1
|
Messaabi A, Merindol N, Bohnenblust L, Fantino E, Meddeb-Mouelhi F, Desgagné-Penix I. In vivo thrombin activity in the diatom Phaeodactylum tricornutum: biotechnological insights. Appl Microbiol Biotechnol 2024; 108:481. [PMID: 39377797 PMCID: PMC11461642 DOI: 10.1007/s00253-024-13322-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
Diatoms are responsible for 20% of global carbon dioxide fixation and have significant potential in various biotechnological and industrial applications. Recently, the pennate diatom Phaeodactylum tricornutum has emerged as a prominent platform organism for metabolic engineering and synthetic biology. The availability of its genome sequence has facilitated the development of new bioengineering tools. In this study, we used in silico analyses to identify sequences potentially encoding thrombin-like proteins, which are involved in recognizing and cleaving the thrombin sequence LVPRGS in P. tricornutum. Protein structure prediction and docking studies indicated a similar active site and ligand positioning compared to characterized human and bovine thrombin. The evidence and efficiency of the cleavage were determined in vivo using two fusion-protein constructs that included YFP to measure expression, protein accumulation, and cleavage. Western blot analysis revealed 50-100% cleavage between YFP and N-terminal fusion proteins. Our findings suggest the existence of a novel thrombin-like protease in P. tricornutum. This study advances the application of diatoms for the synthesis and production of complex proteins and enhances our understanding of the functional role of these putative thrombin sequences in diatom physiology. KEY POINTS: • Protein structure predictions reveal thrombin-like active sites in P. tricornutum. • Validated cleavage efficiency of thrombin-like protease on fusion proteins in vivo. • Study advances bioengineering tools for diatom-based biotechnological applications.
Collapse
Affiliation(s)
- Anis Messaabi
- Department of Chemistry, Biochemistry and Physics, Université du Québec À Trois-Rivières, Trois-Rivières, QC, Canada
| | - Natacha Merindol
- Department of Chemistry, Biochemistry and Physics, Université du Québec À Trois-Rivières, Trois-Rivières, QC, Canada
| | - Lea Bohnenblust
- Department of Chemistry, Biochemistry and Physics, Université du Québec À Trois-Rivières, Trois-Rivières, QC, Canada
| | - Elisa Fantino
- Department of Chemistry, Biochemistry and Physics, Université du Québec À Trois-Rivières, Trois-Rivières, QC, Canada
- Plant Biology Research Group, Université du Québec À Trois-Rivières, Trois-Rivières, QC, Canada
| | - Fatma Meddeb-Mouelhi
- Department of Chemistry, Biochemistry and Physics, Université du Québec À Trois-Rivières, Trois-Rivières, QC, Canada
- Plant Biology Research Group, Université du Québec À Trois-Rivières, Trois-Rivières, QC, Canada
| | - Isabel Desgagné-Penix
- Department of Chemistry, Biochemistry and Physics, Université du Québec À Trois-Rivières, Trois-Rivières, QC, Canada.
- Plant Biology Research Group, Université du Québec À Trois-Rivières, Trois-Rivières, QC, Canada.
| |
Collapse
|
2
|
Wang B, Wu Y, Lv X, Liu L, Li J, Du G, Chen J, Liu Y. Synergistic regulation of chassis cell growth and screening of promoters, signal peptides and fusion protein linkers for enhanced recombinant protein expression in Bacillus subtilis. Int J Biol Macromol 2024; 280:136037. [PMID: 39332549 DOI: 10.1016/j.ijbiomac.2024.136037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Growth-advantageous microbial chassis cells are beneficial for shortening fermentation period and boosting biomolecule productivity. This study focused on enhancing recombinant proteins synthesis efficiency in Bacillus subtilis by CRISPRi-mediated metabolism regulation for improved cell growth and screening expression elements. Specifically, by repressing odhA gene expression to reallocate cellular resource and overexpressing atpC, atpD and atpG genes to reprogram energy metabolism, the growth-advantageous chassis cell with high specific growth rate of 0.63 h-1 and biomass yield of 0.41 g DCW/g glucose in minimum medium was developed, representing 61.54 % and 46.43 % increasements compared to B. subtilis 168. Subsequently, using screened optimal P566 promoter and (EAAAK)3 protein linker, secretory bovine alpha-lactalbumin (α-LA) titer reached 1.02 mg/L. Finally, to test protein synthesis capability of cells, intracellular GFP, secretory α-LA and α-amylase were expressed with P566 promoter, representing 43.76 %, 75.49 % and 82.98 % increasements. The growth-advantageous B. subtilis chassis cells exhibit their potential to boost bioproduction productivity.
Collapse
Affiliation(s)
- Bin Wang
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yaokang Wu
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Guocheng Du
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Wirtz BM, Yun AG, Wick C, Gao XJ, Mai DJ. Protease-Driven Phase Separation of Elastin-Like Polypeptides. Biomacromolecules 2024; 25:4898-4904. [PMID: 38980747 DOI: 10.1021/acs.biomac.4c00346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Elastin-like polypeptides (ELPs) are a promising material platform for engineering stimuli-responsive biomaterials, as ELPs undergo phase separation above a tunable transition temperature. ELPs with phase behavior that is isothermally regulated by biological stimuli remain attractive for applications in biological systems. Herein, we report protease-driven phase separation of ELPs. Protease-responsive "cleavable" ELPs comprise a hydrophobic ELP block connected to a hydrophilic ELP block by a protease cleavage site linker. The hydrophilic ELP block acts as a solubility tag for the hydrophobic ELP block, creating a temperature window in which the cleavable ELP reactant is soluble and the proteolytically generated hydrophobic ELP block is insoluble. Within this temperature window, isothermal, protease-driven phase separation occurs when a critical concentration of hydrophobic cleavage product accumulates. Furthermore, protease-driven phase separation is generalizable to four compatible protease-cleavable ELP pairings. This work presents exciting opportunities to regulate ELP phase behavior in biological systems using proteases.
Collapse
Affiliation(s)
- Brendan M Wirtz
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Allison G Yun
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Chloe Wick
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Xiaojing J Gao
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Danielle J Mai
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
4
|
Sokolov P, Evsegneeva I, Karaulov A, Sukhanova A, Nabiev I. Allergen Microarrays and New Physical Approaches to More Sensitive and Specific Detection of Allergen-Specific Antibodies. BIOSENSORS 2024; 14:353. [PMID: 39056629 PMCID: PMC11275078 DOI: 10.3390/bios14070353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
The prevalence of allergic diseases has increased tremendously in recent decades, which can be attributed to growing exposure to environmental triggers, changes in dietary habits, comorbidity, and the increased use of medications. In this context, the multiplexed diagnosis of sensitization to various allergens and the monitoring of the effectiveness of treatments for allergic diseases become particularly urgent issues. The detection of allergen-specific antibodies, in particular, sIgE and sIgG, is a modern alternative to skin tests due to the safety and efficiency of this method. The use of allergen microarrays to detect tens to hundreds of allergen-specific antibodies in less than 0.1 mL of blood serum enables the transition to a deeply personalized approach in the diagnosis of these diseases while reducing the invasiveness and increasing the informativeness of analysis. This review discusses the technological approaches underlying the development of allergen microarrays and other protein microarrays, including the methods of selection of the microarray substrates and matrices for protein molecule immobilization, the obtainment of allergens, and the use of different types of optical labels for increasing the sensitivity and specificity of the detection of allergen-specific antibodies.
Collapse
Affiliation(s)
- Pavel Sokolov
- Life Improvement by Future Technologies (LIFT) Center, 143025 Moscow, Russia
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
| | - Irina Evsegneeva
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia; (I.E.); (A.K.)
| | - Alexander Karaulov
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia; (I.E.); (A.K.)
| | - Alyona Sukhanova
- Laboratoire BioSpecT, Université de Reims Champagne-Ardenne, 51100 Reims, France;
| | - Igor Nabiev
- Life Improvement by Future Technologies (LIFT) Center, 143025 Moscow, Russia
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia; (I.E.); (A.K.)
- Laboratoire BioSpecT, Université de Reims Champagne-Ardenne, 51100 Reims, France;
| |
Collapse
|
5
|
Clifford R, Lindman S, Zhu J, Luo E, Delmar J, Tao Y, Ren K, Lara A, Cayatte C, McTamney P, O'Connor E, Öhman J. Production of native recombinant proteins using a novel split intein affinity technology. J Chromatogr A 2024; 1724:464908. [PMID: 38669943 DOI: 10.1016/j.chroma.2024.464908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
Affinity tags are frequently engineered into recombinant proteins to facilitate purification. Although this technique is powerful, removal of the tag is desired because the tag can interfere with biological activity and can potentially increase the immunogenicity of therapeutic proteins. Tag removal is complex, as it requires adding expensive protease enzymes. To overcome this limitation, split intein based affinity purification systems have been developed in which a CC-intein tag is engineered into a protein of interest for binding to a NC-intein peptide ligand fixed to a chromatographic support. Tag removal in these systems is achieved by creating an active intein-complex during protein capture, which triggers a precise self-cleavage reaction. In this work, we show applications of a new split intein system, Cytiva™ ProteinSelect™. One advantage of the new system is that the NC-intein ligand can be robustly produced and conjugated to large volumes of resin for production of gram scale proteins. SARS-CoV-2 spike protein receptor binding domain and a Bispecific T Cell Engager in this work were successfully captured on the affinity resin and scaled 10-fold. Another advantage of this system is the ability to sanitize the resin with sodium hydroxide without loosing the 10-20 g/L binding capacity. Binding studies with IL-1b and IFNAR-1 ECD showed that the resin can be regenerated and sanitized for up to 50 cycles without loosing binding capacity. Additionally, after several cycles of sanitization, binding capacity was retained for the SARS-CoV-2 spike protein receptor binding domain and a Bispecific T Cell Engager. As with other split intein systems, optimization was needed to achieve ideal expression and recovery. The N-terminal amino acid sequence of the protein of interest required engineering to enable the cleavage reaction. Additionally, ensuring the stability of the CC-intein tag was important to prevent premature cleavage or truncation. Controlling the hold time of the expression product and the prevention of protease activity prior to purification was needed. These results demonstrate the feasibility of the Cytiva™ ProteinSelect™ system to be used in academic and industrial research and development laboratories for the purification of novel proteins expressed in either bacterial or mammalian systems.
Collapse
Affiliation(s)
- Robert Clifford
- Purification Process Sciences, Process and Analytical Sciences, R&D Biopharmaceuticals, AstraZeneca LLC, One Medimmune Way, Gaithersburg, MD 20878, USA
| | | | - Jie Zhu
- Cell Culture & Fermentation Sciences, R&D Biopharmaceuticals, AstraZeneca LLC, One Medimmune Way, Gaithersburg, MD 20878, USA
| | - Ethan Luo
- Cell Culture & Fermentation Sciences, R&D Biopharmaceuticals, AstraZeneca LLC, One Medimmune Way, Gaithersburg, MD 20878, USA
| | - Jared Delmar
- Physicochemical Development, Process and Analytical Sciences, R&D Biopharmaceuticals, AstraZeneca LLC, One Medimmune Way, Gaithersburg, MD 20878, USA
| | - Yeqing Tao
- Physicochemical Development, Process and Analytical Sciences, R&D Biopharmaceuticals, AstraZeneca LLC, One Medimmune Way, Gaithersburg, MD 20878, USA
| | - Kuishu Ren
- Virology and Targeted Therapeutics, Virology and Vaccine Discovery, Vaccines & Immune Therapies Unit, AstraZeneca LLC, One Medimmune Way, Gaithersburg, MD 20878, USA
| | - Abigail Lara
- Immune Engagers, Early ICC Discovery, R&D Oncology, AstraZeneca LLC, One Medimmune Way, Gaithersburg, MD 20878, USA
| | - Corinne Cayatte
- Immune Engagers, Early ICC Discovery, R&D Oncology, AstraZeneca LLC, One Medimmune Way, Gaithersburg, MD 20878, USA
| | - Patrick McTamney
- Virology and Targeted Therapeutics, Virology and Vaccine Discovery, Vaccines & Immune Therapies Unit, AstraZeneca LLC, One Medimmune Way, Gaithersburg, MD 20878, USA
| | - Ellen O'Connor
- Purification Process Sciences, Process and Analytical Sciences, R&D Biopharmaceuticals, AstraZeneca LLC, One Medimmune Way, Gaithersburg, MD 20878, USA.
| | - Johan Öhman
- Cytiva, Björkgatan 30, Uppsala, 753 23, Sweden
| |
Collapse
|
6
|
Karan R, Renn D, Allers T, Rueping M. A systematic analysis of affinity tags in the haloarchaeal expression system, Haloferax volcanii for protein purification. Front Microbiol 2024; 15:1403623. [PMID: 38873150 PMCID: PMC11169840 DOI: 10.3389/fmicb.2024.1403623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/15/2024] [Indexed: 06/15/2024] Open
Abstract
Extremophilic proteins are valuable in various fields, but their expression can be challenging in traditional hosts like Escherichia coli due to misfolding and aggregation. Haloferax volcanii (H. volcanii), a halophilic expression system, offers a solution. This study examined cleavable and non-cleavable purification tags at both the N- and C-termini when fused with the superfolder green fluorescent protein (sfGFP) in H. volcanii. Our findings reveal that an N-terminal 8xHis-tag or Strep-tag®II significantly enhances protein production, purity, and yield in H. volcanii. Further experiments with mCherry and halophilic alcohol dehydrogenase (ADH) showed improved expression and purification yields when the 8xHis-tag or Strep-tag®II was positioned at the C-terminus for mCherry and at the N-terminus for ADH. Co-positioning 8xHis-tag and Twin-Strep-tag® at the N-terminus of sfGFP, mCherry, and ADH yielded significantly enhanced results. These findings highlight the importance of thoughtful purification tag design and selection in H. volcanii, providing valuable insights for improving protein production and purification with the potential to advance biotechnological applications.
Collapse
Affiliation(s)
- Ram Karan
- Department of Microbiology, University of Delhi, South Campus, New Delhi, India
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center, Thuwal, Makkah, Saudi Arabia
| | - Dominik Renn
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center, Thuwal, Makkah, Saudi Arabia
| | - Thorsten Allers
- School of Life Sciences, University of Nottingham, Queen’s Medical Centre, Nottingham, United Kingdom
| | - Magnus Rueping
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center, Thuwal, Makkah, Saudi Arabia
- Institute for Experimental Molecular Imaging, University Clinic, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
7
|
Proj M, Strašek N, Pajk S, Knez D, Sosič I. Tunable Heteroaromatic Nitriles for Selective Bioorthogonal Click Reaction with Cysteine. Bioconjug Chem 2023. [PMID: 37354098 PMCID: PMC10360065 DOI: 10.1021/acs.bioconjchem.3c00163] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
The binucleophilic properties of 1,2-aminothiol and its rare occurrence in nature make it a useful reporter for tracking molecules in living systems. The 1,2-aminothiol moiety is present in cysteine, which is a substrate for a biocompatible click reaction with heteroaromatic nitriles. Despite the wide range of applications for this reaction, the scope of nitrile substrates has been explored only to a limited extent. In this study, we expand the chemical space of heteroaromatic nitriles for bioconjugation under physiologically relevant conditions. We systematically assembled a library of 116 2-cyanobenzimidazoles, 1-methyl-2-cyanobenzimidazoles, 2-cyanobenzothiazoles, and 2-cyanobenzoxazoles containing electron-donating and electron-withdrawing substituents at all positions of the benzene ring. The compounds were evaluated for their stability, reactivity, and selectivity toward the N-terminal cysteine of model oligopeptides. In comparison to the benchmark 6-hydroxy-2-cyanobenzothiazole or 6-amino-2-cyanobenzothiazole, we provide highly selective and moderately reactive nitriles as well as highly reactive yet less selective analogs with a variety of enabling attachment chemistries to aid future applications in bioconjugation, chemical biology, and nanomaterial science.
Collapse
Affiliation(s)
- Matic Proj
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Ljubljana, Askerceva 7, Ljubljana 1000, Slovenia
| | - Nika Strašek
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Ljubljana, Askerceva 7, Ljubljana 1000, Slovenia
| | - Stane Pajk
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Ljubljana, Askerceva 7, Ljubljana 1000, Slovenia
| | - Damijan Knez
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Ljubljana, Askerceva 7, Ljubljana 1000, Slovenia
| | - Izidor Sosič
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Ljubljana, Askerceva 7, Ljubljana 1000, Slovenia
| |
Collapse
|
8
|
Pouresmaeil M, Azizi-Dargahlou S. Factors involved in heterologous expression of proteins in E. coli host. Arch Microbiol 2023; 205:212. [PMID: 37120438 PMCID: PMC10148705 DOI: 10.1007/s00203-023-03541-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/26/2023] [Accepted: 04/05/2023] [Indexed: 05/01/2023]
Abstract
The production of recombinant proteins is one of the most significant achievements of biotechnology in the last century. These proteins are produced in the eukaryotic or prokaryotic heterologous hosts. By increasing the omics data especially related to different heterologous hosts as well as the presence of new amenable genetic engineering tools, we can artificially engineer heterologous hosts to produce recombinant proteins in sufficient quantities. Numerous recombinant proteins have been produced and applied in various industries, and the global recombinant proteins market size is expected to be cast to reach USD 2.4 billion by 2027. Therefore, identifying the weakness and strengths of heterologous hosts is critical to optimize the large-scale biosynthesis of recombinant proteins. E. coli is one of the popular hosts to produce recombinant proteins. Scientists reported some bottlenecks in this host, and due to the increasing demand for the production of recombinant proteins, there is an urgent need to improve this host. In this review, we first provide general information about the E. coli host and compare it with other hosts. In the next step, we describe the factors involved in the expression of the recombinant proteins in E. coli. Successful expression of recombinant proteins in E. coli requires a complete elucidation of these factors. Here, the characteristics of each factor will be fully described, and this information can help to improve the heterologous expression of recombinant proteins in E. coli.
Collapse
Affiliation(s)
- Mahin Pouresmaeil
- Agricultural Biotechnology, Department of Biotechnology, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Shahnam Azizi-Dargahlou
- Agricultural Biotechnology, Department of Biotechnology, Azarbaijan Shahid Madani University, Tabriz, Iran.
| |
Collapse
|
9
|
Paththamperuma C, Page RC. Fluorescence dequenching assay for the activity of TEV protease. Anal Biochem 2022; 659:114954. [PMID: 36265691 PMCID: PMC9662696 DOI: 10.1016/j.ab.2022.114954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 12/14/2022]
Abstract
Tobacco etch virus (TEV) protease is a widely used protease for fusion tag cleavage. Despite its widespread usage, an assay to quickly and easily quantify its activity in laboratory settings is still lacking. Thus, researchers may encounter inefficient cleavage of the desired fusion proteins due to poor activity of a given TEV protease preparation. Here, we describe the development and implementation of a fluorescence dequenching-based assay to quantify TEV protease activity and assess kinetic parameters. The peptide substrate used in this assay consists of a C-terminal TAMRA fluorophore, an N-terminal fluorescein fluorophore, and the canonical TEV protease recognition sequence. The assay is based on a reduction of fluorescence quenching of fluorescein upon cleavage by TEV protease. The substrate peptide was studied spectroscopically to assess feasibility and to propose a plausible mechanism of the assay. The assay was optimized and applied to obtain rapid assessments of TEV protease activity in purified samples and crude lysate extracts. The kinetic data obtained from improved TEV protease variants were compared with a traditional SDS-PAGE assay. Finally, the assay was applied to determine the optimum pH for TEV protease. Further, the study found that the assay is a rapid and simple approach to quantify TEV protease activity. The findings of the assay on crude lysate extracts, activity assay of TEV protease variants, and assessment of optimum pH for TEV protease reactions demonstrate the robust utility of the assay.
Collapse
Affiliation(s)
- Chathura Paththamperuma
- Department of Chemistry and Biochemistry, 651 East High Street, Miami University, Oxford, OH, 45056, United States
| | - Richard C Page
- Department of Chemistry and Biochemistry, 651 East High Street, Miami University, Oxford, OH, 45056, United States.
| |
Collapse
|
10
|
Hempfling JP, Sekera ER, Sarkar A, Hummon AB, Pei D. Generation of Proteins with Free N-Terminal Cysteine by Aminopeptidases. J Am Chem Soc 2022; 144:21763-21771. [PMID: 36378906 PMCID: PMC9923720 DOI: 10.1021/jacs.2c10194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Efficient, site-specific, and bio-orthogonal conjugation of chemical functionalities to proteins is of great utility in fundamental research as well as industrial processes (e.g., the production of antibody-drug conjugates and immobilization of enzymes for biocatalysis). A popular approach involves reacting a free N-terminal cysteine with a variety of electrophilic reagents. However, current methods for generating proteins with N-terminal cysteines have significant limitations. Herein we report a novel, efficient, and convenient method for producing recombinant proteins with free N-terminal cysteines by genetically fusing a Met-Pro-Cys sequence to the N-terminus of a protein of interest and subjecting the recombinant protein to the sequential action of methionine and proline aminopeptidases. The resulting protein was site-specifically labeled at the N-terminus with fluorescein and a cyclic cell-penetrating peptide through native chemical ligation and a 2-cyanobenzothiazole moiety, respectively. In addition, the optimal recognition sequence of Aeromonas sobria proline aminopeptidase was determined by screening a combinatorial peptide library and incorporated into the N-terminus of a protein of interest for most efficient N-terminal processing.
Collapse
Affiliation(s)
- Jordan P. Hempfling
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, United States
| | - Emily R. Sekera
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, OH 43210, United States
| | - Amar Sarkar
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, OH 43210, United States
| | - Amanda B. Hummon
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, United States
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, OH 43210, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, United States
| | - Dehua Pei
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, United States
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, OH 43210, United States
| |
Collapse
|
11
|
Optimized method for the recombinant production of a sea anemone’s peptide. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Sneha, Pandey JP, Pandey DM. Evaluating the role of trypsin in silk degumming: An in silico approach. J Biotechnol 2022; 359:35-47. [PMID: 36126805 DOI: 10.1016/j.jbiotec.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 08/30/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022]
Abstract
The trypsin being universal enzyme forming family of proteases catalyzes the hydrolysis of proteins into amino acids and regenerates the serine hydroxyl an active site. The trypsin enzyme from D. saccharalis, uses sericin as its preferred substrate. Presence of catalytic triad (serine, aspartic acid and histidine) at the substrate binding site of this enzyme is very important for the catalytic activity. In the current study, the interacting mechanism between the substrate sericin protein and enzyme trypsin protein were explored by integrating various computational approaches including physico-chemical properties, biophysical properties, dynamics, gene ontology, molecular docking, protein - protein interactions, binding free energy calculation and structural motifs were studied. The evolutionary study performed by MEGA X showed that trypsin protein sequence (ALE15212.1) is closely related to cocoonase protein sequence (ADG26770.1) from Antheraea pernyi. 3-D models of trypsin and sericin proteins were predicted using I-TASSER and further validated by PROCHECK, and ProSAweb softwares. The predicted trypsin structure model was assigned E.C. no. 3.4.21.4 which refers hydrolytic mechanism. Gene Ontology predicted by QuickGO showed that trypsin has serine hydrolase activity (GO: 00017171), and part of proteolysis (GO: 0006508) as well as protein metabolic process (GO:0019538) actvity. Molecular docking studies between trypsin and sericin proteins were conducted by the HADDOCK 2.4 having best docked protein complex with Z-score - 1.9. 2D and 3D protein-protein interaction was performed with LIGPLOT+ and HAWKDOCK, PDBsum, respectively. The amino acid residues interacting across proteins interface are sericin_chain A representing "Ser133, Tyr214, Thr188, Thr243, Ser225, Ser151, Ser156, His294, Arg293, Gly296″ and trypsin_chain B "Lys120, Tyr246, Asn119, Glu239, Ser62, Tyr194, Ile197, Ser171, Tyr169, Gly170″. Based on our results trypsin shows similarity with cocoonase and presumably trypsin can be used as an alternative source in cocoon degumming.
Collapse
Affiliation(s)
- Sneha
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India.
| | - Jay Prakash Pandey
- Central Tasar Research and Training Institute, Piska-Nagri, Ranchi, Jharkhand 835303, India.
| | - Dev Mani Pandey
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India.
| |
Collapse
|
13
|
Wang Q, Yin M, Yuan C, Liu X, Jiang H, Wang M, Zou Z, Hu Z. The Micrococcus luteus infection activates a novel melanization pathway of cSP10, cSP4, and cSP8 in Helicoverpa armigera. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 147:103775. [PMID: 35504546 DOI: 10.1016/j.ibmb.2022.103775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/13/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
Melanization is a key immune response mediated by serine protease (SP) cascade in insects. Multiple SP pathways exist in different species and it is unclear how conserved these cascades are. The cotton bollworm Helicoverpa armigera is a major worldwide agricultural pest. We reported a conserved melanization pathway in this species, which consists of SP41, cSP1, and cSP6. In this study, we attempted to identify an insect pathogen that elicits the cascade and test whether or not there are other SP cascades in H. armigera. After Micrococcus luteus, Enterobacter cloacae, Beauveria bassiana, or Helicoverpa armigera nucleopolyhedrovirus were injected into larvae, pathogen-induced hemolymph samples were collected for in vitro biochemical assays, which failed to detect proSP41 or procSP1 activation. In contrast, we found that procSP4, a protein proposed to participate in H. armigera melanization, was activated in M. luteus infected hemolymph. We further revealed that cSP8 was a prophenoloxidase (PPO) activating protease downstream of cSP4, and cSP4 was activated by cSP10. The pathway of cSP10-cSP4-cSP8 activated PPO in vitro. Efficiently cleaved procSPH11 and procSPH50 by cSP8 substantially enhanced phenoloxidase activity, suggesting they work together as a cofactor for cSP8 mediated PPO activation. Hemolymph from larvae challenged with M. luteus or its peptidoglycan effectively activated procSP10. Collectively, these results revealed a new PPO activation cascade specifically triggered by the bacterium. In addition, we found that the PPO activation cascades in H. armigera and Manduca sexta are conserved.
Collapse
Affiliation(s)
- Qianran Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengyi Yin
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuanfei Yuan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xijia Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Manli Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
14
|
CASPON platform technology: Ultrafast circularly permuted caspase-2 cleaves tagged fusion proteins before all 20 natural amino acids at the N-terminus. N Biotechnol 2022; 71:37-46. [DOI: 10.1016/j.nbt.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/13/2022] [Accepted: 07/30/2022] [Indexed: 11/21/2022]
|
15
|
Lyles KV, Thomas LS, Ouellette C, Cook LCC, Eichenbaum Z. HupZ, a Unique Heme-Binding Protein, Enhances Group A Streptococcus Fitness During Mucosal Colonization. Front Cell Infect Microbiol 2022; 12:867963. [PMID: 35774404 PMCID: PMC9237417 DOI: 10.3389/fcimb.2022.867963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Group A Streptococcus (GAS) is a major pathogen that causes simple and invasive infections. GAS requires iron for metabolic processes and pathogenesis, and heme is its preferred iron source. We previously described the iron-regulated hupZ in GAS, showing that a recombinant HupZ-His6 protein binds and degrades heme. The His6 tag was later implicated in heme iron coordination by HupZ-His6. Hence, we tested several recombinant HupZ proteins, including a tag-free protein, for heme binding and degradation in vitro. We established that HupZ binds heme but without coordinating the heme iron. Heme-HupZ readily accepted exogenous imidazole as its axial heme ligand, prompting degradation. Furthermore, HupZ bound a fragment of heme c (whose iron is coordinated by the cytochrome histidine residue) and exhibited limited degradation. GAS, however, did not grow on a heme c fragment as an iron source. Heterologous HupZ expression in Lactococcus lactis increased heme b iron use. A GAS hupZ mutant showed reduced growth when using hemoglobin as an iron source, increased sensitivity to heme toxicity, and decreased fitness in a murine model for vaginal colonization. Together, the data demonstrate that HupZ contributes to heme metabolism and host survival, likely as a heme chaperone. HupZ is structurally similar to the recently described heme c-degrading enzyme, Pden_1323, suggesting that the GAS HupZ might be divergent to play a new role in heme metabolism.
Collapse
Affiliation(s)
- Kristin V. Lyles
- Department of Biology, Georgia State University, Atlanta, GA, United States
| | - Lamar S. Thomas
- Binghamton Biofilm Research Center, Department of Biology, Binghamton University, Binghamton, NY, United States
| | - Corbett Ouellette
- Department of Biology, Georgia State University, Atlanta, GA, United States
| | - Laura C. C. Cook
- Binghamton Biofilm Research Center, Department of Biology, Binghamton University, Binghamton, NY, United States
| | - Zehava Eichenbaum
- Department of Biology, Georgia State University, Atlanta, GA, United States
- *Correspondence: Zehava Eichenbaum,
| |
Collapse
|
16
|
Mollner TA, Giltrap AM, Zeng Y, Demyanenko Y, Buchanan C, Oehlrich D, Baldwin AJ, Anthony DC, Mohammed S, Davis BG. Reductive site-selective atypical C, Z-type/N2-C2 cleavage allows C-terminal protein amidation. SCIENCE ADVANCES 2022; 8:eabl8675. [PMID: 35394836 PMCID: PMC8993120 DOI: 10.1126/sciadv.abl8675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Biomolecule environments can enhance chemistries with the potential to mediate and modulate self-modification (e.g., self-cleavage). While these enhanced modes are found in certain biomolecules (e.g., RNA ribozymes), it is more rare in proteins. Targeted proteolytic cleavage is vital to physiology, biotechnology, and even emerging therapy. Yet, purely chemically induced methods for the site-selective cleavage of proteins remain scarce. Here, as a proof of principle, we designed and tested a system intended to combine protein-enhanced chemistry with tag modification to enable synthetic reductive protein chemistries promoted by diboron. This reductively driven, single-electron chemistry now enables an operationally simple, site-selective cleavage protocol for proteins directed to readily accessible dehydroalanine (Dha) residues as tags under aqueous conditions and in cell lysates. In this way, a mild, efficient, enzyme-free method now allows not only precise chemical proteolysis but also simultaneous use in the removal of affinity tags and/or protein-terminus editing to create altered N- and C-termini such as protein amidation (─CONH2).
Collapse
Affiliation(s)
- Tim A. Mollner
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | | | - Yibo Zeng
- The Rosalind Franklin Institute, Oxfordshire, UK
| | | | - Charles Buchanan
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Daniel Oehlrich
- Global Medicinal Chemistry, Janssen Research & Development, Beerse, Belgium
| | - Andrew J. Baldwin
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
- The Rosalind Franklin Institute, Oxfordshire, UK
| | | | - Shabaz Mohammed
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
- The Rosalind Franklin Institute, Oxfordshire, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Benjamin G. Davis
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
- The Rosalind Franklin Institute, Oxfordshire, UK
- Department of Pharmacology, University of Oxford, Oxford, UK
- Corresponding author.
| |
Collapse
|
17
|
Production of pentaglycine-fused proteins using Escherichia coli expression system without in vitro peptidase treatment. Protein Expr Purif 2022; 194:106068. [DOI: 10.1016/j.pep.2022.106068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 11/22/2022]
|
18
|
Ji YR, Hsu YH, Syue MH, Wang YC, Lin SY, Huang TW, Young TH. Controlled Decomposable Hydrogel Triggered with a Specific Enzyme. ACS OMEGA 2022; 7:3254-3261. [PMID: 35128237 PMCID: PMC8811883 DOI: 10.1021/acsomega.1c05178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
In this study, superabsorbent polyelectrolyte hydrogels were synthesized by cross-linking a nondegradable poly (allylamine hydrochloride) (PAH) and a recombinant protein with a specific enzymatic cleavage site. The recombinant protein was produced by E. coli with the pET-32b(+) plasmid, which is featured with the thioredoxin (Trx) gene containing a thrombin recognition site and a T7/lac hybrid promoter for high expression of recombinant protein. The swelling test shows that the composite hydrogel still maintained a high swelling ratio to 900% when 15% recombinant protein was cross-linked with PAH. The degradation test shows that such a PAH composite hydrogel could be decomposed by the addition of specific enzyme thrombin, which might lead to new biomedical applications of hydrogels needed to be decomposable by specific time not determined by the time period.
Collapse
Affiliation(s)
- You-Ren Ji
- Institute
of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 100, Taiwan
| | - Ya-Hsiang Hsu
- Institute
of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 100, Taiwan
| | - Ming-Hua Syue
- Institute
of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 100, Taiwan
| | - Ying-Chu Wang
- Institute
of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 100, Taiwan
| | - Shyr-Yi Lin
- Division
of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Department
of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Tsung-Wei Huang
- Department
of Electrical Engineering, College of Electrical and Communication
Engineering, Yuan Ze University, Taoyuan 320, Taiwan
- Department
of Otolaryngology, Far Eastern Memorial
Hospital, New Taipei City 220, Taiwan
| | - Tai-Horng Young
- Institute
of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 100, Taiwan
- Department
of Biomedical Engineering, National Taiwan
University Hospital, Taipei 100, Taiwan
| |
Collapse
|
19
|
Bogard A, Finn PW, McKinney F, Flacau IM, Smith AR, Whiting R, Fologea D. The Ionic Selectivity of Lysenin Channels in Open and Sub-Conducting States. MEMBRANES 2021; 11:897. [PMID: 34832126 PMCID: PMC8622276 DOI: 10.3390/membranes11110897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/14/2021] [Accepted: 11/18/2021] [Indexed: 01/13/2023]
Abstract
The electrochemical gradients established across cell membranes are paramount for the execution of biological functions. Besides ion channels, other transporters, such as exogenous pore-forming toxins, may present ionic selectivity upon reconstitution in natural and artificial lipid membranes and contribute to the electrochemical gradients. In this context, we utilized electrophysiology approaches to assess the ionic selectivity of the pore-forming toxin lysenin reconstituted in planar bilayer lipid membranes. The membrane voltages were determined from the reversal potentials recorded upon channel exposure to asymmetrical ionic conditions, and the permeability ratios were calculated from the fit with the Goldman-Hodgkin-Katz equation. Our work shows that lysenin channels are ion-selective and the determined permeability coefficients are cation and anion-species dependent. We also exploited the unique property of lysenin channels to transition to a stable sub-conducting state upon exposure to calcium ions and assessed their subsequent change in ionic selectivity. The observed loss of selectivity was implemented in an electrical model describing the dependency of reversal potentials on calcium concentration. In conclusion, our work demonstrates that this pore-forming toxin presents ionic selectivity but this is adjusted by the particular conduction state of the channels.
Collapse
Affiliation(s)
- Andrew Bogard
- Department of Physics, Boise State University, Boise, ID 83725, USA; (A.B.); (P.W.F.); (F.M.); (I.M.F.); (A.R.S.); (R.W.)
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA
| | - Pangaea W. Finn
- Department of Physics, Boise State University, Boise, ID 83725, USA; (A.B.); (P.W.F.); (F.M.); (I.M.F.); (A.R.S.); (R.W.)
| | - Fulton McKinney
- Department of Physics, Boise State University, Boise, ID 83725, USA; (A.B.); (P.W.F.); (F.M.); (I.M.F.); (A.R.S.); (R.W.)
| | - Ilinca M. Flacau
- Department of Physics, Boise State University, Boise, ID 83725, USA; (A.B.); (P.W.F.); (F.M.); (I.M.F.); (A.R.S.); (R.W.)
| | - Aviana R. Smith
- Department of Physics, Boise State University, Boise, ID 83725, USA; (A.B.); (P.W.F.); (F.M.); (I.M.F.); (A.R.S.); (R.W.)
| | - Rosey Whiting
- Department of Physics, Boise State University, Boise, ID 83725, USA; (A.B.); (P.W.F.); (F.M.); (I.M.F.); (A.R.S.); (R.W.)
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA
| | - Daniel Fologea
- Department of Physics, Boise State University, Boise, ID 83725, USA; (A.B.); (P.W.F.); (F.M.); (I.M.F.); (A.R.S.); (R.W.)
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA
| |
Collapse
|
20
|
Dilip D, Louis V, Savithri HS, Namitha PM. Restriction-free cloning for molecular manipulation and augmented expression of banana bunchy top viral coat protein. 3 Biotech 2021; 11:471. [PMID: 34745822 PMCID: PMC8536813 DOI: 10.1007/s13205-021-03017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022] Open
Abstract
Banana bunchy top virus (BBTV) causing bunchy top disease, is one of the most devastating diseases of banana and plantain. All the six genomic components of isolates from different parts of the world have been well characterised, with most of the studies focusing on replicase gene and coat protein gene. Overexpression of coat protein (CP) in Escherichia coli system can contribute significantly in structural as well as immunological studies. In the present investigation, the full length BBTV CP was cloned to pGEX-4T-2 expression vector and overexpressed in various Escherichia coli strains to obtain high quality and quantity of the CP. An augmented overexpression and stability of recombinant coat protein was achieved by molecular manipulation of the clone by restriction-free (RF) cloning platform. The RF cloning was employed to replace the thrombin cleavage site in the vector backbone, which was also present in the protein of interest, and to incorporate TEV protease site to cleave fusion protein at this specific site, and separate the affinity tag. The RF method allows direct transformation of the PCR product to undergo ligation in vivo and obtain the transformants thereby avoiding the restriction digestion and ligation of the product to the linearized plasmid. From a litre culture, 1.084 mg/ml of fusion protein with GST tag was obtained after GSH sepharose affinity column chromatography. The fluorescence spectra indicated partial disordered tertiary structure of the fusion protein. Cleavage of tag was attempted using TEV protease overexpressed and purified in the laboratory. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-03017-x.
Collapse
Affiliation(s)
- Darsana Dilip
- Department of Plant Pathology, College of Agriculture, Kerala Agricultural University, Thrissur, Kerala 680656 India
| | - Vimi Louis
- Division of Plant Pathology, Banana Research Station, Kannara, Kerala Agricultural University, Thrissur, Kerala 680652 India
| | - H. S. Savithri
- Department of Biochemistry, Indian Institute of Science, New Biological Sciences Building, Bangalore, 560012 India
| | - P. M. Namitha
- Division of Plant Pathology, Banana Research Station, Kannara, Kerala Agricultural University, Thrissur, Kerala 680652 India
| |
Collapse
|
21
|
McKenna S, Giblin SP, Bunn RA, Xu Y, Matthews SJ, Pease JE. A highly efficient method for the production and purification of recombinant human CXCL8. PLoS One 2021; 16:e0258270. [PMID: 34653205 PMCID: PMC8519433 DOI: 10.1371/journal.pone.0258270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/22/2021] [Indexed: 12/02/2022] Open
Abstract
Chemokines play diverse and fundamental roles in the immune system and human disease, which has prompted their structural and functional characterisation. Production of recombinant chemokines that are folded and bioactive is vital to their study but is limited by the stringent requirements of a native N-terminus for receptor activation and correct disulphide bonding required to stabilise the chemokine fold. Even when expressed as fusion proteins, overexpression of chemokines in E. coli tends to result in the formation of inclusion bodies, generating the additional steps of solubilisation and refolding. Here we present a novel method for producing soluble chemokines in relatively large amounts via a simple two-step purification procedure with no requirements for refolding. CXCL8 produced by this method has the correct chemokine fold as determined by NMR spectroscopy and in chemotaxis assays was indistinguishable from commercially available chemokines. We believe that this protocol significantly streamlines the generation of recombinant chemokines.
Collapse
Affiliation(s)
- Sophie McKenna
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Sean Patrick Giblin
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Rosemarie Anne Bunn
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Yingqi Xu
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | | - James Edward Pease
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
22
|
Mollaev M, Zabolotskii A, Gorokhovets N, Nikolskaya E, Sokol M, Tsedilin A, Mollaeva M, Chirkina M, Kuvaev T, Pshenichnikova A, Yabbarov N. Expression of acid cleavable Asp-Pro linked multimeric AFP peptide in E. coli. J Genet Eng Biotechnol 2021; 19:155. [PMID: 34648110 PMCID: PMC8517049 DOI: 10.1186/s43141-021-00265-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/05/2021] [Indexed: 03/05/2023]
Abstract
Background Difficult to express peptides are usually produced by co-expression with fusion partners. In this case, a significant mass part of the recombinant product falls on the subsequently removed fusion partner. On the other hand, multimerization of peptides is known to improve its proteolytic stability in E. coli due to the inclusion of body formation, which is sequence specific. Thereby, the peptide itself may serve as a fusion partner and one may produce more than one mole of the desired product per mole of fusion protein. This paper proposes a method for multimeric production of a human alpha-fetoprotein fragment with optimized multimer design and processing. This fragment may further find its application in the cytotoxic drug delivery field or as an inhibitor of endogenous alpha-fetoprotein. Results Multimerization of the extended alpha-fetoprotein receptor-binding peptide improved its stability in E. coli, and pentamer was found to be the largest stable with the highest expression level. As high as 10 aspartate-proline bonds used to separate peptide repeats were easily hydrolyzed in optimized formic acid-based conditions with 100% multimer conversion. The major product was represented by unaltered functional alpha-fetoprotein fragment while most side-products were its formyl-Pro, formyl-Tyr, and formyl-Lys derivatives. Single-step semi-preparative RP-HPLC was enough to separate unaltered peptide from the hydrolysis mixture. Conclusions A recombinant peptide derived from human alpha-fetoprotein can be produced via multimerization with subsequent formic acid hydrolysis and RP-HPLC purification. The reported procedure is characterized by the lower reagent cost in comparison with enzymatic hydrolysis of peptide fusions and solid-phase synthesis. This method may be adopted for different peptide expression, especially with low amino and hydroxy side chain content. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-021-00265-5.
Collapse
Affiliation(s)
- Murad Mollaev
- Biotechnology and Industrial Pharmacy Department, Lomonosov Institute of Fine Chemical Technologies, MIREA - Russian Technological University, 86 Vernadsky avenue, Moscow, 119454, Russia.,Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Laboratory of Molecular Immunology, 1 Samory Mashela street, Moscow, 117997, Russia.,JSC Russian Research Center for Molecular Diagnostics and Therapy, 8 Simferopolsky boulevard, Moscow, 117638, Russia
| | - Artur Zabolotskii
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 8 Simferopolsky boulevard, Moscow, 117638, Russia.,Department of Biochemistry, Biological Faculty, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, 119991, Russia
| | - Neonila Gorokhovets
- I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya street, Moscow, 119991, Russia
| | - Elena Nikolskaya
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 8 Simferopolsky boulevard, Moscow, 117638, Russia.,N. M. Emanuel Institute of Biochemical Physics, RAS. 4 Kosygina street, Moscow, 119334, Russia
| | - Maria Sokol
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 8 Simferopolsky boulevard, Moscow, 117638, Russia.,N. M. Emanuel Institute of Biochemical Physics, RAS. 4 Kosygina street, Moscow, 119334, Russia
| | - Andrey Tsedilin
- Fundamentals of Biotechnology Federal Research Center, RAS, 33 Leninsky avenue, Moscow, 119071, Russia
| | - Mariia Mollaeva
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 8 Simferopolsky boulevard, Moscow, 117638, Russia.,N. M. Emanuel Institute of Biochemical Physics, RAS. 4 Kosygina street, Moscow, 119334, Russia
| | - Margarita Chirkina
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 8 Simferopolsky boulevard, Moscow, 117638, Russia.,N. M. Emanuel Institute of Biochemical Physics, RAS. 4 Kosygina street, Moscow, 119334, Russia
| | - Timofey Kuvaev
- National Research Center "Kurchatov Institute", Research Institute for Genetics and Selection of Industrial Microorganisms, 1 1-Y Dorozhnyy Proyezd, Moscow, 117545, Russia
| | - Anna Pshenichnikova
- Biotechnology and Industrial Pharmacy Department, Lomonosov Institute of Fine Chemical Technologies, MIREA - Russian Technological University, 86 Vernadsky avenue, Moscow, 119454, Russia
| | - Nikita Yabbarov
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 8 Simferopolsky boulevard, Moscow, 117638, Russia. .,N. M. Emanuel Institute of Biochemical Physics, RAS. 4 Kosygina street, Moscow, 119334, Russia.
| |
Collapse
|
23
|
Islam MS, Mohamed G, Polash SA, Hasan MA, Sultana R, Saiara N, Dong W. Antimicrobial Peptides from Plants: A cDNA-Library Based Isolation, Purification, Characterization Approach and Elucidating Their Modes of Action. Int J Mol Sci 2021; 22:8712. [PMID: 34445412 PMCID: PMC8395713 DOI: 10.3390/ijms22168712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 12/19/2022] Open
Abstract
Even in a natural ecosystem, plants are continuously threatened by various microbial diseases. To save themselves from these diverse infections, plants build a robust, multilayered immune system through their natural chemical compounds. Among the several crucial bioactive compounds possessed by plants' immune systems, antimicrobial peptides (AMPs) rank in the first tier. These AMPs are environmentally friendly, anti-pathogenic, and do not bring harm to humans. Antimicrobial peptides can be isolated in several ways, but recombinant protein production has become increasingly popular in recent years, with the Escherichia coli expression system being the most widely used. However, the efficacy of this expression system is compromised due to the difficulty of removing endotoxin from its system. Therefore, this review suggests a high-throughput cDNA library-based plant-derived AMP isolation technique using the Bacillus subtilis expression system. This method can be performed for large-scale screening of plant sources to classify unique or homologous AMPs for the agronomic and applied field of plant studies. Furthermore, this review also focuses on the efficacy of plant AMPs, which are dependent on their numerous modes of action and exceptional structural stability to function against a wide range of invaders. To conclude, the findings from this study will be useful in investigating how novel AMPs are distributed among plants and provide detailed guidelines for an effective screening strategy of AMPs.
Collapse
Affiliation(s)
- Md. Samiul Islam
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, China; (M.S.I.); (G.M.)
| | - Gamarelanbia Mohamed
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, China; (M.S.I.); (G.M.)
| | | | - Md. Amit Hasan
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh;
| | - Razia Sultana
- State Key Laboratory of Agricultural Microbiology, Department of Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Noshin Saiara
- Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh;
| | - Wubei Dong
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, China; (M.S.I.); (G.M.)
| |
Collapse
|
24
|
Dutta DJ, Fields RD. Deletion of the Thrombin Proteolytic Site in Neurofascin 155 Causes Disruption of Nodal and Paranodal Organization. Front Cell Neurosci 2021; 15:576609. [PMID: 33815060 PMCID: PMC8010152 DOI: 10.3389/fncel.2021.576609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 02/17/2021] [Indexed: 11/29/2022] Open
Abstract
In the central nervous system, myelin is attached to the axon in the paranodal region by a trimolecular complex of Neurofascin155 (NF155) in the myelin membrane, interacting with Caspr1 and Contactin1 on the axolemma. Alternative splicing of a single Neurofascin transcript generates several different Neurofascins expressed by several cell types, but NF155, which is expressed by oligodendrocytes, contains a domain in the third fibronectinIII-like region of the molecule that is unique. The immunoglobulin 5–6 domain of NF155 is essential for binding to Contactin1, but less is known about the functions of the NF155-unique third fibronectinIII-like domain. Mutations and autoantibodies to this region are associated with several neurodevelopmental and demyelinating nervous system disorders. Here we used Crispr-Cas9 gene editing to delete a 9 bp sequence of NF155 in this unique domain, which has recently been identified as a thrombin binding site and implicated in plasticity of the myelin sheath. This small deletion results in dysmyelination, eversion of paranodal loops of myelin, substantial enlargement of the nodal gap, a complete loss of paranodal septate junctions, and mislocalization of Caspr1 and nodal sodium channels. The animals exhibit tremor and ataxia, and biochemical and mass spectrometric analysis indicates that while NF155 is transcribed and spliced normally, the NF155 protein is subsequently degraded, resulting in loss of the full length 155 kDa native protein. These findings reveal that this 9 bp region of NF155 in its unique third fibronectinIII-like domain is essential for stability of the protein.
Collapse
Affiliation(s)
- Dipankar J Dutta
- Section on Nervous System Development and Plasticity, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - R Douglas Fields
- Section on Nervous System Development and Plasticity, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
25
|
Bacterial expression of a snake venom metalloproteinase inhibitory protein from the North American opossum (D.virginiana). Toxicon 2021; 194:1-10. [PMID: 33581173 DOI: 10.1016/j.toxicon.2021.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/21/2020] [Accepted: 01/20/2021] [Indexed: 11/20/2022]
Abstract
A variety of opossum species are resistant to snake venoms due to the presence of antihemorrhagic and antimyotoxic acidic serum glycoproteins that inhibit several toxic venom components. Two virtually identical antihemorrhagic proteins isolated from either the North American opossum (D. virginiana) or the South American big-eared opossum (D. aurita), termed oprin or DM43 respectively, inhibit specific snake venom metalloproteinases (SVMPs). A better understanding of the structure of these proteins may provide useful insight to determine their mechanism of action and for the development of therapeutics against the global health concern of snake-bite envenomation. The aim of this work is to produce a recombinant snake venom metalloproteinase inhibitor (SVMPI) similar to the above opossum proteins in Escherichia coli and determine if this bacterially produced protein inhibits the proteolytic properties of Western Diamondback rattlesnake (C. atrox) venom. The resulting heterologous SVMPI was produced with either a 6-Histidine or maltose binding protein (MBP) affinity tag on either the C-terminus or N-terminus of the protein, respectively. The presence of the solubility enhancing MBP affinity tag resulted in significantly more soluble protein expression. The inhibitory activity was measured using two complementary assays and the MBP labeled SVMPI showed 7-fold less activity as compared to the 6-Histidine labeled SVMPI. Thus, the bacterially derived SVMPI with an unlabeled N-terminus showed high inhibitory activity (IC50 = 4.5 μM). The use of a solubility enhancing MBP fusion protein construct appears to be a productive way to express sufficient quantities of this mammalian protein in E. coli for further study.
Collapse
|
26
|
Kielkopf CL, Bauer W, Urbatsch IL. Expressing Cloned Genes for Protein Production, Purification, and Analysis. Cold Spring Harb Protoc 2021; 2021:pdb.top102129. [PMID: 33272973 DOI: 10.1101/pdb.top102129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Obtaining high quantities of a specific protein directly from native sources is often challenging, particularly when dealing with human proteins. To overcome this obstacle, many researchers take advantage of heterologous expression systems by cloning genes into artificial vectors designed to operate within easily cultured cells, such as Escherichia coli, Pichia pastoris (yeast), and several varieties of insect and mammalian cells. Heterologous expression systems also allow for easy modification of the protein to optimize expression, mutational analysis of specific sites within the protein and facilitate their purification with engineered affinity tags. Some degree of purification of the target protein is usually required for functional analysis. Purification to near homogeneity is essential for characterization of protein structure by X-ray crystallography or nuclear magnetic resonance (NMR) and characterization of the biochemical and biophysical properties of a protein, because contaminating proteins almost always adversely affect the results. Methods for producing and purifying proteins in several different expression platforms and using a variety of vectors are introduced here.
Collapse
|
27
|
Abstract
The reversible interaction between an affinity ligand and a complementary receptor has been widely explored in purification systems for several biomolecules. The development of tailored affinity ligands highly specific toward particular target biomolecules is one of the options in affinity purification systems. However, both genetic and chemical modifications in proteins and peptides widen the application of affinity ligand-tag receptors pairs toward universal capture and purification strategies. In particular, this chapter will focus on two case studies highly relevant for biotechnology and biomedical areas, namely the affinity tags and receptors employed on the production of recombinant fusion proteins, and the chemical modification of phosphate groups on proteins and peptides and the subsequent specific capture and enrichment, a mandatory step before further proteomic analysis.
Collapse
|
28
|
Mohammadian N, Mohammadian H, Moazen F, Pakdel MH, Jahanian-Najafabadi A, Mir Mohammad Sadeghi H. Optimization of solvent media to solubilize TEV protease using response surface method. Res Pharm Sci 2020; 15:331-339. [PMID: 33312211 PMCID: PMC7714021 DOI: 10.4103/1735-5362.293511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 01/20/2020] [Accepted: 08/16/2020] [Indexed: 11/04/2022] Open
Abstract
Background and purpose Tobacco etch virus (TEV) protease, a 27 KDa protein, consists of the catalytic domain of nuclear inclusion a (NIa) protein produced by Tobacco etch virus. Because of its unique sequence, TEV protease is used for purging fusion tags from proteins. It also has many advantages such as stability and activity in a board range of temperature and pH and overproduction in Escherichia coli and these benefits make this protease valuable. Despite all these benefits, TEV protease has problems like low solubility (less than 1 mg/mL). There are methods for enhancing protein solubility and in this study, the effect of additives during cell lysis was studied. Experimental approach Eleven different additives that made twelve different lysis buffers were used and their effect on TEV protease solubility analyzed by Plackett-Burman and response surface methodology methods. Findings / Results Three best effective additives on TEV solubility (L-proline, sodium selenite, and CuCl2) were selected according to software analysis and the best concentration of them was applied to optimize TEV protease solubility. Conclusion and implications The obtained results provided the composition of an optimum solvent for obtaining soluble TEV protease.
Collapse
Affiliation(s)
- Niloufar Mohammadian
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Hossein Mohammadian
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Fatemeh Moazen
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Mohammad Hosein Pakdel
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, I.R. Iran
| | - Ali Jahanian-Najafabadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Hamid Mir Mohammad Sadeghi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
29
|
Cserjan-Puschmann M, Lingg N, Engele P, Kröß C, Loibl J, Fischer A, Bacher F, Frank AC, Öhlknecht C, Brocard C, Oostenbrink C, Berkemeyer M, Schneider R, Striedner G, Jungbauer A. Production of Circularly Permuted Caspase-2 for Affinity Fusion-Tag Removal: Cloning, Expression in Escherichia coli, Purification, and Characterization. Biomolecules 2020; 10:E1592. [PMID: 33255244 PMCID: PMC7760212 DOI: 10.3390/biom10121592] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 02/08/2023] Open
Abstract
Caspase-2 is the most specific protease of all caspases and therefore highly suitable as tag removal enzyme creating an authentic N-terminus of overexpressed tagged proteins of interest. The wild type human caspase-2 is a dimer of heterodimers generated by autocatalytic processing which is required for its enzymatic activity. We designed a circularly permuted caspase-2 (cpCasp2) to overcome the drawback of complex recombinant expression, purification and activation, cpCasp2 was constitutively active and expressed as a single chain protein. A 22 amino acid solubility tag and an optimized fermentation strategy realized with a model-based control algorithm further improved expression in Escherichia coli and 5.3 g/L of cpCasp2 in soluble form were obtained. The generated protease cleaved peptide and protein substrates, regardless of N-terminal amino acid with high activity and specificity. Edman degradation confirmed the correct N-terminal amino acid after tag removal, using Ubiquitin-conjugating enzyme E2 L3 as model substrate. Moreover, the generated enzyme is highly stable at -20 °C for one year and can undergo 25 freeze/thaw cycles without loss of enzyme activity. The generated cpCasp2 possesses all biophysical and biochemical properties required for efficient and economic tag removal and is ready for a platform fusion protein process.
Collapse
Affiliation(s)
- Monika Cserjan-Puschmann
- ACIB-Austrian Centre of Industrial Biotechnology, Muthgasse 18, 1190 Vienna, Austria; (M.C.-P.); (P.E.); (C.K.); (J.L.); (A.F.); (F.B.); (A.-C.F.); (C.Ö.); (C.O.); (R.S.); (G.S.)
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Nico Lingg
- ACIB-Austrian Centre of Industrial Biotechnology, Muthgasse 18, 1190 Vienna, Austria; (M.C.-P.); (P.E.); (C.K.); (J.L.); (A.F.); (F.B.); (A.-C.F.); (C.Ö.); (C.O.); (R.S.); (G.S.)
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Petra Engele
- ACIB-Austrian Centre of Industrial Biotechnology, Muthgasse 18, 1190 Vienna, Austria; (M.C.-P.); (P.E.); (C.K.); (J.L.); (A.F.); (F.B.); (A.-C.F.); (C.Ö.); (C.O.); (R.S.); (G.S.)
- Institute of Biochemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Christina Kröß
- ACIB-Austrian Centre of Industrial Biotechnology, Muthgasse 18, 1190 Vienna, Austria; (M.C.-P.); (P.E.); (C.K.); (J.L.); (A.F.); (F.B.); (A.-C.F.); (C.Ö.); (C.O.); (R.S.); (G.S.)
- Institute of Biochemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Julian Loibl
- ACIB-Austrian Centre of Industrial Biotechnology, Muthgasse 18, 1190 Vienna, Austria; (M.C.-P.); (P.E.); (C.K.); (J.L.); (A.F.); (F.B.); (A.-C.F.); (C.Ö.); (C.O.); (R.S.); (G.S.)
| | - Andreas Fischer
- ACIB-Austrian Centre of Industrial Biotechnology, Muthgasse 18, 1190 Vienna, Austria; (M.C.-P.); (P.E.); (C.K.); (J.L.); (A.F.); (F.B.); (A.-C.F.); (C.Ö.); (C.O.); (R.S.); (G.S.)
| | - Florian Bacher
- ACIB-Austrian Centre of Industrial Biotechnology, Muthgasse 18, 1190 Vienna, Austria; (M.C.-P.); (P.E.); (C.K.); (J.L.); (A.F.); (F.B.); (A.-C.F.); (C.Ö.); (C.O.); (R.S.); (G.S.)
| | - Anna-Carina Frank
- ACIB-Austrian Centre of Industrial Biotechnology, Muthgasse 18, 1190 Vienna, Austria; (M.C.-P.); (P.E.); (C.K.); (J.L.); (A.F.); (F.B.); (A.-C.F.); (C.Ö.); (C.O.); (R.S.); (G.S.)
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Christoph Öhlknecht
- ACIB-Austrian Centre of Industrial Biotechnology, Muthgasse 18, 1190 Vienna, Austria; (M.C.-P.); (P.E.); (C.K.); (J.L.); (A.F.); (F.B.); (A.-C.F.); (C.Ö.); (C.O.); (R.S.); (G.S.)
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Cécile Brocard
- Biopharma Process Science Austria, Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, 1121 Vienna, Austria; (C.B.); (M.B.)
| | - Chris Oostenbrink
- ACIB-Austrian Centre of Industrial Biotechnology, Muthgasse 18, 1190 Vienna, Austria; (M.C.-P.); (P.E.); (C.K.); (J.L.); (A.F.); (F.B.); (A.-C.F.); (C.Ö.); (C.O.); (R.S.); (G.S.)
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Matthias Berkemeyer
- Biopharma Process Science Austria, Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, 1121 Vienna, Austria; (C.B.); (M.B.)
| | - Rainer Schneider
- ACIB-Austrian Centre of Industrial Biotechnology, Muthgasse 18, 1190 Vienna, Austria; (M.C.-P.); (P.E.); (C.K.); (J.L.); (A.F.); (F.B.); (A.-C.F.); (C.Ö.); (C.O.); (R.S.); (G.S.)
- Institute of Biochemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Gerald Striedner
- ACIB-Austrian Centre of Industrial Biotechnology, Muthgasse 18, 1190 Vienna, Austria; (M.C.-P.); (P.E.); (C.K.); (J.L.); (A.F.); (F.B.); (A.-C.F.); (C.Ö.); (C.O.); (R.S.); (G.S.)
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Alois Jungbauer
- ACIB-Austrian Centre of Industrial Biotechnology, Muthgasse 18, 1190 Vienna, Austria; (M.C.-P.); (P.E.); (C.K.); (J.L.); (A.F.); (F.B.); (A.-C.F.); (C.Ö.); (C.O.); (R.S.); (G.S.)
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
30
|
Parisi K, Poon S, Renda RF, Sahota G, English J, Yalpani N, Bleackley MR, Anderson MA, van der Weerden NL. Improving the Digestibility of Plant Defensins to Meet Regulatory Requirements for Transgene Products in Crop Protection. FRONTIERS IN PLANT SCIENCE 2020; 11:1227. [PMID: 32922418 PMCID: PMC7456892 DOI: 10.3389/fpls.2020.01227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/27/2020] [Indexed: 06/01/2023]
Abstract
Despite the use of chemical fungicides, fungal diseases have a major impact on the yield and quality of plant produce globally and hence there is a need for new approaches for disease control. Several groups have examined the potential use of antifungal plant defensins for plant protection and have produced transgenic plants expressing plant defensins with enhanced resistance to fungal disease. However, before they can be developed commercially, transgenic plants must pass a series of strict regulations to ensure that they are safe for human and animal consumption as well as the environment. One of the requirements is rapid digestion of the transgene protein in the gastrointestinal tract to minimize the risk of any potential allergic response. Here, we examine the digestibility of two plant defensins, NaD1 from Nicotiana alata and SBI6 from soybean, which have potent antifungal activity against major cereal pathogens. The native defensins were not digestible in simulated gastrointestinal fluid assays. Several modifications to the sequences enhanced the digestibility of the two small proteins without severely impacting their antifungal activity. However, these modified proteins did not accumulate as well as the native proteins when transiently expressed in planta, suggesting that the protease-resistant structure of plant defensins facilitates their stability in planta.
Collapse
Affiliation(s)
- Kathy Parisi
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, VIC, Australia
| | - Simon Poon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, VIC, Australia
| | - Rosemary F. Renda
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, VIC, Australia
| | - Gurinder Sahota
- Department of Animal, Plant and Soil Sciences, School of Life Sciences, La Trobe University, Bundoora, VIC, Australia
| | - James English
- Maxygen LLC, Sunnyvale, CA, United States
- Corteva Agriscience, Agriculture Division of DowDuPont, Johnston, IA, United States
| | - Nasser Yalpani
- Corteva Agriscience, Agriculture Division of DowDuPont, Johnston, IA, United States
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - Mark R. Bleackley
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, VIC, Australia
| | - Marilyn A. Anderson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, VIC, Australia
| | - Nicole L. van der Weerden
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, VIC, Australia
| |
Collapse
|
31
|
Kesidis A, Depping P, Lodé A, Vaitsopoulou A, Bill RM, Goddard AD, Rothnie AJ. Expression of eukaryotic membrane proteins in eukaryotic and prokaryotic hosts. Methods 2020; 180:3-18. [DOI: 10.1016/j.ymeth.2020.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/15/2022] Open
|
32
|
Sampaio de Oliveira KB, Leite ML, Rodrigues GR, Duque HM, da Costa RA, Cunha VA, de Loiola Costa LS, da Cunha NB, Franco OL, Dias SC. Strategies for recombinant production of antimicrobial peptides with pharmacological potential. Expert Rev Clin Pharmacol 2020; 13:367-390. [PMID: 32357080 DOI: 10.1080/17512433.2020.1764347] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION The need to develop new drugs for the control of pathogenic microorganisms has redoubled efforts to prospect for antimicrobial peptides (AMPs) from natural sources and to characterize its structure and function. These molecules present a broad spectrum of action against different microorganisms and frequently present promiscuous action, with anticancer and immunomodulatory activities. Furthermore, AMPs can be used as biopharmaceuticals in the treatment of hospital-acquired infections and other serious diseases with relevant social and economic impacts.Areas covered: The low yield and the therefore difficult extraction and purification process in AMPs are problems that limit their industrial application and scientific research. Thus, optimized heterologous expression systems were developed to significantly boost AMP yields, allow high efficiency in purification and structural optimization for the increase of therapeutic activity.Expert opinion: This review provides an update on recent developments in the recombinant production of ribosomal and non-ribosomal synthesis of AMPs and on strategies to increase the expression of genes encoding AMPs at the transcriptional and translational levels and regulation of the post-translational modifications. Moreover, there are detailed reports of AMPs that have already reached marketable status or are in the pipeline under advanced stages of preclinical testing.
Collapse
Affiliation(s)
- Kamila Botelho Sampaio de Oliveira
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Michel Lopes Leite
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Gisele Regina Rodrigues
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Harry Morales Duque
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Rosiane Andrade da Costa
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Victor Albuquerque Cunha
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Lorena Sousa de Loiola Costa
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Nicolau Brito da Cunha
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Octavio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil.,Universidade de Brasília, Pós-graduação em Patologia Molecular, Campus Darcy Ribeiro , Brasília, Brazil.,S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco , Campo Grande, Mato Grosso do Sul, Brazil
| | - Simoni Campos Dias
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil.,Universidade de Brasília, Pós-graduação em Biologia Animal, Campus Darcy Ribeiro , Brasília, Brazil
| |
Collapse
|
33
|
Wang Q, Yin M, Yuan C, Liu X, Hu Z, Zou Z, Wang M. Identification of a Conserved Prophenoloxidase Activation Pathway in Cotton Bollworm Helicoverpa armigera. Front Immunol 2020; 11:785. [PMID: 32431706 PMCID: PMC7215089 DOI: 10.3389/fimmu.2020.00785] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/07/2020] [Indexed: 01/03/2023] Open
Abstract
Melanization is a prominent insect humoral response for encapsulation of and killing invading pathogens. It is mediated by a protease cascade composed of a modular serine protease (SP), and clip domain SPs (cSPs), which converts prophenoloxidase (PPO) into active phenoloxidase (PO). To date, melanization pathway in cotton bollworm Helicoverpa armigera, an important agricultural pest, remains largely unclear. To biochemically reconstitute the pathway in vitro, the putative proteases along with modified proteases containing the factor Xa cleavage site were expressed by Drosophila S2 cell expression system. Purified recombinant proteins were used to examine their role in activating PPO. It is revealed that cascade is initiated by a modular SP-SP41, followed by cSP1 and cSP6. The three-step SP41/cSP1/cSP6 cascade could further activate PPO, and the PO activity was significantly enhanced in the presence of two cSP homologs (cSPHs), cSPH11 and cSPH50, suggesting the latter are cofactors for PPO activation. Moreover, baculovirus infection was efficiently blocked by the reconstituted PPO activation cascade, and the effect was boosted by cSPH11 and cSPH50. Taken together, we unraveled a conserved PPO activation cascade in H. armigera, which is similar to that exists in lepidopteran biochemical model Manduca sexta and highlighted its role in antagonizing viral infection.
Collapse
Affiliation(s)
- Qianran Wang
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Mengyi Yin
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Chuanfei Yuan
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xijia Liu
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhihong Hu
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhen Zou
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Tropical Translational Medicine, Laboratory of Medicine, School of Tropical Medicine, Ministry of Education, Hainan Medical University, Haikou, China
| | - Manli Wang
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
34
|
Brungardt J, Govind R, Trick HN. A simplified method for producing laboratory grade recombinant TEV protease from E. coli. Protein Expr Purif 2020; 174:105662. [PMID: 32387144 DOI: 10.1016/j.pep.2020.105662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 11/28/2022]
Abstract
The tobacco etch virus (TEV) protease has become a popular choice for cleaving fusion proteins because of its high stringency in sequence recognition. Procedures for isolating recombinant protein from the cytoplasm of E. coli require rupturing of the cell wall via enzymatic treatment combined with sonication or French press. Here we present an expedited method for producing laboratory-grade TEV protease in E. coli using a freeze-thaw method, followed by purification with immobilized metal affinity chromatography. Protease is obtained by expression from the pDZ2087 plasmid in BL21 (DE3) cells. Proteolysis resulting from this product, cleaves a maltose-binding protein fusion to completion at a fusion-to-protease molar ratio of 50:1.
Collapse
Affiliation(s)
- Jordan Brungardt
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66502, USA
| | - Revathi Govind
- Division of Biology, Kansas State University, Manhattan, KS 66502, USA
| | - Harold N Trick
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66502, USA.
| |
Collapse
|
35
|
Recombinant Peptide Production Platform Coupled with Site-Specific Albumin Conjugation Enables a Convenient Production of Long-Acting Therapeutic Peptide. Pharmaceutics 2020; 12:pharmaceutics12040364. [PMID: 32316169 PMCID: PMC7238188 DOI: 10.3390/pharmaceutics12040364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
The number of therapeutic peptides for human treatment is growing rapidly. However, their development faces two major issues: the poor yield of large peptides from conventional solid-phase synthesis, and the intrinsically short serum half-life of peptides. To address these issues, we investigated a platform for the production of a recombinant therapeutic peptide with an extended serum half-life involving the site-specific conjugation of human serum albumin (HSA). HSA has an exceptionally long serum half-life and can be used to extend the serum half-lives of therapeutic proteins and peptides. We used glucagon-like-peptide 1 (GLP-1) as a model peptide in the present study. A “clickable” non-natural amino acid—p-azido-l-phenylalanine (AzF)—was incorporated into three specific sites (V16, Y19, and F28) of a GLP-1 variant, followed by conjugation with HSA through strain-promoted azide–alkyne cycloaddition. All three HSA-conjugated GLP-1 variants (GLP1_16HSA, GLP1_19HSA, and GLP1_28HSA) exhibited comparable serum half-lives in vivo. However, the three GLP1_HSA variants had different in vitro biological activities and in vivo glucose-lowering effects, demonstrating the importance of site-specific HSA conjugation. The platform described herein could be used to develop other therapeutic peptides with extended serum half-lives.
Collapse
|
36
|
Hebbi V, Kumar D, Rathore AS. Process intensification in peptide manufacturing: Recombinant lethal toxin neutralizing factor (rLTNF) as a case study. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.10.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Zhang B, Pang Z, Hu Y. Targeting hemostasis-related moieties for tumor treatment. Thromb Res 2020; 187:186-196. [PMID: 32032807 DOI: 10.1016/j.thromres.2020.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/23/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022]
Abstract
Under normal conditions, the hemostatic system, that includes the involvement of the coagulation response and platelets, is anatomically and functionally inseparable from the vasculature. However, the hemostatic response always occurs in a wide range of tumors because of the high expression of coagulation initiator tissue factor (TF) in many tumor tissues, and due to the leakage of coagulation factors and platelets from the circulation system into the tumor interstitium through abnormal tumor vessels. Therefore, in addition to TF, these coagulation factors, platelets, the central moiety thrombin, the final product fibrin, and fibronectin, which is capable of stabilizing coagulation clots, are also abundant in tumors. These hemostasis-related moieties (HRMs), including TF, thrombin, fibrin, fibronectin, and platelets, are also closely associated with tumor progression, e.g., primary tumor growth and distal metastasis. The hemostatic response only occurs under pathological conditions, such as tumors, thrombosis, and atherosclerosis other than in normal tissues. The HRMs within tumors are also highly specific, establishing functional and therapeutic targets for tumor treatment. Therefore, strategies including active targeting to these moieties, modulation of HRMs deposited in the tumor microenvironment to improve tumor drug delivery, activation of prodrug by the coagulation complex formed during coagulation response, and direct inhibition of the tumor-promoting activity of HRMs could be designed for tumor therapy. In this review, we summarize various strategies that target HRMs for tumor treatment.
Collapse
Affiliation(s)
- Bo Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai 201203, China
| | - Zhiqing Pang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai 201203, China.
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
38
|
Khatiwada B, Purslow JA, Underbakke ES, Venditti V. N-terminal fusion of the N-terminal domain of bacterial enzyme I facilitates recombinant expression and purification of the human RNA demethylases FTO and Alkbh5. Protein Expr Purif 2019; 167:105540. [PMID: 31740367 DOI: 10.1016/j.pep.2019.105540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 01/20/2023]
Abstract
Various fusion tags are commonly employed to increase the heterologous expression and solubility of aggregation-prone proteins within Escherichia coli. Herein, we present a protocol for efficient recombinant expression and purification of the human RNA demethylases Alkbh5 and FTO. Our method incorporates a novel fusion tag (the N-terminal domain of bacterial enzyme I, EIN) that dramatically increases the solubility of its fusion partner and is promptly removed upon digestion with a protease. The presented protocol allows for the production of mg amounts of Alkbh5 and FTO in 1L of both rich and minimal media. We developed a liquid chromatography-mass spectrometry (LC-MS)-based assay to confirm that both proteins are enzymatically active. Furthermore, the LC-MS method developed here is applicable to other members of the AlkB family of Fe(II)/α-ketoglutarate-dependent dioxygenases. The superior protein yield, afforded by our expression and purification method, will facilitate biochemical investigations into the biological function of the human RNA demethylases and endorse employment of EIN as a broadly applicable fusion tag for recombinant expression projects.
Collapse
Affiliation(s)
| | - Jeffrey A Purslow
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
| | - Eric S Underbakke
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Vincenzo Venditti
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA; Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
39
|
Design of Experiments As a Tool for Optimization in Recombinant Protein Biotechnology: From Constructs to Crystals. Mol Biotechnol 2019; 61:873-891. [DOI: 10.1007/s12033-019-00218-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
40
|
Determination of mosquito Larvicidal potential of Bacillus thuringiensis Cry11Ba fusion protein through molecular docking. Biologia (Bratisl) 2018. [DOI: 10.2478/s11756-018-0103-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Affiliation(s)
- Paul D. Riggs
- New England Biolabs, Inc., Research; Ipswich Massachusetts
| |
Collapse
|
42
|
Li Q, Miao Z, Luo XG, Zhao J, Song YJ, Li ZY, Zhou H, Zhang TC, Mao LS. Expression and bioactivity analysis of TNF30, a TNFα nanobody, in Escherichia coli. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1480422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
- Qian Li
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science and Technology, Ministry of Education, Tianjin, P.R. China
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Zhi Miao
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science and Technology, Ministry of Education, Tianjin, P.R. China
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Xue-Gang Luo
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science and Technology, Ministry of Education, Tianjin, P.R. China
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Jian Zhao
- Lidzix Biotechnology Tianjin Co., Ltd, Tianjin, P.R. China
| | - Ya-Jian Song
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science and Technology, Ministry of Education, Tianjin, P.R. China
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Zhong-Yuan Li
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science and Technology, Ministry of Education, Tianjin, P.R. China
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Hao Zhou
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science and Technology, Ministry of Education, Tianjin, P.R. China
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Tong-Cun Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science and Technology, Ministry of Education, Tianjin, P.R. China
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Li-Song Mao
- Lidzix Biotechnology Tianjin Co., Ltd, Tianjin, P.R. China
| |
Collapse
|
43
|
Activities of Thrombin and Factor Xa Are Essential for Replication of Hepatitis E Virus and Are Possibly Implicated in ORF1 Polyprotein Processing. J Virol 2018; 92:JVI.01853-17. [PMID: 29321328 DOI: 10.1128/jvi.01853-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/19/2017] [Indexed: 01/11/2023] Open
Abstract
Hepatitis E virus (HEV) is a clinically important positive-sense RNA virus. The ORF1 of HEV encodes a nonstructural polyprotein of 1,693 amino acids. It is not clear whether the ORF1 polyprotein (pORF1) is processed into distinct enzymatic domains. Many researchers have attempted to understand the mechanisms of pORF1 processing. However, these studies gave various results and could never convincingly establish the mechanism of pORF1 processing. In this study, we demonstrated the possible role of thrombin and factor Xa in pORF1 processing. We observed that the HEV pORF1 polyprotein bears conserved cleavage sites of thrombin and factor Xa. Using a reverse genetics approach, we demonstrated that an HEV replicon having mutations in the cleavage sites of either thrombin or factor Xa could not replicate efficiently in cell culture. Further, we demonstrated in vitro processing when we incubated recombinant pORF1 fragments with thrombin, and we observed the processing of pORF1 polyprotein. The treatment of a liver cell line with a serine protease inhibitor as well as small interfering RNA (siRNA) knockdown of thrombin and factor Xa resulted in significant reduction in the replication of HEV. Thrombin and factor Xa have been well studied for their roles in blood clotting. Both of these proteins are believed to be present in the active form in the blood plasma. Interestingly, in this report, we demonstrated the presence of biologically active thrombin and factor Xa in a liver cell line. The results suggest that factor Xa and thrombin are essential for the replication of HEV and may be involved in pORF1 polyprotein processing of HEV.IMPORTANCE Hepatitis E virus (HEV) causes a liver disorder called hepatitis in humans, which is mostly an acute and self-limiting infection in adults. A high mortality rate of about 30% is observed in HEV-infected pregnant women in developing countries. There is no convincing opinion about HEV ORF1 polyprotein processing owing to the variability of study results obtained so far. HEV pORF1 has cleavage sites for two host cellular serine proteases, thrombin and factor Xa, that are conserved among HEV genotypes. For the first time, this study demonstrated that thrombin and factor Xa cleavage sites on HEV pORF1 are obligatory for HEV replication. Intracellular biochemical activities of the said serine proteases are also essential for efficient HEV replication in cell culture and must be involved in pORF1 processing. This study sheds light on the presence and roles of clotting factors with respect to virus replication in the cells.
Collapse
|
44
|
Zhao L, Zhang Y, Venkitasamy C, Pan Z, Zhang L, Guo S, Xiong W, Xia H, Wenlong L, Xinhua G. Preparation of umami octopeptide with recombined Escherichia coli: Feasibility and challenges. Bioengineered 2017; 9:166-169. [PMID: 28902573 PMCID: PMC5972915 DOI: 10.1080/21655979.2017.1378839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The taste of umami peptide H-Lys-Gly-Asp-Glu-Glu-Ser-Leu-Ala-OH (LGAGGSLA) is controversial. One possible reason for this controversy is the use of chemically synthesized LGAGGSLA to confirm its taste. To explore other ways to further confirm the flavor of LGAGGSLA, we developed a new strategy to prepare a bio-source peptide by adopting a gene engineering method to express LGAGGSLA in recombinant Escherichia coli. In our previous work, we structured the LGAGGSLA recombinant expression system and optimized the culturing conditions for preparing a fusion protein. However, the fusion protein was not cleaved by enterokinase to obtain LGAGGSLA. Because the cleavage conditions of commercial enterokinase were not specific and recombinant engineered bacteria had the potential to be used in industrial processes, in this addendum, we calculated the mass and volume yields of key processing steps in the preparation of LGAGGSLA, and established a model of cleavage conditions with the cleavage ratio of LGAGGSLA. When the LGAGGSLA was confirmed to show umami taste, it is considered as a new umami or umami enhancer. The gene information of LGAGGSLA should have a great potential in the development of new flavor product and food product containing high umami flavor.
Collapse
Affiliation(s)
- Liming Zhao
- a Key Laboratory of Meat Processing of Sichuan , Chengdu University , Chengdu , China.,b State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry , East China University of Science and Technology , Shanghai , China
| | - Yin Zhang
- a Key Laboratory of Meat Processing of Sichuan , Chengdu University , Chengdu , China
| | - Chandrasekar Venkitasamy
- c Department of Biological and Agricultural Engineering , University of California, Davis , Davis , CA , USA
| | - Zhongli Pan
- c Department of Biological and Agricultural Engineering , University of California, Davis , Davis , CA , USA.,d Healthy Processed Foods Research Unit, Western Regional Research Center, USDA-ARS , Albany , CA , USA
| | - Longyi Zhang
- a Key Laboratory of Meat Processing of Sichuan , Chengdu University , Chengdu , China
| | - Siya Guo
- a Key Laboratory of Meat Processing of Sichuan , Chengdu University , Chengdu , China
| | - Wei Xiong
- a Key Laboratory of Meat Processing of Sichuan , Chengdu University , Chengdu , China
| | - Hu Xia
- a Key Laboratory of Meat Processing of Sichuan , Chengdu University , Chengdu , China
| | - Liu Wenlong
- a Key Laboratory of Meat Processing of Sichuan , Chengdu University , Chengdu , China
| | - Gou Xinhua
- a Key Laboratory of Meat Processing of Sichuan , Chengdu University , Chengdu , China
| |
Collapse
|
45
|
Malaby AW, Martin SK, Wood RD, Doublié S. Expression and Structural Analyses of Human DNA Polymerase θ (POLQ). Methods Enzymol 2017; 592:103-121. [PMID: 28668117 PMCID: PMC5624038 DOI: 10.1016/bs.mie.2017.03.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
DNA polymerase theta (pol θ) is an evolutionarily conserved protein encoded by the POLQ gene in mammalian genomes. Pol θ is the defining enzyme for a pathway of DSB repair termed "alternative end-joining" (altEJ) or "theta-mediated end-joining." This pathway contributes significantly to the radiation resistance of mammalian cells. It also modulates accuracy in repair of breaks that occur at stalled DNA replication forks, during diversification steps of the mammalian immune system, during repair of CRISPR-Cas9, and in many DNA integration events. Pol θ is a potentially important clinical target, particularly for cancers deficient in other break repair strategies. The enzyme is uniquely able to mediate joining of single-stranded 3' ends. Because of these unusual biochemical properties and its therapeutic importance, it is essential to study structures of pol θ bound to DNA. However, challenges for expression and purification are presented by the large size of pol θ (2590 residues in humans) and unusual juxtaposition of domains (a helicase-like domain and distinct DNA polymerase, separated by a region predicted to be largely disordered). Here we summarize work on the expression and purification of the full-length protein, and then focus on the design, expression, and purification of an active C-terminal polymerase fragment. The generation of this active construct was nontrivial and time consuming. Almost all published biochemical work to date has been performed with this domain fragment. Strategies to obtain and improve crystals of a ternary pol θ complex (enzyme:DNA:nucleotide) are also presented, along with key elements of the structure.
Collapse
Affiliation(s)
| | - Sara K Martin
- The University of Texas MD Anderson Cancer Center, Smithville, TX, United States; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Richard D Wood
- The University of Texas MD Anderson Cancer Center, Smithville, TX, United States; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | | |
Collapse
|
46
|
Yung MC, Bourguet FA, Carpenter TS, Coleman MA. Re-directing bacterial microcompartment systems to enhance recombinant expression of lysis protein E from bacteriophage ϕX174 in Escherichia coli. Microb Cell Fact 2017; 16:71. [PMID: 28446197 PMCID: PMC5405515 DOI: 10.1186/s12934-017-0685-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 04/21/2017] [Indexed: 02/06/2023] Open
Abstract
Background Recombinant expression of toxic proteins remains a challenging problem. One potential method to shield toxicity and thus improve expression of these proteins is to encapsulate them within protein compartments to sequester them away from their targets. Many bacteria naturally produce so-called bacterial microcompartments (BMCs) in which enzymes comprising a biosynthetic pathway are encapsulated in a proteinaeous shell, which is in part thought to shield the cells from the toxicity of reaction intermediates. As a proof-of-concept, we attempted to encapsulate toxic, lysis protein E (E) from bacteriophage ϕX174 inside recombinant BMCs to enhance its expression and achieve higher yields during downstream purification. Results E was fused with various N-terminal BMC targeting tags (PduP-, PduD-, and EutC-tags, 18–20 amino acids) and co-expressed with appropriate BMC shell proteins that associate with the tags and are required to form BMCs. Only BMC targeted E fusions, but not non-tagged E, could be successfully cloned, suggesting that the BMC tags reduce the toxicity of E. A PduP-tagged E system appeared to achieve the highest expression of E. Co-expression of Pdu BMC shell proteins with PduP-E increased its expression by 20–50%. Affinity purification of PduP-E via Ni–NTA in the presence of Empigen BB detergent yielded 270 µg of PduP-E per L of induced culture. Removal of the PduP-tag via proteolysis resulted in a final yield of 200 µg of E per L of induced culture, a nearly order of magnitude (~sevenfold) improvement compared to prior reports. Conclusions These results demonstrate improved expression of ϕX174 lysis protein E via re-directed BMC systems and ultimately higher E purification yields. Similar strategies can be used to enhance expression of other toxic proteins in recombinant Escherichia coli systems. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0685-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mimi C Yung
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, L-452, Livermore, CA, 94550, USA.
| | - Feliza A Bourguet
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, L-452, Livermore, CA, 94550, USA
| | - Timothy S Carpenter
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, L-452, Livermore, CA, 94550, USA
| | - Matthew A Coleman
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, L-452, Livermore, CA, 94550, USA
| |
Collapse
|
47
|
Zhang Y, Fan Y. A Mutant Sumo Facilitates Quick Plasmid Construction for Expressing Proteins with Native N-termini After Tag Removal. Mol Biotechnol 2017; 59:159-167. [DOI: 10.1007/s12033-017-9998-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
48
|
Kosobokova EN, Skrypnik KA, Kosorukov VS. Overview of Fusion Tags for Recombinant Proteins. BIOCHEMISTRY (MOSCOW) 2017; 81:187-200. [PMID: 27262188 DOI: 10.1134/s0006297916030019] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Virtually all recombinant proteins are now prepared using fusion domains also known as "tags". The use of tags helps to solve some serious problems: to simplify procedures of protein isolation, to increase expression and solubility of the desired protein, to simplify protein refolding and increase its efficiency, and to prevent proteolysis. In this review, advantages and disadvantages of such fusion tags are analyzed and data on both well-known and new tags are generalized. The authors own data are also presented.
Collapse
Affiliation(s)
- E N Kosobokova
- Blokhin Russian Cancer Research Center, Moscow, 115478, Russia.
| | | | | |
Collapse
|
49
|
Zhang Y, Yu J, Wang J, Hanne NJ, Cui Z, Qian C, Wang C, Xin H, Cole JH, Gallippi CM, Zhu Y, Gu Z. Thrombin-Responsive Transcutaneous Patch for Auto-Anticoagulant Regulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:10.1002/adma.201604043. [PMID: 27885722 PMCID: PMC5250559 DOI: 10.1002/adma.201604043] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/24/2016] [Indexed: 05/19/2023]
Abstract
A thrombin-responsive closed-loop patch is developed for prolonged heparin delivery in a feedback-controlled manner. This microneedle-based patch can sense activated thrombin and subsequently releases heparin to prevent coagulation in the blood flow. This "smart" heparin patch can be transcutaneously inserted into skin without drug leakage and can sustainably regulate blood coagulation in response to thrombin.
Collapse
Affiliation(s)
- Yuqi Zhang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
- Center for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics, UNC, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jicheng Yu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
- Center for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics, UNC, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jinqiang Wang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
- Center for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics, UNC, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nicholas J. Hanne
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
| | - Zheng Cui
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Chenggen Qian
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
| | - Chao Wang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
- Center for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics, UNC, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hongliang Xin
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Jacqueline H. Cole
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
| | - Caterina M. Gallippi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
| | - Yong Zhu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Zhen Gu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
- Center for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics, UNC, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
50
|
A Novel Strategy for the Preparation of Codon-Optimized Truncated Ulp1 and its Simplified Application to Cleavage the SUMO Fusion Protein. Protein J 2016; 35:115-23. [PMID: 26960810 PMCID: PMC7088175 DOI: 10.1007/s10930-016-9654-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ubiquitin-like protease 1 (Ulp1) of Saccharomyces cerevisiae emerges as a fundamental tool to obtain the natural N-terminal target protein by cleavage of the small ubiquitin-related modifier (SUMO) fusion protein. However, the costly commercial Ulp1 and its complicated procedures limit its application in the preparation of the target protein with natural N-terminal sequence. Here, we describe the preparation of bioactive codon-optimized recombinant truncated Ulp1 (Leu403-Lys621) (rtUlp1) of S. cerevisiae in Escherichia coli using only one-step with Ni–NTA affinity chromatograph, and the application of rtUlp1 to cleave the SUMO fusion protein by simply mixing the purified rtUlp1, SUMO fusion protein and DL-Dithiothreitol in Tris–HCl buffer. The optimal expression level of non-fusion protein rtUlp1 accounts for approximately 50 % of the total cellular protein and 36 % of the soluble form by addition of isopropyl β-D-l-thiogalactopyranoside at a final concentration of 0.4 mM at 18 °C for 20 h. The purification of target protein rtUlp1 was conducted by Ni–NTA affinity chromatography. The final yield of rtUlp1 was 45 mg/l in flask fermentation with a purity up to 95 %. Furthermore, the high purity of rtUlp1 could effectively cleave the SUMO-tTβRII fusion protein (SUMO gene fused to truncated transforming growth factor-beta receptor type II gene) with the above simplified approach, and the specific activity of the rtUlp1 reached up to 2.8 × 104 U/mg, which is comparable to the commercial Ulp1. The preparation and application strategy of the rtUlp1 with commonly available laboratory resources in this study will be convenient to the cleavage of the SUMO fusion protein to obtain the natural N-terminal target protein, which can be implemented in difficult-to-express protein functional analysis.
Collapse
|