1
|
Photoreceptor Phosphodiesterase (PDE6): Structure, Regulatory Mechanisms, and Implications for Treatment of Retinal Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1371:33-59. [PMID: 34170501 DOI: 10.1007/5584_2021_649] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The photoreceptor phosphodiesterase (PDE6) is a member of large family of Class I phosphodiesterases responsible for hydrolyzing the second messengers cAMP and cGMP. PDE6 consists of two catalytic subunits and two inhibitory subunits that form a tetrameric protein. PDE6 is a peripheral membrane protein that is localized to the signal-transducing compartment of rod and cone photoreceptors. As the central effector enzyme of the G-protein coupled visual transduction pathway, activation of PDE6 catalysis causes a rapid decrease in cGMP levels that results in closure of cGMP-gated ion channels in the photoreceptor plasma membrane. Because of its importance in the phototransduction pathway, mutations in PDE6 genes result in various retinal diseases that currently lack therapeutic treatment strategies due to inadequate knowledge of the structure, function, and regulation of this enzyme. This review focuses on recent progress in understanding the structure of the regulatory and catalytic domains of the PDE6 holoenzyme, the central role of the multi-functional inhibitory γ-subunit, the mechanism of activation by the heterotrimeric G protein, transducin, and future directions for pharmacological interventions to treat retinal degenerative diseases arising from mutations in the PDE6 genes.
Collapse
|
2
|
Photoreceptor phosphodiesterase (PDE6): activation and inactivation mechanisms during visual transduction in rods and cones. Pflugers Arch 2021; 473:1377-1391. [PMID: 33860373 DOI: 10.1007/s00424-021-02562-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 01/16/2023]
Abstract
Rod and cone photoreceptors of the vertebrate retina utilize cGMP as the primary intracellular messenger for the visual signaling pathway that converts a light stimulus into an electrical response. cGMP metabolism in the signal-transducing photoreceptor outer segment reflects the balance of cGMP synthesis (catalyzed by guanylyl cyclase) and degradation (catalyzed by the photoreceptor phosphodiesterase, PDE6). Upon light stimulation, rapid activation of PDE6 by the heterotrimeric G-protein (transducin) triggers a dramatic drop in cGMP levels that lead to cell hyperpolarization. Following cessation of the light stimulus, the lifetime of activated PDE6 is also precisely regulated by additional processes. This review summarizes recent advances in the structural characterization of the rod and cone PDE6 catalytic and regulatory subunits in the context of previous biochemical studies of the enzymological properties and allosteric regulation of PDE6. Emphasis is given to recent advances in understanding the structural and conformational changes underlying the mechanism by which the activated transducin α-subunit binds to-and relieves inhibition of-PDE6 catalysis that is controlled by its intrinsically disordered, inhibitory γ-subunit. The role of the regulator of G-protein signaling 9-1 (RGS9-1) in regulating the lifetime of the transducin-PDE6 is also briefly covered. The therapeutic potential of pharmacological compounds acting as inhibitors or activators targeting PDE6 is discussed in the context of inherited retinal diseases resulting from mutations in rod and cone PDE6 genes as well as other inherited defects that arise from excessive cGMP accumulation in retinal photoreceptor cells.
Collapse
|
3
|
Lu B, Liu XH, Liao SM, Lu ZL, Chen D, Troy Ii FA, Huang RB, Zhou GP. A Possible Modulation Mechanism of Intramolecular and Intermolecular Interactions for NCAM Polysialylation and Cell Migration. Curr Top Med Chem 2019; 19:2271-2282. [PMID: 31648641 DOI: 10.2174/1568026619666191018094805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/01/2019] [Accepted: 08/06/2019] [Indexed: 12/31/2022]
Abstract
Polysialic acid (polySia) is a novel glycan that posttranslationally modifies neural cell adhesion molecules (NCAMs) in mammalian cells. Up-regulation of polySia-NCAM expression or NCAM polysialylation is associated with tumor cell migration and progression in many metastatic cancers and neurocognition. It has been known that two highly homologous mammalian polysialyltransferases (polySTs), ST8Sia II (STX) and ST8Sia IV (PST), can catalyze polysialylation of NCAM, and two polybasic domains, polybasic region (PBR) and polysialyltransferase domain (PSTD) in polySTs play key roles in affecting polyST activity or NCAM polysialylation. However, the molecular mechanisms of NCAM polysialylation and cell migration are still not entirely clear. In this minireview, the recent research results about the intermolecular interactions between the PBR and NCAM, the PSTD and cytidine monophosphate-sialic acid (CMP-Sia), the PSTD and polySia, and as well as the intramolecular interaction between the PBR and the PSTD within the polyST, are summarized. Based on these cooperative interactions, we have built a novel model of NCAM polysialylation and cell migration mechanisms, which may be helpful to design and develop new polysialyltransferase inhibitors.
Collapse
Affiliation(s)
- Bo Lu
- The National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi 530007, China
| | - Xue-Hui Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Si-Ming Liao
- The National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi 530007, China
| | - Zhi-Long Lu
- The National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi 530007, China
| | - Dong Chen
- The National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi 530007, China
| | - Frederic A Troy Ii
- Department of Biochemistry and Molecular Medicine, University of California School of Medicine, Davis, CA, 95817, United States
| | - Ri-Bo Huang
- The National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi 530007, China.,Life Science and Biotechnology College, Guangxi University, Nanning, Guangxi 530004, China
| | - Guo-Ping Zhou
- The National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi 530007, China
| |
Collapse
|
4
|
Nabavi SM, Talarek S, Listos J, Nabavi SF, Devi KP, Roberto de Oliveira M, Tewari D, Argüelles S, Mehrzadi S, Hosseinzadeh A, D'onofrio G, Orhan IE, Sureda A, Xu S, Momtaz S, Farzaei MH. Phosphodiesterase inhibitors say NO to Alzheimer's disease. Food Chem Toxicol 2019; 134:110822. [PMID: 31536753 DOI: 10.1016/j.fct.2019.110822] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 09/13/2019] [Accepted: 09/14/2019] [Indexed: 12/18/2022]
Abstract
Phosphodiesterases (PDEs) consisted of 11 subtypes (PDE1 to PDE11) and over 40 isoforms that regulate levels of cyclic guanosine monophosphate (cGMP) and cyclic adenosine monophosphate (cAMP), the second messengers in cell functions. PDE inhibitors (PDEIs) have been attractive therapeutic targets due to their involvement in diverse medical conditions, e.g. cardiovascular diseases, autoimmune diseases, Alzheimer's disease (AD), etc. Among them; AD with a complex pathology is a progressive neurodegenerative disorder which affect mostly senile people in the world and only symptomatic treatment particularly using cholinesterase inhibitors in clinic is available at the moment for AD. Consequently, novel treatment strategies towards AD are still searched extensively. Since PDEs are broadly expressed in the brain, PDEIs are considered to modulate neurodegenerative conditions through regulating cAMP and cGMP in the brain. In this sense, several synthetic or natural molecules inhibiting various PDE subtypes such as rolipram and roflumilast (PDE4 inhibitors), vinpocetine (PDE1 inhibitor), cilostazol and milrinone (PDE3 inhibitors), sildenafil and tadalafil (PDE5 inhibitors), etc have been reported showing encouraging results for the treatment of AD. In this review, PDE superfamily will be scrutinized from the view point of structural features, isoforms, functions and pharmacology particularly attributed to PDEs as target for AD therapy.
Collapse
Affiliation(s)
- Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Sylwia Talarek
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodźki 4a St, 20-093, Lublin, Poland.
| | - Joanna Listos
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodźki 4a St, 20-093, Lublin, Poland.
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University, Karaikudi, 630003, Tamil Nadu, India.
| | - Marcos Roberto de Oliveira
- Departamento de Química (DQ), Instituto de Ciências Exatas e da Terra (ICET), Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil.
| | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India.
| | - Sandro Argüelles
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain.
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Grazia D'onofrio
- Geriatric Unit and Gerontology-Geriatrics Research Laboratory, Department of Medical Sciences, IRCCS "Casa Sollievo della Sofferenza", Viale Cappuccini 1, 71013, San Giovanni Rotondo, FG, Italy.
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey.
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands, CIBEROBN (Physiopathology of Obesity and Nutrition), E-07122, Palma de Mallorca, Balearic Islands, Spain.
| | - Suowen Xu
- Aab Cardiovascular Research Institute, University of Rochester, Rochester, NY, 14623, USA.
| | - Saeedeh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
5
|
Peng LX, Liu XH, Lu B, Liao SM, Zhou F, Huang JM, Chen D, Troy FA, Zhou GP, Huang RB. The Inhibition of Polysialyltranseferase ST8SiaIV Through Heparin Binding to Polysialyltransferase Domain (PSTD). Med Chem 2019; 15:486-495. [PMID: 30569872 DOI: 10.2174/1573406415666181218101623] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/23/2018] [Accepted: 12/12/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND The polysialic acid (polySia) is a unique carbohydrate polymer produced on the surface Of Neuronal Cell Adhesion Molecule (NCAM) in a number of cancer cells, and strongly correlates with the migration and invasion of tumor cells and with aggressive, metastatic disease and poor clinical prognosis in the clinic. Its synthesis is catalyzed by two polysialyltransferases (polySTs), ST8SiaIV (PST) and ST8SiaII (STX). Selective inhibition of polySTs, therefore, presents a therapeutic opportunity to inhibit tumor invasion and metastasis due to NCAM polysialylation. Heparin has been found to be effective in inhibiting the ST8Sia IV activity, but no clear molecular rationale. It has been found that polysialyltransferase domain (PSTD) in polyST plays a significant role in influencing polyST activity, and thus it is critical for NCAM polysialylation based on the previous studies. OBJECTIVE To determine whether the three different types of heparin (unfractionated hepain (UFH), low molecular heparin (LMWH) and heparin tetrasaccharide (DP4)) is bound to the PSTD; and if so, what are the critical residues of the PSTD for these binding complexes? METHODS Fluorescence quenching analysis, the Circular Dichroism (CD) spectroscopy, and NMR spectroscopy were used to determine and analyze interactions of PSTD-UFH, PSTD-LMWH, and PSTD-DP4. RESULTS The fluorescence quenching analysis indicates that the PSTD-UFH binding is the strongest and the PSTD-DP4 binding is the weakest among these three types of the binding; the CD spectra showed that mainly the PSTD-heparin interactions caused a reduction in signal intensity but not marked decrease in α-helix content; the NMR data of the PSTD-DP4 and the PSTDLMWH interactions showed that the different types of heparin shared 12 common binding sites at N247, V251, R252, T253, S257, R265, Y267, W268, L269, V273, I275, and K276, which were mainly distributed in the long α-helix of the PSTD and the short 3-residue loop of the C-terminal PSTD. In addition, three residues K246, K250 and A254 were bound to the LMWH, but not to DP4. This suggests that the PSTD-LMWH binding is stronger than the PSTD-DP4 binding, and the LMWH is a more effective inhibitor than DP4. CONCLUSION The findings in the present study demonstrate that PSTD domain is a potential target of heparin and may provide new insights into the molecular rationale of heparin-inhibiting NCAM polysialylation.
Collapse
Affiliation(s)
- Li-Xin Peng
- Life Science and Technology College, Guangxi University, Nanning, Guangxi, 530004 China; 2Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi 530007, China
| | - Xue-Hui Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Bo Lu
- National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi 530007, China
| | - Si-Ming Liao
- National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi 530007, China
| | - Feng Zhou
- National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi 530007, China
| | - Ji-Min Huang
- National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi 530007, China
| | - Dong Chen
- National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi 530007, China
| | - Frederic A Troy
- Department of Biochemistry and Molecular Medicine, University of California School of Medicine, Davis, CL, United States
| | - Guo-Ping Zhou
- National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi 530007, China.,Gordon Life Science Institute, 53 South Cottage Road Belmont, MA 02478, United States
| | - Ri-Bo Huang
- Life Science and Technology College, Guangxi University, Nanning, Guangxi, 530004 China; 2Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi 530007, China
| |
Collapse
|
6
|
Qureshi BM, Behrmann E, Schöneberg J, Loerke J, Bürger J, Mielke T, Giesebrecht J, Noé F, Lamb TD, Hofmann KP, Spahn CMT, Heck M. It takes two transducins to activate the cGMP-phosphodiesterase 6 in retinal rods. Open Biol 2018; 8:180075. [PMID: 30068566 PMCID: PMC6119865 DOI: 10.1098/rsob.180075] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/06/2018] [Indexed: 12/21/2022] Open
Abstract
Among cyclic nucleotide phosphodiesterases (PDEs), PDE6 is unique in serving as an effector enzyme in G protein-coupled signal transduction. In retinal rods and cones, PDE6 is membrane-bound and activated to hydrolyse its substrate, cGMP, by binding of two active G protein α-subunits (Gα*). To investigate the activation mechanism of mammalian rod PDE6, we have collected functional and structural data, and analysed them by reaction-diffusion simulations. Gα* titration of membrane-bound PDE6 reveals a strong functional asymmetry of the enzyme with respect to the affinity of Gα* for its two binding sites on membrane-bound PDE6 and the enzymatic activity of the intermediary 1 : 1 Gα* · PDE6 complex. Employing cGMP and its 8-bromo analogue as substrates, we find that Gα* · PDE6 forms with high affinity but has virtually no cGMP hydrolytic activity. To fully activate PDE6, it takes a second copy of Gα* which binds with lower affinity, forming Gα* · PDE6 · Gα*. Reaction-diffusion simulations show that the functional asymmetry of membrane-bound PDE6 constitutes a coincidence switch and explains the lack of G protein-related noise in visual signal transduction. The high local concentration of Gα* generated by a light-activated rhodopsin molecule efficiently activates PDE6, whereas the low density of spontaneously activated Gα* fails to activate the effector enzyme.
Collapse
Affiliation(s)
- Bilal M Qureshi
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Elmar Behrmann
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Johannes Schöneberg
- Department of Mathematics, Computer Science and Bioinformatics, Freie Universität Berlin, Berlin, Germany
| | - Justus Loerke
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jörg Bürger
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Thorsten Mielke
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Microscopy and Cryo Electron Microscopy Group, Max-Planck Institut für Molekulare Genetik, Berlin, Germany
| | - Jan Giesebrecht
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Frank Noé
- Department of Mathematics, Computer Science and Bioinformatics, Freie Universität Berlin, Berlin, Germany
| | - Trevor D Lamb
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory 2600, Australia
| | - Klaus Peter Hofmann
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Zentrum für Biophysik und Bioinformatik, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christian M T Spahn
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Martin Heck
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
7
|
Qureshi BM, Schmidt A, Behrmann E, Bürger J, Mielke T, Spahn CMT, Heck M, Scheerer P. Mechanistic insights into the role of prenyl-binding protein PrBP/δ in membrane dissociation of phosphodiesterase 6. Nat Commun 2018; 9:90. [PMID: 29311697 PMCID: PMC5758567 DOI: 10.1038/s41467-017-02569-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 12/11/2017] [Indexed: 01/01/2023] Open
Abstract
Isoprenylated proteins are associated with membranes and their inter-compartmental distribution is regulated by solubilization factors, which incorporate lipid moieties in hydrophobic cavities and thereby facilitate free diffusion during trafficking. Here we report the crystal structure of a solubilization factor, the prenyl-binding protein (PrBP/δ), at 1.81 Å resolution in its ligand-free apo-form. Apo-PrBP/δ harbors a preshaped, deep hydrophobic cavity, capacitating apo-PrBP/δ to readily bind its prenylated cargo. To investigate the molecular mechanism of cargo solubilization we analyzed the PrBP/δ-induced membrane dissociation of rod photoreceptor phosphodiesterase (PDE6). The results suggest that PrBP/δ exclusively interacts with the soluble fraction of PDE6. Depletion of soluble species in turn leads to dissociation of membrane-bound PDE6, as both are in equilibrium. This “solubilization by depletion” mechanism of PrBP/δ differs from the extraction of prenylated proteins by the similar folded solubilization factor RhoGDI, which interacts with membrane bound cargo via an N-terminal structural element lacking in PrBP/δ. The prenyl-binding protein PrBP/δ is a solubilization factor involved in trafficking of prenylated proteins. Here the authors present the ligand-free apo-PrBP/δ structure and propose a "solubilization by depletion" mechanism, where PrBP/δ sequesters only soluble rod photoreceptor phosphodiesterase (PDE6), leading to a dissociation of membrane-bound PDE6.
Collapse
Affiliation(s)
- Bilal M Qureshi
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, D-10117, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Institut für Medizinische Physik und Biophysik (CC2), Group Protein X-ray Crystallography and Signal Transduction, Charitéplatz 1, D-10117, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Institut für Medizinische Physik und Biophysik (CC2), Group Cryo Electron Microscopy, Charitéplatz 1, D-10117, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Institut für Medizinische Physik und Biophysik (CC2), Group Enzyme Kinetics, Charitéplatz 1, D-10117, Berlin, Germany.,Division of Biological & Environmental Sciences & Engineering, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Andrea Schmidt
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, D-10117, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Institut für Medizinische Physik und Biophysik (CC2), Group Protein X-ray Crystallography and Signal Transduction, Charitéplatz 1, D-10117, Berlin, Germany
| | - Elmar Behrmann
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, D-10117, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Institut für Medizinische Physik und Biophysik (CC2), Group Cryo Electron Microscopy, Charitéplatz 1, D-10117, Berlin, Germany.,Research Group Structural Dynamics of Proteins, Center of Advanced European Studies and Research (Caesar), Ludwig-Erhard-Allee 2, D-53175, Bonn, Germany.,Institute of Biochemistry-Structural Biochemistry, University of Cologne, Zuelpicher Straße 47, D-50674, Cologne, Germany
| | - Jörg Bürger
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, D-10117, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Institut für Medizinische Physik und Biophysik (CC2), Group Cryo Electron Microscopy, Charitéplatz 1, D-10117, Berlin, Germany.,UltraStrukturNetzwerk, Max Planck Institute for Molecular Genetics, Ihnestrasse 73, D-14195, Berlin, Germany
| | - Thorsten Mielke
- UltraStrukturNetzwerk, Max Planck Institute for Molecular Genetics, Ihnestrasse 73, D-14195, Berlin, Germany
| | - Christian M T Spahn
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, D-10117, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Institut für Medizinische Physik und Biophysik (CC2), Group Cryo Electron Microscopy, Charitéplatz 1, D-10117, Berlin, Germany
| | - Martin Heck
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, D-10117, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Institut für Medizinische Physik und Biophysik (CC2), Group Enzyme Kinetics, Charitéplatz 1, D-10117, Berlin, Germany
| | - Patrick Scheerer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, D-10117, Berlin, Germany. .,Charité - Universitätsmedizin Berlin, Institut für Medizinische Physik und Biophysik (CC2), Group Protein X-ray Crystallography and Signal Transduction, Charitéplatz 1, D-10117, Berlin, Germany.
| |
Collapse
|
8
|
Zhang Z, He F, Constantine R, Baker ML, Baehr W, Schmid MF, Wensel TG, Agosto MA. Domain organization and conformational plasticity of the G protein effector, PDE6. J Biol Chem 2015; 290:12833-43. [PMID: 25809480 DOI: 10.1074/jbc.m115.647636] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Indexed: 11/06/2022] Open
Abstract
The cGMP phosphodiesterase of rod photoreceptor cells, PDE6, is the key effector enzyme in phototransduction. Two large catalytic subunits, PDE6α and -β, each contain one catalytic domain and two non-catalytic GAF domains, whereas two small inhibitory PDE6γ subunits allow tight regulation by the G protein transducin. The structure of holo-PDE6 in complex with the ROS-1 antibody Fab fragment was determined by cryo-electron microscopy. The ∼11 Å map revealed previously unseen features of PDE6, and each domain was readily fit with high resolution structures. A structure of PDE6 in complex with prenyl-binding protein (PrBP/δ) indicated the location of the PDE6 C-terminal prenylations. Reconstructions of complexes with Fab fragments bound to N or C termini of PDE6γ revealed that PDE6γ stretches from the catalytic domain at one end of the holoenzyme to the GAF-A domain at the other. Removal of PDE6γ caused dramatic structural rearrangements, which were reversed upon its restoration.
Collapse
Affiliation(s)
- Zhixian Zhang
- From the Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030 and
| | - Feng He
- From the Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030 and
| | - Ryan Constantine
- Department of Ophthalmology, Moran Eye Center, University of Utah, Salt Lake City, Utah 84132
| | - Matthew L Baker
- From the Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030 and
| | - Wolfgang Baehr
- Department of Ophthalmology, Moran Eye Center, University of Utah, Salt Lake City, Utah 84132
| | - Michael F Schmid
- From the Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030 and
| | - Theodore G Wensel
- From the Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030 and
| | - Melina A Agosto
- From the Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030 and
| |
Collapse
|
9
|
The upstream conserved regions (UCRs) mediate homo- and hetero-oligomerization of type 4 cyclic nucleotide phosphodiesterases (PDE4s). Biochem J 2014; 459:539-50. [PMID: 24555506 DOI: 10.1042/bj20131681] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PDE4s (type 4 cyclic nucleotide phosphodiesterases) are divided into long and short forms by the presence or absence of conserved N-terminal domains termed UCRs (upstream conserved regions). We have shown previously that PDE4D2, a short variant, is a monomer, whereas PDE4D3, a long variant, is a dimer. In the present study, we have determined the apparent molecular masses of various long and short PDE4 variants by size-exclusion chromatography and sucrose density-gradient centrifugation. Our results indicate that dimerization is a conserved property of all long PDE4 forms, whereas short forms are monomers. Dimerization is mediated by the UCR domains. Given their high sequence conservation, the UCR domains mediate not only homo-oligomerization, but also hetero-oligomerization of distinct PDE4 long forms as detected by co-immunoprecipitation assays and FRET microscopy. Endogenous PDE4 hetero-oligomers are, however, low in abundance compared with homo-dimers, revealing the presence of mechanisms that predispose PDE4s towards homo-oligomerization. Oligomerization is a prerequisite for the regulatory properties of the PDE4 long forms, such as their PKA (protein kinase A)-dependent activation, but is not necessary for PDE4 protein-protein interactions. As a result, individual PDE4 protomers may independently mediate protein-protein interactions, providing a mechanism whereby PDE4s contribute to the assembly of macromolecular signalling complexes.
Collapse
|
10
|
Cahill KB, Quade JH, Carleton KL, Cote RH. Identification of amino acid residues responsible for the selectivity of tadalafil binding to two closely related phosphodiesterases, PDE5 and PDE6. J Biol Chem 2012; 287:41406-16. [PMID: 23033484 DOI: 10.1074/jbc.m112.389189] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 11 families of the Class I cyclic nucleotide phosphodiesterases (PDEs) are critical for regulation of cyclic nucleotide signaling. PDE5 (important in regulating vascular smooth muscle contraction) and PDE6 (responsible for regulating visual transduction in vertebrate photoreceptors) are structurally similar but have several functional differences whose structural basis is poorly understood. Using evolutionary trace analysis and structural homology modeling in conjunction with site-directed mutagenesis, we have tested the hypothesis that class-specific differences between PDE5 and PDE6 account for the biochemical and pharmacological differences in the two enzyme families. Replacing human PDE5 residues in the M-loop region of the binding site for the PDE5-selective inhibitor tadalafil (Cialis®) with the corresponding class-specific cone PDE6 residues (P773E, I778V, E780L, F787W, E796V, D803P, L804M, N806D, I813L, S815K) reduces tadalafil binding affinity to levels characteristic of PDE6. These mutations fail to alter vardenafil (Levitra®) affinity for the active site. Class-specific differences in PDE5 versus cone PDE6 that contribute to the accelerated catalytic efficiency of PDE6 were identified but required heterologous expression of full-length PDE5 constructs. Introduction of PDE6 residues into the background of the PDE5 protein sequence often led to loss of catalytic activity and reduced protein solubility, supporting the idea that multiple structural elements of PDE6 are highly susceptible to misfolding during heterologous expression. This work validates the use of PDE5 as a template to identify functional differences between PDE5 and PDE6 that will accelerate efforts to develop the next generation of PDE5-selective inhibitors with fewer adverse side effects resulting from PDE6 inhibition.
Collapse
Affiliation(s)
- Karyn B Cahill
- Department of Molecular, Cellular and Biomedical Sciences University of New Hampshire, Durham, New Hampshire 03824, USA
| | | | | | | |
Collapse
|
11
|
Matte SL, Laue TM, Cote RH. Characterization of conformational changes and protein-protein interactions of rod photoreceptor phosphodiesterase (PDE6). J Biol Chem 2012; 287:20111-21. [PMID: 22514270 DOI: 10.1074/jbc.m112.354647] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
As the central effector of visual transduction, the regulation of photoreceptor phosphodiesterase (PDE6) is controlled by both allosteric mechanisms and extrinsic binding partners. However, the conformational changes and interactions of PDE6 with known interacting proteins are poorly understood. Using a fluorescence detection system for the analytical ultracentrifuge, we examined allosteric changes in PDE6 structure and protein-protein interactions with its inhibitory γ-subunit, the prenyl-binding protein (PrBP/δ), and activated transducin. In solution, the PDE6 catalytic dimer (Pαβ) exhibits a more asymmetric shape (axial ratio of 6.6) than reported previously. The inhibitory Pγ subunit behaves as an intrinsically disordered protein in solution but binds with high affinity to the catalytic dimer to reconstitute the holoenzyme without a detectable change in shape. Whereas the closely related PDE5 homodimer undergoes a significant change in its sedimentation properties upon cGMP binding to its regulatory cGMP binding site, no such change was detected upon ligand binding to the PDE6 catalytic dimer. However, when Pαβ was reconstituted with Pγ truncation mutants lacking the C-terminal inhibitory region, cGMP-dependent allosteric changes were observed. PrBP/δ bound to the PDE6 holoenzyme with high affinity (K(D) = 6.2 nm) and induced elongation of the protein complex. Binding of activated transducin to PDE6 holoenzyme resulted in a concentration-dependent increase in the sedimentation coefficient, reflecting a dynamic equilibrium between transducin and PDE6. We conclude that allosteric regulation of PDE6 is more complex than for PDE5 and is dependent on interactions of regions of Pγ with the catalytic dimer.
Collapse
Affiliation(s)
- Suzanne L Matte
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire 03824, USA
| | | | | |
Collapse
|
12
|
Abstract
Visual perception in humans occurs through absorption of electromagnetic radiation from 400 to 780 nm by photoreceptors in the retina. A photon of visible light carries a sufficient amount of energy to cause, when absorbed, a cis,trans-geometric isomerization of the 11-cis-retinal chromophore, a vitamin A derivative bound to rhodopsin and cone opsins of retinal photoreceptors. The unique biochemistry of these complexes allows us to reliably and reproducibly collect continuous visual information about our environment. Moreover, other nonconventional retinal opsins such as the circadian rhythm regulator melanopsin also initiate light-activated signaling based on similar photochemistry.
Collapse
Affiliation(s)
- Krzysztof Palczewski
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| |
Collapse
|
13
|
Baker BY, Palczewski K. Detergents stabilize the conformation of phosphodiesterase 6. Biochemistry 2011; 50:9520-31. [PMID: 21978030 DOI: 10.1021/bi2014695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Membrane-bound phosphodiesterase 6 (PDE6) plays an important role in visual signal transduction by regulating cGMP levels in rod photoreceptor cells. Our understanding of PDE6 catalysis and structure suffers from inadequate characterization of the α and β subunit catalytic core, interactions of the core with two intrinsically disordered, proteolysis-prone inhibitory PDEγ (Pγ) subunits, and binding of two types of isoprenyl-binding protein δ, called PrBP/δ, to the isoprenylated C-termini of the catalytic core. Structural studies of native PDE6 have been also been hampered by the lack of a heterologous expression system for the holoenzyme. In this work, we purified PDE6 in the presence of PrBP/δ and screened for additives and detergents that selectively suppress PDE6 basal activity while sparing that of the trypsin-activated enzyme. Some detergents removed PrBP/δ from the PDE complex, separating it from the holoenzyme after PDE6 purification. Additionally, selected detergents also significantly reduced the level of dissociation of PDE6 subunits, increasing their homogeneity and stabilizing the holoenzyme by substituting for its native membrane environment.
Collapse
Affiliation(s)
- Bo Y Baker
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | | |
Collapse
|
14
|
Yamazaki A, Hayashi F, Matsuura I, Bondarenko VA. Binding of cGMP to the transducin-activated cGMP phosphodiesterase, PDE6, initiates a large conformational change involved in its deactivation. FEBS J 2011; 278:1854-72. [PMID: 21439020 DOI: 10.1111/j.1742-4658.2011.08104.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Retinal photoreceptor phosphodiesterase (PDE6), a key enzyme for phototransduction, consists of a catalytic subunit complex (Pαβ) and two inhibitory subunits (Pγs). Pαβ has two noncatalytic cGMP-binding sites. Here, using bovine PDE preparations, we show the role of these cGMP-binding sites in PDE regulation. Pαβγγ and its transducin-activated form, Pαβγ, contain two and one cGMP, respectively. Only Pαβγ shows [(3)H]cGMP binding with a K(d) ∼ 50 nM and Pγ inhibits the [(3)H]cGMP binding. Binding of cGMP to Pαβγ is suppressed during its formation, implying that cGMP binding is not involved in Pαβγγ activation. Once bound to Pαβγ, [(3)H]cGMP is not dissociated even in the presence of a 1000-fold excess of unlabeled cGMP, binding of cGMP changes the apparent Stokes' radius of Pαβγ, and the amount of [(3)H]cGMP-bound Pαβγ trapped by a filter is spontaneously increased during its incubation. These results suggest that Pαβγ slowly changes its conformation after cGMP binding, i.e. after formation of Pαβγ containing two cGMPs. Binding of Pγ greatly shortens the time to detect the increase in the filter-trapped level of [(3)H]cGMP-bound Pαβγ, but alters neither the level nor its Stokes' radius. These results suggest that Pγ accelerates the conformational change, but does not add another change. These observations are consistent with the view that Pαβγ changes its conformation during its deactivation and that the binding of cGMP and Pγ is crucial for this change. These observations also imply that Pαβγγ changes its conformation during its activation and that release of Pγ and cGMP is essential for this change.
Collapse
Affiliation(s)
- Akio Yamazaki
- Kresge Eye Institute, Wayne State University, Detroit, MI, USA
| | | | | | | |
Collapse
|
15
|
Francis SH, Blount MA, Corbin JD. Mammalian Cyclic Nucleotide Phosphodiesterases: Molecular Mechanisms and Physiological Functions. Physiol Rev 2011; 91:651-90. [DOI: 10.1152/physrev.00030.2010] [Citation(s) in RCA: 451] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The superfamily of cyclic nucleotide (cN) phosphodiesterases (PDEs) is comprised of 11 families of enzymes. PDEs break down cAMP and/or cGMP and are major determinants of cellular cN levels and, consequently, the actions of cN-signaling pathways. PDEs exhibit a range of catalytic efficiencies for breakdown of cAMP and/or cGMP and are regulated by myriad processes including phosphorylation, cN binding to allosteric GAF domains, changes in expression levels, interaction with regulatory or anchoring proteins, and reversible translocation among subcellular compartments. Selective PDE inhibitors are currently in clinical use for treatment of erectile dysfunction, pulmonary hypertension, intermittent claudication, and chronic pulmonary obstructive disease; many new inhibitors are being developed for treatment of these and other maladies. Recently reported x-ray crystallographic structures have defined features that provide for specificity for cAMP or cGMP in PDE catalytic sites or their GAF domains, as well as mechanisms involved in catalysis, oligomerization, autoinhibition, and interactions with inhibitors. In addition, major advances have been made in understanding the physiological impact and the biochemical basis for selective localization and/or recruitment of specific PDE isoenzymes to particular subcellular compartments. The many recent advances in understanding PDE structures, functions, and physiological actions are discussed in this review.
Collapse
Affiliation(s)
- Sharron H. Francis
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee; and Department of Medicine-Renal Division, Emory University School of Medicine, Atlanta, Georgia
| | - Mitsi A. Blount
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee; and Department of Medicine-Renal Division, Emory University School of Medicine, Atlanta, Georgia
| | - Jackie D. Corbin
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee; and Department of Medicine-Renal Division, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
16
|
Goc A, Chami M, Lodowski DT, Bosshart P, Moiseenkova-Bell V, Baehr W, Engel A, Palczewski K. Structural characterization of the rod cGMP phosphodiesterase 6. J Mol Biol 2010; 401:363-73. [PMID: 20600113 DOI: 10.1016/j.jmb.2010.06.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 06/11/2010] [Accepted: 06/21/2010] [Indexed: 10/19/2022]
Abstract
Rod cGMP phosphodiesterase 6 (PDE6) is a key enzyme of the phototransduction cascade, consisting of PDE6alpha, PDE6beta, and two regulatory PDE6gamma subunits. PDE6 is membrane associated through isoprenyl membrane anchors attached to the C-termini of PDE6alpha and PDE6beta and can form a complex with prenyl-binding protein delta (PrBP/delta), an isoprenyl-binding protein that is highly expressed in photoreceptors. The stoichiometry of PDE6-PrBP/delta binding and the mechanism by which the PDE6-PrBP/delta complex assembles have not been fully characterized, and the location of regulatory PDE6gamma subunits within the protein assembly has not been elucidated. To clarify these questions, we have developed a rapid purification method for PDE6-PrBP/delta from bovine rod outer segments utilizing recombinant PrBP/delta. Transmission electron microscopy of negatively stained samples revealed the location of PrBP/delta and, thus, where the carboxyl-termini of PDE6alpha and PDE6beta must be located. The three-dimensional structure of the PDE6alphabetagamma complex was determined up to 18 A resolution from single-particle projections and was interpreted by model building to identify the probable location of isoprenylation, PDE6gamma subunits, and catalytic sites.
Collapse
Affiliation(s)
- Anna Goc
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4965, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Heikaus CC, Pandit J, Klevit RE. Cyclic nucleotide binding GAF domains from phosphodiesterases: structural and mechanistic insights. Structure 2010; 17:1551-1557. [PMID: 20004158 DOI: 10.1016/j.str.2009.07.019] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 07/15/2009] [Accepted: 07/20/2009] [Indexed: 11/26/2022]
Abstract
GAF domains regulate the catalytic activity of certain vertebrate cyclic nucleotide phosphodiesterases (PDEs) by allosteric, noncatalytic binding of cyclic nucleotides. GAF domains arranged in tandem are found in PDE2, -5, -6, -10, and -11, all of which regulate the cellular concentrations of the second messengers cAMP and/or cGMP. Nucleotide binding to GAF domains affects the overall conformation and the catalytic activity of full-length PDEs. The cyclic nucleotide-bound GAF domains from PDE2, -5, -6, and -10 all adopt a conserved fold but show subtle differences within the binding pocket architecture that account for a large range of nucleotide affinities and selectivity. NMR data and details from the structure of full-length nucleotide-free PDE2A reveal the dynamic nature and magnitude of the conformational change that accompanies nucleotide binding. The discussed GAF domain structures further reveal differences in dimerization properties and highlight the structural diversity within GAF domain-containing PDEs.
Collapse
Affiliation(s)
- Clemens C Heikaus
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jayvardhan Pandit
- Pfizer, Inc., PGRD, Groton, 558 Eastern Point Road, Groton, CT 06340, USA
| | - Rachel E Klevit
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
18
|
Mechanism for the regulation of mammalian cGMP phosphodiesterase6. 2: isolation and characterization of the transducin-activated form. Mol Cell Biochem 2010; 339:235-51. [PMID: 20177739 DOI: 10.1007/s11010-010-0404-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 01/25/2010] [Indexed: 10/19/2022]
Abstract
Rod photoreceptor cGMP phosphodiesterase (PDE6) consists of a catalytic subunit complex (Palphabeta) and two inhibitory subunits (Pgamma). In the accompanying article, using bovine photoreceptor outer segment homogenates, we show that Pgamma as a complex with the GTP-bound transducin alpha subunit (GTP-Talpha) dissociates from Palphabetagammagamma on membranes, and the Palphabetagammagamma becomes Pgamma-depleted. Here, we identify and characterize the Pgamma-depleted PDE. After incubation with or without guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS), Palphabeta complexes are extracted. When a hypotonic buffer is used, Palphabetagammagamma, Palphabetagamma, and a negligible amount of a Palphabeta complex containing Pgamma are isolated with GTPgammaS, and only Palphabetagammagamma is obtained without GTPgammaS. When an isotonic buffer containing Pdelta, a prenyl-binding protein, is used, Palphabetagammagammadelta, Palphabetagammadeltadelta, and a negligible amount of a Palphabeta complex containing Pgamma and Pdelta are isolated with GTPgammaS, and Palphabetagammagammadelta is obtained without GTPgammaS. Neither Palphabeta nor Palphabetagammagamma complexed with GTPgammaS-Talpha is found under any condition we examined. Palphabetagamma has approximately 12 times higher PDE activity and approximately 30 times higher Pgamma sensitivity than those of Palphabetagammagamma. These results indicate that the Pgamma-depleted PDE is Palphabetagamma. Isolation of Palphabetagammagammadelta and Palphabetagammadeltadelta suggests that one C-terminus of Palphabeta is involved in the Palphabetagammagamma interaction with membranes, and that Pgamma dissociation opens another C-terminus for Pdelta binding, which may lead to the expression of high PDE activity. Cone PDE behaves similarly to rod PDE in the anion exchange column chromatography. We conclude that the mechanisms for PDE activation are similar in mammalian and amphibian photoreceptors as well as in rods and cones.
Collapse
|
19
|
Yamazaki A, Bondarenko VA, Matsuura I, Tatsumi M, Kurono S, Komori N, Matsumoto H, Hayashi F, Yamazaki RK, Usukura J. Mechanism for the regulation of mammalian cGMP phosphodiesterase6. 1: identification of its inhibitory subunit complexes and their roles. Mol Cell Biochem 2010; 339:215-33. [PMID: 20151179 DOI: 10.1007/s11010-010-0387-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 01/25/2010] [Indexed: 10/19/2022]
Abstract
Cyclic GMP phosphodiesterase (PDE) in bovine rod photoreceptor outer segments (OS) comprises a catalytic subunit complex (Palphabeta) and two inhibitory subunits (Pgamma) and is regulated by the alpha subunit of transducin (Talpha). Here, we show an overall mechanism for PDE regulation by identifying Pgamma complexes in OS homogenates prepared with an isotonic buffer. Before Talpha activation, three Pgamma complexes exist in the soluble fraction. Complex a, a minor complex, contains Palphabeta, Talpha, and a protein named Pdelta. Complex b, Palphabetagammagamma( b ), has a PDE activity similar to that of membranous Palphabetagammagamma, Palphabetagammagamma( M ), and its level, although its large portion is Pdelta-free, is estimated to be 20-30% of the total Palphabetagammagamma. Complex c, (Pgamma.GDP-Talpha) (2) ( c ) , appears to be a dimer of Pgamma.GDP-Talpha. Upon Talpha activation, (1) complex a stays unchanged, (2) Palphabetagammagamma( b ) binds to membranes, (3) the level of (Pgamma.GDP-Talpha) (2) ( c ) is reduced as its GTP-form is produced, (4) complex d, Pgamma.GTP-Talpha( d ), is formed on membranes and its substantial amount is released to the soluble fraction, and (5) membranous Palphabetagammagamma, Palphabetagammagamma( M ) and/or Palphabetagammagamma( b ), becomes Pgamma-depleted. These observations indicate that Pgamma as a complex with GTP-Talpha dissociates from Palphabetagammagamma on membranes and is released to the soluble fraction and that Pgamma-depleted PDE is the GTP-Talpha-activated PDE. After GTP hydrolysis, both (Pgamma.GDP-Talpha) (2) ( c ) and Pgamma.GDP-Talpha( d ), without liberating Pgamma, deactivate Pgamma-depleted PDE. The preferential order to be used for the deactivation is membranous Pgamma.GDP-Talpha( d ), solubilized Pgamma.GDP-Talpha( d ) and (Pgamma.GDP-Talpha) (2) ( c ) . Release of Pgamma.GTP-Talpha complexes to the soluble fraction is relevant to light adaptation.
Collapse
Affiliation(s)
- Akio Yamazaki
- Department of Ophthalmology, Kresge Eye Institute, Wayne State University, 4717 St. Antoine St., Detroit, MI 48201-1423, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Shen L, Caruso G, Bisegna P, Andreucci D, Gurevich V, Hamm H, DiBenedetto E. Dynamics of mouse rod phototransduction and its sensitivity to variation of key parameters. IET Syst Biol 2010; 4:12-32. [PMID: 20001089 PMCID: PMC3833298 DOI: 10.1049/iet-syb.2008.0154] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The deep understanding of the biochemical and biophysical basis of visual transduction, makes it ideal for systems-level analysis. A sensitivity analysis is presented for a self-consistent set of parameters involved in mouse phototransduction. The organising framework is a spatio-temporal mathematical model, which includes the geometry of the rod outer segment (ROS), the layered array of the discs, the incisures, the biochemistry of the activation/deactivation cascade and the biophysics of the diffusion of the second messengers in the cytoplasm and the closing of the cyclic guanosine monophosphate (cGMP) gated cationic channels. These modules include essentially all the relevant geometrical, biochemical and biophysical parameters. The parameters are selected from within experimental ranges, to obey basic first principles such as conservation of mass and energy fluxes. By means of the model they are compared to a large set of experimental data, providing a strikingly close match. Following isomerisation of a single rhodopsin R * (single photon response), the sensitivity analysis was carried out on the photo-response, measured both in terms of number of effector molecules produced, and photocurrent suppression, at peak time and the activation and recovery phases of the cascade. The current suppression is found to be very sensitive to variations of the catalytic activities, Hill's coefficients and hydrolysis rates and the geometry of the ROS, including size and shape of the incisures. The activated effector phosphodiesterase (PDE *) is very sensitive to variations of catalytic activity of G-protein activation and the average lifetimes of activated rhodopsin R * and PDE *; however, they are insensitive to geometry and variations of the transduction parameters. Thus the system is separated into two functional modules, activation/deactivation and transduction, each confined in different geometrical domains, communicating through the hydrolysis of cGMP by PDE *, and each sensitive to variations of parameters only in its own module.
Collapse
Affiliation(s)
- L. Shen
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - G. Caruso
- Construction Technologies Institute, National Research Council, Rome, Italy
| | - P. Bisegna
- Department of Civil Engineering, University of Rome Tor Vergata, Italy
| | - D. Andreucci
- Department of Mathematical Methods and Models, University of Rome La Sapienza, Italy
| | - V.V. Gurevich
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - H.E. Hamm
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - E. DiBenedetto
- Department of Mathematics, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
21
|
Bondarenko VA, Hayashi F, Usukura J, Yamazaki A. Involvement of rhodopsin and ATP in the activation of membranous guanylate cyclase in retinal photoreceptor outer segments (ROS-GC) by GC-activating proteins (GCAPs): a new model for ROS-GC activation and its link to retinal diseases. Mol Cell Biochem 2009; 334:125-39. [PMID: 19941040 DOI: 10.1007/s11010-009-0323-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2008] [Accepted: 11/04/2009] [Indexed: 11/27/2022]
Abstract
Membranous guanylate cyclase in retinal photoreceptor outer segments (ROS-GC), a key enzyme for the recovery of photoreceptors to the dark state, has a topology identical to and cytoplasmic domains homologous to those of peptide-regulated GCs. However, under the prevailing concept, its activation mechanism is significantly different from those of peptide-regulated GCs: GC-activating proteins (GCAPs) function as the sole activator of ROS-GC in a Ca(2+)-sensitive manner, and neither reception of an outside signal by the extracellular domain (ECD) nor ATP binding to the kinase homology domain (KHD) is required for its activation. We have recently shown that ATP pre-binding to the KHD in ROS-GC drastically enhances its GCAP-stimulated activity, and that rhodopsin illumination, as the outside signal, is required for the ATP pre-binding. These results indicate that illuminated rhodopsin is involved in ROS-GC activation in two ways: to initiate ATP binding to ROS-GC for preparation of its activation and to reduce [Ca(2+)] through activation of cGMP phosphodiesterase. These two signal pathways are activated in a parallel and proportional manner and finally converge for strong activation of ROS-GC by Ca(2+)-free GCAPs. These results also suggest that the ECD receives the signal for ATP binding from illuminated rhodopsin. The ECD is projected into the intradiscal space, i.e., an intradiscal domain(s) of rhodopsin is also involved in the signal transfer. Many retinal disease-linked mutations are found in these intradiscal domains; however, their consequences are often unclear. This model will also provide novel insights into causal relationship between these mutations and certain retinal diseases.
Collapse
|
22
|
Guo LW, Ruoho AE. The retinal cGMP phosphodiesterase gamma-subunit - a chameleon. Curr Protein Pept Sci 2009; 9:611-25. [PMID: 19075750 DOI: 10.2174/138920308786733930] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Intrinsically disordered proteins (IDPs) represent an emerging class of proteins (or domains) that are characterized by a lack of ordered secondary and tertiary structure. This group of proteins has recently attracted tremendous interest primarily because of a unique feature: they can bind to different targets due to their structural plasticity, and thus fulfill diverse functions. The inhibitory gamma-subunit (PDEgamma) of retinal PDE6 is an intriguing IDP, of which unique protein properties are being uncovered. PDEgamma critically regulates the turn on as well as the turn off of visual signaling through alternate interactions with the PDE6 catalytic core, transducin, and the regulator of G protein signaling RGS9-1. The intrinsic disorder of PDEgamma does not compromise, but rather, optimizes its functionality. PDEgamma "curls up" when free in solution but "stretches out" when binding with the PDE6 catalytic core. Conformational changes of PDEgamma also likely occur in its C-terminal PDE6-binding region upon interacting with transducin during PDE6 activation. Growing evidence shows that PDEgamma is also a player in non-phototransduction pathways, suggesting additional protein targets. Thus, PDEgamma is highly likely to be adaptive in its structure and function, hence a "chameleon".
Collapse
Affiliation(s)
- Lian-Wang Guo
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA.
| | | |
Collapse
|
23
|
Martinez SE, Heikaus CC, Klevit RE, Beavo JA. The structure of the GAF A domain from phosphodiesterase 6C reveals determinants of cGMP binding, a conserved binding surface, and a large cGMP-dependent conformational change. J Biol Chem 2008; 283:25913-9. [PMID: 18614542 DOI: 10.1074/jbc.m802891200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The photoreceptor phosphodiesterase (PDE6) regulates the intracellular levels of the second messenger cGMP in the outer segments of cone and rod photoreceptor cells. PDE6 contains two regulatory GAF domains, of which one (GAF A) binds cGMP and regulates the activity of the PDE6 holoenzyme. To increase our understanding of this allosteric regulation mechanism, we present the 2.6A crystal structure of the cGMP-bound GAF A domain of chicken cone PDE6. Nucleotide specificity appears to be provided in part by the orientation of Asn-116, which makes two hydrogen bonds to the guanine ring of cGMP but is not strictly conserved among PDE6 isoforms. The isolated PDE6C GAF A domain is monomeric and does not contain sufficient structural determinants to form a homodimer as found in full-length PDE6C. A highly conserved surface patch on GAF A indicates a potential binding site for the inhibitory subunit Pgamma. NMR studies reveal that the apo-PDE6C GAF A domain is structured but adopts a significantly altered structural state indicating a large conformational change with rearrangement of secondary structure elements upon cGMP binding. The presented crystal structure will help to define the cGMP-dependent regulation mechanism of the PDE6 holoenzyme and its inhibition through Pgamma binding.
Collapse
Affiliation(s)
- Sergio E Martinez
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
24
|
Wensel TG. Signal transducing membrane complexes of photoreceptor outer segments. Vision Res 2008; 48:2052-61. [PMID: 18456304 DOI: 10.1016/j.visres.2008.03.010] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 03/17/2008] [Accepted: 03/19/2008] [Indexed: 11/25/2022]
Abstract
Signal transduction in outer segments of vertebrate photoreceptors is mediated by a series of reactions among multiple polypeptides that form protein-protein complexes within or on the surface of the disk and plasma membranes. The individual components in the activation reactions include the photon receptor rhodopsin and the products of its absorption of light, the three subunits of the G protein, transducin, the four subunits of the cGMP phosphodiesterase, PDE6 and the four subunits of the cGMP-gated cation channel. Recovery involves membrane complexes with additional polypeptides including the Na(+)/Ca(2+), K(+) exchanger, NCKX2, rhodopsin kinases RK1 and RK7, arrestin, guanylate cyclases, guanylate cyclase activating proteins, GCAP1 and GCAP2, and the GTPase accelerating complex of RGS9-1, G(beta5L), and membrane anchor R9AP. Modes of membrane binding by these polypeptides include transmembrane helices, fatty acyl or isoprenyl modifications, polar interactions with lipid head groups, non-polar interactions of hydrophobic side chains with lipid hydrocarbon phase, and both polar and non-polar protein-protein interactions. In the course of signal transduction, complexes among these polypeptides form and dissociate, and undergo structural rearrangements that are coupled to their interactions with and catalysis of reactions by small molecules and ions, including guanine nucleotides, ATP, Ca(2+), Mg(2+), and lipids. The substantial progress that has been made in understanding the composition and function of these complexes is reviewed, along with the more preliminary state of our understanding of the structures of these complexes and the challenges and opportunities that present themselves for deepening our understanding of these complexes, and how they work together to convert a light signal into an electrical signal.
Collapse
Affiliation(s)
- Theodore G Wensel
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
25
|
Conti M, Beavo J. Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu Rev Biochem 2007; 76:481-511. [PMID: 17376027 DOI: 10.1146/annurev.biochem.76.060305.150444] [Citation(s) in RCA: 902] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Although cyclic nucleotide phosphodiesterases (PDEs) were described soon after the discovery of cAMP, their complexity and functions in signaling is only recently beginning to become fully realized. We now know that at least 100 different PDE proteins degrade cAMP and cGMP in eukaryotes. A complex PDE gene organization and a large number of PDE splicing variants serve to fine-tune cyclic nucleotide signals and contribute to specificity in signaling. Here we review some of the major concepts related to our understanding of PDE function and regulation including: (a) the structure of catalytic and regulatory domains and arrangement in holoenzymes; (b) PDE integration into signaling complexes; (c) the nature and function of negative and positive feedback circuits that have been conserved in PDEs from prokaryotes to human; (d) the emerging association of mutant PDE alleles with inherited diseases; and (e) the role of PDEs in generating subcellular signaling compartments.
Collapse
Affiliation(s)
- Marco Conti
- Division of Reproductive Biology, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California 943095-5317, USA.
| | | |
Collapse
|
26
|
Ionita MA, Pittler SJ. Focus on molecules: rod cGMP phosphodiesterase type 6. Exp Eye Res 2007; 84:1-2. [PMID: 16563379 PMCID: PMC10546788 DOI: 10.1016/j.exer.2005.12.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Revised: 12/21/2005] [Accepted: 12/22/2005] [Indexed: 10/24/2022]
Affiliation(s)
- Marcel A Ionita
- Department of Vision Sciences, University of Alabama at Birmingham, 1530 3rd Avenue South, WORB 658, Birmingham, AL 35294-4390, USA.
| | | |
Collapse
|
27
|
Bender AT, Beavo JA. Cyclic Nucleotide Phosphodiesterases: Molecular Regulation to Clinical Use. Pharmacol Rev 2006; 58:488-520. [PMID: 16968949 DOI: 10.1124/pr.58.3.5] [Citation(s) in RCA: 1331] [Impact Index Per Article: 73.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) are enzymes that regulate the cellular levels of the second messengers, cAMP and cGMP, by controlling their rates of degradation. There are 11 different PDE families, with each family typically having several different isoforms and splice variants. These unique PDEs differ in their three-dimensional structure, kinetic properties, modes of regulation, intracellular localization, cellular expression, and inhibitor sensitivities. Current data suggest that individual isozymes modulate distinct regulatory pathways in the cell. These properties therefore offer the opportunity for selectively targeting specific PDEs for treatment of specific disease states. The feasibility of these enzymes as drug targets is exemplified by the commercial and clinical successes of the erectile dysfunction drugs, sildenafil (Viagra), tadalafil (Cialis), and vardenafil (Levitra). PDE inhibitors are also currently available or in development for treatment of a variety of other pathological conditions. In this review the basic biochemical properties, cellular regulation, expression patterns, and physiological functions of the different PDE isoforms will be discussed. How these properties relate to the current and future development of PDE inhibitors as pharmacological agents is especially considered. PDEs hold great promise as drug targets and recent research advances make this an exciting time for the field of PDE research.
Collapse
Affiliation(s)
- Andrew T Bender
- Department of Pharmacology, University of Washington Medical School, Health Sciences Building, Box 357280, Seattle, WA 98195-7280, USA
| | | |
Collapse
|
28
|
Simon A, Barabás P, Kardos J. Structural determinants of phosphodiesterase 6 response on binding catalytic site inhibitors. Neurochem Int 2006; 49:215-22. [PMID: 16519963 DOI: 10.1016/j.neuint.2006.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Accepted: 01/02/2006] [Indexed: 12/01/2022]
Abstract
To predict the response of retinal phosphodiesterase on binding catalytic site inhibitors, a homology model of the catalytic domain of subunit alpha of type 6 phosphodiesterase has been built by selecting an experimental structure of type 5 phosphodiesterase as template. Guanosine monophosphate and inhibitors (sildenafil, zaprinast) docked to the type 6 phosphodiesterase binding crevice similarly to the experimental conformations of guanosine monophosphate and sildenafil in the catalytic domain of type 5 phosphodiesterase. Inhibitors, but not guanosine monophosphate, interacted with Phe778 and Met759 (sildenafil) or Met759 (zaprinast), the key residues involved in the interaction between the catalytic binding domain and the inhibitory gamma subunit of type 6 phosphodiesterase. Agreeing with predictions obtained by modelling binding, both inhibitors (1 and 10muM) enhanced the amplitude of electric light responses of the isolated rat retina, however, the enhancement was smaller for the more efficacious inhibitor sildenafil. These paradoxical responses can be explained as a result of the enhancement of light activation of PDE6 through the competition between the catalytic site inhibitors and the gamma subunit residues for catalytic domain residues Phe778 and Met759.
Collapse
Affiliation(s)
- Agnes Simon
- Department of Neurochemistry, Chemical Research Center, Hungarian Academy of Sciences, Pusztaszeri út 59-67, H-1025 Budapest, Hungary.
| | | | | |
Collapse
|
29
|
Guo LW, Muradov H, Hajipour AR, Sievert MK, Artemyev NO, Ruoho AE. The Inhibitory γ Subunit of the Rod cGMP Phosphodiesterase Binds the Catalytic Subunits in an Extended Linear Structure. J Biol Chem 2006; 281:15412-22. [PMID: 16595671 DOI: 10.1074/jbc.m600595200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The unique feature of rod photoreceptor cGMP phosphodiesterase (PDE6) is the presence of inhibitory subunits (Pgamma), which interact with the catalytic heterodimer (Palphabeta) to regulate its activity. This uniqueness results in an extremely high sensitivity and sophisticated modulations of rod visual signaling where the Pgamma/Palphabeta interactions play a critical role. The quaternary organization of the alphabetagammagamma heterotetramer is poorly understood and contradictory patterns of interaction have been previously suggested. Here we provide evidence that supports a specific interaction, by systematically and differentially analyzing the Pgamma-binding regions on Palpha and Pbeta through photolabel transfer from various Pgamma positions throughout the entire molecule. The Pgamma N-terminal Val16-Phe30 region was found to interact with the Palphabeta GAFa domain, whereas its C terminus (Phe73-Ile87) interacted with the Palphabeta catalytic domain. The interactions of Pgamma with these two domains were bridged by its central Ser40-Phe50 region through interactions with GAFb and the linker between GAFb and the catalytic domain, indicating a linear and extended interaction between Pgamma and Palphabeta. Furthermore, a photocross-linked product alphabetagamma(gamma) was specifically generated by the double derivatized Pgamma, in which one photoprobe was located in the polycationic region and the other in the C terminus. Taken together the evidence supports the conclusion that each Pgamma molecule binds Palphabeta in an extended linear interaction and may even interact with both Palpha and Pbeta simultaneously.
Collapse
Affiliation(s)
- Lian-Wang Guo
- Department of Pharmacology, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Lugnier C. Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents. Pharmacol Ther 2005; 109:366-98. [PMID: 16102838 DOI: 10.1016/j.pharmthera.2005.07.003] [Citation(s) in RCA: 643] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Accepted: 07/12/2005] [Indexed: 01/08/2023]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs), which are ubiquitously distributed in mammalian tissues, play a major role in cell signaling by hydrolyzing cAMP and cGMP. Due to their diversity, which allows specific distribution at cellular and subcellular levels, PDEs can selectively regulate various cellular functions. Their critical role in intracellular signaling has recently designated them as new therapeutic targets for inflammation. The PDE superfamily represents 11 gene families (PDE1 to PDE11). Each family encompasses 1 to 4 distinct genes, to give more than 20 genes in mammals encoding the more than 50 different PDE proteins probably produced in mammalian cells. Although PDE1 to PDE6 were the first well-characterized isoforms because of their predominance in various tissues and cells, their specific contribution to tissue function and their regulation in pathophysiology remain open research fields. This concerns particularly the newly discovered families, PDE7 to PDE11, for which roles are not yet established. In many pathologies, such as inflammation, neurodegeneration, and cancer, alterations in intracellular signaling related to PDE deregulation may explain the difficulties observed in the prevention and treatment of these pathologies. By inhibiting specifically the up-regulated PDE isozyme(s) with newly synthesized potent and isozyme-selective PDE inhibitors, it may be potentially possible to restore normal intracellular signaling selectively, providing therapy with reduced adverse effects.
Collapse
Affiliation(s)
- Claire Lugnier
- CNRS UMR, 7034, Pharmacologie et Physicochimie des Interactions Moléculaires et Cellulaires, Faculté de Pharmacie, Université Louis Pasteur de Strasbourg, 74 route du Rhin, BP 60024, 67401 Illkirch, France.
| |
Collapse
|
31
|
Martinez SE, Bruder S, Schultz A, Zheng N, Schultz JE, Beavo JA, Linder JU. Crystal structure of the tandem GAF domains from a cyanobacterial adenylyl cyclase: modes of ligand binding and dimerization. Proc Natl Acad Sci U S A 2005; 102:3082-7. [PMID: 15708973 PMCID: PMC549502 DOI: 10.1073/pnas.0409913102] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In several species, GAF domains, which are widely expressed small-molecule-binding domains that regulate enzyme activity, are known to bind cyclic nucleotides. However, the molecular mechanism by which cyclic nucleotide binding affects enzyme activity is not known for any GAF domain. In the cyanobacterium, Anabaena, the cyaB1 and cyaB2 genes encode adenylyl cyclases that are stimulated by binding of cAMP to their N-terminal GAF domains. Replacement of the tandem GAF-A/B domains in cyaB1 with the mammalian phosphodiesterase 2A GAF-A/B tandem domains allows regulation of the chimeric protein by cGMP, suggesting a highly conserved mechanism of activation. Here, we describe the 1.9-A crystal structure of the tandem GAF-A/B domains of cyaB2 with bound cAMP and compare it to the previously reported structure of the PDE2A GAF-A/B. Unexpectedly, the cyaB2 GAF-A/B dimer is antiparallel, unlike the parallel dimer of PDE2A. Moreover, there is clear electron density for cAMP in both GAF-A and -B, whereas in PDE2A, cGMP is found only in GAF-B. Phosphate and ribose group contacts are similar to those in PDE2A. However, the purine-binding pockets appear very different from that in PDE2A GAF-B. Differences in the beta2-beta3 loop suggest that this loop confers much of the ligand specificity in this and perhaps in many other GAF domains. Finally, a conserved asparagine appears to be a new addition to the signature NKFDE motif, and a mechanism for this motif to stabilize the cNMP-binding pocket is proposed.
Collapse
Affiliation(s)
- Sergio E Martinez
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Guo LW, Grant JE, Hajipour AR, Muradov H, Arbabian M, Artemyev NO, Ruoho AE. Asymmetric interaction between rod cyclic GMP phosphodiesterase gamma subunits and alphabeta subunits. J Biol Chem 2005; 280:12585-92. [PMID: 15668239 DOI: 10.1074/jbc.m410380200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rod phosphodiesterase (PDE6) is the central effector enzyme in vertebrate visual transduction. Holo-PDE6 consists of two similar catalytic subunits (Palphabeta) and two identical inhibitory subunits (Pgamma). Palphabeta is the only heterodimer in the PDE superfamily, yet its significance for the function of PDE6 is poorly understood. An unequal interaction of Pgamma with Pbeta as compared with Palpha in the PDE6 complex has not been reported. We investigated the interaction interface between full-length Pgamma and Palphabeta, by differentiating Pgamma interaction with each individual Palphabeta subunit through radiolabel transfer from various positions throughout the entire Pgamma molecule. The efficiency of radiolabel transfer indicates that the close vicinity of serine 40 on Pgamma makes a major contribution to the interaction with Palphabeta. In addition, a striking asymmetry of interaction between the Pgamma polycationic region and the Palphabeta subunits was observed when the stoichiometry of Pgamma versus the Palphabeta dimer was below 2. Preferential photolabeling on Pbeta from Pgamma position 40 and on Palpha from position 30 increased while lowering the Pgamma/Palphabeta ratio, but diminished when the Pgamma/Palphabeta ratio was over 2. Our finding leads to the conclusion that two classes of Pgamma binding sites exist on Palphabeta, each composed of GAF domains in both Palpha and Pbeta, differing from the conventional models suggesting that each Pgamma binds only one of the Palphabeta catalytic subunits. This new model leads to insight into how the unique Palphabeta heterodimer contributes to the sophisticated regulation in visual transduction through interaction with Pgamma.
Collapse
MESH Headings
- 3',5'-Cyclic-GMP Phosphodiesterases/chemistry
- 3',5'-Cyclic-GMP Phosphodiesterases/metabolism
- Animals
- Biotin/chemistry
- Blotting, Western
- Catalysis
- Catalytic Domain
- Cattle
- Cross-Linking Reagents/pharmacology
- Cyclic Nucleotide Phosphodiesterases, Type 6
- Cysteine/chemistry
- Dimerization
- Dose-Response Relationship, Drug
- Electrophoresis, Polyacrylamide Gel
- Eye Proteins
- Light
- Mass Spectrometry
- Models, Biological
- Models, Chemical
- Peptides/chemistry
- Phosphoric Diester Hydrolases/chemistry
- Phosphoric Diester Hydrolases/metabolism
- Protein Binding
- Protein Structure, Tertiary
- Retinal Rod Photoreceptor Cells/enzymology
- Serine/chemistry
- Ultraviolet Rays
- Vision, Ocular
Collapse
Affiliation(s)
- Lian-Wang Guo
- Department of Pharmacology, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Zoraghi R, Corbin JD, Francis SH. Properties and functions of GAF domains in cyclic nucleotide phosphodiesterases and other proteins. Mol Pharmacol 2004; 65:267-78. [PMID: 14742667 DOI: 10.1124/mol.65.2.267] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Roya Zoraghi
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615, USA
| | | | | |
Collapse
|
34
|
Abstract
Vertebrate visual phototransduction represents one of the best-characterized G-protein-coupled receptor-mediated signaling pathways. Structural analyses of rhodopsin, G protein, arrestin and several other phototransduction components have revealed common folds and motifs that are important for function. Static and dynamic information has been acquired through the application of X-ray diffraction, solution and solid-state nuclear magnetic resonance spectroscopy's, electron and atomic force microscopy's, and a host of indirect structural methods. A comprehensive understanding of phototransduction requires further structural work on individual components and their relevant complexes in solution and the native disk membrane. Given the accelerated pace of structure determination, it is anticipated that this will be the first G-protein-coupled pathway for which a complete molecular description is ultimately available.
Collapse
Affiliation(s)
- Kevin D Ridge
- Center for Advanced Research in Biotechnology, National Institute of Standards and Technology and the University of Maryland Biotechnology Institute,Rockville, MD 20850, USA.
| | | | | | | |
Collapse
|