1
|
Martin CK, Yin P, Kielian M. The sticky business of Alphavirus capsid-host interactions. Trends Microbiol 2025; 33:321-339. [PMID: 39665907 DOI: 10.1016/j.tim.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 12/13/2024]
Abstract
Alphaviruses are a serious threat to global health and can cause lethal encephalitic or arthritogenic disease in humans and animals. As there are no licensed antivirals, it is critical to improve our understanding of alphavirus interactions with the host cell. Here, we focus on the essential alphavirus protein capsid. While its roles in genome packaging and virus assembly have been well-studied, much less is known about capsid's interactions with host proteins and their functional relevance for infection. Recently, several new capsid interactor candidates were identified, collectively emphasising the complexity of capsid-host biology. In this review we summarise these novel interactor candidates, highlight capsid's emerging role in immune evasion, and discuss the challenges and opportunities arising from capsid-host interactions.
Collapse
Affiliation(s)
- Caroline K Martin
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Peiqi Yin
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
2
|
Comas-Garcia M. How structural biology has changed our understanding of icosahedral viruses. J Virol 2024; 98:e0111123. [PMID: 39291975 PMCID: PMC11495149 DOI: 10.1128/jvi.01111-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Cryo-electron microscopy and tomography have allowed us to unveil the remarkable structure of icosahedral viruses. However, in the past few years, the idea that these viruses must have perfectly symmetric virions, but in some cases, it might not be true. This has opened the door to challenging paradigms in structural virology and raised new questions about the biological implications of "unusual" or "defective" symmetries and structures. Also, the continual improvement of these technologies, coupled with more rigorous sample purification protocols, improvements in data processing, and the use of artificial intelligence, has allowed solving the structure of sub-viral particles in highly heterogeneous samples and finding novel symmetries or structural defects. In this review, I initially analyzed the case of the symmetry and composition of hepatitis B virus-produced spherical sub-viral particles. Then, I focused on Alphaviruses as an example of "imperfect" icosahedrons and analyzed how structural biology has changed our understanding of the Alphavirus assembly and some biological implications arising from these discoveries.
Collapse
Affiliation(s)
- Mauricio Comas-Garcia
- Science Department, Autonomous University of San Luis Potosi, San Luis Potosí, Mexico
- High-Resolution Microscopy Section, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosi, San Luis Potosi, Mexico
- Translational and Molecular Medicine Section, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosi, San Luis Potosí, Mexico
| |
Collapse
|
3
|
Lata K, Charles S, Mangala Prasad V. Advances in computational approaches to structure determination of alphaviruses and flaviviruses using cryo-electron microscopy. J Struct Biol 2023; 215:107993. [PMID: 37414374 DOI: 10.1016/j.jsb.2023.107993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/15/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Advancements in the field of cryo-electron microscopy (cryo-EM) have greatly contributed to our current understanding of virus structures and life cycles. In this review, we discuss the application of single particle cryo-electron microscopy (EM) for the structure elucidation of small enveloped icosahedral viruses, namely, alpha- and flaviviruses. We focus on technical advances in cryo-EM data collection, image processing, three-dimensional reconstruction, and refinement strategies for obtaining high-resolution structures of these viruses. Each of these developments enabled new insights into the alpha- and flavivirus architecture, leading to a better understanding of their biology, pathogenesis, immune response, immunogen design, and therapeutic development.
Collapse
Affiliation(s)
- Kiran Lata
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Sylvia Charles
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Vidya Mangala Prasad
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India; Center for Infectious Disease Research, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| |
Collapse
|
4
|
Westcott CE, Isom CM, Karki D, Sokoloski KJ. Dancing with the Devil: A Review of the Importance of Host RNA-Binding Proteins to Alphaviral RNAs during Infection. Viruses 2023; 15:164. [PMID: 36680204 PMCID: PMC9865062 DOI: 10.3390/v15010164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/02/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Alphaviruses are arthropod-borne, single-stranded positive sense RNA viruses that rely on the engagement of host RNA-binding proteins to efficiently complete the viral lifecycle. Because of this reliance on host proteins, the identification of host/pathogen interactions and the subsequent characterization of their importance to viral infection has been an intensive area of study for several decades. Many of these host protein interaction studies have evaluated the Protein:Protein interactions of viral proteins during infection and a significant number of host proteins identified by these discovery efforts have been RNA Binding Proteins (RBPs). Considering this recognition, the field has shifted towards discovery efforts involving the direct identification of host factors that engage viral RNAs during infection using innovative discovery approaches. Collectively, these efforts have led to significant advancements in the understanding of alphaviral molecular biology; however, the precise extent and means by which many RBPs influence viral infection is unclear as their specific contributions to infection, as per any RNA:Protein interaction, have often been overlooked. The purpose of this review is to summarize the discovery of host/pathogen interactions during alphaviral infection with a specific emphasis on RBPs, to use new ontological analyses to reveal potential functional commonalities across alphaviral RBP interactants, and to identify host RBPs that have, and have yet to be, evaluated in their native context as RNA:Protein interactors.
Collapse
Affiliation(s)
- Claire E. Westcott
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Cierra M. Isom
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Deepa Karki
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Kevin J. Sokoloski
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
- Center for Predictive Medicine for Biodefense and Emerging Infectious Disease (CPM), University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
5
|
Mangala Prasad V, Blijleven JS, Smit JM, Lee KK. Visualization of conformational changes and membrane remodeling leading to genome delivery by viral class-II fusion machinery. Nat Commun 2022; 13:4772. [PMID: 35970990 PMCID: PMC9378758 DOI: 10.1038/s41467-022-32431-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/31/2022] [Indexed: 11/09/2022] Open
Abstract
Chikungunya virus (CHIKV) is a human pathogen that delivers its genome to the host cell cytoplasm through endocytic low pH-activated membrane fusion mediated by class-II fusion proteins. Though structures of prefusion, icosahedral CHIKV are available, structural characterization of virion interaction with membranes has been limited. Here, we have used cryo-electron tomography to visualize CHIKV's complete membrane fusion pathway, identifying key intermediary glycoprotein conformations coupled to membrane remodeling events. Using sub-tomogram averaging, we elucidate features of the low pH-exposed virion, nucleocapsid and full-length E1-glycoprotein's post-fusion structure. Contrary to class-I fusion systems, CHIKV achieves membrane apposition by protrusion of extended E1-glycoprotein homotrimers into the target membrane. The fusion process also features a large hemifusion diaphragm that transitions to a wide pore for intact nucleocapsid delivery. Our analyses provide comprehensive ultrastructural insights into the class-II virus fusion system function and direct mechanistic characterization of the fundamental process of protein-mediated membrane fusion.
Collapse
Affiliation(s)
- Vidya Mangala Prasad
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA.,Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Jelle S Blijleven
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Jolanda M Smit
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA. .,Biological Physics, Structure and Design Graduate Program, University of Washington, Seattle, WA, USA. .,Department of Microbiology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
6
|
Chen CL, Klose T, Sun C, Kim AS, Buda G, Rossmann MG, Diamond MS, Klimstra WB, Kuhn RJ. Cryo-EM structures of alphavirus conformational intermediates in low pH-triggered prefusion states. Proc Natl Acad Sci U S A 2022; 119:e2114119119. [PMID: 35867819 PMCID: PMC9335222 DOI: 10.1073/pnas.2114119119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 06/03/2022] [Indexed: 01/24/2023] Open
Abstract
Alphaviruses can cause severe human arthritis and encephalitis. During virus infection, structural changes of viral glycoproteins in the acidified endosome trigger virus-host membrane fusion for delivery of the capsid core and RNA genome into the cytosol to initiate virus translation and replication. However, mechanisms by which E1 and E2 glycoproteins rearrange in this process remain unknown. Here, we investigate prefusion cryoelectron microscopy (cryo-EM) structures of eastern equine encephalitis virus (EEEV) under acidic conditions. With models fitted into the low-pH cryo-EM maps, we suggest that E2 dissociates from E1, accompanied by a rotation (∼60°) of the E2-B domain (E2-B) to expose E1 fusion loops. Cryo-EM reconstructions of EEEV bound to a protective antibody at acidic and neutral pH suggest that stabilization of E2-B prevents dissociation of E2 from E1. These findings reveal conformational changes of the glycoprotein spikes in the acidified host endosome. Stabilization of E2-B may provide a strategy for antiviral agent development.
Collapse
Affiliation(s)
- Chun-Liang Chen
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Thomas Klose
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Chengqun Sun
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261
| | - Arthur S. Kim
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Geeta Buda
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Michael G. Rossmann
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | - William B. Klimstra
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261
| | - Richard J. Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
7
|
Abstract
Alphaviruses are enveloped viruses transmitted by arthropod vectors to vertebrate hosts. The surface of the virion contains 80 glycoprotein spikes embedded in the membrane, and these spikes mediate attachment to the host cell and initiate viral fusion. Each spike consists of a trimer of E2-E1 heterodimers. These heterodimers interact at the following two interfaces: (i) the intradimer interactions between E2 and E1 of the same heterodimer and (ii) the interdimer interactions between E2 of one heterodimer and E1 of the adjacent heterodimer (E1'). We hypothesized that the interdimer interactions are essential for trimerization of the E2-E1 heterodimers into a functional spike. In this work, we made a mutant virus (chikungunya piggyback [CPB]) where we replaced six interdimeric residues in the E2 protein of Sindbis virus (wild-type [WT] SINV) with those from the E2 protein from chikungunya virus and studied its effect in both mammalian and mosquito cell lines. CPB produced fewer infectious particles in mammalian cells than in mosquito cells, relative to WT SINV. When CPB virus was purified from mammalian cells, particles showed reduced amounts of glycoproteins relative to the capsid protein and contained defects in particle morphology compared with virus derived from mosquito cells. Using cryo-electron microscopy (cryo-EM), we determined that the spikes of CPB had a different conformation than WT SINV. Last, we identified two revertants, E2-H333N and E1-S247L, that restored particle growth and assembly to different degrees. We conclude the interdimer interface is critical for spike trimerization and is a novel target for potential antiviral drug design. IMPORTANCE Alphaviruses, which can cause disease when spread to humans by mosquitoes, have been classified as emerging pathogens, with infections occurring worldwide. The spikes on the surface of the alphavirus particle are absolutely required for the virus to enter a new host cell and initiate an infection. Using a structure-guided approach, we made a mutant virus that alters spike assembly in mammalian cells but not mosquito cells. This finding is important because it identifies a region in the spike that could be a target for antiviral drug design.
Collapse
|
8
|
Capsid-E2 Interactions Rescue Core Assembly in Viruses That Cannot Form Cytoplasmic Nucleocapsid Cores. J Virol 2021; 95:e0106221. [PMID: 34495691 DOI: 10.1128/jvi.01062-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alphavirus capsid proteins (CPs) have two domains: the N-terminal domain (NTD), which interacts with the viral RNA, and the C-terminal domain (CTD), which forms CP-CP interactions and interacts with the cytoplasmic domain of the E2 spike protein (cdE2). In this study, we examine how mutations in the CP NTD affect CP CTD interactions with cdE2. We changed the length and/or charge of the NTD of Ross River virus CP and found that changing the charge of the NTD has a greater impact on core and virion assembly than changing the length of the NTD. The NTD CP insertion mutants are unable to form cytoplasmic cores during infection, but they do form cores or core-like structures in virions. Our results are consistent with cdE2 having a role in core maturation during virion assembly and rescuing core formation when cytoplasmic cores are not assembled. We go on to find that the isolated cores from some mutant virions are now assembly competent in that they can be disassembled and reassembled back into cores. These results show how the two domains of CP may have distinct yet coordinated roles. IMPORTANCE Structural viral proteins have multiple roles during entry and assembly. The capsid protein (CP) of alphaviruses has one domain that interacts with the viral genome and another domain that interacts with the E2 spike protein. In this work, we determined that the length and/or charge of the CP affects cytoplasmic core formation. However, defects in cytoplasmic core formation can be overcome by E2-CP interactions, thus assembling a core or core-like complex in the virion. In the absence of both cytoplasmic cores and CP-E2 interactions, CP is not even packaged in the released virions, but some infectious particles are still released, presumably as RNA packaged in a glycoprotein-containing membrane shell. This suggests that the virus has multiple mechanisms in place to ensure the viral genome is surrounded by a capsid core during its life cycle.
Collapse
|
9
|
Hasan SS, Dey D, Singh S, Martin M. The Structural Biology of Eastern Equine Encephalitis Virus, an Emerging Viral Threat. Pathogens 2021; 10:pathogens10080973. [PMID: 34451437 PMCID: PMC8400090 DOI: 10.3390/pathogens10080973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/21/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022] Open
Abstract
Alphaviruses are arboviruses that cause arthritis and encephalitis in humans. Eastern Equine Encephalitis Virus (EEEV) is a mosquito-transmitted alphavirus that is implicated in severe encephalitis in humans with high mortality. However, limited insights are available into the fundamental biology of EEEV and residue-level details of its interactions with host proteins. In recent years, outbreaks of EEEV have been reported mainly in the United States, raising concerns about public safety. This review article summarizes recent advances in the structural biology of EEEV based mainly on single-particle cryogenic electron microscopy (cryoEM) structures. Together with functional analyses of EEEV and related alphaviruses, these structural investigations provide clues to how EEEV interacts with host proteins, which may open avenues for the development of therapeutics.
Collapse
Affiliation(s)
- S. Saif Hasan
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, MD 21201, USA; (D.D.); (S.S.); (M.M.)
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, 9600 Gudelsky Drive, Rockville, MD 20850, USA
- University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland Medical Center, 22. S. Greene St., Baltimore, MD 21201, USA
- Correspondence:
| | - Debajit Dey
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, MD 21201, USA; (D.D.); (S.S.); (M.M.)
| | - Suruchi Singh
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, MD 21201, USA; (D.D.); (S.S.); (M.M.)
| | - Matthew Martin
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, MD 21201, USA; (D.D.); (S.S.); (M.M.)
| |
Collapse
|
10
|
Silva LR, Rodrigues ÉEDS, Taniele-Silva J, Anderson L, Araújo-Júnior JXD, Bassi ÊJ, Silva-Júnior EFD. Targeting Chikungunya Virus Entry: alternatives for new inhibitors in drug discovery. Curr Med Chem 2021; 29:612-634. [PMID: 34165405 DOI: 10.2174/0929867328666210623165005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/06/2021] [Accepted: 05/11/2021] [Indexed: 11/22/2022]
Abstract
Chikungunya virus (CHIKV) is an Alphavirus (Togaviridae) responsible for Chikungunya fever (CHIKF) that is mainly characterized by a severe polyarthralgia, in which it is transmitted by the bite of infected Aedes aegypti and Ae. albopictus mosquitoes. Nowadays, there no licensed vaccines or approved drugs to specifically treat this viral disease. Structural viral proteins participate in key steps of its replication cycle, such as viral entry, membrane fusion, nucleocapsid assembly, and virus budding. In this context, envelope E3-E2-E1 glycoproteins complex could be targeted for designing new drug candidates. In this review, aspects of the CHIKV entry process are discussed to provide insights to assist the drug discovery process. Moreover, several natural, nature-based and synthetic compounds, as well as repurposed drugs and virtual screening, are also explored as alternatives for developing CHIKV entry inhibitors. Finally, we provided a complimentary analysis of studies involving inhibitors that were not explored by in silico methods. Based on this, Phe118, Val179, and Lys181 were found to be the most frequent residues, being present in 89.6, 82.7, and 93.1% of complexes, respectively. Lastly, some chemical aspects associated with interactions of these inhibitors and mature envelope E3-E2-E1 glycoproteins' complex were discussed to provide data for scientists worldwide, supporting their search for new inhibitors against this emerging arbovirus.
Collapse
Affiliation(s)
- Leandro Rocha Silva
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, Brazil
| | - Érica Erlanny da Silva Rodrigues
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, Brazil
| | - Jamile Taniele-Silva
- IMUNOREG - Immunoregulation Research Group, Laboratory of Research in Virology and Immunology, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus AC. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, Brazil
| | - Letícia Anderson
- IMUNOREG - Immunoregulation Research Group, Laboratory of Research in Virology and Immunology, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus AC. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, Brazil
| | - João Xavier de Araújo-Júnior
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, Brazil
| | - Ênio José Bassi
- IMUNOREG - Immunoregulation Research Group, Laboratory of Research in Virology and Immunology, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus AC. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, Brazil
| | - Edeildo F da Silva-Júnior
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, Brazil
| |
Collapse
|
11
|
Kumar R, Nehul S, Singh A, Tomar S. Identification and evaluation of antiviral potential of thymoquinone, a natural compound targeting Chikungunya virus capsid protein. Virology 2021; 561:36-46. [PMID: 34146962 DOI: 10.1016/j.virol.2021.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/20/2021] [Accepted: 05/30/2021] [Indexed: 10/21/2022]
Abstract
Capsid protein (CP) of Chikungunya virus (CHIKV) is a multifunctional protein with a conserved hydrophobic pocket that plays a crucial role in the capsid assembly and virus budding process. This study demonstrates antiviral activity of thymoquinone (TQ), a natural compound targeting the hydrophobic pocket of CP. The binding of TQ to the hydrophobic pocket of CHIKV CP was analysed by structure-based molecular docking, isothermal titration calorimetry and fluorescence spectroscopy. The binding constant KD obtained for TQ was 27 μM. Additionally, cell-based antiviral studies showed that TQ diminished CHIKV replication with an EC50 value 4.478 μM. Reduction in viral RNA copy number and viral replication as assessed by the qRT-PCR and immunofluorescence assay, confirmed the antiviral potential of TQ. Our study reveals that TQ is an effective antiviral targeting the hydrophobic pocket of CHIKV CP and may serve as the basis for development of a broad-spectrum therapy against alphaviral diseases.
Collapse
Affiliation(s)
- Ravi Kumar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Sanketkumar Nehul
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Ankur Singh
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Shailly Tomar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
12
|
Abstract
Rubella virus (RUBV), a rubivirus, is an airborne human pathogen that generally causes mild measles-like symptoms in children or adults. However, RUBV infection of pregnant women can result in miscarriage or congenital rubella syndrome (CRS), a collection of long-term birth defects including incomplete organ development and mental retardation. Worldwide vaccination campaigns have significantly reduced the number of RUBV infections, but RUBV continues to be a problem in countries with low vaccination coverage. Further, the recent discovery of pathogenic rubiviruses in other mammals emphasizes the spillover potential of rubella-related viruses to humans. In the last decade, our understanding of RUBV has been significantly increased by virological, biochemical, and structural studies, providing a platform to begin understanding the life cycle of RUBV at the molecular level. This review concentrates on recent work on RUBV, focusing on the virion, its structural components, and its entry, fusion, and assembly mechanisms. Important features of RUBV are compared with those of viruses from other families. We also use comparative genomics, manual curation, and protein homology modeling to highlight distinct features of RUBV that are evolutionarily conserved in the non-human rubiviruses. Since rubella-like viruses may potentially have higher pathogenicity and transmissibility to humans, we also propose a framework for utilizing RUBV as a model to study its more pathogenic cousins.
Collapse
|
13
|
Arthritogenic Alphavirus Capsid Protein. Life (Basel) 2021; 11:life11030230. [PMID: 33799673 PMCID: PMC7999773 DOI: 10.3390/life11030230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 01/03/2023] Open
Abstract
In the past two decades Old World and arthritogenic alphavirus have been responsible for epidemics of polyarthritis, causing high morbidity and becoming a major public health concern. The multifunctional arthritogenic alphavirus capsid protein is crucial for viral infection. Capsid protein has roles in genome encapsulation, budding and virion assembly. Its role in multiple infection processes makes capsid protein an attractive target to exploit in combating alphaviral infection. In this review, we summarize the function of arthritogenic alphavirus capsid protein, and describe studies that have used capsid protein to develop novel arthritogenic alphavirus therapeutic and diagnostic strategies.
Collapse
|
14
|
Laureti M, Paradkar PN, Fazakerley JK, Rodriguez-Andres J. Superinfection Exclusion in Mosquitoes and Its Potential as an Arbovirus Control Strategy. Viruses 2020; 12:v12111259. [PMID: 33167513 PMCID: PMC7694488 DOI: 10.3390/v12111259] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/19/2022] Open
Abstract
The continuing emergence of arbovirus disease outbreaks around the world, despite the use of vector control strategies, warrants the development of new strategies to reduce arbovirus transmission. Superinfection exclusion, a phenomenon whereby a primary virus infection prevents the replication of a second closely related virus, has potential to control arbovirus disease emergence and outbreaks. This phenomenon has been observed for many years in plants, insects and mammalian cells. In this review, we discuss the significance of identifying novel vector control strategies, summarize studies exploring arbovirus superinfection exclusion and consider the potential for this phenomenon to be the basis for novel arbovirus control strategies.
Collapse
Affiliation(s)
- Mathilde Laureti
- Peter Doherty Institute for Infection and Immunity and Faculty of Veterinary and Agricultural Sciences, University of Melbourne, VIC 3000 Melbourne, Australia;
- CSIRO Health & Biosecurity, Australian Centre for Diseases Preparedness, VIC 3220 Geelong, Australia;
- Correspondence: (M.L.); (J.R.-A.)
| | - Prasad N. Paradkar
- CSIRO Health & Biosecurity, Australian Centre for Diseases Preparedness, VIC 3220 Geelong, Australia;
| | - John K. Fazakerley
- Peter Doherty Institute for Infection and Immunity and Faculty of Veterinary and Agricultural Sciences, University of Melbourne, VIC 3000 Melbourne, Australia;
| | - Julio Rodriguez-Andres
- Peter Doherty Institute for Infection and Immunity and Faculty of Veterinary and Agricultural Sciences, University of Melbourne, VIC 3000 Melbourne, Australia;
- Correspondence: (M.L.); (J.R.-A.)
| |
Collapse
|
15
|
Removing the Polyanionic Cargo Requirement for Assembly of Alphavirus Core-Like Particles to Make an Empty Alphavirus Core. Viruses 2020; 12:v12080846. [PMID: 32756493 PMCID: PMC7472333 DOI: 10.3390/v12080846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/18/2022] Open
Abstract
The assembly of alphavirus nucleocapsid cores requires electrostatic interactions between the positively charged N-terminus of the capsid protein (CP) and the encapsidated polyanionic cargo. This system differs from many other viruses that can self-assemble particles in the absence of cargo, or form “empty” particles. We hypothesized that the introduction of a mutant, anionic CP could replace the need for charged cargo during assembly. In this work, we produced a CP mutant, Minus 38 (M38), where all N-terminal charged residues are negatively-charged. When wild-type (WT) and M38 CPs were mixed, they assembled into core-like particles (CLPs). These “empty” particles were of similar size and morphology to WT CLPs assembled with DNA cargo, but did not contain nucleic acid. When DNA cargo was added to the assembly mixture, the amount of M38 CP that was assembled into CLPs decreased, but was not fully excluded from the CLPs, suggesting that M38 competes with DNA to interact with WT CPs. The composition of CLPs can be tuned by altering the order of addition of M38 CP, WT CP, and DNA cargo. The ability to produce alphavirus CLPs that contain a range of amounts of encapsidated cargo, including none, introduces a new platform for packaging cargo for delivery or imaging purposes.
Collapse
|
16
|
Button JM, Qazi SA, Wang JCY, Mukhopadhyay S. Revisiting an old friend: new findings in alphavirus structure and assembly. Curr Opin Virol 2020; 45:25-33. [PMID: 32683295 DOI: 10.1016/j.coviro.2020.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/04/2020] [Accepted: 06/16/2020] [Indexed: 01/17/2023]
Abstract
Alphaviruses are transmitted by an arthropod vector to a vertebrate host. The disease pathologies, cellular environments, immune responses, and host factors are very different in these organisms. Yet, the virus is able to infect, replicate, and assemble into new particles in these two animals using one set of genetic instructions. The balance between conserved mechanisms and unique strategies during virus assembly is critical for fitness of the virus. In this review, we discuss new findings in receptor binding, polyprotein topology, nucleocapsid core formation, and particle budding that have emerged in the last five years and share opinions on how these new findings might answer some questions regarding alphavirus structure and assembly.
Collapse
Affiliation(s)
- Julie M Button
- Department of Molecular and Cellular Biochemistry, Indiana University, 212 S. Hawthorne Drive, Bloomington, IN 47405, United States
| | - Shefah A Qazi
- Department of Biology, Indiana University, 212 S. Hawthorne Drive, Bloomington, IN 47405, United States
| | - Joseph Che-Yen Wang
- Department of Microbiology and Immunology, Penn State College of Medicine, 700 HMC Crescent Road, Hershey, PA 17033, United States
| | - Suchetana Mukhopadhyay
- Department of Biology, Indiana University, 212 S. Hawthorne Drive, Bloomington, IN 47405, United States.
| |
Collapse
|
17
|
Abstract
Alphaviruses are enveloped positive-sense RNA viruses that can cause serious human illnesses such as polyarthritis and encephalitis. Despite their widespread distribution and medical importance, there are no licensed vaccines or antivirals to combat alphavirus infections. Berberine chloride (BBC) is a pan-alphavirus inhibitor that was previously identified in a replicon-based small-molecule screen. This work showed that BBC inhibits alphavirus replication but also suggested that BBC might have additional effects later in the viral life cycle. Here, we show that BBC has late effects that target the virus nucleocapsid (NC) core. Infected cells treated with BBC late in infection were unable to form stable cytoplasmic NCs or assembly intermediates, as assayed by gradient sedimentation. In vitro studies with recombinant capsid protein (Cp) and purified genomic RNA (gRNA) showed that BBC perturbs core-like particle formation and potentially traps the assembly process in intermediate states. Particles produced from BBC-treated cells were less infectious, despite efficient particle production and only minor decreases in genome packaging. In addition, BBC treatment of free virus particles strongly decreased alphavirus infectivity. In contrast, the infectivity of the negative-sense RNA virus vesicular stomatitis virus was resistant to BBC treatment of infected cells or free virus. Together, our data indicate that BBC alters alphavirus Cp-gRNA interactions and oligomerization and suggest that this may cause defects in NC assembly and in disassembly during subsequent virus entry. Thus, BBC may be considered a novel alphavirus NC assembly inhibitor.IMPORTANCE The alphavirus chikungunya virus (CHIKV) is an example of an emerging human pathogen with increased and rapid global spread. Although an acute CHIKV infection is rarely fatal, many patients suffer from debilitating chronic arthralgia for years. Antivirals against chikungunya and other alphaviruses have been identified in vitro, but to date none have been shown to be efficacious and have been licensed for human use. Here, we investigated a small molecule, berberine chloride (BBC), and showed that it inhibited infectious virus production by several alphaviruses including CHIKV. BBC acted on a late step in the alphavirus exit pathway, namely the formation of the nucleocapsid containing the infectious viral RNA. Better understanding of nucleocapsid formation and its inhibition by BBC will provide important information on the mechanisms of infectious alphavirus production and may enable their future targeting in antiviral strategies.
Collapse
|
18
|
Rabiee N, Rabiee M, Bagherzadeh M, Rezaei N. COVID-19 and picotechnology: Potential opportunities. Med Hypotheses 2020; 144:109917. [PMID: 32505072 PMCID: PMC7263242 DOI: 10.1016/j.mehy.2020.109917] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/28/2020] [Indexed: 12/24/2022]
Abstract
Humanity's challenges are becoming increasingly difficult, and as these challenges become more advanced, the need for effective and intelligent action becomes more apparent. Meanwhile, the novel coronavirus disease (COVID-19) pandemic, which has plagued the world, could be considered as an opportunity to take a step toward the need for atomic engineering, compared to molecular engineering, as well as to accelerate this type of research. This approach, which can be expressed in terms of picotechnology, makes it possible to identify living cell types or in general, chemical and biological surfaces using their atomic arrays, and applied for early diagnosis even treatment of the disease.
Collapse
Affiliation(s)
- Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran.
| | | | - Nima Rezaei
- Research Center for Immunodefiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
19
|
Fatma B, Kumar R, Singh VA, Nehul S, Sharma R, Kesari P, Kuhn RJ, Tomar S. Alphavirus capsid protease inhibitors as potential antiviral agents for Chikungunya infection. Antiviral Res 2020; 179:104808. [PMID: 32380148 DOI: 10.1016/j.antiviral.2020.104808] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/06/2020] [Accepted: 04/24/2020] [Indexed: 12/20/2022]
Abstract
Chikungunya virus (CHIKV) is an arthritogenic alphavirus and currently, no antiviral drug is available to combat it. Capsid protein (CP) of alphaviruses present at the N-terminus of the structural polyprotein possesses auto-proteolytic activity which is essential for initiating the structural polyprotein processing. We are reporting for the first time antiviral molecules targeting capsid proteolytic activity. Structure-assisted drug-repositioning identified three molecules: P1,P4-Di(adenosine-5') tetraphosphate (AP4), Eptifibatide acetate (EAC) and Paromomycin sulphate (PSU) as potential capsid protease inhibitors. A FRET-based proteolytic assay confirmed anti-proteolytic activity of these molecules. Additionally, in vitro cell-based antiviral studies showed that EAC, AP4, and PSU drastically stifled CHIKV at the post-entry step with a half-maximal effective concentration (EC50) of 4.01 μM, 10.66 μM and 22.91 μM; respectively. Interestingly, the inhibitors had no adverse effect on viral RNA synthesis and treatment of cells with inhibitors diminished levels of CP in virus-infected cells, which confirmed inhibition of capsid auto-proteolytic activity. In conclusion, the discovery of antiviral molecules targeting capsid protease demystifies the alphavirus capsid protease as a potential target for antiviral drug discovery.
Collapse
Affiliation(s)
- Benazir Fatma
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Ravi Kumar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Vedita Anand Singh
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Sanketkumar Nehul
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Rajesh Sharma
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Pooja Kesari
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Richard J Kuhn
- Department of Biological Sciences, And Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Shailly Tomar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
20
|
Cryo-EM structure of eastern equine encephalitis virus in complex with heparan sulfate analogues. Proc Natl Acad Sci U S A 2020; 117:8890-8899. [PMID: 32245806 DOI: 10.1073/pnas.1910670117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Eastern equine encephalitis virus (EEEV), a mosquito-borne icosahedral alphavirus found mainly in North America, causes human and equine neurotropic infections. EEEV neurovirulence is influenced by the interaction of the viral envelope protein E2 with heparan sulfate (HS) proteoglycans from the host's plasma membrane during virus entry. Here, we present a 5.8-Å cryoelectron microscopy (cryo-EM) structure of EEEV complexed with the HS analog heparin. "Peripheral" HS binding sites were found to be associated with the base of each of the E2 glycoproteins that form the 60 quasi-threefold spikes (q3) and the 20 sites associated with the icosahedral threefold axes (i3). In addition, there is one HS site at the vertex of each q3 and i3 spike (the "axial" sites). Both the axial and peripheral sites are surrounded by basic residues, suggesting an electrostatic mechanism for HS binding. These residues are highly conserved among EEEV strains, and therefore a change in these residues might be linked to EEEV neurovirulence.
Collapse
|
21
|
Denesyuk AI, Johnson MS, Salo-Ahen OMH, Uversky VN, Denessiouk K. NBCZone: Universal three-dimensional construction of eleven amino acids near the catalytic nucleophile and base in the superfamily of (chymo)trypsin-like serine fold proteases. Int J Biol Macromol 2020; 153:399-411. [PMID: 32151723 PMCID: PMC7124590 DOI: 10.1016/j.ijbiomac.2020.03.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 10/25/2022]
Abstract
(Chymo)trypsin-like serine fold proteases belong to the serine/cysteine proteases found in eukaryotes, prokaryotes, and viruses. Their catalytic activity is carried out using a triad of amino acids, a nucleophile, a base, and an acid. For this superfamily of proteases, we propose the existence of a universal 3D structure comprising 11 amino acids near the catalytic nucleophile and base - Nucleophile-Base Catalytic Zone (NBCZone). The comparison of NBCZones among 169 eukaryotic, prokaryotic, and viral (chymo)trypsin-like proteases suggested the existence of 15 distinct groups determined by the combination of amino acids located at two "key" structure-functional positions 54T and 55T near the catalytic base His57T. Most eukaryotic and prokaryotic proteases fell into two major groups, [ST]A and TN. Usually, proteases of [ST]A group contain a disulfide bond between cysteines Cys42T and Cys58T of the NBCZone. In contrast, viral proteases were distributed among seven groups, and lack this disulfide bond. Furthermore, only the [ST]A group of eukaryotic proteases contains glycine at position 43T, which is instrumental for activation of these enzymes. In contrast, due to the side chains of residues at position 43T prokaryotic and viral proteases do not have the ability to carry out the structural transition of the eukaryotic zymogen-zyme type.
Collapse
Affiliation(s)
- Alexander I Denesyuk
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Russia; Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland.
| | - Mark S Johnson
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | - Outi M H Salo-Ahen
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland; Pharmaceutical Sciences Laboratory, Pharmacy, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | - Vladimir N Uversky
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Russia; Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Konstantin Denessiouk
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland; Pharmaceutical Sciences Laboratory, Pharmacy, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| |
Collapse
|
22
|
Puranik N, Rani R, Singh VA, Tomar S, Puntambekar HM, Srivastava P. Evaluation of the Antiviral Potential of Halogenated Dihydrorugosaflavonoids and Molecular Modeling with nsP3 Protein of Chikungunya Virus (CHIKV). ACS OMEGA 2019; 4:20335-20345. [PMID: 31815237 PMCID: PMC6893968 DOI: 10.1021/acsomega.9b02900] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
Antiviral therapy is crucial for the circumvention of viral epidemics. The unavailability of a specific antiviral drug against the chikungunya virus (CHIKV) disease has created an alarming situation to identify or develop potent chemical molecules for remedial management of CHIKV. In the present investigation, in silico studies of dihydrorugosaflavonoid derivatives (5a-f) with non-structural protein-3 (nsP3) were carried out. nsP3 replication protein has recently been considered as a possible antiviral target in which crucial inhibitors fit into the adenosine-binding pocket of the macrodomain. The 4'-halogenated dihydrorugosaflavonoids displayed intrinsic binding with the nsp3 macrodomain (PDB ID: 3GPO) of CHIKV. Compounds 5c and 5d showed docking scores of -7.54 and -6.86 kcal mol-1, respectively. Various in vitro assays were performed to confirm their (5a-f) antiviral potential against CHIKV. The non-cytotoxic dose was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and was found to be <100 μM. The compounds 5c and 5d showed their inhibitory potential for CHIKV, which was determined through cytopathic effect assay and plaque reduction assay, which show inhibition up to 95 and 92% for 70 μM concentration of the compounds, respectively. The quantitative real-time polymerase chain reaction assay result confirmed the ability of 5c and 5d to reduce the viral RNA level at 70 μM concentration of compounds to nearly 95 and 93% concentration, respectively, in cells with CHIKV infection. Further, the CHIKV-inhibitory capacity of these compounds was corroborated by execution of immunofluorescence assay. The executed work will be meaningful for the future research of studied dihydrorugosaflavonoids against prime antiviral entrants, leading to remedial management to preclude CHIKV infection.
Collapse
Affiliation(s)
- Ninad
V. Puranik
- Bioprospecting Group, Agharkar Research Institute, G. G. Agarkar Road, Pune 411004, Maharashtra, India
- Savitribai
Phule Pune University, Ganeshkhind, Pune 411007, India
| | - Ruchi Rani
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Vedita Anand Singh
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Shailly Tomar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Hemalata M. Puntambekar
- Bioprospecting Group, Agharkar Research Institute, G. G. Agarkar Road, Pune 411004, Maharashtra, India
- Savitribai
Phule Pune University, Ganeshkhind, Pune 411007, India
| | - Pratibha Srivastava
- Bioprospecting Group, Agharkar Research Institute, G. G. Agarkar Road, Pune 411004, Maharashtra, India
- Savitribai
Phule Pune University, Ganeshkhind, Pune 411007, India
| |
Collapse
|
23
|
The use of green fluorescent protein-tagged virus-like particles as a tracer in the early phase of chikungunya infection. Virus Res 2019; 272:197732. [PMID: 31445103 DOI: 10.1016/j.virusres.2019.197732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/13/2019] [Accepted: 08/20/2019] [Indexed: 11/22/2022]
Abstract
To visually examine the early phase of chikungunya virus (CHIKV) infection in target cells, we constructed a virus-like particle (VLP) in which the envelope protein E1 is fused with green fluorescent protein (GFP). This chikungunya VLP-GFP (CHIK-VLP-EGFP), purified by density gradient fractionation, was observed as 60-70 nm-dia. particles and was detected as tiny puncta of fluorescence in the cells. CHIK-VLP-EGFP showed binding properties similar to those of the wild-type viruses. Most of the fluorescence signals that had bound on Vero cells disappeared within 30 min at 37 °C, but not in the presence of anti-CHIKV neutralizing serum or an endosomal acidification inhibitor (bafilomycin A1), suggesting that the loss of fluorescence signals is due to the disassembly of the viral envelope following the internalization of CHIK-VLP-EGFP. In addition to these results, the fluorescence signals disappeared in highly susceptible Vero and U251MG cells but not in poorly susceptible A549 cells. Thus, CHIK-VLP-EGFP is a useful tool to examine the effects of the CHIKV neutralizing antibodies and antiviral compounds that are effective in the entry phase of CHIKV.
Collapse
|
24
|
Mandary MB, Masomian M, Poh CL. Impact of RNA Virus Evolution on Quasispecies Formation and Virulence. Int J Mol Sci 2019; 20:E4657. [PMID: 31546962 PMCID: PMC6770471 DOI: 10.3390/ijms20184657] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022] Open
Abstract
RNA viruses are known to replicate by low fidelity polymerases and have high mutation rates whereby the resulting virus population tends to exist as a distribution of mutants. In this review, we aim to explore how genetic events such as spontaneous mutations could alter the genomic organization of RNA viruses in such a way that they impact virus replications and plaque morphology. The phenomenon of quasispecies within a viral population is also discussed to reflect virulence and its implications for RNA viruses. An understanding of how such events occur will provide further evidence about whether there are molecular determinants for plaque morphology of RNA viruses or whether different plaque phenotypes arise due to the presence of quasispecies within a population. Ultimately this review gives an insight into whether the intrinsically high error rates due to the low fidelity of RNA polymerases is responsible for the variation in plaque morphology and diversity in virulence. This can be a useful tool in characterizing mechanisms that facilitate virus adaptation and evolution.
Collapse
Affiliation(s)
- Madiiha Bibi Mandary
- Center for Virus and Vaccine Research, School of Science and Technology, Sunway University, Kuala Lumpur, Selangor 47500, Malaysia
| | - Malihe Masomian
- Center for Virus and Vaccine Research, School of Science and Technology, Sunway University, Kuala Lumpur, Selangor 47500, Malaysia
| | - Chit Laa Poh
- Center for Virus and Vaccine Research, School of Science and Technology, Sunway University, Kuala Lumpur, Selangor 47500, Malaysia.
| |
Collapse
|
25
|
Jin J, Simmons G. Antiviral Functions of Monoclonal Antibodies against Chikungunya Virus. Viruses 2019; 11:E305. [PMID: 30925717 PMCID: PMC6520934 DOI: 10.3390/v11040305] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 12/24/2022] Open
Abstract
Chikungunya virus (CHIKV) is the most common alphavirus infecting humans worldwide. Antibodies play pivotal roles in the immune response to infection. Increasingly, therapeutic antibodies are becoming important for protection from pathogen infection for which neither vaccine nor treatment is available, such as CHIKV infection. The new generation of ultra-potent and/or broadly cross-reactive monoclonal antibodies (mAbs) provides new opportunities for intervention. In the past decade, several potent human and mouse anti-CHIKV mAbs were isolated and demonstrated to be protective in vivo. Mechanistic studies of these mAbs suggest that mAbs exert multiple modes of action cooperatively. Better understanding of these antiviral mechanisms for mAbs will help to optimize mAb therapies.
Collapse
Affiliation(s)
- Jing Jin
- Vitalant Research Institute, San Francisco, CA 94118, USA.
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, CA 94143, USA.
| | - Graham Simmons
- Vitalant Research Institute, San Francisco, CA 94118, USA.
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
26
|
The Alphavirus E2 Membrane-Proximal Domain Impacts Capsid Interaction and Glycoprotein Lattice Formation. J Virol 2019; 93:JVI.01881-18. [PMID: 30463969 DOI: 10.1128/jvi.01881-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 11/13/2018] [Indexed: 11/20/2022] Open
Abstract
Alphaviruses are small enveloped RNA viruses that bud from the host cell plasma membrane. Alphavirus particles have a highly organized structure, with a nucleocapsid core containing the RNA genome surrounded by the capsid protein, and a viral envelope containing 80 spikes, each a trimer of heterodimers of the E1 and E2 glycoproteins. The capsid protein and envelope proteins are both arranged in organized lattices that are linked via the interaction of the E2 cytoplasmic tail/endodomain with the capsid protein. We previously characterized the role of two highly conserved histidine residues, H348 and H352, located in an external, juxtamembrane region of the E2 protein termed the D-loop. Alanine substitutions of H348 and H352 inhibit virus growth by impairing late steps in the assembly/budding of virus particles at the plasma membrane. To investigate this budding defect, we selected for revertants of the E2-H348/352A double mutant. We identified eleven second-site revertants with improved virus growth and mutations in the capsid, E2 and E1 proteins. Multiple isolates contained the mutation E2-T402K in the E2 endodomain or E1-T317I in the E1 ectodomain. Both of these mutations were shown to partially restore H348/352A growth and virus assembly/budding, while neither rescued the decreased thermostability of H348/352A. Within the alphavirus particle, these mutations are positioned to affect the E2-capsid interaction or the E1-mediated intertrimer interactions at the 5-fold axis of symmetry. Together, our results support a model in which the E2 D-loop promotes the formation of the glycoprotein lattice and its interactions with the internal capsid protein lattice.IMPORTANCE Alphaviruses include important human pathogens such as Chikungunya and the encephalitic alphaviruses. There are currently no licensed alphavirus vaccines or effective antiviral therapies, and more molecular information on virus particle structure and function is needed. Here, we highlight the important role of the E2 juxtamembrane D-loop in mediating virus budding and particle production. Our results demonstrated that this E2 region affects both the formation of the external glycoprotein lattice and its interactions with the internal capsid protein shell.
Collapse
|
27
|
Attenuation and Stability of CHIKV-NoLS, a Live-Attenuated Chikungunya Virus Vaccine Candidate. Vaccines (Basel) 2018; 7:vaccines7010002. [PMID: 30583514 PMCID: PMC6465992 DOI: 10.3390/vaccines7010002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/12/2018] [Accepted: 12/17/2018] [Indexed: 12/25/2022] Open
Abstract
Our previous investigation of the nucleolar localisation sequence (NoLS) of chikungunya virus (CHIKV) capsid protein demonstrated the role of capsid in CHIKV virulence. Mutating the NoLS of capsid in CHIKV led to the development of a unique live-attenuated CHIKV vaccine candidate, termed CHIKV-NoLS. CHIKV-NoLS-immunised mice developed long-term immunity from CHIKV infection after a single dose. To further evaluate CHIKV-NoLS attenuation and suitability as a vaccine, we examined the footpad of inoculated mice for underlying CHIKV-NoLS-induced immunopathology by histological and flow cytometric analysis. In comparison to CHIKV-WT-infected mice, CHIKV-NoLS-inoculated mice exhibited minimal inflammation and tissue damage. To examine the stability of attenuation, the plaque phenotype and replication kinetics of CHIKV-NoLS were determined following extended in vitro passage. The average plaque size of CHIKV-NoLS remained notably smaller than CHIKV-WT after extended passage and attenuated replication was maintained. To examine thermostability, CHIKV-NoLS was stored at 21 °C, 4 °C, −20 °C and −80 °C and infectious CHIKV-NoLS quantified up to 84 days. The infectious titre of CHIKV-NoLS remains stable after 56 days when stored at either −20 °C or −80 °C. Interestingly, unlike CHIKV-WT, the infectious titre of CHIKV-NoLS is not sensitive to freeze thaw cycles. These data further demonstrate preclinical safety and stability of CHIKV-NoLS.
Collapse
|
28
|
Brown RS, Wan JJ, Kielian M. The Alphavirus Exit Pathway: What We Know and What We Wish We Knew. Viruses 2018; 10:E89. [PMID: 29470397 PMCID: PMC5850396 DOI: 10.3390/v10020089] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 12/28/2022] Open
Abstract
Alphaviruses are enveloped positive sense RNA viruses and include serious human pathogens, such as the encephalitic alphaviruses and Chikungunya virus. Alphaviruses are transmitted to humans primarily by mosquito vectors and include species that are classified as emerging pathogens. Alphaviruses assemble highly organized, spherical particles that bud from the plasma membrane. In this review, we discuss what is known about the alphavirus exit pathway during a cellular infection. We describe the viral protein interactions that are critical for virus assembly/budding and the host factors that are involved, and we highlight the recent discovery of cell-to-cell transmission of alphavirus particles via intercellular extensions. Lastly, we discuss outstanding questions in the alphavirus exit pathway that may provide important avenues for future research.
Collapse
Affiliation(s)
- Rebecca S Brown
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Judy J Wan
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
29
|
Sharma R, Kesari P, Kumar P, Tomar S. Structure-function insights into chikungunya virus capsid protein: Small molecules targeting capsid hydrophobic pocket. Virology 2018; 515:223-234. [DOI: 10.1016/j.virol.2017.12.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 12/03/2017] [Accepted: 12/20/2017] [Indexed: 10/18/2022]
|
30
|
Abstract
Cleavage of the alphavirus precursor glycoprotein p62 into the E2 and E3 glycoproteins before assembly with the nucleocapsid is the key to producing fusion-competent mature spikes on alphaviruses. Here we present a cryo-EM, 6.8-Å resolution structure of an "immature" Chikungunya virus in which the cleavage site has been mutated to inhibit proteolysis. The spikes in the immature virus have a larger radius and are less compact than in the mature virus. Furthermore, domains B on the E2 glycoproteins have less freedom of movement in the immature virus, keeping the fusion loops protected under domain B. In addition, the nucleocapsid of the immature virus is more compact than in the mature virus, protecting a conserved ribosome-binding site in the capsid protein from exposure. These differences suggest that the posttranslational processing of the spikes and nucleocapsid is necessary to produce infectious virus.
Collapse
|
31
|
An Alphavirus E2 Membrane-Proximal Domain Promotes Envelope Protein Lateral Interactions and Virus Budding. mBio 2017; 8:mBio.01564-17. [PMID: 29114027 PMCID: PMC5676042 DOI: 10.1128/mbio.01564-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Alphaviruses are members of a group of small enveloped RNA viruses that includes important human pathogens such as Chikungunya virus and the equine encephalitis viruses. The virus membrane is covered by a lattice composed of 80 spikes, each a trimer of heterodimers of the E2 and E1 transmembrane proteins. During virus endocytic entry, the E1 glycoprotein mediates the low-pH-dependent fusion of the virus membrane with the endosome membrane, thus initiating virus infection. While much is known about E1 structural rearrangements during membrane fusion, it is unclear how the E1/E2 dimer dissociates, a step required for the fusion reaction. A recent Alphavirus cryo-electron microscopy reconstruction revealed a previously unidentified D subdomain in the E2 ectodomain, close to the virus membrane. A loop within this region, here referred to as the D-loop, contains two highly conserved histidines, H348 and H352, which were hypothesized to play a role in dimer dissociation. We generated Semliki Forest virus mutants containing the single and double alanine substitutions H348A, H352A, and H348/352A. The three D-loop mutations caused a reduction in virus growth ranging from 1.6 to 2 log but did not significantly affect structural protein biosynthesis or transport, dimer stability, virus fusion, or specific infectivity. Instead, growth reduction was due to inhibition of a late stage of virus assembly at the plasma membrane. The virus particles that are produced show reduced thermostability compared to the wild type. We propose the E2 D-loop as a key region in establishing the E1-E2 contacts that drive glycoprotein lattice formation and promote Alphavirus budding from the plasma membrane. Alphavirus infection causes severe and debilitating human diseases for which there are no effective antiviral therapies or vaccines. In order to develop targeted therapeutics, detailed molecular understanding of the viral entry and exit mechanisms is required. In this report, we define the role of the E2 protein juxtamembrane D-loop, which contains highly conserved histidine residues at positions 348 and 352. These histidines do not play an important role in virus fusion and infection. However, mutation of the D-loop histidines causes significant decreases in the assembly and thermostability of Alphavirus particles. Our results suggest that the E2 D-loop interacts with the E1 protein to promote Alphavirus budding.
Collapse
|
32
|
Aggarwal M, Kaur R, Saha A, Mudgal R, Yadav R, Dash PK, Parida M, Kumar P, Tomar S. Evaluation of antiviral activity of piperazine against Chikungunya virus targeting hydrophobic pocket of alphavirus capsid protein. Antiviral Res 2017; 146:102-111. [DOI: 10.1016/j.antiviral.2017.08.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/16/2017] [Accepted: 08/22/2017] [Indexed: 11/26/2022]
|
33
|
Lundberg L, Carey B, Kehn-Hall K. Venezuelan Equine Encephalitis Virus Capsid-The Clever Caper. Viruses 2017; 9:E279. [PMID: 28961161 PMCID: PMC5691631 DOI: 10.3390/v9100279] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 09/23/2017] [Accepted: 09/26/2017] [Indexed: 01/13/2023] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is a New World alphavirus that is vectored by mosquitos and cycled in rodents. It can cause disease in equines and humans characterized by a febrile illness that may progress into encephalitis. Like the capsid protein of other viruses, VEEV capsid is an abundant structural protein that binds to the viral RNA and interacts with the membrane-bound glycoproteins. It also has protease activity, allowing cleavage of itself from the growing structural polypeptide during translation. However, VEEV capsid protein has additional nonstructural roles within the host cell functioning as the primary virulence factor for VEEV. VEEV capsid inhibits host transcription and blocks nuclear import in mammalian cells, at least partially due to its complexing with the host CRM1 and importin α/β1 nuclear transport proteins. VEEV capsid also shuttles between the nucleus and cytoplasm and is susceptible to inhibitors of nuclear trafficking, making it a promising antiviral target. Herein, the role of VEEV capsid in viral replication and pathogenesis will be discussed including a comparison to proteins of other alphaviruses.
Collapse
Affiliation(s)
- Lindsay Lundberg
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA.
| | - Brian Carey
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA.
| | - Kylene Kehn-Hall
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA.
| |
Collapse
|
34
|
Ramsey J, Mukhopadhyay S. Disentangling the Frames, the State of Research on the Alphavirus 6K and TF Proteins. Viruses 2017; 9:v9080228. [PMID: 28820485 PMCID: PMC5580485 DOI: 10.3390/v9080228] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 08/03/2017] [Accepted: 08/16/2017] [Indexed: 01/04/2023] Open
Abstract
For 30 years it was thought the alphavirus 6K gene encoded a single 6 kDa protein. However, through a bioinformatics search 10 years ago, it was discovered that there is a frameshifting event and two proteins, 6K and transframe (TF), are translated from the 6K gene. Thus, many functions attributed to the 6K protein needed reevaluation to determine if they properly belong to 6K, TF, or both proteins. In this mini-review, we reevaluate the past research on 6K and put those results in context where there are two proteins, 6K and TF, instead of one. Additionally, we discuss the most cogent outstanding questions for 6K and TF research, including their collective importance in alphavirus budding and their potential importance in disease based on the latest virulence data.
Collapse
Affiliation(s)
- Jolene Ramsey
- Department of Biology at Indiana University, Bloomington, IN 47405, USA.
| | | |
Collapse
|
35
|
Ruiz-Guillen M, Gabev E, Quetglas JI, Casales E, Ballesteros-Briones MC, Poutou J, Aranda A, Martisova E, Bezunartea J, Ondiviela M, Prieto J, Hernandez-Alcoceba R, Abrescia NGA, Smerdou C. Capsid-deficient alphaviruses generate propagative infectious microvesicles at the plasma membrane. Cell Mol Life Sci 2016; 73:3897-916. [PMID: 27117550 PMCID: PMC7079800 DOI: 10.1007/s00018-016-2230-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/04/2016] [Accepted: 04/14/2016] [Indexed: 12/25/2022]
Abstract
Alphavirus budding is driven by interactions between nucleocapsids assembled in the cytoplasm and envelope proteins present at the plasma membrane. So far, the expression of capsid and envelope proteins in infected cells has been considered an absolute requirement for alphavirus budding and propagation. In the present study, we show that Semliki Forest virus and Sindbis virus lacking the capsid gene can propagate in mammalian and insect cells. This propagation is mediated by the release of infectious microvesicles (iMVs), which are pleomorphic and have a larger size and density than wild-type virus. iMVs, which contain viral RNA inside and viral envelope proteins on their surface, are released at the plasma membrane and infect cells using the endocytic pathway in a similar way to wild-type virus. iMVs are not pathogenic in immunocompetent mice when injected intravenously, but can infect different organs like lungs and heart. Finally, we also show that alphavirus genomes without capsid can mediate the propagation of heterologous genes, making these vectors potentially interesting for gene therapy or vaccination studies. The minimalist infectious system described in this study shows that a self-replicating RNA able to express membrane proteins with binding and fusion properties is able to propagate, providing some insights into virus evolution.
Collapse
Affiliation(s)
- Marta Ruiz-Guillen
- Division of Gene Therapy, CIMA, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- 3P Biopharmaceuticals S.L., Noain, Spain
| | - Evgeni Gabev
- Division of Gene Therapy, CIMA, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Jose I Quetglas
- Division of Gene Therapy, CIMA, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Erkuden Casales
- Division of Gene Therapy, CIMA, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | | | - Joanna Poutou
- Division of Gene Therapy, CIMA, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Alejandro Aranda
- Division of Gene Therapy, CIMA, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- UFR des Sciences de la Santé Simone Veil, 2 avenue de la Source de la Bievre, 78180, Montugny-le-Bretonneux, France
| | - Eva Martisova
- Division of Gene Therapy, CIMA, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Jaione Bezunartea
- Division of Gene Therapy, CIMA, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Experimental Ophthalmology Laboratory, School of Medicine, University of Navarra, Pamplona, Spain
| | - Marina Ondiviela
- Structural Biology Unit, CIC bioGUNE, CIBERehd, Bizkaia Technology Park, Derio, Spain
| | - Jesus Prieto
- Division of Gene Therapy, CIMA, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Liver Unit, Clinica Universitaria de Navarra, CIBERehd, Pamplona, Spain
| | - Ruben Hernandez-Alcoceba
- Division of Gene Therapy, CIMA, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Nicola G A Abrescia
- Structural Biology Unit, CIC bioGUNE, CIBERehd, Bizkaia Technology Park, Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Cristian Smerdou
- Division of Gene Therapy, CIMA, University of Navarra, Pamplona, Spain.
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
| |
Collapse
|
36
|
Wang JCY, Chen C, Rayaprolu V, Mukhopadhyay S, Zlotnick A. Self-Assembly of an Alphavirus Core-like Particle Is Distinguished by Strong Intersubunit Association Energy and Structural Defects. ACS NANO 2015; 9:8898-906. [PMID: 26275088 PMCID: PMC5683390 DOI: 10.1021/acsnano.5b02632] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Weak association energy can lead to uniform nanostructures: defects can anneal due to subunit lability. What happens when strong association energy leads to particles where defects are trapped? Alphaviruses are enveloped viruses whose icosahedral nucleocapsid core can assemble independently. We used a simplest case system to study Ross River virus (RRV) core-like particle (CLP) self-assembly using purified capsid protein and a short DNA oligomer. We find that capsid protein binds the oligomer with high affinity to form an assembly competent unit (U). Subsequently, U assembles with concentration dependence into CLPs. We determined that U-U pairwise interactions are very strong (ca. -6 kcal/mol) compared to other virus assembly systems. Assembled RRV CLPs appeared morphologically uniform and cryo-EM image reconstruction with imposed icosahedral symmetry yielded a T = 4 structure. However, 2D class averages of the CLPs show that virtually every class had disordered regions. These results suggested that irregular cores may be present in RRV virions. To test this hypothesis, we determined 2D class averages of RRV virions using authentic virions or only the core from intact virions isolated by computational masking. Virion-based class averages were symmetrical, geometric, and corresponded well to projections of image reconstructions. In core-based class averages, cores and envelope proteins in many classes were disordered. These results suggest that partly disordered components are common even in ostensibly well-ordered viruses, a biological realization of a patchy particle. Biological advantages of partly disordered complexes may arise from their ease of dissociation and asymmetry.
Collapse
Affiliation(s)
- Joseph Che-Yen Wang
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN
| | - Chao Chen
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN
| | | | | | - Adam Zlotnick
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN
- Department of Biology, Indiana University, Bloomington, IN
- Department of Chemistry, Indiana University, Bloomington, IN
| |
Collapse
|
37
|
Zheng Y, Kielian M. An alphavirus temperature-sensitive capsid mutant reveals stages of nucleocapsid assembly. Virology 2015; 484:412-420. [PMID: 26051211 DOI: 10.1016/j.virol.2015.05.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/05/2015] [Accepted: 05/12/2015] [Indexed: 11/17/2022]
Abstract
Alphaviruses have a nucleocapsid core composed of the RNA genome surrounded by an icosahedral lattice of capsid protein. An insertion after position 186 in the capsid protein produced a strongly temperature-sensitive growth phenotype. Even when the structural proteins were synthesized at the permissive temperature (28°C), subsequent incubation of the cells at the non-permissive temperature (37°C) dramatically decreased mutant capsid protein stability and particle assembly. Electron microscopy confirmed the presence of cytoplasmic nucleocapsids in mutant-infected cells cultured at the permissive temperature, but these nucleocapsids were not stable to sucrose gradient separation. In contrast, nucleocapsids isolated from mutant virus particles had similar stability to that of wildtype virus. Our data support a model in which cytoplasmic nucleocapsids go through a maturation step during packaging into virus particles. The insertion site lies in the interface between capsid proteins in the assembled nucleocapsid, suggesting the region where such a stabilizing transition occurs.
Collapse
Affiliation(s)
- Yan Zheng
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA.
| | - Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA.
| |
Collapse
|
38
|
Structural differences observed in arboviruses of the alphavirus and flavivirus genera. Adv Virol 2014; 2014:259382. [PMID: 25309597 PMCID: PMC4182009 DOI: 10.1155/2014/259382] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/28/2014] [Accepted: 08/18/2014] [Indexed: 12/22/2022] Open
Abstract
Arthropod borne viruses have developed a complex life cycle adapted to alternate between insect and vertebrate hosts. These arthropod-borne viruses belong mainly to the families Togaviridae, Flaviviridae, and Bunyaviridae. This group of viruses contains many pathogens that cause febrile, hemorrhagic, and encephalitic disease or arthritic symptoms which can be persistent. It has been appreciated for many years that these viruses were evolutionarily adapted to function in the highly divergent cellular environments of both insect and mammalian phyla. These viruses are hybrid in nature, containing viral-encoded RNA and proteins which are glycosylated by the host and encapsulate viral nucleocapsids in the context of a host-derived membrane. From a structural perspective, these virus particles are macromolecular machines adapted in design to assemble into a packaging and delivery system for the virus genome and, only when associated with the conditions appropriate for a productive infection, to disassemble and deliver the RNA cargo. It was initially assumed that the structures of the virus from both hosts were equivalent. New evidence that alphaviruses and flaviviruses can exist in more than one conformation postenvelopment will be discussed in this review. The data are limited but should refocus the field of structural biology on the metastable nature of these viruses.
Collapse
|
39
|
trans-Protease activity and structural insights into the active form of the alphavirus capsid protease. J Virol 2014; 88:12242-53. [PMID: 25100849 DOI: 10.1128/jvi.01692-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The alphavirus capsid protein (CP) is a serine protease that possesses cis-proteolytic activity essential for its release from the nascent structural polyprotein. The released CP further participates in viral genome encapsidation and nucleocapsid core formation, followed by its attachment to glycoproteins and virus budding. Thus, protease activity of the alphavirus capsid is a potential antialphaviral target to arrest capsid release, maturation, and structural polyprotein processing. However, the discovery of capsid protease inhibitors has been hampered due to the lack of a suitable screening assay and of the crystal structure in its active form. Here, we report the development of a trans-proteolytic activity assay for Aura virus capsid protease (AVCP) based on fluorescence resonance energy transfer (FRET) for screening protease inhibitors. Kinetic parameters using fluorogenic peptide substrates were estimated, and the K(m) value was found to be 2.63 ± 0.62 μM while the k(cat)/K(m) value was 4.97 × 10(4) M(-1) min(-1). Also, the crystal structure of the trans-active form of AVCP has been determined to 1.81-Å resolution. Structural comparisons of the active form with the crystal structures of available substrate-bound mutant and inactive blocked forms of the capsid protease identify conformational changes in the active site, the oxyanion hole, and the substrate specificity pocket residues, which could be critical for rational drug design. IMPORTANCE The alphavirus capsid protease is an attractive antiviral therapeutic target. In this study, we have described the formerly unappreciated trans-proteolytic activity of the enzyme and for the first time have developed a FRET-based protease assay for screening capsid protease inhibitors. Our structural studies unveil the structural features of the trans-active protease, which has been previously proposed to exist in the natively unfolded form (M. Morillas, H. Eberl, F. H. Allain, R. Glockshuber, and E. Kuennemann, J. Mol. Biol. 376:721-735, 2008, doi:http://dx.doi.org/10.1016/j.jmb.2007.11.055). The different enzymatic forms have been structurally compared to reveal conformational variations in the active and substrate binding sites. The flexible active-site residue Ser218, the disordered C-terminal residues after His261, and the presence of a water molecule in the oxyanion hole of AVCPΔ2 (AVCP with a deletion of the last two residues at the C terminus) reveal the effect of the C-terminal Trp267 deletion on enzyme structure. New structural data reported in this study along with the fluorogenic assay will be useful in substrate specificity characterization, high-throughput protease inhibitor screening, and structure-based development of antiviral drugs.
Collapse
|
40
|
Martinez MG, Snapp EL, Perumal GS, Macaluso FP, Kielian M. Imaging the alphavirus exit pathway. J Virol 2014; 88:6922-33. [PMID: 24696489 PMCID: PMC4054368 DOI: 10.1128/jvi.00592-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/30/2014] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED Alphaviruses are small enveloped RNA viruses with highly organized structures that exclude host cell proteins. They contain an internal nucleocapsid and an external lattice of the viral E2 and E1 transmembrane proteins. Alphaviruses bud from the plasma membrane (PM), but the process and dynamics of alphavirus assembly and budding are poorly understood. Here we generated Sindbis viruses (SINVs) with fluorescent protein labels on the E2 envelope protein and exploited them to characterize virus assembly and budding in living cells. During virus infection, E2 became enriched in localized patches on the PM and in filopodium-like extensions. These E2-labeled patches and extensions contained all of the viral structural proteins. Correlative light and electron microscopy studies established that the patches and extensions colocalized with virus budding structures, while light microscopy showed that they excluded a freely diffusing PM marker protein. Exclusion required the interaction of the E2 protein with the capsid protein, a critical step in virus budding, and was associated with the immobilization of the envelope proteins on the cell surface. Virus infection induced two distinct types of extensions: tubulin-negative extensions that were ∼2 to 4 μm in length and excluded the PM marker, and tubulin-positive extensions that were >10 μm long, contained the PM marker, and could transfer virus particles to noninfected cells. Tubulin-positive extensions were selectively reduced in cells infected with a nonbudding SINV mutant. Together, our data support a model in which alphavirus infection induces reorganization of the PM and cytoskeleton, leading to virus budding from specialized sites. IMPORTANCE Alphaviruses are important and widely distributed human pathogens for which vaccines and antiviral therapies are urgently needed. These small highly organized viruses bud from the host cell PM. Virus assembly and budding are critical but little understood steps in the alphavirus life cycle. We developed alphaviruses with fluorescent protein tags on one of the viral membrane (envelope) proteins and used a variety of microscopy techniques to follow the envelope protein and a host cell PM protein during budding. We showed that alphavirus infection induced the formation of patches and extensions on the PM where the envelope proteins accumulate. These sites excluded other PM proteins and correlated with virus budding structures. Exclusion of PM proteins required specific interactions of the viral envelope proteins with the internal capsid protein. Together, our data indicate that alphaviruses extensively reorganize the cell surface and cytoskeleton to promote their assembly and budding.
Collapse
Affiliation(s)
| | - Erik-Lee Snapp
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, USA Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Geoffrey S Perumal
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Frank P Macaluso
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
41
|
Rubella virus capsid protein structure and its role in virus assembly and infection. Proc Natl Acad Sci U S A 2013; 110:20105-10. [PMID: 24282305 DOI: 10.1073/pnas.1316681110] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rubella virus (RV) is a leading cause of birth defects due to infectious agents. When contracted during pregnancy, RV infection leads to severe damage in fetuses. Despite its medical importance, compared with the related alphaviruses, very little is known about the structure of RV. The RV capsid protein is an essential structural component of virions as well as a key factor in virus-host interactions. Here we describe three crystal structures of the structural domain of the RV capsid protein. The polypeptide fold of the RV capsid protomer has not been observed previously. Combining the atomic structure of the RV capsid protein with the cryoelectron tomograms of RV particles established a low-resolution structure of the virion. Mutational studies based on this structure confirmed the role of amino acid residues in the capsid that function in the assembly of infectious virions.
Collapse
|
42
|
Zheng Y, Kielian M. Imaging of the alphavirus capsid protein during virus replication. J Virol 2013; 87:9579-89. [PMID: 23785213 PMCID: PMC3754095 DOI: 10.1128/jvi.01299-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 06/14/2013] [Indexed: 01/02/2023] Open
Abstract
Alphaviruses are enveloped viruses with highly organized structures. The nucleocapsid (NC) core contains a capsid protein lattice enclosing the plus-sense RNA genome, and it is surrounded by a lipid bilayer containing a lattice of the E1 and E2 envelope glycoproteins. Capsid protein is synthesized in the cytoplasm and particle budding occurs at the plasma membrane (PM), but the traffic and assembly of viral components and the exit of virions from host cells are not well understood. To visualize the dynamics of capsid protein during infection, we developed a Sindbis virus infectious clone tagged with a tetracysteine motif. Tagged capsid protein could be fluorescently labeled with biarsenical dyes in living cells without effects on virus growth, morphology, or protein distribution. Live cell imaging and colocalization experiments defined distinct groups of capsid foci in infected cells. We observed highly motile internal puncta that colocalized with E2 protein, which may represent the transport machinery that capsid protein uses to reach the PM. Capsid was also found in larger nonmotile internal structures that colocalized with cellular G3BP and viral nsP3. Thus, capsid may play an unforeseen role in these previously observed G3BP-positive foci, such as regulation of cellular stress granules. Capsid puncta were also observed at the PM. These puncta colocalized with E2 and recruited newly synthesized capsid protein; thus, they may be sites of virus assembly and egress. Together, our studies provide the first dynamic views of the alphavirus capsid protein in living cells and a system to define detailed mechanisms during alphavirus infection.
Collapse
Affiliation(s)
- Yan Zheng
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | |
Collapse
|
43
|
Sahu A, Das B, Das M, Patra A, Biswal S, Kar SK, Hazra RK. Genetic characterization of E2 region of Chikungunya virus circulating in Odisha, Eastern India from 2010 to 2011. INFECTION GENETICS AND EVOLUTION 2013; 18:113-24. [PMID: 23684629 DOI: 10.1016/j.meegid.2013.04.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 04/10/2013] [Accepted: 04/29/2013] [Indexed: 11/17/2022]
Abstract
Chikungunya virus (CHIKV) infection has caught attention yet again as it rages around the globe affecting millions of people. The virus caused epidemic outbreaks affecting more than 15,000 people in Odisha, Eastern India since 2010. In this study, complete genetic characterization of E2 gene of CHIKV circulating in Odisha from 2010 to 2011 was performed by virus isolation, RT-PCR, molecular phylogenetics and bioinformatics methods. Phylogenetic analyses revealed the circulation of Indian Ocean Lineage (IOL) strains of ECSA genotype of CHIKV in Odisha. Several mutations were detected in the E2 gene, viz. E2-R82G, E2-L210Q, E2-I211T, E2-V229I and E2-S375T which had various adaptive roles during the evolution of CHIKV. The CHIKV E2 peptide ⁵⁷KTDDSHD⁶³ was predicted to be the most probable T-cell epitope and peptide ⁸⁴FVRTSAPCT⁹² predicted to be the common T and B cell epitope having high antigenicity. The amino acid positions 356-379 and 365-385 were predicted to be transmembrane helical domains and indicated E2 protein anchorage in intracellular membranes for effective interaction with the host receptors. Positive selection pressure was observed in five specific sites, 210, 211, 318, 375, and 377 which were observed to be fixed advantageously in most viral isolates. Structural modeling revealed that E2 gene of CHIKV was composed of 3 domains and the major adaptive mutations were detected in domain B, which can modulate binding of CHIKV to host cells, while the transmembrane domain in domain C and the epitopes were located in domain A, which was found to be most conserved. This is the first report from Eastern India demonstrating a predictive approach to the genetic variations, epitopic regions and the transmembrane helices of the E2 region. The results of this study, combined with other published observations, will expand our knowledge about the E2 region of CHIKV which can be exploited to develop control measures against CHIKV.
Collapse
Affiliation(s)
- Abhipsa Sahu
- Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, Odisha 751023, India
| | | | | | | | | | | | | |
Collapse
|
44
|
Vaney MC, Duquerroy S, Rey FA. Alphavirus structure: activation for entry at the target cell surface. Curr Opin Virol 2013; 3:151-8. [PMID: 23623639 DOI: 10.1016/j.coviro.2013.04.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 04/05/2013] [Accepted: 04/05/2013] [Indexed: 01/27/2023]
Abstract
A wealth of new data about the 3D organization of alphavirus particles was obtained in the last few years. This includes the crystal structures of the envelope glycoprotein complexes at neutral and at acid pH, as well as electron microscopy reconstructions of intact virions at neutral pH to resolutions between 7Å and 4Å. The combination has provided unprecedented detail in the description of the alphavirus virion. This review surveys the main features discovered and the implications for the biology of the virus, in particular for the process of disassembly of the glycoprotein shell during entry. The major outstanding questions in this area are also identified and discussed.
Collapse
|
45
|
Sun S, Xiang Y, Akahata W, Holdaway H, Pal P, Zhang X, Diamond MS, Nabel GJ, Rossmann MG. Structural analyses at pseudo atomic resolution of Chikungunya virus and antibodies show mechanisms of neutralization. eLife 2013; 2:e00435. [PMID: 23577234 PMCID: PMC3614025 DOI: 10.7554/elife.00435] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 02/18/2013] [Indexed: 01/07/2023] Open
Abstract
A 5.3 Å resolution, cryo-electron microscopy (cryoEM) map of Chikungunya virus-like particles (VLPs) has been interpreted using the previously published crystal structure of the Chikungunya E1-E2 glycoprotein heterodimer. The heterodimer structure was divided into domains to obtain a good fit to the cryoEM density. Differences in the T = 4 quasi-equivalent heterodimer components show their adaptation to different environments. The spikes on the icosahedral 3-fold axes and those in general positions are significantly different, possibly representing different phases during initial generation of fusogenic E1 trimers. CryoEM maps of neutralizing Fab fragments complexed with VLPs have been interpreted using the crystal structures of the Fab fragments and the VLP structure. Based on these analyses the CHK-152 antibody was shown to stabilize the viral surface, hindering the exposure of the fusion-loop, likely neutralizing infection by blocking fusion. The CHK-9, m10 and m242 antibodies surround the receptor-attachment site, probably inhibiting infection by blocking cell attachment. DOI:http://dx.doi.org/10.7554/eLife.00435.001.
Collapse
Affiliation(s)
- Siyang Sun
- Department of Biological Sciences, Purdue University, West Lafayette, United States
| | - Ye Xiang
- Department of Biological Sciences, Purdue University, West Lafayette, United States
| | - Wataru Akahata
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Heather Holdaway
- Department of Biological Sciences, Purdue University, West Lafayette, United States
| | - Pankaj Pal
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St Louis, United States
| | - Xinzheng Zhang
- Department of Biological Sciences, Purdue University, West Lafayette, United States
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St Louis, United States
| | - Gary J Nabel
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Michael G Rossmann
- Department of Biological Sciences, Purdue University, West Lafayette, United States,For correspondence:
| |
Collapse
|
46
|
Probing the early temporal and spatial interaction of the Sindbis virus capsid and E2 proteins with reverse genetics. J Virol 2012; 86:12372-83. [PMID: 22951842 DOI: 10.1128/jvi.01220-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
A 7-Å cryoelectron microscopy-based reconstruction of Sindbis virus (SINV) was recently generated. Fitting the crystal structure of the SINV capsid protein (Cp) into the density map revealed that the F2-G2 loop of the Cp was shifted away from cytoplasmic domain of E2 (cdE2) in the 7-Å reconstruction relative to its position in the Cp crystal structure. Furthermore, the reconstruction demonstrated that residue E395 in region I of the cytoplasmic domain of the E2 envelope protein (cdE2-RI) and K252 of Cp, part of the Cp F2-G2 loop, formed a putative salt bridge in the virion. We generated amino acid substitutions at residues K250 and K252 of the SINV Cp and explored the resulting phenotypes. In the context of cells infected with wild-type or mutant virus, reversing the charge of these two residues resulted in the appearance of Cp aggregates around cytopathic vacuole type I (CPV-I) structures, the absence of nucleocapsid (NC) formation, and a lack of virus particle release in the infected mammalian cell. However, expressing the same Cp mutants in the cell without the envelope proteins or expressing and purifying the mutants from an Escherichia coli expression system and assembling in vitro yielded NC assembly in all cases. In addition, second-site mutations within cdE2 restored NC assembly but not release of infectious particles. Our data suggest an early temporal and spatial interaction between cdE2-RI and the Cp F2-G2 loop that, when ablated, leads to the absence of NC assembly. This interaction also appears to be important for budding of virus particles.
Collapse
|
47
|
Abstract
Many pathogens important for medicine, veterinary medicine or public health belong to the genera alphavirus and rubivirus within the family Togaviridae. 29 species of alphaviruses have been reported, and most of them are arboviruses. Chikungnya virus re-emerged in Kenya in 2004 and the epidemics spread to the Indian Ocean islands and many countries in South Asia, South-East Asia and Europe. On the other hand, rubella virus, a sole member of the genus rubivirus, is the causative agent of rubella and congenital rubella syndrome (CRS). Because human is only a natural host of the virus and effective live attenuated vaccines are available, immunization activities are strengthened globally to eliminate rubella and CRS, together with measles.
Collapse
|
48
|
Cheng F, Tsvetkova IB, Khuong YL, Moore AW, Arnold RJ, Goicochea NL, Dragnea B, Mukhopadhyay S. The packaging of different cargo into enveloped viral nanoparticles. Mol Pharm 2012; 10:51-8. [PMID: 22876758 DOI: 10.1021/mp3002667] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Viral nanoparticles used for biomedical applications must be able to discriminate between tumor or virus-infected host cells and healthy host cells. In addition, viral nanoparticles must have the flexibility to incorporate a wide range of cargo, from inorganic metals to mRNAs to small molecules. Alphaviruses are a family of enveloped viruses for which some species are intrinsically capable of systemic tumor targeting. Alphavirus virus-like particles, or viral nanoparticles, can be generated from in vitro self-assembled core-like particles using nonviral nucleic acid. In this work, we expand on the types of cargo that can be incorporated into alphavirus core-like particles and the molecular requirements for packaging this cargo. We demonstrate that different core-like particle templates can be further enveloped to form viral nanoparticles that are capable of cell entry. We propose that alphaviruses can be selectively modified to create viral nanoparticles for biomedical applications and basic research.
Collapse
Affiliation(s)
- Fan Cheng
- Department of Biology, Indiana University, Bloomington, Indiana 47405, United States
| | | | | | | | | | | | | | | |
Collapse
|
49
|
A specific domain of the Chikungunya virus E2 protein regulates particle formation in human cells: implications for alphavirus vaccine design. J Virol 2012; 86:8879-83. [PMID: 22647698 DOI: 10.1128/jvi.00370-12] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Virus-like particles (VLPs) can be generated from Chikungunya virus (CHIKV), but different strains yield variable quantities of particles. Here, we define the genetic basis for these differences and show that amino acid 234 in E2 substantially affects VLP production. This site is located within the acid-sensitive region (ASR) known to initiate a major conformational change in E1/E2. Selected other mutations in the ASR, or changes in pH, also increased VLP yield. These results demonstrate that the ASR of E2 plays an important role in regulating particle generation.
Collapse
|
50
|
Interactions of the cytoplasmic domain of Sindbis virus E2 with nucleocapsid cores promote alphavirus budding. J Virol 2011; 86:2585-99. [PMID: 22190727 DOI: 10.1128/jvi.05860-11] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alphavirus budding from the plasma membrane occurs through the specific interaction of the nucleocapsid core with the cytoplasmic domain of the E2 glycoprotein (cdE2). Structural studies of the Sindbis virus capsid protein (CP) have suggested that these critical interactions are mediated by the binding of cdE2 into a hydrophobic pocket in the CP. Several molecular genetic studies have implicated amino acids Y400 and L402 in cdE2 as important for the budding of alphaviruses. In this study, we characterized the role of cdE2 residues in structural polyprotein processing, glycoprotein transport, and capsid interactions. Along with hydrophobic residues, charged residues in the N terminus of cdE2 were critical for the effective interaction of cores with cdE2, a process required for virus budding. Mutations in the C-terminal signal sequence region of cdE2 affected E2 protein transport to the plasma membrane, while nonbudding mutants that were defective in cdE2-CP interaction accumulated E2 on the plasma membrane. The interaction of cdE2 with cytoplasmic cores purified from infected cells and in vitro-assembled core-like particles suggests that cdE2 interacts with assembled cores to mediate budding. We hypothesize that these cdE2 interactions induce a change in the organization of the nucleocapsid core upon binding leading to particle budding and priming of the nucleocapsid cores for disassembly that is required for virus infection.
Collapse
|