2
|
Eaton MJ, Berrocal Y, Wolfe SQ. Potential for Cell-Transplant Therapy with Human Neuronal Precursors to Treat Neuropathic Pain in Models of PNS and CNS Injury: Comparison of hNT2.17 and hNT2.19 Cell Lines. PAIN RESEARCH AND TREATMENT 2012; 2012:356412. [PMID: 22619713 PMCID: PMC3348681 DOI: 10.1155/2012/356412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 01/15/2012] [Indexed: 01/07/2023]
Abstract
Effective treatment of sensory neuropathies in peripheral neuropathies and spinal cord injury (SCI) is one of the most difficult problems in modern clinical practice. Cell therapy to release antinociceptive agents near the injured spinal cord is a logical next step in the development of treatment modalities. But few clinical trials, especially for chronic pain, have tested the potential of transplant of cells to treat chronic pain. Cell lines derived from the human neuronal NT2 cell line parentage, the hNT2.17 and hNT2.19 lines, which synthesize and release the neurotransmitters gamma-aminobutyric acid (GABA) and serotonin (5HT), respectively, have been used to evaluate the potential of cell-based release of antinociceptive agents near the lumbar dorsal (horn) spinal sensory cell centers to relieve neuropathic pain after PNS (partial nerve and diabetes-related injury) and CNS (spinal cord injury) damage in rat models. Both cell lines transplants potently and permanently reverse behavioral hypersensitivity without inducing tumors or other complications after grafting. Functioning as cellular minipumps for antinociception, human neuronal precursors, like these NT2-derived cell lines, would likely provide a useful adjuvant or replacement for current pharmacological treatments for neuropathic pain.
Collapse
Affiliation(s)
- Mary J. Eaton
- Miami VA Health System Center, D806C, 1201 NW 16th Street, Miami, FL 33199, USA
| | - Yerko Berrocal
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Stacey Q. Wolfe
- Department of Neurosurgery, Tripler Army Medical Center, 1 Jarrett White Road, Honolulu, HI 96859-5000, USA
| |
Collapse
|
3
|
Can cellular models revolutionize drug discovery in Parkinson's disease? Biochim Biophys Acta Mol Basis Dis 2009; 1792:1043-51. [PMID: 19733239 DOI: 10.1016/j.bbadis.2009.08.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 08/21/2009] [Accepted: 08/26/2009] [Indexed: 02/08/2023]
Abstract
The study of mechanisms that underlie Parkinson's disease (PD), as well as translational drug development, has been hindered by the lack of appropriate models. Both cell culture systems and animal models have limitations, and to date none faithfully recapitulate all of the clinical and pathological phenotypes of the disease. In this review we examine the various cell culture model systems of PD, with a focus on different stem cell models that can be used for investigating disease mechanisms as well as drug discovery for PD. We conclude with a discussion of recent discoveries in the field of stem cell biology that have led to the ability to reprogram somatic cells to a pluripotent state via the use of a combination of genetic factors; these reprogrammed cells are termed "induced pluripotent stem cells" (iPSCs). This groundbreaking technique allows for the derivation of patient-specific cell lines from individuals with sporadic forms of PD and also those with known disease-causing mutations. Such cell lines have the potential to serve as a human cellular model of neurodegeneration and PD when differentiated into dopaminergic neurons. The hope is that these iPSC-derived dopaminergic neurons can be used to replicate the key molecular aspects of neural degeneration associated with PD. If so, this approach could lead to transformative new tools for the study of disease mechanisms. In addition, such cell lines can be potentially used for high-throughput drug screening. While not the focus of this review, ultimately it is envisioned that techniques for reprogramming of somatic cells may be optimized to a point sufficient to provide potential new avenues for stem cell-based restorative therapies.
Collapse
|
4
|
Skvortsova VI, Gubskiy LV, Tairova RT, Povarova OV, Cheglakov IB, Holodenko RV, Holodenko IV, Yarygin KN, Yarygin VN. Use of bone marrow mesenchymal (stromal) stem cells in experimental ischemic stroke in rats. Bull Exp Biol Med 2008; 145:122-8. [PMID: 19024019 DOI: 10.1007/s10517-008-0032-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The effects of human mesenchymal stem cells on neurological functions and behavioral reactions of animals and on damaged brain tissue were studied on the model of focal cerebral ischemia in rats. Homing and differentiation of transplanted mesenchymal stem cells were also studied. Significant regression of neurological disorders after cell transplantation was noted, no appreciable shifts were detected by magnetic resonance tomography. Homing of transplanted cells was detected mainly in the zone of focal ischemia. Some cells died, others exhibited signs of differentiation into neurons and glia.
Collapse
|
5
|
Walczak P, Chen N, Eve D, Hudson J, Zigova T, Sanchez-Ramos J, Sanberg PR, Sanberg CD, Willing AE. Long-term cultured human umbilical cord neural-like cells transplanted into the striatum of NOD SCID mice. Brain Res Bull 2007; 74:155-63. [PMID: 17683802 PMCID: PMC2680127 DOI: 10.1016/j.brainresbull.2007.06.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Revised: 05/23/2007] [Accepted: 06/12/2007] [Indexed: 12/23/2022]
Abstract
The use of stem cells and other cells as therapies is still in its infancy. One major setback is the limited survival of the grafts, possibly due to immune rejection. Studies were therefore performed with human umbilical cord blood cells (HUCB) to determine the ability of these cells to survive in vivo and the effect of the immune response on their survival by transplantation into the normal striatum of immunodeficient NOD SCID mice. Long-term culture of HUCB cells resulted in several different populations of cells, including one that possessed fine processes and cell bodies that resembled neurons. Their neuronal phenotype was confirmed by immunohistochemical staining for the early neuronal marker TuJ1 and the potentially neural marker Nestin. Five days after cell transplantation of this neuronal phenotype, immunohistochemical staining for human mitochondria confirmed the presence of living HUCB cells in the mouse striatum, with cells localized at the site of injection, expressing early neural and neuronal markers (Nestin and TuJ1) as well as exhibiting neuronal morphology. However, no evidence of surviving cells was apparent 1 month postgrafting. The absence of signs of T cell-mediated rejection, such as CD4 and CD8 lymphocytes and minimal changes in microglia and astrocytes, suggest that cell loss was not due to a T cell-mediated immune response. In conclusion HUCB cells can survive long-term in vitro and undergo neuron-like differentiation. In mice, these cells do not survive a month. This may relate to the differentiated state of the cells transplanted into the unlesioned striatum, rather than T cell-mediated immunological rejection.
Collapse
Affiliation(s)
- Piotr Walczak
- Center of Excellence for Aging and Brain Repair, University of South Florida, College of Medicine, Tampa, FL, USA
- Department of Neurosurgery, University of South Florida, College of Medicine, Tampa, FL, USA
| | - Ning Chen
- Center of Excellence for Aging and Brain Repair, University of South Florida, College of Medicine, Tampa, FL, USA
- Department of Neurosurgery, University of South Florida, College of Medicine, Tampa, FL, USA
| | - David Eve
- Center of Excellence for Aging and Brain Repair, University of South Florida, College of Medicine, Tampa, FL, USA
- Department of Neurosurgery, University of South Florida, College of Medicine, Tampa, FL, USA
| | - Jennifer Hudson
- Center of Excellence for Aging and Brain Repair, University of South Florida, College of Medicine, Tampa, FL, USA
- Department of Neurosurgery, University of South Florida, College of Medicine, Tampa, FL, USA
| | - Tanja Zigova
- Center of Excellence for Aging and Brain Repair, University of South Florida, College of Medicine, Tampa, FL, USA
- Department of Neurosurgery, University of South Florida, College of Medicine, Tampa, FL, USA
- Department of Pathology and Cell Biology, University of South Florida, College of Medicine, Tampa, FL, USA
- Department of Molecular Pharmacology and Physiology, University of South Florida, College of Medicine, Tampa, FL, USA
| | - Juan Sanchez-Ramos
- Department of Neurology, University of South Florida, College of Medicine, Tampa, FL, USA
- James A. Haley VA Hospital, Tampa, FL, USA
| | - Paul R. Sanberg
- Center of Excellence for Aging and Brain Repair, University of South Florida, College of Medicine, Tampa, FL, USA
- Department of Neurosurgery, University of South Florida, College of Medicine, Tampa, FL, USA
- Department of Pathology and Cell Biology, University of South Florida, College of Medicine, Tampa, FL, USA
- Department of Psychiatry, University of South Florida, College of Medicine, Tampa, FL, USA
| | | | - Alison E. Willing
- Center of Excellence for Aging and Brain Repair, University of South Florida, College of Medicine, Tampa, FL, USA
- Department of Neurosurgery, University of South Florida, College of Medicine, Tampa, FL, USA
- Department of Pathology and Cell Biology, University of South Florida, College of Medicine, Tampa, FL, USA
- Department of Molecular Pharmacology and Physiology, University of South Florida, College of Medicine, Tampa, FL, USA
- Corresponding author at: Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida, College of Medicine, Tampa, FL, USA. Tel.: +1 813 974 7812. E-mail address: (A.E. Willing)
| |
Collapse
|
6
|
Newman MB, Misiuta I, Willing AE, Zigova T, Karl RC, Borlongan CV, Sanberg PR. Tumorigenicity issues of embryonic carcinoma-derived stem cells: relevance to surgical trials using NT2 and hNT neural cells. Stem Cells Dev 2005; 14:29-43. [PMID: 15725742 DOI: 10.1089/scd.2005.14.29] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cell therapy is a rapidly moving field with new cells, cell lines, and tissue-engineered constructs being developed globally. As these novel cells are further developed for transplantation studies, it is important to understand their safety profiles both prior to and posttransplantation in animals and humans. Embryonic carcinoma-derived cells are considered an important alternative to stem cells. The NTera2/D1 teratocarcinoma cell-line (or NT2-N cells) gives rise to neuron-like cells called hNT neurons after exposure to retinoic acid. NT2 cells form tumors upon transplantation into the rodent. However, when the NT2 cells are treated with retinoic acid to produce hNT cells, they terminally differentiate into post-mitotic neurons with no sign of tumorigenicity. Preliminary human transplantation studies in the brain of stroke patients also demonstrated a lack of tumorigenicity of these cells. This review focuses on the use of hNT neurons in cell transplantation for the treatment in central nervous system (CNS) diseases, disorders, or injuries and on the mechanism involved in retinoic acid exposure, final differentiation state, and subsequent tumorigenicity issues that must be considered prior to widespread clinical use.
Collapse
Affiliation(s)
- Mary B Newman
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida, College of Medicine, Tampa, Fl 33612, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Borlongan CV, Skinner SJM, Geaney M, Vasconcellos AV, Elliott RB, Emerich DF. CNS grafts of rat choroid plexus protect against cerebral ischemia in adult rats. Neuroreport 2004; 15:1543-7. [PMID: 15232280 DOI: 10.1097/01.wnr.0000133298.84901.cf] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The present study examined the neuroprotective effects of choroid plexus isolated from adult rats and encapsulated within alginate microcapsules. In vitro, conditioned media from cultured choroid plexus produced a marked, dose-dependent protection of embryonic cortical neurons against serum deprivation-induced cell death. In vivo studies demonstrated that a one-hour middle cerebral artery occlusion in adult Wistar rats produced profound motor and neurological impairments 1-3 days after stroke. In contrast, stroke animals transplanted with encapsulated choroid plexus cells displayed a significant reduction in both motor and neurological abnormalities. Histological analysis 3 days post-transplantation revealed that choroid plexus transplants significantly decreased the volume of striatal infarction. This is the first report demonstrating the therapeutic potential of transplanted choroid plexus for stroke.
Collapse
Affiliation(s)
- C V Borlongan
- Department of Neurology/Institute of Molecular Medicine and Genetics/School of Graduate Studies, BI-3080, Medical College of Georgia, 1120 15th Street, Augusta, GA 30912-3200, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
Stem cells are widely believed to have significant potential in the treatment of human disease. Comments such as '[stem cells]...could prove the Holy Grail in finding treatments for cancer, Parkinson's disease, diabetes, osteoporosis, spinal cord injuries, Alzheimer's disease, leukaemia and multiple sclerosis...transform[ing] the lives of hundreds of thousands of people' (Yvette Cooper, Public Health minister, quoted in The Times, December 16 2000, authors' italics) serve to reinforce the extraordinary expectations of stem cells, particularly in neurological disease. Stem cells, traditionally defined as clone forming, self-renewing, pluripotent, progenitor cells, have already proved themselves to be an invaluable source of transplantation material in several clinical settings, most notably malignant haematology, and attention is now turning to a wider variety of diseases in which there may be potential for therapeutic intervention with stem cell transplantation. Neurological diseases have been highlighted as a priority and this is understandable given their unenviable reputation for relentless progression and the paucity of disease-modifying treatments. However, it is important that the potential of stem cells to treat neurological disease is critically appraised if the hopes of patients and doctors are not to be raised without foundation.
Collapse
Affiliation(s)
- C M Rice
- University of Bristol Institute of Clinical Neurosciences Frenchay Hospital, Bristol, UK
| | | | | |
Collapse
|