1
|
Yu X, Chen T, Huang N, Jin Y, Yang L. Skin Commensal Bacteria Modulates the Immune Balance of Mice to Alleviate Atopic Dermatitis-Induced Damage. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:4731675. [PMID: 36164402 PMCID: PMC9509248 DOI: 10.1155/2022/4731675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022]
Abstract
Objective Although studies indicate that Staphylococcus epidermidis (S. epidermidis) can regulate inflammation and anti-inflammatory cytokines, there is limited evidence supporting their effects on atopic dermatitis (AD). Here, we aimed to investigate the effects and potential mechanism of skin commensal bacteria on the immunity of mice with AD. Methods Twenty-four female BALB/C mice were selected and divided randomly into 4 groups: normal group, atopic dermatitis model group (AD), atopic dermatitis/substrate group (AD/substrates), and atopic dermatitis/substrates/epidermidis group (AD/S. epidermidis). All the mice were given different ways. After 14 days, their skin conditions were scored, and the serum, ear tissue, and inguinal lymph node tissue were collected and analyzed. Furthermore, the flow cytometry was used to analyze the number of CD4°+°CD25°+°Foxp3°+°Treg in the mouse lymph node tissue. Results Compared with the AD/substrate group, the mice ear thickness and dermatitis score were significantly reduced in the AD/S. epidermidis group; skin epidermis, acanthosis, the degree of keratinization, inflammatory cell infiltration in the dermis, and the number of mast cells were declined. The serum levels of IgE, IgG1, IgG2a, and TNF-α, IFN-γ, IL-4, and Eotaxin were significantly declined in the AD/S. epidermidis compared with the AD/substrate group. The proportion of CD4°+°CD25°+°Foxp3°+°Treg cells in the lymph node tissue was significantly increased in the AD/S. epidermidis group compared with the AD/substrate group. Conclusion Staphylococcus epidermidis can regulate mice's immune balance to alleviate AD-induced skin damage.
Collapse
Affiliation(s)
- Xianshui Yu
- Department of Dermatology, 920th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Kunming, Yunnan 650032, China
| | - Ting Chen
- Department of Pharmacy, 920th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Kunming, Yunnan 650032, China
| | - Ning Huang
- Department of Dermatology, 920th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Kunming, Yunnan 650032, China
| | - Yanxia Jin
- Department of Dermatology, 920th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Kunming, Yunnan 650032, China
| | - Ling Yang
- Department of Dermatology, 920th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Kunming, Yunnan 650032, China
| |
Collapse
|
2
|
A novel anti-human IL-1R7 antibody reduces IL-18-mediated inflammatory signaling. J Biol Chem 2021; 296:100630. [PMID: 33823154 PMCID: PMC8018910 DOI: 10.1016/j.jbc.2021.100630] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 12/17/2022] Open
Abstract
Unchecked inflammation can result in severe diseases with high mortality, such as macrophage activation syndrome (MAS). MAS and associated cytokine storms have been observed in COVID-19 patients exhibiting systemic hyperinflammation. Interleukin-18 (IL-18), a proinflammatory cytokine belonging to the IL-1 family, is elevated in both MAS and COVID-19 patients, and its level is known to correlate with the severity of COVID-19 symptoms. IL-18 binds its specific receptor IL-1 receptor 5 (IL-1R5, also known as IL-18 receptor alpha chain), leading to the recruitment of the coreceptor, IL-1 receptor 7 (IL-1R7, also known as IL-18 receptor beta chain). This heterotrimeric complex then initiates downstream signaling, resulting in systemic and local inflammation. Here, we developed a novel humanized monoclonal anti-IL-1R7 antibody to specifically block the activity of IL-18 and its inflammatory signaling. We characterized the function of this antibody in human cell lines, in freshly obtained peripheral blood mononuclear cells (PBMCs) and in human whole blood cultures. We found that the anti-IL-1R7 antibody significantly suppressed IL-18-mediated NFκB activation, reduced IL-18-stimulated IFNγ and IL-6 production in human cell lines, and reduced IL-18-induced IFNγ, IL-6, and TNFα production in PBMCs. Moreover, the anti-IL-1R7 antibody significantly inhibited LPS- and Candida albicans–induced IFNγ production in PBMCs, as well as LPS-induced IFNγ production in whole blood cultures. Our data suggest that blocking IL-1R7 could represent a potential therapeutic strategy to specifically modulate IL-18 signaling and may warrant further investigation into its clinical potential for treating IL-18-mediated diseases, including MAS and COVID-19.
Collapse
|
3
|
Godwin MS, Reeder KM, Garth JM, Blackburn JP, Jones M, Yu Z, Matalon S, Hastie AT, Meyers DA, Steele C. IL-1RA regulates immunopathogenesis during fungal-associated allergic airway inflammation. JCI Insight 2019; 4:129055. [PMID: 31550242 DOI: 10.1172/jci.insight.129055] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 09/19/2019] [Indexed: 12/12/2022] Open
Abstract
Severe asthma with fungal sensitization (SAFS) defines a subset of human asthmatics with allergy to 1 or more fungal species and difficult-to-control asthma. We have previously reported that human asthmatics sensitized to fungi have worse lung function and a higher degree of atopy, which was associated with higher IL-1 receptor antagonist (IL-1RA) levels in bronchoalveolar lavage fluid. IL-1RA further demonstrated a significant negative association with bronchial hyperresponsiveness to methacholine. Here, we show that IL-1α and IL-1β are elevated in both bronchoalveolar lavage fluid and sputum from human asthmatics sensitized to fungi, implicating an association with IL-1α, IL-1β, or IL-1RA in fungal asthma severity. In an experimental model of fungal-associated allergic airway inflammation, we demonstrate that IL-1R1 signaling promotes type 1 (IFN-γ, CXCL9, CXCL10) and type 17 (IL-17A, IL-22) responses that were associated with neutrophilic inflammation and increased airway hyperreactivity. Each of these were exacerbated in the absence of IL-1RA. Administration of human recombinant IL-1RA (Kineret/anakinra) during fungal-associated allergic airway inflammation improved airway hyperreactivity and lowered type 1 and type 17 responses. Taken together, these data suggest that IL-1R1 signaling contributes to fungal asthma severity via immunopathogenic type 1 and type 17 responses and can be targeted for improving allergic asthma severity.
Collapse
Affiliation(s)
- Matthew S Godwin
- Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA
| | - Kristen M Reeder
- Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA
| | - Jaleesa M Garth
- Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA
| | - Jonathan P Blackburn
- Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA
| | - MaryJane Jones
- Department of Microbiology and Immunology, Tulane University, New Orleans, Louisiana, USA
| | - Zhihong Yu
- Department of Anesthesiology, UAB, Birmingham, Alabama, USA
| | - Sadis Matalon
- Department of Anesthesiology, UAB, Birmingham, Alabama, USA
| | - Annette T Hastie
- Department of Medicine, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Deborah A Meyers
- Department of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Chad Steele
- Department of Microbiology and Immunology, Tulane University, New Orleans, Louisiana, USA
| |
Collapse
|
4
|
Bánki Z, Krabbendam L, Klaver D, Leng T, Kruis S, Mehta H, Müllauer B, Orth-Höller D, Stoiber H, Willberg CB, Klenerman P. Antibody opsonization enhances MAIT cell responsiveness to bacteria via a TNF-dependent mechanism. Immunol Cell Biol 2019; 97:538-551. [PMID: 30695101 PMCID: PMC6767153 DOI: 10.1111/imcb.12239] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 12/14/2018] [Accepted: 01/25/2019] [Indexed: 12/11/2022]
Abstract
Mucosal-associated invariant T (MAIT) cells are an abundant human T-cell subset with antimicrobial properties. They can respond to bacteria presented via antigen-presenting cells (APCs) such as macrophages, which present bacterially derived ligands from the riboflavin synthesis pathway on MR1. Moreover, MAIT cells are also highly responsive to cytokines which enhance and even substitute for T-cell receptor-mediated signaling. The mechanisms leading to an efficient presentation of bacteria to MAIT cells by APCs have not been fully elucidated. Here, we showed that the monocytic cell line THP-1 and B cells activated MAIT cells differentially in response to Escherichia coli. THP-1 cells were generally more potent in inducing IFNγ and IFNγ/TNF production by MAIT cells. Furthermore, THP-1, but not B, cells produced TNF upon bacterial stimulation, which in turn supported IFNγ production by MAIT cells. Finally, we addressed the role of antibody-dependent opsonization of bacteria in the activation of MAIT cells using in vitro models. We found that opsonization had a substantial impact on downstream MAIT cell activation by monocytes. This was associated with enhanced activation of monocytes and increased TNF release. Importantly, this TNF acted in concert with other cytokines to drive MAIT cell activation. These data indicate both a significant interaction between adaptive and innate immunity in the response to bacteria, and an important role for TNF in MAIT cell triggering.
Collapse
Affiliation(s)
- Zoltán Bánki
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lisette Krabbendam
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Dominik Klaver
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Tianqi Leng
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Simon Kruis
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hema Mehta
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Brigitte Müllauer
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Dorothea Orth-Höller
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Heribert Stoiber
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Tengesdal IW, Kitzenberg D, Li S, Nyuydzefe MS, Chen W, Weiss JM, Zhang J, Waksal SD, Zanin-Zhorov A, Dinarello CA. The selective ROCK2 inhibitor KD025 reduces IL-17 secretion in human peripheral blood mononuclear cells independent of IL-1 and IL-6. Eur J Immunol 2018; 48:1679-1686. [PMID: 30098001 DOI: 10.1002/eji.201847652] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/19/2018] [Accepted: 08/08/2018] [Indexed: 01/07/2023]
Abstract
Reducing the activities of the pro-inflammatory cytokine IL-17 is an effective treatment strategy for several chronic autoimmune disorders. Rho-associated coiled-coil containing kinase 2 (ROCK2) is a member of the serine-threonine protein kinase family that regulates IL-17 secretion in T cells via signal transducer and activator of transcription 3 (STAT3)-dependent mechanism. We reported here that the selective ROCK2 inhibitor KD025 significantly reduced in vitro production of IL-17 in unfractionated human peripheral blood mononuclear cells (PBMCs) stimulated with the dectin-1 agonist Candida albicans. C. albicans induced IL-17 was reduced by 70% (p < 0.0001); a similar reduction (80%) was observed in PBMC stimulated with the Toll-like receptor 2 agonist Staphylococcus epidermidis (p < 0.0001). Treatment of PBMC with KD025 was not associated with a reduction in IL-1β, IL-6 or IL-1α levels; in contrast, a 1.5 fold increase in the level of IL-1 receptor antagonist (IL-1Ra) was observed (p < 0.001). KD025 down-regulated C. albicans-induced Myosin Light Chain and STAT3, whereas STAT5 phosphorylation increased. Using anti-CD3/CD28 activation of the TCR, KD025 similarly suppressed IL-17 independent of a reduction in IL-1β. Thus, ROCK2 directly regulates IL-17 secretion independent of endogenous IL-1 and IL-6 supporting development of selective ROCK2 inhibitors for treatment of IL-17-driven inflammatory diseases.
Collapse
Affiliation(s)
- Isak W Tengesdal
- Dept. Medicine, University of Colorado Denver, Aurora, CO, USA
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Suzhao Li
- Dept. Medicine, University of Colorado Denver, Aurora, CO, USA
| | | | - Wei Chen
- Kadmon Corporation, LLC, New York, NY, USA
| | | | | | | | | | - Charles A Dinarello
- Dept. Medicine, University of Colorado Denver, Aurora, CO, USA
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
6
|
Staurengo-Ferrari L, Trevelin SC, Fattori V, Nascimento DC, de Lima KA, Pelayo JS, Figueiredo F, Casagrande R, Fukada SY, Teixeira MM, Cunha TM, Liew FY, Oliveira RD, Louzada-Junior P, Cunha FQ, Alves-Filho JC, Verri WA. Interleukin-33 Receptor (ST2) Deficiency Improves the Outcome of Staphylococcus aureus-Induced Septic Arthritis. Front Immunol 2018; 9:962. [PMID: 29867945 PMCID: PMC5968393 DOI: 10.3389/fimmu.2018.00962] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/18/2018] [Indexed: 01/29/2023] Open
Abstract
The ST2 receptor is a member of the Toll/IL-1R superfamily and interleukin-33 (IL-33) is its agonist. Recently, it has been demonstrated that IL-33/ST2 axis plays key roles in inflammation and immune mediated diseases. Here, we investigated the effect of ST2 deficiency in Staphylococcus aureus-induced septic arthritis physiopathology. Synovial fluid samples from septic arthritis and osteoarthritis individuals were assessed regarding IL-33 and soluble (s) ST2 levels. The IL-33 levels in samples from synovial fluid were significantly increased, whereas no sST2 levels were detected in patients with septic arthritis when compared with osteoarthritis individuals. The intra-articular injection of 1 × 107 colony-forming unity/10 μl of S. aureus American Type Culture Collection 6538 in wild-type (WT) mice induced IL-33 and sST2 production with a profile resembling the observation in the synovial fluid of septic arthritis patients. Data using WT, and ST2 deficient (−/−) and interferon-γ (IFN-γ)−/− mice showed that ST2 deficiency shifts the immune balance toward a type 1 immune response that contributes to eliminating the infection due to enhanced microbicide effect via NO production by neutrophils and macrophages. In fact, the treatment of ST2−/− bone marrow-derived macrophage cells with anti-IFN-γ abrogates the beneficial phenotype in the absence of ST2, which confirms that ST2 deficiency leads to IFN-γ expression and boosts the bacterial killing activity of macrophages against S. aureus. In agreement, WT cells achieved similar immune response to ST2 deficiency by IFN-γ treatment. The present results unveil a previously unrecognized beneficial effect of ST2 deficiency in S. aureus-induced septic arthritis.
Collapse
Affiliation(s)
- Larissa Staurengo-Ferrari
- Departamento de Patologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Silvia C Trevelin
- Cardiovascular Division, British Heart Foundation Centre, King's College London, London, United Kingdom.,Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Victor Fattori
- Departamento de Patologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Daniele C Nascimento
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Kalil A de Lima
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Jacinta S Pelayo
- Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Florêncio Figueiredo
- Laboratory of Pathology, Faculty of Medicine, University of Brasilia, Brasilia, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Healthy Sciences Centre, Londrina State University, Londrina, Brazil
| | - Sandra Y Fukada
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Mauro M Teixeira
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciencias Biologicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Foo Y Liew
- Division of Immunology, Infection and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Rene D Oliveira
- Division of Clinical Immunology, School of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Paulo Louzada-Junior
- Division of Clinical Immunology, School of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - José C Alves-Filho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Waldiceu A Verri
- Departamento de Patologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| |
Collapse
|
7
|
Månsson E, Sahdo B, Nilsdotter-Augustinsson Å, Särndahl E, Söderquist B. Lower activation of caspase-1 by Staphylococcus epidermidis isolated from prosthetic joint infections compared to commensals. J Bone Jt Infect 2018; 3:10-14. [PMID: 29545990 PMCID: PMC5852842 DOI: 10.7150/jbji.21567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/25/2017] [Indexed: 02/06/2023] Open
Abstract
Nosocomial sequence types of Staphylococcus epidermidis dominate in prosthetic joint infections. We examined caspase-1 activation in human neutrophils after incubation with Staphylococcus epidermidis isolated from prosthetic joint infections and normal skin flora. Active caspase-1 was lower after incubation with isolates from prosthetic joint infections than after incubation with commensal isolates. Both host and isolate dependent differences in active caspase-1 were noted. Our results indicate that there might be a host-dependent incapacity to elicit a strong caspase-1 response towards certain strains of S. epidermidis. Further experiments with a larger number of individuals are warranted.
Collapse
Affiliation(s)
- Emeli Månsson
- School of Medical Sciences.,iRiSC - Inflammatory Response and Infection Susceptibility Centre.,Region Västmanland - Uppsala University, Centre for Clinical Research, Hospital of Västmanland Västerås, SE-721 89 Västerås, Sweden
| | - Berolla Sahdo
- iRiSC - Inflammatory Response and Infection Susceptibility Centre
| | - Åsa Nilsdotter-Augustinsson
- Department of Infectious Diseases, and Department of Clinical and Experimental Medicine, Linköping University, SE-60182 Norrköping, Sweden
| | - Eva Särndahl
- School of Medical Sciences.,iRiSC - Inflammatory Response and Infection Susceptibility Centre
| | - Bo Söderquist
- School of Medical Sciences.,Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
| |
Collapse
|
8
|
Duffy D, Rouilly V, Libri V, Hasan M, Beitz B, David M, Urrutia A, Bisiaux A, Labrie ST, Dubois A, Boneca IG, Delval C, Thomas S, Rogge L, Schmolz M, Quintana-Murci L, Albert ML. Functional analysis via standardized whole-blood stimulation systems defines the boundaries of a healthy immune response to complex stimuli. Immunity 2014; 40:436-50. [PMID: 24656047 DOI: 10.1016/j.immuni.2014.03.002] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 01/15/2014] [Indexed: 12/24/2022]
Abstract
Standardization of immunophenotyping procedures has become a high priority. We have developed a suite of whole-blood, syringe-based assay systems that can be used to reproducibly assess induced innate or adaptive immune responses. By eliminating preanalytical errors associated with immune monitoring, we have defined the protein signatures induced by (1) medically relevant bacteria, fungi, and viruses; (2) agonists specific for defined host sensors; (3) clinically employed cytokines; and (4) activators of T cell immunity. Our results provide an initial assessment of healthy donor reference values for induced cytokines and chemokines and we report the failure to release interleukin-1α as a common immunological phenotype. The observed naturally occurring variation of the immune response may help to explain differential susceptibility to disease or response to therapeutic intervention. The implementation of a general solution for assessment of functional immune responses will help support harmonization of clinical studies and data sharing.
Collapse
Affiliation(s)
- Darragh Duffy
- Center for Human Immunology, Institut Pasteur, 75015 Paris, France; INSERM U818, 75015 Paris, France; Laboratory of Dendritic Cell Immunobiology, Department of Immunology, Institut Pasteur, 75015 Paris, France
| | - Vincent Rouilly
- Center for Human Immunology, Institut Pasteur, 75015 Paris, France; Center for Bioinformatics, Institut Pasteur, 75015 Paris, France
| | - Valentina Libri
- Center for Human Immunology, Institut Pasteur, 75015 Paris, France
| | - Milena Hasan
- Center for Human Immunology, Institut Pasteur, 75015 Paris, France
| | - Benoit Beitz
- Center for Human Immunology, Institut Pasteur, 75015 Paris, France
| | - Mikael David
- Center for Human Immunology, Institut Pasteur, 75015 Paris, France
| | - Alejandra Urrutia
- Center for Human Immunology, Institut Pasteur, 75015 Paris, France; INSERM U818, 75015 Paris, France; Laboratory of Dendritic Cell Immunobiology, Department of Immunology, Institut Pasteur, 75015 Paris, France
| | - Aurélie Bisiaux
- INSERM U818, 75015 Paris, France; Laboratory of Dendritic Cell Immunobiology, Department of Immunology, Institut Pasteur, 75015 Paris, France
| | | | - Annick Dubois
- Center for the Integration of Clinical Research, Institut Pasteur, 75015 Paris, France
| | - Ivo G Boneca
- Laboratory of Biology & Genetics of the Bacterial Cell Wall, Department of Microbiology, Institut Pasteur, 75015 Paris, France; INSERM, Equipe Avenir, 75015 Paris, France
| | - Cécile Delval
- Center for the Integration of Clinical Research, Institut Pasteur, 75015 Paris, France
| | - Stéphanie Thomas
- Center for Human Immunology, Institut Pasteur, 75015 Paris, France; INSERM U818, 75015 Paris, France; Laboratory of Dendritic Cell Immunobiology, Department of Immunology, Institut Pasteur, 75015 Paris, France
| | - Lars Rogge
- Center for Human Immunology, Institut Pasteur, 75015 Paris, France; Laboratory of Immunoregulation, Department of Immunology, Institut Pasteur, 75015 Paris, France
| | - Manfred Schmolz
- Myriad Rules Based Medicine, Inc., 72770 Reutlingen, Germany
| | - Lluis Quintana-Murci
- Laboratory of Human Evolutionary Genetics, Department of Genomes & Genetics, Institut Pasteur, 75015 Paris, France; CNRS URA3012, 75015 Paris, France.
| | - Matthew L Albert
- Center for Human Immunology, Institut Pasteur, 75015 Paris, France; INSERM U818, 75015 Paris, France; Laboratory of Dendritic Cell Immunobiology, Department of Immunology, Institut Pasteur, 75015 Paris, France; INSERM UMS20, 75015 Paris, France.
| | | |
Collapse
|
9
|
Abstract
Together with IL-12 or IL-15, interleukin-18 (IL-18) plays a major role in the production of interferon-γ from T-cells and natural killer cells; thus, IL-18 is considered to have a major role in the Th1 response. However, without IL-12, IL-18 is proinflammatory in an IFNγ independent manner. IL-18 is a member of the IL-1 family of cytokines and similar to IL-1β, the cytokine is synthesized as an inactive precursor requiring processing by caspase-1 into an active cytokine. IL-18 is also present as an integral membrane protein but requires caspase-1 for full activity in order to induce IFNγ. Uniquely, unlike IL-1β, the IL-18 precursor is constitutively present in nearly all cells in healthy humans and animals. The activity of IL-18 is balanced by the presence of a high-affinity, naturally occurring IL-18 binding protein (IL-18BP). In humans, increased disease severity can be associated with an imbalance of IL-18 to IL-18BP such that the levels of free IL-18 are elevated in the circulation. Increasing number of studies have expanded the role of IL-18 in mediating inflammation in animal models of disease using the IL-18BP, IL-18 deficient mice, neutralization of IL-18 or deficiency in the IL-18 receptor alpha chain. A role for IL-18 has been implicated in several autoimmune diseases, myocardial function, emphysema, metabolic syndromes, psoriasis, inflammatory bowel disease, macrophage activation syndrome, sepsis and acute kidney injury, although paradoxically, in some models of disease, IL-18 is protective. The IL-18BP has been used safely in humans and clinical trials of IL-18BP as well as neutralizing anti-IL-18 antibodies are being tested in various diseases.
Collapse
Affiliation(s)
- Daniela Novick
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Soohyun Kim
- Department of Biomedical Science and Technology, Konkuk University, Seoul, Republic of Korea
| | - Gilles Kaplanski
- UMR-S1076, Aix Marseille Université, Campus Timone, Marseille, France; Service de Médecine Interne, Hôpital de la Conception, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - Charles A Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States; Department of Medicine, University Medical Center Nijmegen, Nijmegen, The Netherlands.
| |
Collapse
|
10
|
Interleukin-18 is up-regulated in infectious pleural effusions. Cytokine 2013; 63:166-71. [PMID: 23660216 DOI: 10.1016/j.cyto.2013.04.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/05/2013] [Accepted: 04/11/2013] [Indexed: 12/28/2022]
Abstract
The aim of this study was to investigate the pleural and systemic expression of interleukin-18 (IL-18) in patients with pleural effusions (PEs), and the effects of the cytokine in mouse pleural space. One hundred and sixty patients, 23 with pleural effusions (PEs) due to heart failure, 60 malignant, 25 parapneumonic/empyemas, 15 tuberculous and 37 with exudates of miscellaneous etiologies were included in the study. Pleural fluid (PF) and serum IL-18 content was determined using ELISA. IL-18 was injected intrapleurally in mice and pleural inflammation was assessed using pleural lavage. The highest PF IL-18 levels were observed in parapneumonic PEs and the lowest PF IL-18 levels in patients with exudates of miscellaneous aetiologies and transudates. PF IL-18 levels were significantly higher in patients with empyemas compared to those with uncomplicated (p=0.009) or complicated (p=0.028) parapneumonic effusions, while serum levels did not differ significantly among the three groups. Pleural IL-18 content was higher than that of blood only in patients with empyemas. In patients with pleural exudates of all etiologies and in those with parapneumonic PEs/empyema, PF IL-18 levels were correlated with markers of acute pleural inflammation such as the percentage of PF neutrophils, PF LDH and PF/serum LDH ratio, low PF glucose and PF/serum glucose ratio and low PF pH. In mice, intrapleural IL-18 caused neutrophil-predominant pleural inflammation. In conclusion, IL-18 is linked to the intensity of neutrophilic pleural inflammation in patients with PEs, it is up-regulated in the pleural space of patients with empyema and it stimulates the accumulation of neutrophils in mouse pleura.
Collapse
|
11
|
Bellora F, Castriconi R, Doni A, Cantoni C, Moretta L, Mantovani A, Moretta A, Bottino C. M-CSF induces the expression of a membrane-bound form of IL-18 in a subset of human monocytes differentiating in vitro toward macrophages. Eur J Immunol 2012; 42:1618-26. [DOI: 10.1002/eji.201142173] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Francesca Bellora
- Dipartimento di Medicina Sperimentale; Università degli Studi di Genova; Genova; Italy
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Cerca F, Andrade F, França Â, Andrade EB, Ribeiro A, Almeida AA, Cerca N, Pier G, Azeredo J, Vilanova M. Staphylococcus epidermidis biofilms with higher proportions of dormant bacteria induce a lower activation of murine macrophages. J Med Microbiol 2011; 60:1717-1724. [PMID: 21799197 PMCID: PMC10727147 DOI: 10.1099/jmm.0.031922-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 07/22/2011] [Indexed: 02/02/2023] Open
Abstract
Staphylococcus epidermidis is an opportunistic pathogen and, due to its ability to establish biofilms, is a leading causative agent of indwelling medical device-associated infection. The presence of high amounts of dormant bacteria is a hallmark of biofilms, making them more tolerant to antimicrobials and to the host immune response. We observed that S. epidermidis biofilms grown in excess glucose accumulated high amounts of viable but non-culturable (VBNC) bacteria, as assessed by their low ratio of culturable bacteria over the number of viable bacteria. This effect, which was a consequence of the accumulation of acidic compounds due to glucose metabolism, was counteracted by high extracellular levels of calcium and magnesium added to the culture medium allowing modulation of the proportions of VBNC bacteria within S. epidermidis biofilms. Using bacterial inocula obtained from biofilms with high and low proportions of VBNC bacteria, their stimulatory effect on murine macrophages was evaluated in vitro and in vivo. The inoculum enriched in VBNC bacteria induced in vitro a lower production of tumour necrosis factor alpha, interleukin-1 and interleukin-6 by bone-marrow-derived murine macrophages and, in vivo, a lower stimulatory effect on peritoneal macrophages, assessed by increased surface expression of Gr1 and major histocompatibility complex class II molecules. Overall, these results show that environmental conditions, such as pH and extracellular levels of calcium and magnesium, can induce dormancy in S. epidermidis biofilms. Moreover, they show that bacterial suspensions enriched in dormant cells are less inflammatory, suggesting that dormancy can contribute to the immune evasion of biofilms.
Collapse
Affiliation(s)
- Filipe Cerca
- ICBAS – Instituto de Ciências Biomédicas de Abel Salazar, Largo do
Professor Abel Salazar 2, 4099-003 Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, Rua do Campo Alegre
83, Porto, Portugal
| | - Filipa Andrade
- ICBAS – Instituto de Ciências Biomédicas de Abel Salazar, Largo do
Professor Abel Salazar 2, 4099-003 Porto, Portugal
| | - Ângela França
- ICBAS – Instituto de Ciências Biomédicas de Abel Salazar, Largo do
Professor Abel Salazar 2, 4099-003 Porto, Portugal
- CEB-IBB, Campus de Gualtar, Universidade do Minho, 4710-057 Braga,
Portugal
| | - Elva Bonifácio Andrade
- ICBAS – Instituto de Ciências Biomédicas de Abel Salazar, Largo do
Professor Abel Salazar 2, 4099-003 Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, Rua do Campo Alegre
83, Porto, Portugal
| | - Adília Ribeiro
- ICBAS – Instituto de Ciências Biomédicas de Abel Salazar, Largo do
Professor Abel Salazar 2, 4099-003 Porto, Portugal
| | - Agostinho A. Almeida
- REQUIMTE, Departamento de Química–Física, Faculdade de Farmácia,
Universidade do Porto, Rua Aníbal Cunha 164, 4099-030 Porto, Portugal
| | - Nuno Cerca
- CEB-IBB, Campus de Gualtar, Universidade do Minho, 4710-057 Braga,
Portugal
| | - Gerald Pier
- Channing Laboratory, Department of Medicine, Brigham and Women's
Hospital, Boston, MA 02115, USA
| | - Joana Azeredo
- CEB-IBB, Campus de Gualtar, Universidade do Minho, 4710-057 Braga,
Portugal
| | - Manuel Vilanova
- ICBAS – Instituto de Ciências Biomédicas de Abel Salazar, Largo do
Professor Abel Salazar 2, 4099-003 Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, Rua do Campo Alegre
83, Porto, Portugal
| |
Collapse
|
13
|
Increased concentrations of IL-18 and uric acid in sickle cell anemia: contribution of hemolysis, endothelial activation and the inflammasome. Cytokine 2011; 56:471-6. [PMID: 21871815 DOI: 10.1016/j.cyto.2011.08.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 07/12/2011] [Accepted: 08/01/2011] [Indexed: 11/21/2022]
Abstract
Sickle cell anemia (SCA) is a common, severe monogenetic disorder characterized by chronic hemolysis, frequent infections, a chronic inflammatory state and recurrent occlusions of the microcirculation, resulting in painful crises, organ damage and premature death. This study evaluated associations between serum levels of IL-18, uric acid, hemolytic markers, and inflammatory molecules in SCA patients. A cross-sectional study was performed including 45 SCA patients (median age of 20.5 years) without general symptoms and who had not undergone blood transfusions. Inclusion criteria for the steady-state SCA patients were the absence of hospitalization and the absence of infections. Interleukin-18 and uric acid levels were correlated closely with markers of hemolysis, endothelial dysfunction and others cytokines levels. These findings suggest probable influences of IL-18 and uric acid in the pathophysiology of vascular occlusion in SCA. Additional studies should be performed to characterize similar prognosis markers and possible therapeutic targets.
Collapse
|
14
|
J774 macrophage-like cell line cytokine and chemokine patterns are modulated by Francisella tularensis LVS strain infection. Folia Microbiol (Praha) 2010; 55:191-200. [PMID: 20490763 DOI: 10.1007/s12223-010-0028-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 11/26/2009] [Indexed: 10/19/2022]
Abstract
Mutual interactions were investigated between intracellular parasitic bacterium Francisella tularensis (F.t.; highly virulent bacterium responsible for tularemia, replicating within the host macrophages) and murine macrophage-like cell line J774. Recombinant murine lymphokine INF-gamma and/or LPS derived from E. coli were determined to stimulate in vitro antimicrobial activity of macrophage-like J774 cell line against the live vaccine strain (LVS) of F.t. through their ability to produce proinflammatory cytokines and chemokines. F.t. infection up-regulated IL-12 p40 production and down-regulated TNF-alpha production by stimulated macrophages; on the other hand, F.t. infection did not affect the production of IL-8, IL-6, MCP-5, and RANTES by stimulated macrophages. This showed that F.t. infection modulates the cytokine synthesis by J774 macrophage cell line.
Collapse
|
15
|
Strunk T, Power Coombs MR, Currie AJ, Richmond P, Golenbock DT, Stoler-Barak L, Gallington LC, Otto M, Burgner D, Levy O. TLR2 mediates recognition of live Staphylococcus epidermidis and clearance of bacteremia. PLoS One 2010; 5:e10111. [PMID: 20404927 PMCID: PMC2852418 DOI: 10.1371/journal.pone.0010111] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2010] [Accepted: 03/19/2010] [Indexed: 12/12/2022] Open
Abstract
Background Staphylococcus epidermidis (SE) is a nosocomial pathogen that causes catheter-associated bacteremia in the immunocompromised, including those at the extremes of age, motivating study of host clearance mechanisms. SE-derived soluble components engage TLR2; but additional signaling pathways have also been implicated, and TLR2 can play complex, at times detrimental, roles in host defense against other Staphylococcal spp. The role of TLR2 in responses of primary blood leukocytes to live SE and in clearance of SE bacteremia, the most common clinical manifestation of SE infection, is unknown. Methodology/Principal Findings We studied TLR2-mediated recognition of live clinical SE strain 1457 employing TLR2-transfected cells, neutralizing anti-TLR antibodies and TLR2-deficient mice. TLR2 mediated SE-induced cytokine production in human embryonic kidney cells, human whole blood and murine primary macrophages, in part via recognition of a soluble TLR2 agonist. After i.v. challenge with SE, early (1 h) cytokine/chemokine production and subsequent clearance of bacteremia (24–48 h) were markedly impaired in TLR2-deficient mice. Conclusions/Significance TLR2 mediates recognition of live SE and clearance of SE bacteremia in vivo.
Collapse
Affiliation(s)
- Tobias Strunk
- School of Paediatrics and Child Health, University of Western Australia, Perth, Australia
| | - Melanie R. Power Coombs
- Division Infectious Diseases, Children's Hospital Boston, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Andrew J. Currie
- School of Paediatrics and Child Health, University of Western Australia, Perth, Australia
| | - Peter Richmond
- School of Paediatrics and Child Health, University of Western Australia, Perth, Australia
| | - Douglas T. Golenbock
- University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Liat Stoler-Barak
- Division Infectious Diseases, Children's Hospital Boston, Boston, Massachusetts, United States of America
| | - Leighanne C. Gallington
- Division Infectious Diseases, Children's Hospital Boston, Boston, Massachusetts, United States of America
| | - Michael Otto
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David Burgner
- School of Paediatrics and Child Health, University of Western Australia, Perth, Australia
- Murdoch Childrens Research Institute, Royal Childrens Hospital, Parkville, Victoria, Australia
| | - Ofer Levy
- Division Infectious Diseases, Children's Hospital Boston, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
16
|
Nold-Petry CA, Nold MF, Nielsen JW, Bustamante A, Zepp JA, Storm KA, Hong JW, Kim SH, Dinarello CA. Increased cytokine production in interleukin-18 receptor alpha-deficient cells is associated with dysregulation of suppressors of cytokine signaling. J Biol Chem 2009; 284:25900-11. [PMID: 19592492 DOI: 10.1074/jbc.m109.004184] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Since interleukin (IL)-18 is a proinflammatory cytokine, mice lacking IL-18 or its ligand-binding receptor (IL-18R) should exhibit decreased cytokine and chemokine production. Indeed, production of IL-1alpha, IL-6, and MIP-1alpha was reduced in IL-18 knock-out (ko) mouse embryonic fibroblast (MEF)-like cells. Unexpectedly, we observed a paradoxical 10-fold increase in IL-1beta-induced IL-6 production in MEF cells from mice deficient in the IL-18R alpha-chain (IL-18Ralpha) compared with wild type MEF. Similar increases were observed for IL-1alpha, MIP-1alpha, and prostaglandin E2. Likewise, coincubation with a specific IL-18Ralpha-blocking antibody augmented IL-1beta-induced cytokines in wild type and IL-18 ko MEF. Stable lines of IL-18Ralpha-depleted human A549 cells were generated using shRNA, resulting in an increase of IL-1beta-induced IL-1alpha, IL-6, and IL-8 compared to scrambled small hairpin RNA. In addition, we silenced IL-18Ralpha with small interfering RNA in primary human blood cells and observed up to 4-fold increases in the secretion of lipopolysaccharide- and IL-12/IL-18-induced IL-1beta, IL-6, interferon-gamma, and CD40L. Mechanistically, despite increases in Stat1 and IL-6, induction of SOCS1 and -3 (suppressor of cytokine signaling 1 and 3) was markedly reduced in the absence of IL-18Ralpha. Consistent with these observations, activation of the p38alpha/beta and ERK1/2 MAPKs and of protein kinase B/Akt increased in IL-18Ralpha ko MEF, whereas the negative feedback kinase MSK2 was more active in IL-18 ko cells. These data reveal a role for SOCS1 and -3 in the seemingly paradoxical hyperresponsive state in cells deficient in IL-18Ralpha, supporting the concept that IL-18Ralpha participates in both pro- and anti-inflammatory responses and that an endogenous ligand engages IL-18Ralpha to deliver an inhibitory signal.
Collapse
Affiliation(s)
- Claudia A Nold-Petry
- Department of Medicine, University of Colorado Denver, Aurora, Colorado 80045, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Pott GB, Chan ED, Dinarello CA, Shapiro L. Alpha-1-antitrypsin is an endogenous inhibitor of proinflammatory cytokine production in whole blood. J Leukoc Biol 2009; 85:886-95. [PMID: 19197072 DOI: 10.1189/jlb.0208145] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Several observations suggest endogenous suppressors of inflammatory mediators are present in human blood. alpha-1-Antitrypsin (AAT) is the most abundant serine protease inhibitor in blood, and AAT possesses anti-inflammatory activity in vitro and in vivo. Here, we show that in vitro stimulation of whole blood from persons with a genetic AAT deficiency resulted in enhanced cytokine production compared with blood from healthy subjects. Using whole blood from healthy subjects, dilution of blood with RPMI tissue-culture medium, followed by incubation for 18 h, increased spontaneous production of IL-8, TNF-alpha, IL-1 beta, and IL-1R antagonist (IL-1Ra) significantly, compared with undiluted blood. Dilution-induced cytokine production suggested the presence of one or more circulating inhibitors of cytokine synthesis present in blood. Serially diluting blood with tissue-culture medium in the presence of cytokine stimulation with heat-killed Staphylococcus epidermidis (S. epi) resulted in 1.2- to 55-fold increases in cytokine production compared with S. epi stimulation alone. Diluting blood with autologous plasma did not increase the production of IL-8, TNF-alpha, IL-1 beta, or IL-1Ra, suggesting that the endogenous, inhibitory activity of blood resided in plasma. In whole blood, diluted and stimulated with S. epi, exogenous AAT inhibited IL-8, IL-6, TNF-alpha, and IL-1 beta significantly but did not suppress induction of the anti-inflammatory cytokines IL-1Ra and IL-10. These ex vivo and in vitro observations suggest that endogenous AAT in blood contributes to the suppression of proinflammatory cytokine synthesis.
Collapse
Affiliation(s)
- Gregory B Pott
- Denver Veterans Affairs Medical Center, Department of Medicine, Division of Infectious Diseases, University of Colorado Denver, 12700 E. 19th Ave., Aurora, CO 80045, USA
| | | | | | | |
Collapse
|
18
|
Carvalho LP, Passos S, Bacellar O, Lessa M, Almeida RP, Magalhães A, Dutra WO, Gollob KJ, Machado P, de Jesus AR. Differential immune regulation of activated T cells between cutaneous and mucosal leishmaniasis as a model for pathogenesis. Parasite Immunol 2007; 29:251-8. [PMID: 17430548 PMCID: PMC2593461 DOI: 10.1111/j.1365-3024.2007.00940.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cutaneous (CL) and mucosal leishmaniasis (ML) are characterized by a predominant type 1 immune response (IFN-gamma and TNF-alpha production) and strong inflammatory response in the lesions with few parasites. This exacerbated type 1 response is more evident in ML as compared to CL. Our main hypothesis is that a differential immune regulation of T cell activation leads to over reactive T cells in ML. In the present study, we investigated immunological factors that could explain the mechanisms behind it by comparing some immune regulatory mechanisms between ML and CL patients: frequency of cells expressing co-stimulatory molecules, apoptotic markers, T cell activation markers; and ability of neutralizing antibodies to IL-2, IL-12 and IL-15 do down-regulate IFN-gamma production in leishmania antigen-stimulated peripheral blood mononuclear cells (PBMC). Interestingly, in CL anti-IL-2 and anti-IL-15 significantly suppressed antigen-specific IFN-gamma production, while in ML only anti-IL-2 suppressed IFN-gamma production. Finally, higher frequency of CD4+ T cells expressing CD28-, CD69+ and CD62L(low) were observed in ML as compared to CL. These data indicate that an exacerbated type 1 response in ML is differentially regulated and not appropriately down modulated, with increased frequencies of activated effectors T cells, maintaining the persistent inflammatory response and tissue damage observed in ML.
Collapse
Affiliation(s)
- L P Carvalho
- Serviço de Imunologia, Hospital Universitário Prof. Edgard Santos, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Moreno SE, Alves-Filho JC, Alfaya TM, da Silva JS, Ferreira SH, Liew FY. IL-12, but not IL-18, is critical to neutrophil activation and resistance to polymicrobial sepsis induced by cecal ligation and puncture. THE JOURNAL OF IMMUNOLOGY 2006; 177:3218-24. [PMID: 16920961 DOI: 10.4049/jimmunol.177.5.3218] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Sepsis is a systemic inflammatory response resulting from local infection due, at least in part, to impaired neutrophil migration. IL-12 and IL-18 play an important role in neutrophil migration. We have investigated the mechanism and relative role of IL-12 and IL-18 in polymicrobial sepsis induced by cecal ligation and puncture (CLP) in mice. Wild-type (WT) and IL-18(-/-) mice were resistant to sublethal CLP (SL-CLP) sepsis. In contrast, IL-12(-/-) mice were susceptible to SL-CLP sepsis with high bacteria load in peritoneal cavity and systemic inflammation (serum TNF-alpha and lung neutrophil infiltration). The magnitude of these events was similar to those observed in WT mice with lethal CLP sepsis. The inability of IL-12(-/-) mice to restrict the infection was not due to impairment of neutrophil migration, but correlated with decrease of phagocytosis, NO production, and microbicidal activities of their neutrophils, and with reduction of systemic IFN-gamma synthesis. Consistent with this observation, IFN-gamma(-/-) mice were as susceptible to SL-CLP as IL-12(-/-) mice. Moreover, addition of IFN-gamma to cultures of neutrophils from IL-12(-/-) mice restored their phagocytic, microbicidal activities and NO production. Mortality of IL-12(-/-) mice to SL-CLP was prevented by treatment with IFN-gamma. Thus we show that IL-12, but not IL-18, is critical to an efficient host defense in polymicrobial sepsis. IL-12 acts through induction of IFN-gamma and stimulation of phagocytic and microbicidal activities of neutrophils, rather than neutrophil migration per se. Our data therefore provide further insight into the defense mechanism against this critical area of infectious disease.
Collapse
Affiliation(s)
- Susana E Moreno
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
20
|
Warris A, Netea MG, Verweij PE, Gaustad P, Kullberg BJ, Weemaes CMR, Abrahamsen TG. Cytokine responses and regulation of interferon-gamma release by human mononuclear cells toAspergillus fumigatusand other filamentous fungi. Med Mycol 2005; 43:613-21. [PMID: 16396246 DOI: 10.1080/13693780500088333] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
There is substantial evidence that the production of proinflammatory cytokines is important in host resistance to invasive aspergillosis. Knowledge of the host response towards other filamentous fungi is scarce, as most studies have focused on Aspergillus fumigatus. In addition, interferon-gamma (IFNgamma) plays a crucial role in the control of invasive aspergillosis, but little is known about the regulation of IFNgamma after stimulation of mononuclear cells by A. fumigatus. Cytokine responses to four different Aspergillus spp., Scedosporium prolificans, and a Rhizopus oryzae strain were compared for their ability to induce the release of tumour necrosis factor-alpha (TNFalpha) and interleukin(IL)-6 by human monocytes. S. prolificans induced significantly more TNFalpha and IL-6 release compared to A. fumigatus, while the various Aspergillus spp. induce comparable levels of these cytokines. By using specific cytokine inhibitors we were able to show that endogenous IL-1, but not IL-18 and TNFalpha was required for IFNgamma and IL-10 release upon stimulation with A. fumigatus hyphae, whereas conidia induced IFNgamma stimulation is independent of these cytokines.
Collapse
Affiliation(s)
- Adilia Warris
- Department of Paediatrics 435, University Medical Centre St Radboud, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|