Their Clinical Application in Cryobanking. Int J Mol Sci 2022; 23:2639. [PMID: 35269780 PMCID: PMC8910022 DOI: 10.3390/ijms23052639] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/16/2022] [Accepted: 02/25/2022] [Indexed: 12/04/2022] Open
Abstract
Antifreeze proteins (AFPs) or thermal hysteresis (TH) proteins are biomolecular gifts of nature to sustain life in extremely cold environments. This family of peptides, glycopeptides and proteins produced by diverse organisms including bacteria, yeast, insects and fish act by non-colligatively depressing the freezing temperature of the water below its melting point in a process termed thermal hysteresis which is then responsible for ice crystal equilibrium and inhibition of ice recrystallisation; the major cause of cell dehydration, membrane rupture and subsequent cryodamage. Scientists on the other hand have been exploring various substances as cryoprotectants. Some of the cryoprotectants in use include trehalose, dimethyl sulfoxide (DMSO), ethylene glycol (EG), sucrose, propylene glycol (PG) and glycerol but their extensive application is limited mostly by toxicity, thus fueling the quest for better cryoprotectants. Hence, extracting or synthesizing antifreeze protein and testing their cryoprotective activity has become a popular topic among researchers. Research concerning AFPs encompasses lots of effort ranging from understanding their sources and mechanism of action, extraction and purification/synthesis to structural elucidation with the aim of achieving better outcomes in cryopreservation. This review explores the potential clinical application of AFPs in the cryopreservation of different cells, tissues and organs. Here, we discuss novel approaches, identify research gaps and propose future research directions in the application of AFPs based on recent studies with the aim of achieving successful clinical and commercial use of AFPs in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; (M.D.E.); (J.X.); (Y.H.); (X.L.); (F.L.); (J.X.); (R.Z.); (B.W.)
| |
Collapse
|
11
|
Fu D, Sun Y, Gao H, Liu B, Kang X, Chen H. Identification and Functional Characterization of Antifreeze Protein and Its Mutants in Dendroctonus armandi (Coleoptera: Curculionidae: Scolytinae) Larvae Under Cold Stress. ENVIRONMENTAL ENTOMOLOGY 2022; 51:167-181. [PMID: 34897398 DOI: 10.1093/ee/nvab134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Indexed: 06/14/2023]
Abstract
Dendroctonus armandi (Tsai and Li) (Coleoptera: Curculionidae: Scolytinae) is considered to be the most destructive forest pest in the Qinling and Bashan Mountains of China. Low winter temperatures limit insect's populations, distribution, activity, and development. Insects have developed different strategies such as freeze-tolerance and freeze-avoidance to survive in low temperature conditions. In the present study, we used gene cloning, real-time polymerase chain reaction (PCR), RNA interference (RNAi), and heterologous expression to study the function of the D. armandi antifreeze protein gene (DaAFP). We cloned the 800 bp full-length cDNA encoding 228 amino acids of DaAFP and analyzed its structure using bioinformatics analysis. The DaAFP amino acid sequence exhibited 24-86% similarity with other insect species. The expression of DaAFP was high in January and in the larvae, head, and midgut of D. armandi. In addition, the expression of DaAFP increased with decreasing temperature and increasing exposure time. RNAi analysis also demonstrated that AFP plays an important role in the cold tolerance of overwintering larvae. The thermal hysteresis and antifreeze activity assay of DaAFP and its mutants indicated that the more regular the DaAFP threonine-cystine-threonine (TXT) motif, the stronger the antifreeze activity. These results suggest that DaAFP plays an essential role as a biological cryoprotectant in overwintering D. armandi larvae and provides a theoretical basis for new pest control methods.
Collapse
Affiliation(s)
- Danyang Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Yaya Sun
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Haiming Gao
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Bin Liu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaotong Kang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Hui Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
12
|
Biswas A, Barone V, Daidone I. High Water Density at Non-Ice-Binding Surfaces Contributes to the Hyperactivity of Antifreeze Proteins. J Phys Chem Lett 2021; 12:8777-8783. [PMID: 34491750 PMCID: PMC8450935 DOI: 10.1021/acs.jpclett.1c01855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/16/2021] [Indexed: 05/30/2023]
Abstract
Antifreeze proteins (AFPs) can bind to ice nuclei thereby inhibiting their growth and their hydration shell is believed to play a fundamental role. Here, we use molecular dynamics simulations to characterize the hydration shell of four moderately-active and four hyperactive AFPs. The local water density around the ice-binding-surface (IBS) is found to be lower than that around the non-ice-binding surface (NIBS) and this difference correlates with the higher hydrophobicity of the former. While the water-density increase (with respect to bulk) around the IBS is similar between moderately-active and hyperactive AFPs, it differs around the NIBS, being higher for the hyperactive AFPs. We hypothesize that while the lower water density at the IBS can pave the way to protein binding to ice nuclei, irrespective of the antifreeze activity, the higher density at the NIBS of the hyperactive AFPs contribute to their enhanced ability in inhibiting ice growth around the bound AFPs.
Collapse
Affiliation(s)
- Akash
Deep Biswas
- Scuola
Normale Superiore di Pisa, Piazza dei Cavalieri 7, Pisa 56126, Italy
- Department
of Physical and Chemical Sciences, University
of L’Aquila, via
Vetoio (Coppito 1), 67010 L’Aquila, Italy
| | - Vincenzo Barone
- Scuola
Normale Superiore di Pisa, Piazza dei Cavalieri 7, Pisa 56126, Italy
- National
Institute for Nuclear Physics (INFN) Pisa Section, Largo Bruno Pontecorvo 3, 56127 Pisa, Italy
| | - Isabella Daidone
- Department
of Physical and Chemical Sciences, University
of L’Aquila, via
Vetoio (Coppito 1), 67010 L’Aquila, Italy
| |
Collapse
|
13
|
Pal P, Chakraborty S, Jana B. Deciphering the Role of the Non-ice-binding Surface in the Antifreeze Activity of Hyperactive Antifreeze Proteins. J Phys Chem B 2020; 124:4686-4696. [PMID: 32425044 DOI: 10.1021/acs.jpcb.0c01206] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Antifreeze proteins (AFPs) show thermal hysteresis through specific interaction with the ice crystal. Hyperactive AFPs interact with the ice surface through a threonine-rich motif present at their ice-binding surface (IBS). Ordering of water around the IBS was extensively investigated. However, the role of non-IBS in ice growth inhibition is yet to be understood completely. The present study explores the nature of hydration and its length-scale evaluation around the non-IBS for hyperactive AFPs. We observed that the hydration layer of non-IBS is liquid-like, even in highly supercooled conditions, and the nature of hydration is drastically different from the hydration pattern of non-AFP surfaces. In similar conditions, the hydration layer around the IBS is ice-like ordered. Non-IBS of the hyperactive AFP exposes toward the bulk and is able to maintain the liquid-like character of its hydration water up to 15 Å. We also find that the amino acid compositions and their spatial distribution on the non-IBS are markedly different from those of the IBS and non-AFP surfaces. These results elucidate the combined role of IBS and non-IBS in ice-growth inhibition. While IBS is required to adsorb on ice efficiently, the exposed non-IBS may prevent ice nucleation/growth on top of the bound AFPs.
Collapse
Affiliation(s)
- Prasun Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | | | - Biman Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
14
|
An Ice-Binding Protein from an Antarctic Ascomycete Is Fine-Tuned to Bind to Specific Water Molecules Located in the Ice Prism Planes. Biomolecules 2020; 10:biom10050759. [PMID: 32414092 PMCID: PMC7277481 DOI: 10.3390/biom10050759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/09/2020] [Accepted: 05/10/2020] [Indexed: 01/29/2023] Open
Abstract
Many microbes that survive in cold environments are known to secrete ice-binding proteins (IBPs). The structure–function relationship of these proteins remains unclear. A microbial IBP denoted AnpIBP was recently isolated from a cold-adapted fungus, Antarctomyces psychrotrophicus. The present study identified an orbital illumination (prism ring) on a globular single ice crystal when soaked in a solution of fluorescent AnpIBP, suggesting that AnpIBP binds to specific water molecules located in the ice prism planes. In order to examine this unique ice-binding mechanism, we carried out X-ray structural analysis and mutational experiments. It appeared that AnpIBP is made of 6-ladder β-helices with a triangular cross section that accompanies an “ice-like” water network on the ice-binding site. The network, however, does not exist in a defective mutant. AnpIBP has a row of four unique hollows on the IBS, where the distance between the hollows (14.7 Å) is complementary to the oxygen atom spacing of the prism ring. These results suggest the structure of AnpIBP is fine-tuned to merge with the ice–water interface of an ice crystal through its polygonal water network and is then bound to a specific set of water molecules constructing the prism ring to effectively halt the growth of ice.
Collapse
|
15
|
Grabowska J, Kuffel A, Zielkiewicz J. Interfacial water controls the process of adsorption of hyperactive antifreeze proteins onto the ice surface. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Graham LA, Boddington ME, Holmstrup M, Davies PL. Antifreeze protein complements cryoprotective dehydration in the freeze-avoiding springtail Megaphorura arctica. Sci Rep 2020; 10:3047. [PMID: 32080305 PMCID: PMC7033094 DOI: 10.1038/s41598-020-60060-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 01/31/2020] [Indexed: 12/03/2022] Open
Abstract
The springtail, Megaphorura arctica, is freeze-avoiding and survives sub-zero temperatures by cryoprotective dehydration. At the onset of dehydration there is some supercooling of body fluids, and the danger of inoculative freezing, which would be lethal. To see if the springtails are protected by antifreeze proteins in this pre-equilibrium phase, we examined extracts from cold-acclimated M. arctica and recorded over 3 °C of freezing point depression. Proteins responsible for this antifreeze activity were isolated by ice affinity. They comprise isoforms ranging from 6.5 to 16.9 kDa, with an amino acid composition dominated by glycine (>35 mol%). Tryptic peptide sequences were used to identify the mRNA sequence coding for the smallest isoform. This antifreeze protein sequence has high similarity to one characterized in Hypogastrura harveyi, from a different springtail order. If these two antifreeze proteins are true homologs, we suggest their origin dates back to the Permian glaciations some 300 million years ago.
Collapse
Affiliation(s)
- Laurie A Graham
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Marie E Boddington
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Martin Holmstrup
- Section of Terrestrial Ecology, Department of Bioscience, Aarhus University, Vejlsøvej 25, 8600, Silkeborg, Denmark
- Arctic Research Center, Aarhus University, Ny Munkegade 114, 8000, Aarhus C, Denmark
| | - Peter L Davies
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
17
|
Grabowska J, Kuffel A, Zielkiewicz J. Role of the Solvation Water in Remote Interactions of Hyperactive Antifreeze Proteins with the Surface of Ice. J Phys Chem B 2019; 123:8010-8018. [PMID: 31513398 DOI: 10.1021/acs.jpcb.9b05664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Most protein molecules do not adsorb onto ice, one of the exceptions being so-called antifreeze proteins. In this paper, we describe that there is a force pushing an antifreeze protein molecule away from the ice surface when it is not oriented with its ice-binding plane toward the ice and that this pushing force may be also present even when the protein is oriented with its ice-binding plane toward the ice. This force is absent only when certain specific distance criteria are met, regarding the surface of ice and the protein. It acts at early stages of adsorption, prior to the solidification of water between the ice and the protein molecule nearby. We propose the water-originating mechanism of the generation of this force and also the mechanism of remote attachment of an antifreeze molecule to the ice surface. In liquid water, there exist locally favored structures, ordered and of high specific volume. The presence of a protein molecule usually shifts the equilibrium that exists in liquid water toward increasing the number of high-density, disordered structures and diminishing the number of low-density structures. Creation of the locally favored structures may be hampered not only near the non-ice-binding surfaces but also between the ice surface and the protein surface, if the distance between these surfaces does not allow these structures to develop because the available space is not sufficient for their proper formation. This conclusion is supported by the analysis of the mean geometry of a single hydrogen bond, as well as of the hydrogen bond network in the solvation layer and a structural order parameter that characterizes the separation between the first and second solvation shells of a water molecule.
Collapse
Affiliation(s)
- Joanna Grabowska
- Faculty of Chemistry, Department of Physical Chemistry , Gdańsk University of Technology , Narutowicza 11/12 , 80-233 Gdańsk , Poland
| | - Anna Kuffel
- Faculty of Chemistry, Department of Physical Chemistry , Gdańsk University of Technology , Narutowicza 11/12 , 80-233 Gdańsk , Poland
| | - Jan Zielkiewicz
- Faculty of Chemistry, Department of Physical Chemistry , Gdańsk University of Technology , Narutowicza 11/12 , 80-233 Gdańsk , Poland
| |
Collapse
|
18
|
Iadanza MG, Jackson MP, Hewitt EW, Ranson NA, Radford SE. A new era for understanding amyloid structures and disease. Nat Rev Mol Cell Biol 2019; 19:755-773. [PMID: 30237470 DOI: 10.1038/s41580-018-0060-8] [Citation(s) in RCA: 580] [Impact Index Per Article: 116.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The aggregation of proteins into amyloid fibrils and their deposition into plaques and intracellular inclusions is the hallmark of amyloid disease. The accumulation and deposition of amyloid fibrils, collectively known as amyloidosis, is associated with many pathological conditions that can be associated with ageing, such as Alzheimer disease, Parkinson disease, type II diabetes and dialysis-related amyloidosis. However, elucidation of the atomic structure of amyloid fibrils formed from their intact protein precursors and how fibril formation relates to disease has remained elusive. Recent advances in structural biology techniques, including cryo-electron microscopy and solid-state NMR spectroscopy, have finally broken this impasse. The first near-atomic-resolution structures of amyloid fibrils formed in vitro, seeded from plaque material and analysed directly ex vivo are now available. The results reveal cross-β structures that are far more intricate than anticipated. Here, we describe these structures, highlighting their similarities and differences, and the basis for their toxicity. We discuss how amyloid structure may affect the ability of fibrils to spread to different sites in the cell and between organisms in a prion-like manner, along with their roles in disease. These molecular insights will aid in understanding the development and spread of amyloid diseases and are inspiring new strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Matthew G Iadanza
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Matthew P Jackson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Eric W Hewitt
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| |
Collapse
|
19
|
Zanetti-Polzi L, Biswas AD, Del Galdo S, Barone V, Daidone I. Hydration Shell of Antifreeze Proteins: Unveiling the Role of Non-Ice-Binding Surfaces. J Phys Chem B 2019; 123:6474-6480. [PMID: 31280567 DOI: 10.1021/acs.jpcb.9b06375] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Antifreeze proteins (AFPs) have the ability to inhibit ice growth by binding to ice nuclei. Their ice-binding mechanism is still unclear, yet the hydration layer is thought to play a fundamental role. Here, we use molecular dynamics simulations to characterize the hydration shell of two AFPs and two non-AFPs. The calculated shell thickness and density of the AFPs do not feature any relevant difference with respect to the non-AFPs. Moreover, the hydration shell density is always higher than the bulk density and, thus, no low-density, ice-like layer is detected at the ice-binding surface (IBS) of AFPs. Instead, we observe local water-density differences in AFPs between the IBS (lower density) and the non-IBS (higher density). The lower solvent density at the ice-binding site can pave the way to the protein binding to ice nuclei, while the higher solvent density at the non-ice-binding surfaces might provide protection against ice growth.
Collapse
Affiliation(s)
- Laura Zanetti-Polzi
- Department of Physical and Chemical Sciences , University of L'Aquila , via Vetoio (Coppito 1) , 67010 L'Aquila , Italy
| | - Akash Deep Biswas
- Department of Physical and Chemical Sciences , University of L'Aquila , via Vetoio (Coppito 1) , 67010 L'Aquila , Italy.,Scuola Normale Superiore di Pisa , Piazza dei Cavalieri 7 , I-56126 Pisa , Italy
| | - Sara Del Galdo
- Scuola Normale Superiore di Pisa , Piazza dei Cavalieri 7 , I-56126 Pisa , Italy.,Institute for the Chemistry of Organometallic Compounds , Italian National Council for Research (ICCOMCNR) , Via G. Moruzzi 1 , I-6124 Pisa , Italy
| | - Vincenzo Barone
- Scuola Normale Superiore di Pisa , Piazza dei Cavalieri 7 , I-56126 Pisa , Italy.,National Institute for Nuclear Physics (INFN) Pisa Section , Largo BrunoPontecorvo 3 , 56127 Pisa , Italy
| | - Isabella Daidone
- Department of Physical and Chemical Sciences , University of L'Aquila , via Vetoio (Coppito 1) , 67010 L'Aquila , Italy
| |
Collapse
|
20
|
Villalobos AS, Wiese J, Imhoff JF, Dorador C, Keller A, Hentschel U. Systematic Affiliation and Genome Analysis of Subtercola vilae DB165 T with Particular Emphasis on Cold Adaptation of an Isolate from a High-Altitude Cold Volcano Lake. Microorganisms 2019; 7:microorganisms7040107. [PMID: 31018526 PMCID: PMC6518244 DOI: 10.3390/microorganisms7040107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 11/16/2022] Open
Abstract
Among the Microbacteriaceae the species of Subtercola and Agreia form closely associated clusters. Phylogenetic analysis demonstrated three major phylogenetic branches of these species. One of these branches contains the two psychrophilic species Subtercola frigoramans and Subtercola vilae, together with a larger number of isolates from various cold environments. Genomic evidence supports the separation of Agreia and Subtercola species. In order to gain insight into the ability of S. vilae to adapt to life in this extreme environment, we analyzed the genome with a particular focus on properties related to possible adaptation to a cold environment. General properties of the genome are presented, including carbon and energy metabolism, as well as secondary metabolite production. The repertoire of genes in the genome of S. vilae DB165T linked to adaptations to the harsh conditions found in Llullaillaco Volcano Lake includes several mechanisms to transcribe proteins under low temperatures, such as a high number of tRNAs and cold shock proteins. In addition, S. vilae DB165T is capable of producing a number of proteins to cope with oxidative stress, which is of particular relevance at low temperature environments, in which reactive oxygen species are more abundant. Most important, it obtains capacities to produce cryo-protectants, and to combat against ice crystal formation, it produces ice-binding proteins. Two new ice-binding proteins were identified which are unique to S. vilae DB165T. These results indicate that S. vilae has the capacity to employ different mechanisms to live under the extreme and cold conditions prevalent in Llullaillaco Volcano Lake.
Collapse
Affiliation(s)
- Alvaro S Villalobos
- Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany.
| | - Jutta Wiese
- Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany.
| | - Johannes F Imhoff
- Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany.
| | - Cristina Dorador
- Laboratorio de Complejidad Microbiana y Ecología Funcional and Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Av. Angamos 601, Antofagasta, Chile.
| | - Alexander Keller
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Ute Hentschel
- Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany.
| |
Collapse
|
21
|
Collective Transformation of Water between Hyperactive Antifreeze Proteins: RiAFPs. CRYSTALS 2019. [DOI: 10.3390/cryst9040188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We demonstrate, by molecular dynamics simulations, that water confined between a pair of insect hyperactive antifreeze proteins from the longhorn beetle Rhagium inquisitor is discontinuously expelled as the two proteins approach each other at a certain distance. The extensive striped hydrophobic–hydrophilic pattern on the surface, comprising arrays of threonine residues, enables water to form three independent ice channels through the assistance of hydroxyl groups, even at 300 K. The transformation is reminiscent of a freezing–melting transition rather than a drying transition and governs the stable protein–protein separation in the evaluation of the potential of mean force. The collectivity of water penetration or expulsion and the hysteresis in the time scale of ten nanoseconds predict a potential first-order phase transition at the limit of infinite size and provide a new framework for the water-mediated interaction between solutes.
Collapse
|
22
|
Preordering of water is not needed for ice recognition by hyperactive antifreeze proteins. Proc Natl Acad Sci U S A 2018; 115:8266-8271. [PMID: 29987018 DOI: 10.1073/pnas.1806996115] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antifreeze proteins (AFPs) inhibit ice growth in organisms living in cold environments. Hyperactive insect AFPs are particularly effective, binding ice through "anchored clathrate" motifs. It has been hypothesized that the binding of hyperactive AFPs to ice is facilitated by preordering of water at the ice-binding site (IBS) of the protein in solution. The antifreeze protein TmAFP displays the best matching of its binding site to ice, making it the optimal candidate to develop ice-like order in solution. Here we use multiresolution simulations to unravel the mechanism by which TmAFP recognizes and binds ice. We find that water at the IBS of the antifreeze protein in solution does not acquire ice-like or anchored clathrate-like order. Ice recognition occurs by slow diffusion of the protein to achieve the proper orientation with respect to the ice surface, followed by fast collective organization of the hydration water at the IBS to form an anchored clathrate motif that latches the protein to the ice surface. The simulations suggest that anchored clathrate order could develop on the large ice-binding surfaces of aggregates of ice-nucleating proteins (INP). We compute the infrared and Raman spectra of water in the anchored clathrate motif. The signatures of the OH stretch of water in the anchored clathrate motif can be distinguished from those of bulk liquid in the Raman spectra, but not in the infrared spectra. We thus suggest that Raman spectroscopy may be used to probe the anchored clathrate order at the ice-binding surface of INP aggregates.
Collapse
|
23
|
Polypentagonal ice-like water networks emerge solely in an activity-improved variant of ice-binding protein. Proc Natl Acad Sci U S A 2018; 115:5456-5461. [PMID: 29735675 PMCID: PMC6003529 DOI: 10.1073/pnas.1800635115] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polypentagonal water networks were recently observed in a protein capable of binding to ice crystals, or ice-binding protein (IBP). To examine such water networks and clarify their role in ice-binding, we determined X-ray crystal structures of a 65-residue defective isoform of a Zoarcidae-derived IBP (wild type, WT) and its five single mutants (A20L, A20G, A20T, A20V, and A20I). Polypentagonal water networks composed of ∼50 semiclathrate waters were observed solely on the strongest A20I mutant, which appeared to include a tetrahedral water cluster exhibiting a perfect position match to the [Formula: see text] first prism plane of a single ice crystal. Inclusion of another symmetrical water cluster in the polypentagonal network showed a perfect complementarity to the waters constructing the [Formula: see text] pyramidal ice plane. The order of ice-binding strength was A20L < A20G < WT < A20T < A20V < A20I, where the top three mutants capable of binding to the first prism and the pyramidal ice planes commonly contained a bifurcated γ-CH3 group. These results suggest that a fine-tuning of the surface of Zoarcidae-derived IBP assisted by a side-chain group regulates the holding property of its polypentagonal water network, the function of which is to freeze the host protein to specific ice planes.
Collapse
|
24
|
Mangiagalli M, Sarusi G, Kaleda A, Bar Dolev M, Nardone V, Vena VF, Braslavsky I, Lotti M, Nardini M. Structure of a bacterial ice binding protein with two faces of interaction with ice. FEBS J 2018. [PMID: 29533528 DOI: 10.1111/febs.14434] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ice-binding proteins (IBPs) contribute to the survival of many living beings at subzero temperature by controlling the formation and growth of ice crystals. This work investigates the structural basis of the ice-binding properties of EfcIBP, obtained from Antarctic bacteria. EfcIBP is endowed with a unique combination of thermal hysteresis and ice recrystallization inhibition activity. The three-dimensional structure, solved at 0.84 Å resolution, shows that EfcIBP belongs to the IBP-1 fold family, and is organized in a right-handed β-solenoid with a triangular cross-section that forms three protein surfaces, named A, B, and C faces. However, EfcIBP diverges from other IBP-1 fold proteins in relevant structural features including the lack of a 'capping' region on top of the β-solenoid, and in the sequence and organization of the regions exposed to ice that, in EfcIBP, reveal the presence of threonine-rich ice-binding motifs. Docking experiments and site-directed mutagenesis pinpoint that EfcIBP binds ice crystals not only via its B face, as common to other IBPs, but also via ice-binding sites on the C face. DATABASE Coordinates and structure factors have been deposited in the Protein Data Bank under accession number 6EIO.
Collapse
Affiliation(s)
- Marco Mangiagalli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Italy
| | - Guy Sarusi
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Aleksei Kaleda
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.,Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Estonia
| | - Maya Bar Dolev
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | | | - Ido Braslavsky
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Marina Lotti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Italy
| | - Marco Nardini
- Department of Biosciences, University of Milano, Italy
| |
Collapse
|
25
|
Affiliation(s)
- Alexander G. Shtukenberg
- Department of Chemistry and Molecular
Design Institute, New York University, 100 Washington Square East, New York City, New York 10003, United States
| | - Michael D. Ward
- Department of Chemistry and Molecular
Design Institute, New York University, 100 Washington Square East, New York City, New York 10003, United States
| | - Bart Kahr
- Department of Chemistry and Molecular
Design Institute, New York University, 100 Washington Square East, New York City, New York 10003, United States
| |
Collapse
|
26
|
Roterman I, Banach M, Konieczny L. Propagation of Fibrillar Structural Forms in Proteins Stopped by Naturally Occurring Short Polypeptide Chain Fragments. Pharmaceuticals (Basel) 2017; 10:E89. [PMID: 29144442 PMCID: PMC5748646 DOI: 10.3390/ph10040089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/02/2017] [Accepted: 11/13/2017] [Indexed: 11/17/2022] Open
Abstract
Amyloids characterized by unbounded growth of fibrillar structures cause many pathological processes. Such unbounded propagation is due to the presence of a propagating hydrophobicity field around the fibril's main axis, preventing its closure (unlike in globular proteins). Interestingly, similar fragments, commonly referred to as solenoids, are present in many naturally occurring proteins, where their propagation is arrested by suitably located "stopper" fragments. In this work, we analyze the distribution of hydrophobicity in solenoids and in their corresponding "stoppers" from the point of view of the fuzzy oil drop model (called FOD in this paper). This model characterizes the unique linear propagation of local hydrophobicity in the solenoid fragment and allows us to pinpoint "stopper" sequences, where local hydrophobicity quite closely resembles conditions encountered in globular proteins. Consequently, such fragments perform their function by mediating entropically advantageous contact with the water environment. We discuss examples of amyloid-like structures in solenoids, with particular attention to "stop" segments present in properly folded proteins found in living organisms.
Collapse
Affiliation(s)
- Irena Roterman
- Department of Bioinformatics and Telemedicine, Medical College, Jagiellonian University, 31-530 Krakow, Poland.
| | - Mateusz Banach
- Department of Bioinformatics and Telemedicine, Medical College, Jagiellonian University, 31-530 Krakow, Poland.
| | - Leszek Konieczny
- Chair of Medical Biochemistry, Medical College, Jagiellonian University, 31-034 Krakow, Poland.
| |
Collapse
|
27
|
Banach M, Konieczny L, Roterman I. Why do antifreeze proteins require a solenoid? Biochimie 2017; 144:74-84. [PMID: 29054801 DOI: 10.1016/j.biochi.2017.10.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/12/2017] [Indexed: 12/21/2022]
Abstract
Proteins whose presence prevents water from freezing in living organisms at temperatures below 0 °C are referred to as antifreeze proteins. This group includes molecules of varying size (from 30 to over 300 aa) and variable secondary/supersecondary conformation. Some of these proteins also contain peculiar structural motifs called solenoids. We have applied the fuzzy oil drop model in the analysis of four categories of antifreeze proteins: 1 - very small proteins, i.e. helical peptides (below 40 aa); 2 - small globular proteins (40-100 aa); 3 - large globular proteins (>100 aa) and 4 - proteins containing solenoids. The FOD model suggests a mechanism by which antifreeze proteins prevent freezing. In accordance with this theory, the presence of the protein itself produces an ordering of water molecules which counteracts the formation of ice crystals. This conclusion is supported by analysis of the ordering of hydrophobic and hydrophilic residues in antifreeze proteins, revealing significant variability - from perfect adherence to the fuzzy oil drop model through structures which lack a clearly defined hydrophobic core, all the way to linear arrangement of alternating local minima and maxima propagating along the principal axis of the solenoid (much like in amyloids). The presented model - alternative with respect to the ice docking model - explains the antifreeze properties of compounds such as saccharides and fatty acids. The fuzzy oil drop model also enables differentiation between amyloids and antifreeze proteins.
Collapse
Affiliation(s)
- M Banach
- Department of Bioinformatics and Telemedicine, Jagiellonian University, Medical College, Lazarza 16, 31-530, Krakow, Poland
| | - L Konieczny
- Chair of Medical Biochemistry, Jagiellonian University, Medical College, Kopernika 7, 31-034, Krakow, Poland
| | - I Roterman
- Department of Bioinformatics and Telemedicine, Jagiellonian University, Medical College, Lazarza 16, 31-530, Krakow, Poland.
| |
Collapse
|
28
|
Balance between hydration enthalpy and entropy is important for ice binding surfaces in Antifreeze Proteins. Sci Rep 2017; 7:11901. [PMID: 28928396 PMCID: PMC5605524 DOI: 10.1038/s41598-017-11982-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/29/2017] [Indexed: 11/21/2022] Open
Abstract
Antifreeze Proteins (AFPs) inhibit the growth of an ice crystal by binding to it. The detailed binding mechanism is, however, still not fully understood. We investigated three AFPs using Molecular Dynamics simulations in combination with Grid Inhomogeneous Solvation Theory, exploring their hydration thermodynamics. The observed enthalpic and entropic differences between the ice-binding sites and the inactive surface reveal key properties essential for proteins in order to bind ice: While entropic contributions are similar for all sites, the enthalpic gain for all ice-binding sites is lower than for the rest of the protein surface. In contrast to most of the recently published studies, our analyses show that enthalpic interactions are as important as an ice-like pre-ordering. Based on these observations, we propose a new, thermodynamically more refined mechanism of the ice recognition process showing that the appropriate balance between entropy and enthalpy facilitates ice-binding of proteins. Especially, high enthalpic interactions between the protein surface and water can hinder the ice-binding activity.
Collapse
|
29
|
Muñoz PA, Márquez SL, González-Nilo FD, Márquez-Miranda V, Blamey JM. Structure and application of antifreeze proteins from Antarctic bacteria. Microb Cell Fact 2017; 16:138. [PMID: 28784139 PMCID: PMC5547475 DOI: 10.1186/s12934-017-0737-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 07/10/2017] [Indexed: 11/10/2022] Open
Abstract
Background Antifreeze proteins (AFPs) production is a survival strategy of psychrophiles in ice. These proteins have potential in frozen food industry avoiding the damage in the structure of animal or vegetal foods. Moreover, there is not much information regarding the interaction of Antarctic bacterial AFPs with ice, and new determinations are needed to understand the behaviour of these proteins at the water/ice interface. Results Different Antarctic places were screened for antifreeze activity and microorganisms were selected for the presence of thermal hysteresis in their crude extracts. Isolates GU1.7.1, GU3.1.1, and AFP5.1 showed higher thermal hysteresis and were characterized using a polyphasic approach. Studies using cucumber and zucchini samples showed cellular protection when samples were treated with partially purified AFPs or a commercial AFP as was determined using toluidine blue O and neutral red staining. Additionally, genome analysis of these isolates revealed the presence of genes that encode for putative AFPs. Deduced amino acids sequences from GU3.1.1 (gu3A and gu3B) and AFP5.1 (afp5A) showed high similarity to reported AFPs which crystal structures are solved, allowing then generating homology models. Modelled proteins showed a triangular prism form similar to β-helix AFPs with a linear distribution of threonine residues at one side of the prism that could correspond to the putative ice binding side. The statistically best models were used to build a protein-water system. Molecular dynamics simulations were then performed to compare the antifreezing behaviour of these AFPs at the ice/water interface. Docking and molecular dynamics simulations revealed that gu3B could have the most efficient antifreezing behavior, but gu3A could have a higher affinity for ice. Conclusions AFPs from Antarctic microorganisms GU1.7.1, GU3.1.1 and AFP5.1 protect cellular structures of frozen food showing a potential for frozen food industry. Modeled proteins possess a β-helix structure, and molecular docking analysis revealed the AFP gu3B could be the most efficient AFPs in order to avoid the formation of ice crystals, even when gu3A has a higher affinity for ice. By determining the interaction of AFPs at the ice/water interface, it will be possible to understand the process of adaptation of psychrophilic bacteria to Antarctic ice. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0737-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Patricio A Muñoz
- Fundación Científica y Cultural Biociencia, José Domingo Cañas, 2280, Ñuñoa, Santiago, Chile.
| | - Sebastián L Márquez
- Fundación Científica y Cultural Biociencia, José Domingo Cañas, 2280, Ñuñoa, Santiago, Chile.,Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Estación Central, Santiago, Chile
| | - Fernando D González-Nilo
- Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias Biológicas, Universidad Andres Bello, Avenida Republica 239, Santiago, Chile
| | - Valeria Márquez-Miranda
- Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias Biológicas, Universidad Andres Bello, Avenida Republica 239, Santiago, Chile
| | - Jenny M Blamey
- Fundación Científica y Cultural Biociencia, José Domingo Cañas, 2280, Ñuñoa, Santiago, Chile. .,Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Estación Central, Santiago, Chile.
| |
Collapse
|
30
|
Marcellini M, Fernandes FM, Dedovets D, Deville S. Water/ice phase transition: The role of zirconium acetate, a compound with ice-shaping properties. J Chem Phys 2017; 146:144504. [PMID: 28411615 DOI: 10.1063/1.4979845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Few compounds feature ice-shaping properties. Zirconium acetate is one of the very few inorganic compounds reported so far to have ice-shaping properties similar to that of ice-shaping proteins, encountered in many organisms living at low temperature. When a zirconium acetate solution is frozen, oriented and perfectly hexagonal ice crystals can be formed and their growth follows the temperature gradient. To shed light on the water/ice phase transition while freezing zirconium acetate solution, we carried out differential scanning calorimetry measurements. From our results, we estimate how many water molecules do not freeze because of their interaction with Zr cations. We estimate the colligative properties of the Zr acetate on the apparent critical temperature. We further show that the phase transition is unaffected by the nature of the base which is used to adjust the pH. Our results provide thus new hints on the ice-shaping mechanism of zirconium acetate.
Collapse
Affiliation(s)
- Moreno Marcellini
- Ceramic Synthesis and Functionalization Lab, UMR3080 CNRS/Saint-Gobain, 84306 Cavaillon, France
| | - Francisco M Fernandes
- Laboratoire de Chimie de la Matière Condensée de Paris, Université Pierre et Marie Curie, Sorbonne Universités, UMR7574, 4 Place Jussieu, 75005 Paris, France
| | - Dmytro Dedovets
- Ceramic Synthesis and Functionalization Lab, UMR3080 CNRS/Saint-Gobain, 84306 Cavaillon, France
| | - Sylvain Deville
- Ceramic Synthesis and Functionalization Lab, UMR3080 CNRS/Saint-Gobain, 84306 Cavaillon, France
| |
Collapse
|
31
|
Chakraborty S, Jana B. Conformational and hydration properties modulate ice recognition by type I antifreeze protein and its mutants. Phys Chem Chem Phys 2017; 19:11678-11689. [DOI: 10.1039/c7cp00221a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mutation of wfAFP changes the intrinsic dynamics in such a way that it significantly influences water mediated AFP adsorption on ice.
Collapse
Affiliation(s)
- Sandipan Chakraborty
- Department of Physical Chemistry
- Indian Association for the Cultivation of Science
- Kolkata-700032
- India
| | - Biman Jana
- Department of Physical Chemistry
- Indian Association for the Cultivation of Science
- Kolkata-700032
- India
| |
Collapse
|
32
|
Hydrophobic ice-binding sites confer hyperactivity of an antifreeze protein from a snow mold fungus. Biochem J 2016; 473:4011-4026. [DOI: 10.1042/bcj20160543] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/09/2016] [Indexed: 11/17/2022]
Abstract
Snow mold fungus, Typhula ishikariensis, secretes seven antifreeze protein isoforms (denoted TisAFPs) that assist in the survival of the mold under snow cover. Here, the X-ray crystal structure of a hyperactive isoform, TisAFP8, at 1.0 Å resolution is presented. TisAFP8 folds into a right-handed β-helix accompanied with a long α-helix insertion. TisAFP8 exhibited significantly high antifreeze activity that is comparable with other hyperactive AFPs, despite its close structural and sequence similarity with the moderately active isoform TisAFP6. A series of mutations introduced into the putative ice-binding sites (IBSs) in the β-sheet and adjacent loop region reduced antifreeze activity. A double-mutant A20T/A212S, which comprises a hydrophobic patch between the β-sheet and loop region, caused the greatest depression of antifreeze activity of 75%, when compared with that of the wild-type protein. This shows that the loop region is involved in ice binding and hydrophobic residues play crucial functional roles. Additionally, bound waters around the β-sheet and loop region IBSs were organized into an ice-like network and can be divided into two groups that appear to mediate separately TisAFP and ice. The docking model of TisAFP8 with the basal plane via its loop region IBS reveals a better shape complementarity than that of TisAFP6. In conclusion, we present new insights into the ice-binding mechanism of TisAFP8 by showing that a higher hydrophobicity and better shape complementarity of its IBSs, especially the loop region, may render TisAFP8 hyperactive to ice binding.
Collapse
|
33
|
Abstract
Ice binding proteins (IBPs) are produced by various cold-adapted organisms to protect their body tissues against freeze damage. First discovered in Antarctic fish living in shallow waters, IBPs were later found in insects, microorganisms, and plants. Despite great structural diversity, all IBPs adhere to growing ice crystals, which is essential for their extensive repertoire of biological functions. Some IBPs maintain liquid inclusions within ice or inhibit recrystallization of ice, while other types suppress freezing by blocking further ice growth. In contrast, ice nucleating proteins stimulate ice nucleation just below 0 °C. Despite huge commercial interest and major scientific breakthroughs, the precise working mechanism of IBPs has not yet been unraveled. In this review, the authors outline the state-of-the-art in experimental and theoretical IBP research and discuss future scientific challenges. The interaction of IBPs with ice, water and ions is examined, focusing in particular on ice growth inhibition mechanisms.
Collapse
|
34
|
Basu K, Wasserman SS, Jeronimo PS, Graham LA, Davies PL. Intermediate activity of midge antifreeze protein is due to a tyrosine-rich ice-binding site and atypical ice plane affinity. FEBS J 2016; 283:1504-15. [DOI: 10.1111/febs.13687] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/14/2016] [Accepted: 02/16/2016] [Indexed: 11/26/2022]
Affiliation(s)
- Koli Basu
- Protein Function Discovery Group; Department of Biomedical and Molecular Sciences; Queen's University; Kingston Canada
| | - Samantha S. Wasserman
- Department of Biochemistry; Programme in Cell Biology; Hospital for Sick Children; University of Toronto; Canada
| | - Paul S. Jeronimo
- Protein Function Discovery Group; Department of Biomedical and Molecular Sciences; Queen's University; Kingston Canada
| | - Laurie A. Graham
- Protein Function Discovery Group; Department of Biomedical and Molecular Sciences; Queen's University; Kingston Canada
| | - Peter L. Davies
- Protein Function Discovery Group; Department of Biomedical and Molecular Sciences; Queen's University; Kingston Canada
| |
Collapse
|
35
|
Basu K, Campbell RL, Guo S, Sun T, Davies PL. Modeling repetitive, non-globular proteins. Protein Sci 2016; 25:946-58. [PMID: 26914323 DOI: 10.1002/pro.2907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 02/10/2016] [Accepted: 02/19/2016] [Indexed: 11/07/2022]
Abstract
While ab initio modeling of protein structures is not routine, certain types of proteins are more straightforward to model than others. Proteins with short repetitive sequences typically exhibit repetitive structures. These repetitive sequences can be more amenable to modeling if some information is known about the predominant secondary structure or other key features of the protein sequence. We have successfully built models of a number of repetitive structures with novel folds using knowledge of the consensus sequence within the sequence repeat and an understanding of the likely secondary structures that these may adopt. Our methods for achieving this success are reviewed here.
Collapse
Affiliation(s)
- Koli Basu
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Robert L Campbell
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Shuaiqi Guo
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Tianjun Sun
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Peter L Davies
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| |
Collapse
|
36
|
Sun T, Gauthier SY, Campbell RL, Davies PL. Revealing Surface Waters on an Antifreeze Protein by Fusion Protein Crystallography Combined with Molecular Dynamic Simulations. J Phys Chem B 2015; 119:12808-15. [PMID: 26371748 DOI: 10.1021/acs.jpcb.5b06474] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antifreeze proteins (AFPs) adsorb to ice through an extensive, flat, relatively hydrophobic surface. It has been suggested that this ice-binding site (IBS) organizes surface waters into an ice-like clathrate arrangement that matches and fuses to the quasi-liquid layer on the ice surface. On cooling, these waters join the ice lattice and freeze the AFP to its ligand. Evidence for the generality of this binding mechanism is limited because AFPs tend to crystallize with their IBS as a preferred protein-protein contact surface, which displaces some bound waters. Type III AFP is a 7 kDa globular protein with an IBS made up two adjacent surfaces. In the crystal structure of the most active isoform (QAE1), the part of the IBS that docks to the primary prism plane of ice is partially exposed to solvent and has clathrate waters present that match this plane of ice. The adjacent IBS, which matches the pyramidal plane of ice, is involved in protein-protein crystal contacts with few surface waters. Here we have changed the protein-protein contacts in the ice-binding region by crystallizing a fusion of QAE1 to maltose-binding protein. In this 1.9 Å structure, the IBS that fits the pyramidal plane of ice is exposed to solvent. By combining crystallography data with MD simulations, the surface waters on both sides of the IBS were revealed and match well with the target ice planes. The waters on the pyramidal plane IBS were loosely constrained, which might explain why other isoforms of type III AFP that lack the prism plane IBS are less active than QAE1. The AFP fusion crystallization method can potentially be used to force the exposure to solvent of the IBS on other AFPs to reveal the locations of key surface waters.
Collapse
Affiliation(s)
- Tianjun Sun
- Department of Biomedical and Molecular Sciences, Queen's University , Kingston, Ontario, Canada
| | - Sherry Y Gauthier
- Department of Biomedical and Molecular Sciences, Queen's University , Kingston, Ontario, Canada
| | - Robert L Campbell
- Department of Biomedical and Molecular Sciences, Queen's University , Kingston, Ontario, Canada
| | - Peter L Davies
- Department of Biomedical and Molecular Sciences, Queen's University , Kingston, Ontario, Canada
| |
Collapse
|
37
|
Ganesh Kumar M, Gopi HN. γ- and β-Peptide Foldamers from Common Multifaceted Building Blocks: Synthesis and Structural Characterization. Org Lett 2015; 17:4738-41. [DOI: 10.1021/acs.orglett.5b02263] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mothukuri Ganesh Kumar
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, India
| | - Hosahudya N. Gopi
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
38
|
Duboué-Dijon E, Laage D. Comparative study of hydration shell dynamics around a hyperactive antifreeze protein and around ubiquitin. J Chem Phys 2015; 141:22D529. [PMID: 25494800 DOI: 10.1063/1.4902822] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The hydration layer surrounding a protein plays an essential role in its biochemical function and consists of a heterogeneous ensemble of water molecules with different local environments and different dynamics. What determines the degree of dynamical heterogeneity within the hydration shell and how this changes with temperature remains unclear. Here, we combine molecular dynamics simulations and analytic modeling to study the hydration shell structure and dynamics of a typical globular protein, ubiquitin, and of the spruce budworm hyperactive antifreeze protein over the 230-300 K temperature range. Our results show that the average perturbation induced by both proteins on the reorientation dynamics of water remains moderate and changes weakly with temperature. The dynamical heterogeneity arises mostly from the distribution of protein surface topographies and is little affected by temperature. The ice-binding face of the antifreeze protein induces a short-ranged enhancement of water structure and a greater slowdown of water reorientation dynamics than the non-ice-binding faces whose effect is similar to that of ubiquitin. However, the hydration shell of the ice-binding face remains less tetrahedral than the bulk and is not "ice-like". We finally show that the hydrogen bonds between water and the ice-binding threonine residues are particularly strong due to a steric confinement effect, thereby contributing to the strong binding of the antifreeze protein on ice crystals.
Collapse
Affiliation(s)
- Elise Duboué-Dijon
- Département de Chimie, École Normale Supérieure-PSL Research University, Sorbonne Universités - UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR, 24, rue Lhomond, 75005 Paris, France
| | - Damien Laage
- Département de Chimie, École Normale Supérieure-PSL Research University, Sorbonne Universités - UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR, 24, rue Lhomond, 75005 Paris, France
| |
Collapse
|
39
|
Abstract
An antifreeze protein (AFP) with no known homologs has been identified in Lake Ontario midges (Chironomidae). The midge AFP is expressed as a family of isoforms at low levels in adults, which emerge from fresh water in spring before the threat of freezing temperatures has passed. The 9.1-kDa major isoform derived from a preproprotein precursor is glycosylated and has a 10-residue tandem repeating sequence xxCxGxYCxG, with regularly spaced cysteines, glycines, and tyrosines comprising one-half its 79 residues. Modeling and molecular dynamics predict a tightly wound left-handed solenoid fold in which the cysteines form a disulfide core to brace each of the eight 10-residue coils. The solenoid is reinforced by intrachain hydrogen bonds, side-chain salt bridges, and a row of seven stacked tyrosines on the hydrophobic side that forms the putative ice-binding site. A disulfide core is also a feature of the similar-sized beetle AFP that is a β-helix with seven 12-residue coils and a comparable circular dichroism spectrum. The midge and beetle AFPs are not homologous and their ice-binding sites are radically different, with the latter comprising two parallel arrays of outward-pointing threonines. However, their structural similarities is an amazing example of convergent evolution in different orders of insects to cope with change to a colder climate and provide confirmation about the physical features needed for a protein to bind ice.
Collapse
|
40
|
Hanada Y, Nishimiya Y, Miura A, Tsuda S, Kondo H. Hyperactive antifreeze protein from an Antarctic sea ice bacterium Colwellia sp. has a compound ice-binding site without repetitive sequences. FEBS J 2014; 281:3576-90. [PMID: 24938370 DOI: 10.1111/febs.12878] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/22/2014] [Accepted: 06/13/2014] [Indexed: 11/29/2022]
Abstract
UNLABELLED Antifreeze proteins (AFPs) are structurally diverse macromolecules that bind to ice crystals and inhibit their growth to protect the organism from injuries caused by freezing. An AFP identified from the Antarctic bacterium Colwellia sp. strain SLW05 (ColAFP) is homologous to AFPs from a wide variety of psychrophilic microorganisms. To understand the antifreeze function of ColAFP, we have characterized its antifreeze activity and determined the crystal structure of this protein. The recombinant ColAFP exhibited thermal hysteresis activity of approximately 4 °C at a concentration of 0.14 mm, and induced rapid growth of ice crystals in the hexagonal direction. Fluorescence-based ice plane affinity analysis showed that ColAFP binds to multiple planes of ice, including the basal plane. These observations show that ColAFP is a hyperactive AFP. The crystal structure of ColAFP determined at 1.6 Å resolution revealed an irregular β-helical structure, similar to known homologs. Mutational and molecular docking studies showed that ColAFP binds to ice through a compound ice-binding site (IBS) located at a flat surface of the β-helix and the adjoining loop region. The IBS of ColAFP lacks the repetitive sequences that are characteristic of hyperactive AFPs. These results suggest that ColAFP exerts antifreeze activity through a compound IBS that differs from the characteristic IBSs shared by other hyperactive AFPs. This study demonstrates a novel method for protection from freezing by AFPs in psychrophilic microorganisms. DATABASE Structural data for ColAFP have been submitted to the Protein Data Bank (PDB) under accession number 3WP9.
Collapse
Affiliation(s)
- Yuichi Hanada
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan; Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Sapporo, Japan
| | | | | | | | | |
Collapse
|
41
|
Do H, Kim SJ, Kim HJ, Lee JH. Structure-based characterization and antifreeze properties of a hyperactive ice-binding protein from the Antarctic bacterium Flavobacterium frigoris PS1. ACTA ACUST UNITED AC 2014; 70:1061-73. [PMID: 24699650 DOI: 10.1107/s1399004714000996] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 01/15/2014] [Indexed: 11/10/2022]
Abstract
Ice-binding proteins (IBPs) inhibit ice growth through direct interaction with ice crystals to permit the survival of polar organisms in extremely cold environments. FfIBP is an ice-binding protein encoded by the Antarctic bacterium Flavobacterium frigoris PS1. The X-ray crystal structure of FfIBP was determined to 2.1 Å resolution to gain insight into its ice-binding mechanism. The refined structure of FfIBP shows an intramolecular disulfide bond, and analytical ultracentrifugation and analytical size-exclusion chromatography show that it behaves as a monomer in solution. Sequence alignments and structural comparisons of IBPs allowed two groups of IBPs to be defined, depending on sequence differences between the α2 and α4 loop regions and the presence of the disulfide bond. Although FfIBP closely resembles Leucosporidium (recently re-classified as Glaciozyma) IBP (LeIBP) in its amino-acid sequence, the thermal hysteresis (TH) activity of FfIBP appears to be tenfold higher than that of LeIBP. A comparison of the FfIBP and LeIBP structures reveals that FfIBP has different ice-binding residues as well as a greater surface area in the ice-binding site. Notably, the ice-binding site of FfIBP is composed of a T-A/G-X-T/N motif, which is similar to the ice-binding residues of hyperactive antifreeze proteins. Thus, it is proposed that the difference in TH activity between FfIBP and LeIBP may arise from the amino-acid composition of the ice-binding site, which correlates with differences in affinity and surface complementarity to the ice crystal. In conclusion, this study provides a molecular basis for understanding the antifreeze mechanism of FfIBP and provides new insights into the reasons for the higher TH activity of FfIBP compared with LeIBP.
Collapse
Affiliation(s)
- Hackwon Do
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 406-840, Republic of Korea
| | - Soon-Jong Kim
- Department of Chemistry, Mokpo National University, Chonnam 534-729, Republic of Korea
| | - Hak Jun Kim
- Department of Chemistry, Pukyong National University, Busan 608-739, Republic of Korea
| | - Jun Hyuck Lee
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 406-840, Republic of Korea
| |
Collapse
|
42
|
Degner BM, Chung C, Schlegel V, Hutkins R, McClements DJ. Factors Influencing the Freeze-Thaw Stability of Emulsion-Based Foods. Compr Rev Food Sci Food Saf 2014; 13:98-113. [DOI: 10.1111/1541-4337.12050] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 10/10/2013] [Indexed: 11/28/2022]
Affiliation(s)
| | - Cheryl Chung
- Dept. of Food Science; Univ. of Massachusetts; Amherst MA 01003 U.S.A
| | - Vicki Schlegel
- Dept. of Food Science & Technology; Univ. of Nebraska; Lincoln NE 68516 U.S.A
| | - Robert Hutkins
- Dept. of Food Science & Technology; Univ. of Nebraska; Lincoln NE 68516 U.S.A
| | | |
Collapse
|
43
|
Balcerzak AK, Capicciotti CJ, Briard JG, Ben RN. Designing ice recrystallization inhibitors: from antifreeze (glyco)proteins to small molecules. RSC Adv 2014. [DOI: 10.1039/c4ra06893a] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ice recrystallization occurs during cryopreservation and is correlated with reduced cell viability after thawing.
Collapse
Affiliation(s)
| | | | | | - Robert N. Ben
- Department of Chemistry
- University of Ottawa
- Ottawa, Canada
| |
Collapse
|
44
|
Graham LA, Hobbs RS, Fletcher GL, Davies PL. Helical antifreeze proteins have independently evolved in fishes on four occasions. PLoS One 2013; 8:e81285. [PMID: 24324684 PMCID: PMC3855684 DOI: 10.1371/journal.pone.0081285] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/21/2013] [Indexed: 12/25/2022] Open
Abstract
Alanine-rich α-helical (type I) antifreeze proteins (AFPs) are produced by a variety of fish species from three different orders to protect against freezing in icy seawater. Interspersed amongst and within these orders are fishes making AFPs that are completely different in both sequence and structure. The origin of this variety of types I, II, III and antifreeze glycoproteins (AFGPs) has been attributed to adaptation following sea-level glaciations that occurred after the divergence of most of the extant families of fish. The presence of similar types of AFPs in distantly related fishes has been ascribed to lateral gene transfer in the case of the structurally complex globular type II lectin-like AFPs and to convergent evolution for the AFGPs, which consist of a well-conserved tripeptide repeat. In this paper, we examine the genesis of the type I AFPs, which are intermediate in complexity. These predominantly α-helical peptides share many features, such as putative capping structures, Ala-richness and amphipathic character. We have added to the type I repertoire by cloning additional sequences from sculpin and have found that the similarities between the type I AFPs of the four distinct groups of fishes are not borne out at the nucleotide level. Both the non-coding sequences and the codon usage patterns are strikingly different. We propose that these AFPs arose via convergence from different progenitor helices with a weak affinity for ice and that their similarity is dictated by the propensity of specific amino acids to form helices and to align water on one side of the helix into an ice-like pattern.
Collapse
Affiliation(s)
- Laurie A. Graham
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Rod S. Hobbs
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Garth L. Fletcher
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Peter L. Davies
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- * E-mail:
| |
Collapse
|
45
|
Bang JK, Lee JH, Murugan RN, Lee SG, Do H, Koh HY, Shim HE, Kim HC, Kim HJ. Antifreeze peptides and glycopeptides, and their derivatives: potential uses in biotechnology. Mar Drugs 2013; 11:2013-41. [PMID: 23752356 PMCID: PMC3721219 DOI: 10.3390/md11062013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 04/22/2013] [Accepted: 05/10/2013] [Indexed: 01/14/2023] Open
Abstract
Antifreeze proteins (AFPs) and glycoproteins (AFGPs), collectively called AF(G)Ps, constitute a diverse class of proteins found in various Arctic and Antarctic fish, as well as in amphibians, plants, and insects. These compounds possess the ability to inhibit the formation of ice and are therefore essential to the survival of many marine teleost fishes that routinely encounter sub-zero temperatures. Owing to this property, AF(G)Ps have potential applications in many areas such as storage of cells or tissues at low temperature, ice slurries for refrigeration systems, and food storage. In contrast to AFGPs, which are composed of repeated tripeptide units (Ala-Ala-Thr)n with minor sequence variations, AFPs possess very different primary, secondary, and tertiary structures. The isolation and purification of AFGPs is laborious, costly, and often results in mixtures, making characterization difficult. Recent structural investigations into the mechanism by which linear and cyclic AFGPs inhibit ice crystallization have led to significant progress toward the synthesis and assessment of several synthetic mimics of AFGPs. This review article will summarize synthetic AFGP mimics as well as current challenges in designing compounds capable of mimicking AFGPs. It will also cover our recent efforts in exploring whether peptoid mimics can serve as structural and functional mimics of native AFGPs.
Collapse
Affiliation(s)
- Jeong Kyu Bang
- Division of Magnetic Resonance, Korea Basic Scienc Institute, Chungbuk 363-833, Korea; E-Mails: (J.K.B.); (R.N.M.)
| | - Jun Hyuck Lee
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 406-840, Korea; E-Mails: (J.H.L.); (S.G.L.); (H.D.); (H.Y.K.); (H.-E.S.)
- Department of Polar Sciences, University of Science and Technology, Incheon 406-840, Korea
| | - Ravichandran N. Murugan
- Division of Magnetic Resonance, Korea Basic Scienc Institute, Chungbuk 363-833, Korea; E-Mails: (J.K.B.); (R.N.M.)
| | - Sung Gu Lee
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 406-840, Korea; E-Mails: (J.H.L.); (S.G.L.); (H.D.); (H.Y.K.); (H.-E.S.)
- Department of Polar Sciences, University of Science and Technology, Incheon 406-840, Korea
| | - Hackwon Do
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 406-840, Korea; E-Mails: (J.H.L.); (S.G.L.); (H.D.); (H.Y.K.); (H.-E.S.)
- Department of Polar Sciences, University of Science and Technology, Incheon 406-840, Korea
| | - Hye Yeon Koh
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 406-840, Korea; E-Mails: (J.H.L.); (S.G.L.); (H.D.); (H.Y.K.); (H.-E.S.)
| | - Hye-Eun Shim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 406-840, Korea; E-Mails: (J.H.L.); (S.G.L.); (H.D.); (H.Y.K.); (H.-E.S.)
| | - Hyun-Cheol Kim
- Division of Polar Climate Research, Korea Polar Research Institute, Incheon 406-840, Korea; E-Mail:
| | - Hak Jun Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 406-840, Korea; E-Mails: (J.H.L.); (S.G.L.); (H.D.); (H.Y.K.); (H.-E.S.)
- Department of Polar Sciences, University of Science and Technology, Incheon 406-840, Korea
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +82-32-760-5550; Fax: +82-32-760-5598
| |
Collapse
|
46
|
Hakim A, Nguyen JB, Basu K, Zhu DF, Thakral D, Davies PL, Isaacs FJ, Modis Y, Meng W. Crystal structure of an insect antifreeze protein and its implications for ice binding. J Biol Chem 2013; 288:12295-304. [PMID: 23486477 DOI: 10.1074/jbc.m113.450973] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Antifreeze proteins (AFPs) help some organisms resist freezing by binding to ice crystals and inhibiting their growth. The molecular basis for how these proteins recognize and bind ice is not well understood. The longhorn beetle Rhagium inquisitor can supercool to below -25 °C, in part by synthesizing the most potent antifreeze protein studied thus far (RiAFP). We report the crystal structure of the 13-kDa RiAFP, determined at 1.21 Å resolution using direct methods. The structure, which contains 1,914 nonhydrogen protein atoms in the asymmetric unit, is the largest determined ab initio without heavy atoms. It reveals a compressed β-solenoid fold in which the top and bottom sheets are held together by a silk-like interdigitation of short side chains. RiAFP is perhaps the most regular structure yet observed. It is a second independently evolved AFP type in beetles. The two beetle AFPs have in common an extremely flat ice-binding surface comprising regular outward-projecting parallel arrays of threonine residues. The more active, wider RiAFP has four (rather than two) of these arrays between which the crystal structure shows the presence of ice-like waters. Molecular dynamics simulations independently reproduce the locations of these ordered crystallographic waters and predict additional waters that together provide an extensive view of the AFP interaction with ice. By matching several planes of hexagonal ice, these waters may help freeze the AFP to the ice surface, thus providing the molecular basis of ice binding.
Collapse
Affiliation(s)
- Aaron Hakim
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Bildanova LL, Salina EA, Shumny VK. Main properties and evolutionary features of antifreeze proteins. ACTA ACUST UNITED AC 2013. [DOI: 10.1134/s207905971301005x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Haridas V, Naik S. Natural macromolecular antifreeze agents to synthetic antifreeze agents. RSC Adv 2013. [DOI: 10.1039/c3ra00081h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
49
|
Optimization of the pilot-scale production of an ice-binding protein by fed-batch culture of Pichia pastoris. Appl Microbiol Biotechnol 2012. [PMID: 23203635 DOI: 10.1007/s00253-012-4594-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Ice-binding proteins (IBPs) can bind to the ice crystal and inhibit its growth. Because this property of IBPs can increase the freeze-thaw survival of cells, IBPs have attracted the attention from industries for their potential use in biotechnological applications. However, their use was largely hampered by the lack of the large-scale recombinant production system. In this study, the codon-optimized IBP from Leucosporidium sp. (LeIBP) was constructed and subjected to high-level expression in methylotrophic Pichia pastoris system. In a laboratory-scale fermentation (7 L), the optimal induction temperature and pH were determined to be 25 °C and 6.0, respectively. Further, employing glycerol fed-batch phase prior to methanol induction phase enhanced the production of recombinant LelBP (rLeIBP) by ∼100 mg/l. The total amount of secreted proteins at these conditions (25 °C, pH 6.0, and glycerol fed-batch phase) was ∼443 mg/l, 60 % of which was rLeIBP, yielding ∼272 mg/l. In the pilot-scale fermentation (700 L) under the same conditions, the yield of rLeIBP was 300 mg/l. To our best knowledge, this result reports the highest production yield of the recombinant IBP. More importantly, the rLeIBP secreted into culture media was stable and active for 6 days of fermentation. The thermal hysteresis (TH) activity of rLeIBP was about 0.42 °C, which is almost the same to those reported previously. The availability of large quantities of rLeIBP may accelerate further application studies.
Collapse
|
50
|
Deville S, Viazzi C, Guizard C. Ice-structuring mechanism for zirconium acetate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:14892-14898. [PMID: 22880966 DOI: 10.1021/la302275d] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The control of ice nucleation and growth is critical in many natural and engineering situations. However, very few compounds are able to interact directly with the surface of ice crystals. Ice-structuring proteins, found in certain fish, plants, and insects, bind to the surface of ice, thereby controlling their growth. We recently revealed the ice-structuring properties of zirconium acetate, which are similar to those of ice-structuring proteins. Because zirconium acetate is a salt and therefore different from proteins having ice-structuring properties, its ice-structuring mechanism remains unelucidated. Here we investigate this ice-structuring mechanism through the role of the concentration of zirconium acetate and the ice crystal growth velocity. We then explore other compounds presenting similar functional groups (acetate, hydroxyl, or carboxylic groups). On the basis of these results, we propose that zirconium acetate adopts a hydroxy-bridged polymer structure that can bind to the surface of the ice crystals through hydrogen bonding, thereby slowing down the ice crystal growth.
Collapse
Affiliation(s)
- Sylvain Deville
- Laboratoire de Synthèse et Fonctionnalisation des Céramiques, UMR3080 CNRS/Saint-Gobain, Cavaillon, France.
| | | | | |
Collapse
|