1
|
Yang X, Annaert W. The Nanoscopic Organization of Synapse Structures: A Common Basis for Cell Communication. MEMBRANES 2021; 11:248. [PMID: 33808285 PMCID: PMC8065904 DOI: 10.3390/membranes11040248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 11/16/2022]
Abstract
Synapse structures, including neuronal and immunological synapses, can be seen as the plasma membrane contact sites between two individual cells where information is transmitted from one cell to the other. The distance between the two plasma membranes is only a few tens of nanometers, but these areas are densely populated with functionally different proteins, including adhesion proteins, receptors, and transporters. The narrow space between the two plasma membranes has been a barrier for resolving the synaptic architecture due to the diffraction limit in conventional microscopy (~250 nm). Various advanced super-resolution microscopy techniques, such as stimulated emission depletion (STED), structured illumination microscopy (SIM), and single-molecule localization microscopy (SMLM), bypass the diffraction limit and provide a sub-diffraction-limit resolving power, ranging from 10 to 100 nm. The studies using super-resolution microscopy have revealed unprecedented details of the nanoscopic organization and dynamics of synaptic molecules. In general, most synaptic proteins appear to be heterogeneously distributed and form nanodomains at the membranes. These nanodomains are dynamic functional units, playing important roles in mediating signal transmission through synapses. Herein, we discuss our current knowledge on the super-resolution nanoscopic architecture of synapses and their functional implications, with a particular focus on the neuronal synapses and immune synapses.
Collapse
Affiliation(s)
| | - Wim Annaert
- VIB Center for Brain and Disease Research and KU Leuven, Department of Neurosciences, Gasthuisberg, B-3000 Leuven, Belgium;
| |
Collapse
|
2
|
Lee KM, Chand KK, Hammond LA, Lavidis NA, Noakes PG. Functional decline at the aging neuromuscular junction is associated with altered laminin-α4 expression. Aging (Albany NY) 2017; 9:880-899. [PMID: 28301326 PMCID: PMC5391237 DOI: 10.18632/aging.101198] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/03/2017] [Indexed: 12/04/2022]
Abstract
Laminin-α4 is involved in the alignment of active zones to postjunctional folds at the neuromuscular junction (NMJ). Prior study has implicated laminin-α4 in NMJ maintenance, with altered NMJ morphology observed in adult laminin-α4 deficient mice (lama4−/−). The present study further investigated the role of laminin-α4 in NMJ maintenance by functional characterization of transmission properties, morphological investigation of synaptic proteins including synaptic laminin-α4, and neuromotor behavioral testing. Results showed maintained perturbed transmission properties at lama4−/− NMJs from adult (3 months) through to aged (18-22 months). Hind-limb grip force demonstrated similar trends as transmission properties, with maintained weaker grip force across age groups in lama4−/−. Interestingly, both transmission properties and hind-limb grip force in aged wild-types resembled those observed in adult lama4−/−. Most significantly, altered expression of laminin-α4 was noted at the wild-type NMJs prior to the observed decline in transmission properties, suggesting that altered laminin-α4 expression precedes the decline of neurotransmission in aging wild-types. These findings significantly support the role of laminin-α4 in maintenance of the NMJ during aging.
Collapse
Affiliation(s)
- Kah Meng Lee
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Kirat K Chand
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia.,University of Queensland Centre for Clinical Research, The University of Queensland, Herston, Queensland 4029, Australia
| | - Luke A Hammond
- Queensland Brain Institute, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Nickolas A Lavidis
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Peter G Noakes
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia.,Queensland Brain Institute, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
3
|
Affiliation(s)
- Andrew G Engel
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
4
|
Affiliation(s)
- Joshua R Sanes
- Department of Anatomy and Neurobiology, Washington University Medical School, St. Louis, Missouri 63110, USA.
| |
Collapse
|
5
|
Govind CK, Coulthard R, Pearce J. Allotransplanted nerves regenerate inhibitory synapses on a crayfish muscle: Possible postsynaptic specification. JOURNAL OF NEUROBIOLOGY 2002; 53:80-9. [PMID: 12360585 DOI: 10.1002/neu.10104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Donor nerves of different origins, when transplanted onto a previously denervated adult crayfish abdominal superficial flexor muscle (SFM), regenerate excitatory synaptic connections. Here we report that an inhibitory axon in these nerves also regenerates synaptic connections based on observation of nerve terminals with irregular to elliptically shaped synaptic vesicles characteristic of the inhibitory axon in aldehyde fixed tissue. Inhibitory terminals were found at reinnervated sites in all 12 allotransplanted-SFMs, underscoring the fact that the inhibitory axon regenerates just as reliably as the excitatory axons. At sites with degenerating nerve terminals and at sparsely reinnervated sites, we observe densely stained membranes, reminiscent of postsynaptic membranes, but occurring as paired, opposing membranes, extending between extracellular channels of the subsynaptic reticulum. These structures are not found at richly innervated sites in allotransplanted SFMs, in control SFMs, or at several other crustacean muscles. Although their identity is unknown, they are likely to be remnant postsynaptic membranes that become paired with collapse of degenerated nerve terminals of excitatory and inhibitory axons. Because these two axons have uniquely different receptor channels and intramembrane structure, their remnant postsynaptic membranes may therefore attract regenerating nerve terminals to form synaptic contacts selectively by excitatory or inhibitory axons, resulting in postsynaptic specification.
Collapse
Affiliation(s)
- C K Govind
- Life Sciences Division, University of Toronto at Scarborough, 1265 Military Trail, Scarborough, Ontario M1C 1A4 Canada.
| | | | | |
Collapse
|
6
|
Abstract
Inhibition of programmed cell death of motoneurons during embryonic development requires the presence of their target muscle and coincides with the initial stages of synaptogenesis. To evaluate the role of synapse formation on motoneuron survival during embryonic development, we counted the number of motoneurons in rapsyn-deficient mice. Rapsyn is a 43 kDa protein needed for the formation of postsynaptic specialisations at vertebrate neuromuscular synapses. Here we show that the rapsyn-deficient mice have a significant increase in the number of motoneurons in the brachial lateral motor column during the period of naturally occurring programmed cell death compared to their wild-type littermates. In addition, we observed an increase in intramuscular axonal branching in the rapsyn-deficient diaphragms compared to their wild-type littermates at embryonic day 18.5. These results suggest that deficits in the formation of the postsynaptic specialisation at the neuromuscular synapse, brought about by the absence of rapsyn, are sufficient to induce increases in both axonal branching and the survival of the innervating motoneuron. Moreover, these results support the idea that skeletal muscle activity through effective synaptic transmission and intramuscular axonal branching are major mechanisms that regulate motoneuron survival during development.
Collapse
Affiliation(s)
- G B Banks
- Department of Physiology and Pharmacology, University of Queensland, St. Lucia, Queensland 4072, Australia
| | | | | | | |
Collapse
|
7
|
Walsh FS, Hobbs C, Wells DJ, Slater CR, Fazeli S. Ectopic expression of NCAM in skeletal muscle of transgenic mice results in terminal sprouting at the neuromuscular junction and altered structure but not function. Mol Cell Neurosci 2000; 15:244-61. [PMID: 10736202 DOI: 10.1006/mcne.1999.0815] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The neuromuscular system provides an excellent model for the analysis of molecular interactions involved in the development and plasticity of synaptic contacts. The neural cell adhesion molecule (NCAM) is believed to be involved in the development and plasticity of the neuromuscular junction, in particular the axonal sprouting response observed in paralyzed and denervated muscle. In order to explore the role of myofiber NCAM in modulating the differentiation of motor neurons, we generated transgenic mice expressing a GPI-anchored NCAM isoform that is normally found in developing and denervated muscle, under the control of a skeletal muscle-specific promoter. This results in the constitutive expression of NCAM at postnatal ages, a time when the endogenous mouse NCAM is absent from the myofiber. We found that a significant number of neuromuscular junctions in adult transgenic animals displayed terminal sprouting (>20%) reminiscent of that elicited in response to cessation of neuromuscular activity. Additionally, a significant increase in the size and complexity of neuromuscular synapses as a result of extensive intraterminal sprouting was detected. Electrophysiological studies, however, revealed no significant alterations of neuromuscular transmission at this highly efficient synapse. Sprouting in response to paralysis or following nerve crush was also significantly enhanced in transgenic animals. These results suggest that in this ectopic expression model NCAM can directly modulate synaptic structure and motor neuron-muscle interactions. The results contrast with knockout experiments of the NCAM gene, where very limited changes in the neuromuscular system were observed.
Collapse
Affiliation(s)
- F S Walsh
- Department of Neuroscience Research, SmithKline Beecham Pharmaceuticals, New Frontiers Science Park North, Third Avenue, Harlow, Essex, CM19 5AW, United Kingdom
| | | | | | | | | |
Collapse
|
8
|
Hatada Y, Wu F, Silverman R, Schacher S, Goldberg DJ. En passant synaptic varicosities form directly from growth cones by transient cessation of growth cone advance but not of actin-based motility. JOURNAL OF NEUROBIOLOGY 1999; 41:242-51. [PMID: 10512981 DOI: 10.1002/(sici)1097-4695(19991105)41:2<242::aid-neu7>3.0.co;2-#] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Formation of terminal synapses at sites such as the neuromuscular junction involves transformation of the motile growth cone into the nonmotile synaptic terminal. However, transformation does not need to be the mechanism when a neurite forms multiple widely spaced synaptic varicosities along a target in an en passant configuration. Synaptic varicosities could form here by specialization of the neurite after the growth cone has advanced past the site. We examined this issue by using cocultures of identified sensory (SN) and motor (L7) neurons from Aplysia. Living SNs were labeled with fluorescent dye and their neurites were observed at high resolution every few minutes growing along the axon of L7, allowing a fine-grained analysis of the behavior of the growth cone at the sites of synapse formation. All varicosities whose formation was observed indeed developed from the growth cone. Sensory varicosities were shown by electron microscopy to contain features characteristic of active zones for transmitter release within a day of their formation on the motor axon. Growth cone advance slowed or stopped transiently during varicosity formation, but the motile activity of the peripheral region of the growth cone (veils and filopodia) was maintained. These results suggest that target "stop signals" involved in the formation of synapses, at least of the en passant variety, may be of a different type from the growth inhibitory molecules, such as the collapsins, which guide axons to their targets.
Collapse
Affiliation(s)
- Y Hatada
- Department of Pharmacology, Columbia University College of Physicians and Surgeons, and New York State Psychiatric Institute, 630 w. 168th St., New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
9
|
Son YJ, Patton BL, Sanes JR. Induction of presynaptic differentiation in cultured neurons by extracellular matrix components. Eur J Neurosci 1999; 11:3457-67. [PMID: 10564354 DOI: 10.1046/j.1460-9568.1999.00766.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Motoneurons reinnervating skeletal muscles form nerve terminals at sites of contact with a specialized basal lamina. To analyse the molecules and mechanisms that underly these responses, we introduce two systems in which basal lamina-derived components induce presynaptic differentiation of cultured neurons from chick ciliary ganglia in the absence of a postsynaptic cell. In one, ciliary neurites that contact substrates coated with a recombinant laminin beta2 fragment form varicosities that are rich in synaptic vesicle proteins, depleted of neurofilaments, and capable of depolarization-dependent exocytosis and endocytosis. Thus, a single molecule can trigger a complex, coordinated program of presynaptic differentiation. In a second system, neurites growing on cryostat sections of adult kidney form vesicle-rich, neurofilament-poor arbors on glomeruli. Glomerular basal lamina, like synaptic basal lamina, is rich in laminin beta2 and collagen (alpha3-5) IV. However, glomeruli from mutant mice lacking these proteins were capable of inducing differentiation, suggesting the glomerulus as a source of novel presynaptic organizing molecules.
Collapse
Affiliation(s)
- Y J Son
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | |
Collapse
|
10
|
Abstract
We describe the formation, maturation, elimination, maintenance, and regeneration of vertebrate neuromuscular junctions (NMJs), the best studied of all synapses. The NMJ forms in a series of steps that involve the exchange of signals among its three cellular components--nerve terminal, muscle fiber, and Schwann cell. Although essentially any motor axon can form NMJs with any muscle fiber, an additional set of cues biases synapse formation in favor of appropriate partners. The NMJ is functional at birth but undergoes numerous alterations postnatally. One step in maturation is the elimination of excess inputs, a competitive process in which the muscle is an intermediary. Once elimination is complete, the NMJ is maintained stably in a dynamic equilibrium that can be perturbed to initiate remodeling. NMJs regenerate following damage to nerve or muscle, but this process differs in fundamental ways from embryonic synaptogenesis. Finally, we consider the extent to which the NMJ is a suitable model for development of neuron-neuron synapses.
Collapse
Affiliation(s)
- J R Sanes
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
11
|
Hoedemaekers A, Bessereau JL, Graus Y, Guyon T, Changeux JP, Berrih-Aknin S, van Breda Vriesman P, De Baets MH. Role of the target organ in determining susceptibility to experimental autoimmune myasthenia gravis. J Neuroimmunol 1998; 89:131-41. [PMID: 9726835 DOI: 10.1016/s0165-5728(98)00126-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Injection of anti-AChR antibodies in passive transfer experimental autoimmune myasthenia gravis (EAMG) results in increased degradation of acetylcholine receptor (AChR) and increased synthesis of AChR alpha-subunit mRNA. Passive transfer of anti-Main Immunogenic Region (MIR) mAb 35 in aged rats does not induce clinical signs of disease nor AChR loss. The expression of the AChR subunit genes was analyzed in susceptible and resistant rats. In aged EAMG resistant rats, no increase in the amount of AChR alpha-subunit mRNA was measured. In vivo AChR degradation experiments did not show any increase in AChR degradation rates in aged resistant rats, in contrast to young susceptible rats. Taken together, these data demonstrate that resistance of the AChR protein to antibody-mediated degradation is the primary mechanism that accounts for the resistance to passive transfer EAMG in aged rats.
Collapse
MESH Headings
- Aging/immunology
- Animals
- Antibodies, Monoclonal/pharmacology
- Autoimmunity/immunology
- Biopsy
- Disease Models, Animal
- Female
- Gene Expression/immunology
- Muscle Denervation
- Muscle, Skeletal/immunology
- Muscle, Skeletal/innervation
- Muscle, Skeletal/pathology
- Myasthenia Gravis/immunology
- Neuromuscular Junction/chemistry
- Neuromuscular Junction/immunology
- Neuromuscular Junction/metabolism
- RNA, Messenger/analysis
- Rats
- Rats, Inbred BN
- Receptors, Cholinergic/genetics
- Receptors, Cholinergic/immunology
- Receptors, Cholinergic/metabolism
- Sciatic Nerve/surgery
- Synapses/chemistry
- Synapses/immunology
- Synapses/metabolism
- Up-Regulation/genetics
Collapse
Affiliation(s)
- A Hoedemaekers
- Maastricht University, Department of Immunology, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Hoedemaekers A, Bessereau JL, Graus Y, Guyon T, Changeux JP, Berrih-Aknin S, Van Breda Vriesman P, De Baets M. Differential susceptibility of young and old rat neuromuscular junctions to antibody-mediated AChR degradation in experimental autoimmune myasthenia gravis. Ann N Y Acad Sci 1998; 841:550-4. [PMID: 9668293 DOI: 10.1111/j.1749-6632.1998.tb10981.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- A Hoedemaekers
- Department of Immunology, Maastricht University, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Patton BL, Miner JH, Chiu AY, Sanes JR. Distribution and function of laminins in the neuromuscular system of developing, adult, and mutant mice. J Cell Biol 1997; 139:1507-21. [PMID: 9396756 PMCID: PMC2132624 DOI: 10.1083/jcb.139.6.1507] [Citation(s) in RCA: 363] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/1997] [Revised: 10/10/1997] [Indexed: 02/08/2023] Open
Abstract
Laminins, heterotrimers of alpha, beta, and gamma chains, are prominent constituents of basal laminae (BLs) throughout the body. Previous studies have shown that laminins affect both myogenesis and synaptogenesis in skeletal muscle. Here we have studied the distribution of the 10 known laminin chains in muscle and peripheral nerve, and assayed the ability of several heterotrimers to affect the outgrowth of motor axons. We show that cultured muscle cells express four different alpha chains (alpha1, alpha2, alpha4, and alpha5), and that developing muscles incorporate all four into BLs. The portion of the muscle's BL that occupies the synaptic cleft contains at least three alpha chains and two beta chains, but each is regulated differently. Initially, the alpha2, alpha4, alpha5, and beta1 chains are present both extrasynaptically and synaptically, whereas beta2 is restricted to synaptic BL from its first appearance. As development proceeds, alpha2 remains broadly distributed, whereas alpha4 and alpha5 are lost from extrasynaptic BL and beta1 from synaptic BL. In adults, alpha4 is restricted to primary synaptic clefts whereas alpha5 is present in both primary and secondary clefts. Thus, adult extrasynaptic BL is rich in laminin 2 (alpha2beta1gamma1), and synaptic BL contains laminins 4 (alpha2beta2gamma1), 9 (alpha4beta2gamma1), and 11 (alpha5beta2gamma1). Likewise, in cultured muscle cells, alpha2 and beta1 are broadly distributed but alpha5 and beta2 are concentrated at acetylcholine receptor-rich "hot spots," even in the absence of nerves. The endoneurial and perineurial BLs of peripheral nerve also contain distinct laminin chains: alpha2, beta1, gamma1, and alpha4, alpha5, beta2, gamma1, respectively. Mutation of the laminin alpha2 or beta2 genes in mice not only leads to loss of the respective chains in both nerve and muscle, but also to coordinate loss and compensatory upregulation of other chains. Notably, loss of beta2 from synaptic BL in beta2(-/-) "knockout" mice is accompanied by loss of alpha5, and decreased levels of alpha2 in dystrophic alpha2(dy/dy) mice are accompanied by compensatory retention of alpha4. Finally, we show that motor axons respond in distinct ways to different laminin heterotrimers: they grow freely between laminin 1 (alpha1beta1gamma1) and laminin 2, fail to cross from laminin 4 to laminin 1, and stop upon contacting laminin 11. The ability of laminin 11 to serve as a stop signal for growing axons explains, in part, axonal behaviors observed at developing and regenerating synapses in vivo.
Collapse
MESH Headings
- Aging/physiology
- Animals
- Cells, Cultured
- Chick Embryo
- Culture Media, Conditioned
- Embryonic and Fetal Development
- Ganglia, Parasympathetic/cytology
- Ganglia, Parasympathetic/physiology
- Gene Expression Regulation, Developmental
- Laminin/analysis
- Laminin/biosynthesis
- Laminin/physiology
- Macromolecular Substances
- Mice
- Mice, Knockout
- Motor Neurons/physiology
- Muscle Development
- Muscle, Skeletal/embryology
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/physiology
- Neuromuscular Junction/physiology
- Neurons/cytology
- Neurons/physiology
- Peripheral Nerves/embryology
- Peripheral Nerves/growth & development
- Peripheral Nerves/physiology
- Rats
- Synapses/physiology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- B L Patton
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
14
|
Grady RM, Teng H, Nichol MC, Cunningham JC, Wilkinson RS, Sanes JR. Skeletal and cardiac myopathies in mice lacking utrophin and dystrophin: a model for Duchenne muscular dystrophy. Cell 1997; 90:729-38. [PMID: 9288752 DOI: 10.1016/s0092-8674(00)80533-4] [Citation(s) in RCA: 502] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Dystrophin is a cytoskeletal protein of muscle fibers; its loss in humans leads to Duchenne muscular dystrophy, an inevitably fatal wasting of skeletal and cardiac muscle. mdx mice also lack dystrophin, but are only mildly dystrophic. Utrophin, a homolog of dystrophin, is confined to the postsynaptic membrane at skeletal neuromuscular junctions and has been implicated in synaptic development. However, mice lacking utrophin show only subtle neuromuscular defects. Here, we asked whether the mild phenotypes of the two single mutants reflect compensation between the two proteins. Synaptic development was qualitatively normal in double mutants, but dystrophy was severe and closely resembled that seen in Duchenne. Thus, utrophin attenuates the effects of dystrophin deficiency, and the double mutant may provide a useful model for studies of pathogenesis and therapy.
Collapse
Affiliation(s)
- R M Grady
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
15
|
Daniels MP. Intercellular communication that mediates formation of the neuromuscular junction. Mol Neurobiol 1997; 14:143-70. [PMID: 9294861 DOI: 10.1007/bf02740654] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Reciprocal signals between the motor axon and myofiber induce structural and functional differentiation in the developing neuromuscular junction (NMJ). Elevation of presynaptic acetylcholine (ACh) release on nerve-muscle contact and the correlated increase in axonal-free calcium are triggered by unidentified membrane molecules. Restriction of axon growth to the developing NMJ and formation of active zones for ACh release in the presynaptic terminal may be induced by molecules in the synaptic basal lamina, such as S-laminin, heparin binding growth factors, and agrin. Acetylcholine receptor (AChR) synthesis by muscle cells may be increased by calcitonin gene-related peptide (CGRP), ascorbic acid, and AChR-inducing activity (ARIA)/heregulin, which is the best-established regulator. Heparin binding growth factors, proteases, adhesion molecules, and agrin all may be involved in the induction of AChR redistribution to form postsynaptic-like aggregates. However, the strongest case has been made for agrin's involvement. "Knockout" experiments have implicated agrin as a primary anterograde signal for postsynaptic differentiation and muscle-specific kinase (MuSK), as a putative agrin receptor. It is likely that both presynaptic and postsynaptic differentiation are induced by multiple molecular signals. Future research should reveal the physiological roles of different molecules, their interactions, and the identity of other molecular participants.
Collapse
Affiliation(s)
- M P Daniels
- Laboratory of Biochemical Genetics, National Heart, Lung and Blood Institute, National Institute of Health, Bethesda, MD 20892, USA
| |
Collapse
|
16
|
Denzer AJ, Brandenberger R, Gesemann M, Chiquet M, Ruegg MA. Agrin binds to the nerve-muscle basal lamina via laminin. J Biophys Biochem Cytol 1997; 137:671-83. [PMID: 9151673 PMCID: PMC2139873 DOI: 10.1083/jcb.137.3.671] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Agrin is a heparan sulfate proteoglycan that is required for the formation and maintenance of neuromuscular junctions. During development, agrin is secreted from motor neurons to trigger the local aggregation of acetylcholine receptors (AChRs) and other proteins in the muscle fiber, which together compose the postsynaptic apparatus. After release from the motor neuron, agrin binds to the developing muscle basal lamina and remains associated with the synaptic portion throughout adulthood. We have recently shown that full-length chick agrin binds to a basement membrane-like preparation called Matrigel. The first 130 amino acids from the NH2 terminus are necessary for the binding, and they are the reason why, on cultured chick myotubes, AChR clusters induced by full-length agrin are small. In the current report we show that an NH2-terminal fragment of agrin containing these 130 amino acids is sufficient to bind to Matrigel and that the binding to this preparation is mediated by laminin-1. The fragment also binds to laminin-2 and -4, the predominant laminin isoforms of the muscle fiber basal lamina. On cultured myotubes, it colocalizes with laminin and is enriched in AChR aggregates. In addition, we show that the effect of full-length agrin on the size of AChR clusters is reversed in the presence of the NH2-terminal agrin fragment. These data strongly suggest that binding of agrin to laminin provides the basis of its localization to synaptic basal lamina and other basement membranes.
Collapse
Affiliation(s)
- A J Denzer
- Department of Pharmacology, Biozentrum, University of Basel, Switzerland
| | | | | | | | | |
Collapse
|
17
|
Ryan MC, Christiano AM, Engvall E, Wewer UM, Miner JH, Sanes JR, Burgeson RE. The functions of laminins: lessons from in vivo studies. Matrix Biol 1996; 15:369-81. [PMID: 9049976 DOI: 10.1016/s0945-053x(96)90157-2] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This series of three short reviews is an attempt to summarize our current knowledge of the in vivo tests of hypotheses of laminin functions. The structures of the laminins have been thoroughly reviewed recently (P. Ekblom and R. Timpl, in press), and I will not attempt to repeat this information here. Instead, I will focus on the recent evidence gathered from gene knock out experiments in mice and from naturally occurring human and mouse gene mutations. The most obvious lesson from the above studies--other than demonstrating the importance of laminins in general--is that the structural diversity of the laminin family members makes highly specialized functions possible. While all laminins may share many functional properties, the individual chains are involved in interactions which cannot be substituted for by other laminins or by other basement membrane components. While this concept is not new, it is very satisfying to see its validity so dramatically confirmed. It is therefore predictable that additional gene ablation experiments using other known and yet undescribed laminin genes will be equally interesting and informative. To me, one of the most striking lessons from these studies is how strongly the induced mouse mutations mimic human disease. With all the concerns with genetic background differences and species specific effects, manipulation of the laminin genes appears to be a particularly good first approach to identifying the causes of human disease. There is an abundant literature accumulated from biochemical and, more recently, molecular structural analyses, and from in vitro systems, suggesting a role of laminins contributing directly to the stability of the basement membrane. There is an equally vast literature supporting an indirect role in mediating cellular behavior, through interactions with various receptors. It is interesting that the in vivo studies summarized above support both activities. In the case of laminin 5 mutations, the phenotypic consequence appears to be due primarily to the loss of an important structural link between the epithelial cytokeratins and the dermal anchoring fibrils. The ultrastructure of the epithelium appears normal, as does the architecture of the papillary dermis. Only the anchoring complex itself is aberrant. The absence of laminin 5 appears not to compromise the development or viability of the epidermis. The basement membrane appears normal-other than the anchoring complex itself. The pathology observed in the newborn is believed to be due to the frictional trauma of birth, with the expectation that the function of the fetal skin is normal in utero. The Herlitz epidermolysis bullosa phenotype is obvious immediately at birth, and it does not progress postnatally beyond the extent to which the affected individual experiences additional frictional trauma or secondary consequences such as infection or fluid loss. Since laminin 5 is only one of a series of structural links within the anchoring complex, one would predict that a loss of any of these links would result in the same phenotype. Current evidence supports this view, as the absence of integrin alpha 6 beta 4 (Vidal et al., 1995; Dowling et al., 1996; Georges-Labouesse et al., 1996; van der Neut et al., 1996) or of collagen VII (A. M. Christiano and J. Uitto, in press) also results in dramatic neonatal dermal-epidermal fragility. The differences in phenotype, such as the pyloric atresia in the case of loss of integrin alpha 6 beta 4, are presumably due to additional functions of the integrin in other tissues or in other developmental processes. Therefore, the laminin 5 mutations may be unique, in that the in vivo studies suggest that the primary role of the molecule is in the elaboration and stability of the anchoring complex, but not in the basement membrane itself. Of course, since the in vivo phenotype reflects only losses that cannot be compensated, this interpretation may be much too narrow. (ABSTRACT TRUNCATED)
Collapse
Affiliation(s)
- M C Ryan
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
DeChiara TM, Bowen DC, Valenzuela DM, Simmons MV, Poueymirou WT, Thomas S, Kinetz E, Compton DL, Rojas E, Park JS, Smith C, DiStefano PS, Glass DJ, Burden SJ, Yancopoulos GD. The receptor tyrosine kinase MuSK is required for neuromuscular junction formation in vivo. Cell 1996; 85:501-12. [PMID: 8653786 DOI: 10.1016/s0092-8674(00)81251-9] [Citation(s) in RCA: 695] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Formation of neuromuscular synapses requires a series of inductive interactions between growing motor axons and differentiating muscle cells, culminating in the precise juxtaposition of a highly specialized nerve terminal with a complex molecular structure on the postsynaptic muscle surface. The receptors and signaling pathways mediating these inductive interactions are not known. We have generated mice with a targeted disruption of the gene encoding MuSK, a receptor tyrosine kinase selectively localized to the postsynaptic muscle surface. Neuromuscular synapses do not form in these mice, suggesting a failure in the induction of synapse formation. Together with the results of an accompanying manuscript, our findings indicate that MuSK responds to a critical nerve-derived signal (agrin), and in turn activates signaling cascades responsible for all aspects of synapse formation, including organization of the postsynaptic membrane, synapse-specific transcription, and presynaptic differentiation.
Collapse
MESH Headings
- Agrin/physiology
- Animals
- Animals, Newborn
- Cell Differentiation/genetics
- Gene Deletion
- Gene Expression/physiology
- Genes, Lethal/physiology
- Mice
- Mice, Knockout
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/ultrastructure
- Muscle, Skeletal/chemistry
- Muscle, Skeletal/embryology
- Muscle, Skeletal/innervation
- Neuromuscular Junction/chemistry
- Neuromuscular Junction/embryology
- Neuromuscular Junction/physiology
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/physiology
- Receptors, Cholinergic/genetics
- Signal Transduction/physiology
- Synapses/chemistry
- Synapses/physiology
- Synaptic Membranes/physiology
- Transcription, Genetic/physiology
Collapse
|
19
|
Gautam M, Noakes PG, Mudd J, Nichol M, Chu GC, Sanes JR, Merlie JP. Failure of postsynaptic specialization to develop at neuromuscular junctions of rapsyn-deficient mice. Nature 1995; 377:232-6. [PMID: 7675108 DOI: 10.1038/377232a0] [Citation(s) in RCA: 452] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Of numerous synaptic components that have been identified, perhaps the best-studied are the nicotinic acetylcholine receptors (AChRs) of the vertebrate neuromuscular junction. AChRs are diffusely distributed on embryonic myotubes, but become highly concentrated (approximately 10,000 microns-2) in the postsynaptic membrane as development proceeds. At least two distinct processes contribute to this accumulation. One is local synthesis: subsynaptic muscle nuclei transcribe AChR subunit genes at higher rates than extra-synaptic nuclei, so AChR messenger RNA is concentrated near synaptic sites. Second, once AChRs have been inserted in the membrane, they form high-density clusters by tethering to a subsynaptic cytoskeletal complex. A key component of this complex is rapsyn, a peripheral membrane protein of relative molecular mass 43K (refs 4, 5), which is precisely colocalized with AChRs at synaptic sites from the earliest stages of neuromuscular synaptogenesis. In heterologous systems, expression of recombinant rapsyn leads to clustering of diffusely distributed AChRs, suggesting that rapsyn may control formation of clusters. To assess the role of rapsyn in vivo, we generated and characterized mutant mice with a targeted disruption of the Rapsyn gene. We report that rapsyn is essential for the formation of AChR clusters, but that synapse-specific transcription of AChR subunit genes can proceed in its absence.
Collapse
Affiliation(s)
- M Gautam
- Department of Molecular Biology, Washington University Medical School, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Affiliation(s)
- M Bate
- Department of Zoology, University of Cambridge, England
| | | |
Collapse
|