1
|
Alluri SR, Kim SW, Volkow ND, Kil KE. PET Radiotracers for CNS-Adrenergic Receptors: Developments and Perspectives. Molecules 2020; 25:molecules25174017. [PMID: 32899124 PMCID: PMC7504810 DOI: 10.3390/molecules25174017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 12/30/2022] Open
Abstract
Epinephrine (E) and norepinephrine (NE) play diverse roles in our body’s physiology. In addition to their role in the peripheral nervous system (PNS), E/NE systems including their receptors are critical to the central nervous system (CNS) and to mental health. Various antipsychotics, antidepressants, and psychostimulants exert their influence partially through different subtypes of adrenergic receptors (ARs). Despite the potential of pharmacological applications and long history of research related to E/NE systems, research efforts to identify the roles of ARs in the human brain taking advantage of imaging have been limited by the lack of subtype specific ligands for ARs and brain penetrability issues. This review provides an overview of the development of positron emission tomography (PET) radiotracers for in vivo imaging of AR system in the brain.
Collapse
Affiliation(s)
- Santosh Reddy Alluri
- University of Missouri Research Reactor, University of Missouri, Columbia, MO 65211-5110, USA;
| | - Sung Won Kim
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892-1013, USA;
| | - Nora D. Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892-1013, USA;
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD 20892-1013, USA
- Correspondence: (N.D.V.); (K.-E.K.); Tel.: +1-(301)-443-6480 (N.D.V.); +1-(573)-884-7885 (K.-E.K.)
| | - Kun-Eek Kil
- University of Missouri Research Reactor, University of Missouri, Columbia, MO 65211-5110, USA;
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO 65211, USA
- Correspondence: (N.D.V.); (K.-E.K.); Tel.: +1-(301)-443-6480 (N.D.V.); +1-(573)-884-7885 (K.-E.K.)
| |
Collapse
|
2
|
Molecular Imaging of the Noradrenergic System in Idiopathic Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 141:251-274. [DOI: 10.1016/bs.irn.2018.07.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
3
|
[(18)F]-(fluoromethoxy)ethoxy)methyl)-1H-1,2,3-triazol-1-yl)propan-2-ol ([(18)F FPTC) a novel PET-ligand for cerebral beta-adrenoceptors. Nucl Med Biol 2013; 41:203-9. [PMID: 24480269 DOI: 10.1016/j.nucmedbio.2013.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 10/29/2013] [Indexed: 11/22/2022]
Abstract
UNLABELLED Cerebral β-adrenergic receptors (β-ARs) play important roles in normal brain and changes of β-AR expression are associated with several neuropsychiatric illnesses. Given the high density of β-AR in several brain regions, quantification of β-AR levels using PET is feasible. However, there is a lack of radiotracers with suitable biological properties and meeting safety requirements for use in humans. We developed a PET tracer for β-AR by (18)F-fluorination of 1-((9H-carbazol-4-yl)oxy)-3-4(4-((2-(2-(fluoromethoxy)-ethoxy)methyl)-1H-1,2,3-triazol-1-yl)propan-2-ol ((18)F-FPTC). METHODS [(18)F] FPTC was synthesized by Cu(I)-catalyzed alkyne-azide cycloaddition. First, (18)F-PEGylated alkyne was prepared by (18)F-fluorination of the corresponding tosylate. Next (18)F-PEGylated alkyne was reacted with an azidoalcohol derivative of 4-hydroxycarbazol in the presence of the phosphoramidite Monophos as a ligand and Cu(I) as a catalyst. After purification with radio-HPLC, the binding properties of [(18)F FPTC were tested in β-AR-expressing C6-glioma cells in vitro and in Wistar rats in vivo using microPET. RESULTS The radiochemical yield of (18)F-PEGylated alkyne was 74%-89%. The click reaction to prepare [(18)F]FPTC proceeded in 10min with a conversion efficiency of 96%. The total synthesis time was 55min from the end of bombardment. Specific activities were >120GBq/μmol. Propranolol strongly and dose-dependently inhibited the binding of both [(125)I]-ICYP and [(18)F]FPTC to C6 glioma cells, with IC50 values in the 50-60 nM range. However, although both FPTC and propranolol inhibited cellular [(125)I]ICYP binding, FPTC decreased [(125)I]ICYP uptake by only 25%, whereas propranolol reduced it by 83%. [(18)F]FPTC has the appropriate lipophilicity to penetrate the blood brain barrier (logP +2.48). The brain uptake reached a maximum within 2min after injection of 20-25MBq [(18)F]FPTC. SUV values ranged from 0.4 to 0.6 and were not reduced by propranolol. Cerebral distribution volume of the tracer (calculated from a Logan plot) was increased rather than decreased after propranolol treatment. CONCLUSION 'Click chemistry' was successfully applied to the synthesis of [(18)F]FPTC resulting in high radiochemical yields. [(18)F]FPTC showed specific binding in vitro, but not in vivo. Based on the logP value and its ability to block [(125)I]ICYP binding to C6 cells, FPTC may be a lead to suitable cerebral β-AR ligands.
Collapse
|
4
|
Elsinga PH, Doze P, Maas B, Van Waarde A, Wegman T, Vaalburg W. Synthesis and evaluation of radiolabelled antagonists for beta-adrenoceptor imaging in the brain with pet. J Labelled Comp Radiopharm 2012. [DOI: 10.1002/jlcr.2580440192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
5
|
Stephenson KA, Wilson AA, Meyer JH, Houle S, Vasdev N. Facile Radiosynthesis of Fluorine-18 Labeled β-Blockers. Synthesis, Radiolabeling, and ex Vivo Biodistribution of [18F]-(2S and 2R)-1-(1-Fluoropropan-2-ylamino)-3-(m-tolyloxy)propan-2-ol. J Med Chem 2008; 51:5093-100. [DOI: 10.1021/jm800227h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Karin A. Stephenson
- Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, M5T 1R8 Canada, and Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, M5T 1R8, Canada
| | - Alan A. Wilson
- Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, M5T 1R8 Canada, and Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, M5T 1R8, Canada
| | - Jeffrey H. Meyer
- Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, M5T 1R8 Canada, and Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, M5T 1R8, Canada
| | - Sylvain Houle
- Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, M5T 1R8 Canada, and Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, M5T 1R8, Canada
| | - Neil Vasdev
- Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, M5T 1R8 Canada, and Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, M5T 1R8, Canada
| |
Collapse
|
6
|
18F-labelled cardiac PET tracers: selected probes for the molecular imaging of transporters, receptors and proteases. Basic Res Cardiol 2008; 103:131-43. [DOI: 10.1007/s00395-008-0703-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
van Waarde A, Doorduin J, de Jong JR, Dierckx RA, Elsinga PH. Synthesis and preliminary evaluation of (S)-[11C]-exaprolol, a novel β-adrenoceptor ligand for PET. Neurochem Int 2008; 52:729-33. [DOI: 10.1016/j.neuint.2007.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Accepted: 09/03/2007] [Indexed: 10/22/2022]
|
8
|
Elsinga PH, van Waarde A, Vaalburg W. Receptor imaging in the thorax with PET. Eur J Pharmacol 2005; 499:1-13. [PMID: 15363946 DOI: 10.1016/j.ejphar.2004.06.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Revised: 06/23/2004] [Accepted: 06/29/2004] [Indexed: 10/26/2022]
Abstract
This review focuses on positron emission tomography (PET)-imaging of receptors in the sympathetic and the parasympathetic systems of heart and lung and highlights the human applications of PET. For the alpha-adrenoceptor, only [11C]GB67 (N2-[6-[(4-amino-6,7-dimethoxy-2-quinazolinyl)(methyl)amino]hexyl]-N2-[11C]methyl-2-furamide hydrochloride) has been developed. Its potential for application in patients needs to be assessed. For both the beta-adrenergic and the muscarinic systems, potent PET radioligands have been prepared and evaluated in patients. It has been possible to measure receptor densities quantitatively in human heart [[11C]MQNB: [11C]methylquinuclidinyl benzilate, [11C]CGP12177: S-(3'-t-butylamino-2'-hydroxypropoxy)-benzimidazol-2-[11C]one and [11C]CGP12388: (S)-4-(3-(2'-[11C]isopropylamino)-2-hydroxypropoxy)-2H-benzimidazol-2-one] and qualitatively in lung [[11C]VC002: N-[11C]-methyl-piperidin-4-yl-2-cyclohexyl-2-hydroxy-2-phenylacetate and [11C]CGP12177]. Besides these subtype nonselective radioligands, the development of compounds that are selective for one subtype are ongoing and have not found successful application in humans yet.
Collapse
Affiliation(s)
- Philip H Elsinga
- Groningen University Hospital, PET-center, P.O. Box 30001, 9700 RB Groningen, The Netherlands.
| | | | | |
Collapse
|
9
|
Valette H, Dollé F, Bottlaender M, Hinnen F, Marzin D. Fluoro-A-85380 demonstrated no mutagenic properties in in vivo rat micronucleus and Ames tests. Nucl Med Biol 2002; 29:849-53. [PMID: 12453596 DOI: 10.1016/s0969-8051(02)00331-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The potential mutagenic properties (micronucleus and the Ames tests) of fluoro-A-85380 (2-fluoro-3-[2(S)-2-azetidinylmethoxy]pyridine) were evaluated as a mandatory pre-clinical step. No statistically significant increase in the frequency of micronucleated polychromatic erythrocytes was found in animals treated at any dose tested. No biologically significant increase in the mean number of revertants was noted in all the Salmonella typhimurium strains tested with fluoro-A-85380. Therefore, fluoro-A-85380 demonstrated no mutagenic properties using these two tests.
Collapse
Affiliation(s)
- Héric Valette
- Service Hospitalier Frédéric Joliot, CEA, DSV/DRM, 4 Place du Général Leclerc, F-91406, Orsay, France.
| | | | | | | | | |
Collapse
|
10
|
Doze P, van Waarde A, Tewson TJ, Vaalburg W, Elsinga PH. Synthesis and evaluation of (S)-[18F]-fluoroethylcarazolol for in vivo beta-adrenoceptor imaging in the brain. Neurochem Int 2002; 41:17-27. [PMID: 11918968 DOI: 10.1016/s0197-0186(01)00140-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The beta-adrenergic receptor ligand (S)-4-(3-(2'-[18F]-fluoroethylamino)-2-hydroxypropoxy)-carbazol ((S)-[18F]-fluoroethylcarazolol) was prepared by reaction of [18F]-fluoroethylamine with the corresponding (S)-epoxide and was evaluated in rats by studying its pharmacokinetics and its binding profile both in vitro and in vivo. In vitro, (S)-fluoroethylcarazolol binds preferentially to beta-adrenoceptors (pK(i)=9.3 for beta(1) and 9.4 for beta(2)) and has less affinity to 5HT(1A) and 5HT(1D) receptors (pK(i)=6.7 and 5.2). In vivo, standard uptake values (SUVs) up to 0.63+/-0.07 in cortical regions were found after 60 min. Metabolites (90%) appeared within 10 min in plasma, whereas, in brain 70-75% parent compound was found after 60 min. Clearance from plasma occurred within 5 min. Cerebral uptake could be blocked by 'cold' fluoroethylcarazolol in every region, except medulla. Uptake was also blocked by propranolol and pindolol, but not by WAY 100635. ICI 89406 hardly lowered [18F] levels in brain. ICI 118551 reduced uptake of [18F] in cerebellum (mainly beta(2)) by 30%. Specific binding (tissue minus medulla values) in various brain regions corresponded with those observed for [18F]-fluorocarazolol (r(2)=0.95) and with in vitro beta-adrenoceptor densities (r(2)=0.76). Autoradiography using phosphor images of (S)-[18F]-fluoroethylcarazolol in rat brain showed the characteristic binding pattern of beta-antagonists, while propranolol treatment resulted in low and homogenous uptake. Regional tissue minus medulla values corresponded with in vitro beta-adrenoceptor densities (r(2)=0.77). We conclude that (S)-[18F]-fluoroethylcarazolol is a high affinity ligand that binds specifically to cerebral beta-adrenoceptors in vivo and may be of use for beta-adrenoceptor imaging in the brain with PET.
Collapse
Affiliation(s)
- P Doze
- PET Center, Groningen University Hospital, P.O. Box 30001, 9700 RB Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
11
|
Doze P, Elsinga PH, Maas B, Van Waarde A, Wegman T, Vaalburg W. Synthesis and evaluation of radiolabeled antagonists for imaging of beta-adrenoceptors in the brain with PET. Neurochem Int 2002; 40:145-55. [PMID: 11738481 DOI: 10.1016/s0197-0186(01)00081-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Five potent, lipophilic beta-adrenoceptor antagonists (carvedilol, pindolol, toliprolol and fluorinated analogs of bupranolol and penbutolol) were labeled with either carbon-11 or fluorine-18 and evaluated for cerebral beta-adrenoceptor imaging in experimental animals. The standard radioligand for autoradiography of beta-adrenoceptors, [125I]-iodocyanopindolol, was also included in this survey. All compounds showed either very low uptake in rat brain or a regional distribution that was not related to beta-adrenoceptors, whereas some ligands did display specific binding in heart and lungs. Apparently, the criteria of a high affinity and a moderately high lipophilicity were insufficient to predict the suitability of beta-adrenergic antagonists for visualization of beta-adrenoceptors in the central nervous system.
Collapse
Affiliation(s)
- Petra Doze
- PET-Center, Groningen University Hospital, P.O. Box 30.001, 9700 RB Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|