1
|
Bonilla DA, Orozco CA, Forero DA, Odriozola A. Techniques, procedures, and applications in host genetic analysis. ADVANCES IN GENETICS 2024; 111:1-79. [PMID: 38908897 DOI: 10.1016/bs.adgen.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
This chapter overviews genetic techniques' fundamentals and methodological features, including different approaches, analyses, and applications that have contributed to advancing health and disease. The aim is to describe laboratory methodologies and analyses employed to understand the genetic landscape of different biological contexts, from conventional techniques to cutting-edge technologies. Besides describing detailed aspects of the polymerase chain reaction (PCR) and derived types as one of the principles for many novel techniques, we also discuss microarray analysis, next-generation sequencing, and genome editing technologies such as transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) systems. These techniques study several phenotypes, ranging from autoimmune disorders to viral diseases. The significance of integrating diverse genetic methodologies and tools to understand host genetics comprehensively and addressing the ethical, legal, and social implications (ELSI) associated with using genetic information is highlighted. Overall, the methods, procedures, and applications in host genetic analysis provided in this chapter furnish researchers and practitioners with a roadmap for navigating the dynamic landscape of host-genome interactions.
Collapse
Affiliation(s)
- Diego A Bonilla
- Hologenomiks Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain; Research Division, Dynamical Business & Science Society-DBSS International SAS, Bogotá, Colombia.
| | - Carlos A Orozco
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología de Colombia, Bogotá, Colombia
| | - Diego A Forero
- School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá, Colombia
| | - Adrián Odriozola
- Hologenomiks Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
2
|
Prajapati GK, Kumar A, Wany A, Pandey DM. Molecular Beacon Probe (MBP)-Based Real-Time PCR. Methods Mol Biol 2023; 2638:273-287. [PMID: 36781649 DOI: 10.1007/978-1-0716-3024-2_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
In the advancement of molecular biology techniques, several probe-based techniques, like molecular beacon probe (MBP) assay, TaqMan probe, and minor groove binder (MGB) probe assay, have been reported to identify specific sequences through real-time polymerase chain reaction (PCR). All probe-based methods are more sensitive than the conventional PCR for the detection and quantification of target genes. MBP is a hydrolysis probe that emits fluorescence when getting the specific sequences on the gene. Here, we describe the application of MBP for the identification of the motif sequences present in the promoters of differentially expressed genes.
Collapse
Affiliation(s)
- Gopal Kumar Prajapati
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India.,R & D Biologics Division, Promea Therapeutics Pvt Ltd, Sultanpur, Hyderabad, India
| | - Ashutosh Kumar
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India.,Department of Biotechnology, School of Sciences, PP Savani University, Kosamba, Surat, Gujarat, India
| | - Aakanksha Wany
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India.,Department of Biotechnology, School of Sciences, PP Savani University, Kosamba, Surat, Gujarat, India
| | - Dev Mani Pandey
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India.
| |
Collapse
|
3
|
Oscorbin IP, Beginyazova OP, Khlistun IV, Shamovskaya DV, Oskina NA, Filipenko ML. Development of a multiplex allele-specific qPCR approach for testing PIK3CA mutations in patients with colorectal cancer. Heliyon 2022; 8:e11804. [DOI: 10.1016/j.heliyon.2022.e11804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022] Open
|
4
|
Dikdan RJ, Marras SAE, Field AP, Brownlee A, Cironi A, Hill DA, Tyagi S. Multiplex PCR Assays for Identifying all Major Severe Acute Respiratory Syndrome Coronavirus 2 Variants. J Mol Diagn 2022; 24:309-319. [PMID: 35121139 PMCID: PMC8806714 DOI: 10.1016/j.jmoldx.2022.01.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/21/2021] [Accepted: 01/12/2022] [Indexed: 12/15/2022] Open
Abstract
Variants of concern (VOC) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), including alpha, beta, gamma, delta, and omicron, threaten to prolong the pandemic, leading to more global morbidity and mortality. Genome sequencing is the mainstay of tracking the evolution of the virus, but is costly, slow, and not easily accessible. Multiplex quantitative RT-PCR assays for SARS-CoV-2 have been developed that identify all VOCs as well as other mutations of interest in the viral genome, nine mutations in total, using single-nucleotide discriminating molecular beacons. The presented variant molecular beacon assays showed a limit of detection of 50 copies of viral RNA, with 100% specificity. Twenty-six SARS-CoV-2-positive patient samples were blinded and tested using a two-tube assay. When testing patient samples, the assay was in full agreement with results from deep sequencing with a sensitivity and specificity of 100% (26 of 26). We have used our design methodology to rapidly design an assay that detects the new omicron variant. This omicron assay was used to accurately identify this variant in 17 of 33 additional patient samples. These quantitative RT-PCR assays identify all currently circulating VOCs of SARS-CoV-2, as well as other important mutations in the spike protein coding sequence. These assays can be easily implemented on broadly available five-color thermal cyclers and will help track the spread of these variants.
Collapse
Affiliation(s)
- Ryan J Dikdan
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey.
| | - Salvatore A E Marras
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey; Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | | | | | | | | | - Sanjay Tyagi
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey; Department of Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey
| |
Collapse
|
5
|
Zhang X, Kotikam V, Rozners E, Callahan BP. Enzymatic Beacons for Specific Sensing of Dilute Nucleic Acid. Chembiochem 2022; 23:e202100594. [PMID: 34890095 PMCID: PMC8961972 DOI: 10.1002/cbic.202100594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/02/2021] [Indexed: 01/16/2023]
Abstract
Enzymatic beacons, or E-beacons, are 1 : 1 bioconjugates of the nanoluciferase enzyme linked covalently at its C-terminus to hairpin forming ssDNA equipped with a dark quencher. We prepared E-beacons biocatalytically using HhC, the promiscuous Hedgehog C-terminal protein-cholesterol ligase. HhC attached nanoluciferase site-specifically to mono-sterylated hairpin oligonucleotides, called steramers. Three E-beacon dark quenchers were evaluated: Iowa Black, Onyx-A, and dabcyl. Each quencher enabled sensitive, sequence-specific nucleic acid detection through enhanced E-beacon bioluminescence upon target hybridization. We assembled prototype dabcyl-quenched E-beacons specific for SARS-CoV-2. Targeting the E484 codon of the virus Spike protein, E-beacons (80×10-12 M) reported wild-type SARS-CoV-2 nucleic acid at ≥1×10-9 M by increased bioluminescence of 8-fold. E-beacon prepared for the SARS-CoV-2 E484K variant functioned with similar sensitivity. Both E-beacons could discriminate their target from the E484Q mutation of the SARS-CoV-2 Kappa variant. Along with mismatch specificity, E-beacons are two to three orders of magnitude more sensitive than synthetic molecular beacons.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Chemistry, Binghamton University, The State University of New York, 4400 Vestal Parkway East Binghamton, New York, 13902, USA
| | - Venubabu Kotikam
- Department of Chemistry, Binghamton University, The State University of New York, 4400 Vestal Parkway East Binghamton, New York, 13902, USA
| | - Eriks Rozners
- Department of Chemistry, Binghamton University, The State University of New York, 4400 Vestal Parkway East Binghamton, New York, 13902, USA
| | - Brian P Callahan
- Department of Chemistry, Binghamton University, The State University of New York, 4400 Vestal Parkway East Binghamton, New York, 13902, USA
| |
Collapse
|
6
|
Hypersensitive detection of transcription factors by multiple amplification strategy based on molecular beacon. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
LoopTag FRET Probe System for Multiplex qPCR Detection of Borrelia Species. Life (Basel) 2021; 11:life11111163. [PMID: 34833039 PMCID: PMC8624210 DOI: 10.3390/life11111163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Laboratory diagnosis of Lyme borreliosis refers to some methods with known limitations. Molecular diagnostics using specific nucleic acid probes may overcome some of these limitations. Methods: We describe the novel reporter fluorescence real-time polymerase chain reaction (PCR) probe system LoopTag for detection of Borrelia species. Advantages of the LoopTag system include having cheap conventional fluorescence dyes, easy primer design, no restrictions for PCR product lengths, robustness, high sequence specificity, applicability for multiplex real-time PCRs, melting curve analysis (single nucleotide polymorphism analysis) over a large temperature range, high sensitivity, and easy adaptation of conventional PCRs. Results: Using the LoopTag probe system we were able to detect all nine tested European species belonging to the Borrelia burgdorferi (sensu lato) complex and differentiated them from relapsing fever Borrelia species. As few as 10 copies of Borrelia in one PCR reaction were detectable. Conclusion: We established a novel multiplex probe real-time PCR system, designated LoopTag, that is simple, robust, and incorporates melting curve analysis for the detection and in the differentiation of European species belonging to the Borrelia burgdorferi s.l. complex.
Collapse
|
8
|
Oliveira-Jr GP, Barbosa RH, Thompson L, Pinckney B, Murphy-Thornley M, Lu S, Jones J, Hansen CH, Tigges J, Wong WP, Ghiran IC. Electrophoretic mobility shift as a molecular beacon-based readout for miRNA detection. Biosens Bioelectron 2021; 189:113307. [PMID: 34062334 PMCID: PMC8461749 DOI: 10.1016/j.bios.2021.113307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/27/2021] [Accepted: 05/03/2021] [Indexed: 12/24/2022]
Abstract
MicroRNAs are short, non-coding RNA sequences involved in gene expression regulation. Quantification of miRNAs in biological fluids involves time consuming and laborious methods such as Northern blotting or PCR-based techniques. Molecular beacons (MB) are an attractive means for rapid detection of miRNAs, although the need for sophisticated readout methods limits their use in research and clinical settings. Here, we introduce a novel method based on delayed electrophoretic mobility, as a quantitative means for detection of miRNAs-MB hybridization. Upon hybridization with the target miRNAs, MB form a fluorescent duplex with reduced electrophoretic mobility, thus bypassing the need for additional staining. In addition to emission of light, the location of the fluorescent band on the gel acts as an orthogonal validation of the target identity, further confirming the specificity of binding. The limit of detection of this approach is approximately 100 pM, depending on the MB sequence. The method is sensitive enough to detect specific red blood cell miRNAs molecules in total RNA, with single nucleotide specificity. Altogether, we describe a rapid and affordable method that offers sensitive detection of single-stranded small DNA and RNA sequences.
Collapse
Affiliation(s)
- Getulio P Oliveira-Jr
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.
| | - Raquel H Barbosa
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Lauren Thompson
- Nano Flow Core Facility, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Brandy Pinckney
- Nano Flow Core Facility, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Moriah Murphy-Thornley
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Shulin Lu
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Jennifer Jones
- Laboratory of Pathology Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Clinton H Hansen
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - John Tigges
- Nano Flow Core Facility, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Wesley P Wong
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Ionita C Ghiran
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
9
|
Zhang X, Kotikam V, Rozners E, Callahan BP. Enzymatic Beacons for Specific Sensing of Dilute Nucleic Acid and Potential Utility for SARS-CoV-2 Detection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.08.30.458287. [PMID: 34494022 PMCID: PMC8423218 DOI: 10.1101/2021.08.30.458287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Enzymatic beacons, or E-beacons, are 1:1 bioconjugates of the nanoluciferase enzyme linked covalently at its C-terminus to hairpin forming DNA oligonucleotides equipped with a dark quencher. We prepared E-beacons biocatalytically using the promiscuous "hedgehog" protein-cholesterol ligase, HhC. Instead of cholesterol, HhC attached nanoluciferase site-specifically to mono-sterylated hairpin DNA, prepared in high yield by solid phase synthesis. We tested three potential E-beacon dark quenchers: Iowa Black, Onyx-A, and dabcyl. Prototype E-beacon carrying each of those quenchers provided sequence-specific nucleic acid sensing through turn-on bioluminescence. For practical application, we prepared dabcyl-quenched E-beacons for potential use in detecting the COVID-19 virus, SARS-CoV-2. Targeting the E484 codon of the SARS-CoV-2 Spike protein, E-beacons (80 × 10 -12 M) reported wild-type SARS-CoV-2 nucleic acid at ≥1 × 10 -9 M with increased bioluminescence of 8-fold. E-beacon prepared for the E484K variant of SARS-CoV-2 functioned with similar sensitivity. These E-beacons could discriminate their complementary target from nucleic acid encoding the E484Q mutation of the SARS-CoV-2 Kappa variant. Along with specificity, detection sensitivity with E-beacons is two to three orders of magnitude better than synthetic molecular beacons, rivaling the most sensitive nucleic acid detection agents reported to date.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Chemistry, Binghamton University, the State University of New York, 4400 Vestal Parkway East, Binghamton, New York 13902, United States
| | - Venubabu Kotikam
- Department of Chemistry, Binghamton University, the State University of New York, 4400 Vestal Parkway East, Binghamton, New York 13902, United States
| | - Eriks Rozners
- Department of Chemistry, Binghamton University, the State University of New York, 4400 Vestal Parkway East, Binghamton, New York 13902, United States
| | - Brian P Callahan
- Department of Chemistry, Binghamton University, the State University of New York, 4400 Vestal Parkway East, Binghamton, New York 13902, United States
| |
Collapse
|
10
|
Exonic SNP in MHC-DMB2 is associated with gene expression and humoral immunity in Japanese quails. Vet Immunol Immunopathol 2021; 239:110302. [PMID: 34311147 DOI: 10.1016/j.vetimm.2021.110302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/01/2021] [Accepted: 07/16/2021] [Indexed: 11/23/2022]
Abstract
The DMB2 gene is widely expressed at high levels in avian. This gene plays an important role in humoral immunity. The aim of this study was to investigate the effects of 361 G > C Single nucleotide polymorphism (SNP) on DMB2 protein structure and gene expression to determine how the 361 G > C SNP affects humoral immune response in Japanese quails. 0.2 mL of 5% sheep red blood cell (SRBC) was injected into breast muscle of 130 Japanese quails on 28 days. After DNA extraction, PCR was carried out to amplify a 333-base pair DNA fragment from the exon 2 of DMB2 gene. The pattern of all samples was determined through RFLP technique. PCR-RFLP results identified two alleles segregating (C, G) as three genotypes (CC, CG and GG) in Japanese Quails. The antibody response to SRBC with CC genotype was significantly higher than the CG and GG genotypes (P < 0.01). In silico analysis showed that the 361 G > C SNP has no effect on the physicochemical properties and 3D structure. The results of RT-qPCR indicated that the effect of genotype on gene expression is significant, so that the expression of CC genotype is more than CG and GG genotype. It can be inferred that the 361 G > C SNP in the exon 2 of MHC-DMB2 gene is not desirable. This mutation decreases humoral immune response by reducing DMB2 gene expression.
Collapse
|
11
|
Cell engineering method using fluorogenic oligonucleotide signaling probes and flow cytometry. Biotechnol Lett 2021; 43:949-958. [PMID: 33683511 PMCID: PMC7937778 DOI: 10.1007/s10529-021-03101-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/05/2021] [Indexed: 11/17/2022]
Abstract
Objective Chromovert® Technology is presented as a new cell engineering technology to detect and purify living cells based on gene expression. Methods The technology utilizes fluorogenic oligonucleotide signaling probes and flow cytometry to detect and isolate individual living cells expressing one or more transfected or endogenously-expressed genes. Results Results for production of cell lines expressing a diversity of ion channel and membrane proteins are presented, including heteromultimeric epithelial sodium channel (αβγ-ENaC), sodium voltage-gated ion channel 1.7 (NaV1.7-αβ1β2), four unique γ-aminobutyric acid A (GABAA) receptor ion channel subunit combinations α1β3γ2s, α2β3γ2s, α3β3γ2s and α5β3γ2s, cystic fibrosis conductance regulator (CFTR), CFTR-Δ508 and two G-protein coupled receptors (GPCRs) without reliance on leader sequences and/or chaperones. In addition, three novel plasmid-encoded sequences used to introduce 3′ untranslated RNA sequence tags in mRNA expression products and differentially-detectable fluorogenic probes directed to each are described. The tags and corresponding fluorogenic signaling probes streamline the process by enabling the multiplexed detection and isolation of cells expressing one or more genes without the need for gene-specific probes. Conclusions Chromovert technology is provided as a research tool for use to enrich and isolate cells engineered to express one or more desired genes.
Collapse
|
12
|
Sinha K, Sharma P, Som Chaudhury S, Das Mukhopadhyay C, Ruidas B. Species detection using probe technology. FOOD TOXICOLOGY AND FORENSICS 2021:313-346. [DOI: 10.1016/b978-0-12-822360-4.00012-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
13
|
Markey FB, Parashar V, Batish M. Methods for spatial and temporal imaging of the different steps involved in RNA processing at single-molecule resolution. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1608. [PMID: 32543077 DOI: 10.1002/wrna.1608] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/26/2022]
Abstract
RNA plays a quintessential role as a messenger of information from genotype (DNA) to phenotype (proteins), as well as acts as a regulatory molecule (noncoding RNAs). All steps in the journey of RNA from synthesis (transcription), splicing, transport, localization, translation, to its eventual degradation, comprise important steps in gene expression, thereby controlling the fate of the cell. This lifecycle refers to the majority of RNAs (primarily mRNAs), but not other RNAs such as tRNAs. Imaging these processes in fixed cells and in live cells has been an important tool in developing an understanding of the regulatory steps in RNAs journey. Single-cell and single-molecule imaging techniques enable a much deeper understanding of cellular biology, which is not possible with bulk studies involving RNA isolated from a large pool of cells. Classic techniques, such as fluorescence in situ hybridization (FISH), as well as more recent aptamer-based approaches, have provided detailed insights into RNA localization, and have helped to predict the functions carried out by many RNA species. However, there are still certain processing steps that await high-resolution imaging, which is an exciting and upcoming area of research. In this review, we will discuss the methods that have revolutionized single-molecule resolution imaging in general, the steps of RNA processing in which these methods have been used, and new emerging technologies. This article is categorized under: RNA Export and Localization > RNA Localization RNA Methods > RNA Analyses in Cells RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions.
Collapse
Affiliation(s)
- Fatu Badiane Markey
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Vijay Parashar
- Department of Medical and Molecular Sciences, University of Delaware, Newark, Delaware, USA
| | - Mona Batish
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA.,Department of Medical and Molecular Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
14
|
Detection of Extracellular Vesicle RNA Using Molecular Beacons. iScience 2019; 23:100782. [PMID: 31958756 PMCID: PMC6992906 DOI: 10.1016/j.isci.2019.100782] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 12/02/2019] [Accepted: 12/12/2019] [Indexed: 01/22/2023] Open
Abstract
Extracellular vesicles (EVs) have recently emerged as intercellular conveyors of biological information and disease biomarkers. Identification and characterization of RNA species in single EVs are currently challenging. Molecular beacons (MBs) represent an attractive means for detecting specific RNA molecules. Coupling the MBs to cell-penetrating peptides (CPPs) provides a fast, effective, and membrane-type agnostic means to deliver MBs across the plasma membrane and into the cytosol. Here, we generated RBCs-derived EVs by complement activation and tested the ability of MBs coupled with CPP to detect miRNAs from RBC-EVs. Our results showed that RBC and RBC-EVs miRNA-451a can be detected using MB-CPP, and the respective fluorescence levels can be measured by nano-flow cytometry. MB-based detection of RNA via nano-flow cytometry creates a powerful new analytical framework in which a simple addition of a reagent allows profiling of specific RNA species present within certain EV subsets.
Collapse
|
15
|
Shao N, Han X, Song Y, Zhang P, Qin L. CRISPR-Cas12a Coupled with Platinum Nanoreporter for Visual Quantification of SNVs on a Volumetric Bar-Chart Chip. Anal Chem 2019; 91:12384-12391. [DOI: 10.1021/acs.analchem.9b02925] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ning Shao
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, Texas 77030, United States
- Deartment of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York 10065, United States
| | - Xin Han
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, Texas 77030, United States
- Deartment of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York 10065, United States
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yanni Song
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Pengchao Zhang
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, Texas 77030, United States
- Deartment of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York 10065, United States
| | - Lidong Qin
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, Texas 77030, United States
- Deartment of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York 10065, United States
| |
Collapse
|
16
|
Caputo TM, Battista E, Netti PA, Causa F. Supramolecular Microgels with Molecular Beacons at the Interface for Ultrasensitive, Amplification-Free, and SNP-Selective miRNA Fluorescence Detection. ACS APPLIED MATERIALS & INTERFACES 2019; 11:17147-17156. [PMID: 31021070 DOI: 10.1021/acsami.8b22635] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, a supramolecular structure with femtomolar biorecognition properties is proposed for use in analytical devices. It is obtained by an innovative interface between synthetic hydrogel polymers and molecular beacon (mb) probes. Supramolecularly structured microgels are synthetized with a core-shell architecture with specific dyes polymerized in a desired compartment. Mb probes are opportunely conjugated at the microgel interface so that their recognition mechanism is preserved and their spatial distribution is optimized to avoid crowding effects. The miR-21, a microRNA involved in various biological processes and usually used as a biomarker in early cancer diagnosis, has been selected as the target. The results demonstrate that by tuning the spatial distribution of molecular probes immobilized on the microgel and/or the amount of microgels, the assay shows scalable sensitivity reaching a limit of detection down to about 10 fM, without amplification steps and with detection time as short as 1 h. The assay results specific toward single mutated targets, and it is stable in the presence of high-interfering oligonucleotides concentrations. The miRNA target is also detected in human serum with performances similar to those observed in PBS buffer because of microgel antifouling properties without the need of any surface treatment. All tests were performed in a low sample volume (20 μL). As a result, mb-microgel represents an innovative biosensor to precisely quantify microRNAs in a direct (mix&read), scalable, and selective way. Such an approach paves the way for creating innovative biosensing interfaces with other probes, such as hairpins, aptamers, and PNA.
Collapse
Affiliation(s)
- Tania M Caputo
- Center for Advanced Biomaterials for Healthcare@CRIB , Istituto Italiano di Tecnologia (IIT) , Largo Barsanti e Matteucci 53 , 80125 Naples , Italy
| | - Edmondo Battista
- Center for Advanced Biomaterials for Healthcare@CRIB , Istituto Italiano di Tecnologia (IIT) , Largo Barsanti e Matteucci 53 , 80125 Naples , Italy
- InterdisciplinaryResearch Centre on Biomaterials (CRIB) , Università degli Studi di Napoli "Federico II" , Piazzale Tecchio 80 , 80125 Naples , Italy
| | - Paolo A Netti
- Center for Advanced Biomaterials for Healthcare@CRIB , Istituto Italiano di Tecnologia (IIT) , Largo Barsanti e Matteucci 53 , 80125 Naples , Italy
- InterdisciplinaryResearch Centre on Biomaterials (CRIB) , Università degli Studi di Napoli "Federico II" , Piazzale Tecchio 80 , 80125 Naples , Italy
- Dipartimento di Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI) , University "Federico II" , Piazzale Tecchio 80 , 80125 Naples , Italy
| | - Filippo Causa
- Center for Advanced Biomaterials for Healthcare@CRIB , Istituto Italiano di Tecnologia (IIT) , Largo Barsanti e Matteucci 53 , 80125 Naples , Italy
- InterdisciplinaryResearch Centre on Biomaterials (CRIB) , Università degli Studi di Napoli "Federico II" , Piazzale Tecchio 80 , 80125 Naples , Italy
- Dipartimento di Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI) , University "Federico II" , Piazzale Tecchio 80 , 80125 Naples , Italy
| |
Collapse
|
17
|
Abstract
Advances in nucleic acid sequencing and genotyping technologies have facilitated the discovery of an increasing number of single-nucleotide variations (SNVs) associated with disease onset, progression, and response to therapy. The reliable detection of such disease-specific SNVs can ensure timely and effective therapeutic action, enabling precision medicine. This has driven extensive efforts in recent years to develop novel methods for the fast and cost-effective analysis of targeted SNVs. In this Review, we highlight the most recent and significant advances made toward the development of such methodologies.
Collapse
Affiliation(s)
- Alireza Abi
- Department of Chemistry, Faculty of Sciences, Shiraz University, Shiraz 7194684795, Iran
| | - Afsaneh Safavi
- Department of Chemistry, Faculty of Sciences, Shiraz University, Shiraz 7194684795, Iran
| |
Collapse
|
18
|
Marras SAE, Tyagi S, Antson DO, Kramer FR. Color-coded molecular beacons for multiplex PCR screening assays. PLoS One 2019; 14:e0213906. [PMID: 30883590 PMCID: PMC6422326 DOI: 10.1371/journal.pone.0213906] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 03/04/2019] [Indexed: 11/19/2022] Open
Abstract
The number of different fluorescent colors that can be distinguished in a PCR screening assay restricts the number of different targets that can be detected. If only six colors can be distinguished, and the probe for each target is labeled with a unique color, then only six different targets can be identified. Yet, it is often desirable to identify more targets. For instance, the rapid identification of which bacterial species (if any) is present in a patient's normally sterile blood sample, out of a long list of species, would enable appropriate actions to be taken to prevent sepsis. We realized that the number of different targets that can be identified in a screening assay can be increased significantly by utilizing a unique combination of two colors for the identification of each target species. We prepared a demonstration assay in which 15 different molecular beacon probe pairs were present, each pair specific for the same identifying sequence in the 16S ribosomal RNA gene of a different bacterial species, and each pair labeled with a unique combination of two fluorophores out of the six differently colored fluorophores that our PCR instrument could distinguish. In a set of PCR assays, each containing all 30 color-coded molecular beacons, and each containing DNA from a different bacterial species, the only two colors that arose in each real-time assay identified the species-specific target sequence that was present. Due to the intrinsic low background of molecular beacon probes, these reactions were specific and extremely sensitive, and the threshold cycle reflected the abundance of the target sequence present in each sample.
Collapse
Affiliation(s)
- Salvatore A. E. Marras
- Public Health Research Institute, Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Sanjay Tyagi
- Public Health Research Institute, Department of Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Dan-Oscar Antson
- Center for Technology Licensing, Weill Cornell Medical Center, Cornell University, New York, New York, United States of America
| | - Fred Russell Kramer
- Public Health Research Institute, Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| |
Collapse
|
19
|
Chandler M, Lyalina T, Halman J, Rackley L, Lee L, Dang D, Ke W, Sajja S, Woods S, Acharya S, Baumgarten E, Christopher J, Elshalia E, Hrebien G, Kublank K, Saleh S, Stallings B, Tafere M, Striplin C, Afonin KA. Broccoli Fluorets: Split Aptamers as a User-Friendly Fluorescent Toolkit for Dynamic RNA Nanotechnology. Molecules 2018; 23:E3178. [PMID: 30513826 PMCID: PMC6321606 DOI: 10.3390/molecules23123178] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/29/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023] Open
Abstract
RNA aptamers selected to bind fluorophores and activate their fluorescence offer a simple and modular way to visualize native RNAs in cells. Split aptamers which are inactive until the halves are brought within close proximity can become useful for visualizing the dynamic actions of RNA assemblies and their interactions in real time with low background noise and eliminated necessity for covalently attached dyes. Here, we design and test several sets of F30 Broccoli aptamer splits, that we call fluorets, to compare their relative fluorescence and physicochemical stabilities. We show that the splits can be simply assembled either through one-pot thermal annealing or co-transcriptionally, thus allowing for direct tracking of transcription reactions via the fluorescent response. We suggest a set of rules that enable for the construction of responsive biomaterials that readily change their fluorescent behavior when various stimuli such as the presence of divalent ions, exposure to various nucleases, or changes in temperature are applied. We also show that the strand displacement approach can be used to program the controllable fluorescent responses in isothermal conditions. Overall, this work lays a foundation for the future development of dynamic systems for molecular computing which can be used to monitor real-time processes in cells and construct biocompatible logic gates.
Collapse
Affiliation(s)
- Morgan Chandler
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Tatiana Lyalina
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, Lomonosova St. 9, 191002 St. Petersburg, Russia.
| | - Justin Halman
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Lauren Rackley
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Lauren Lee
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Dylan Dang
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Weina Ke
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Sameer Sajja
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Steven Woods
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Shrija Acharya
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Elijah Baumgarten
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Jonathan Christopher
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Emman Elshalia
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Gabriel Hrebien
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Kinzey Kublank
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Saja Saleh
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Bailey Stallings
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Michael Tafere
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Caryn Striplin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| |
Collapse
|
20
|
Wang CC, Chen CA, Jong YJ, Kou HS. Specific Gene Capture Combined with Restriction-Fragment Release for Directly Fluorescent Genotyping of Single-Nucleotide Polymorphisms in Diagnosing Spinal Muscular Atrophy. Anal Chem 2018; 90:11599-11606. [PMID: 30203652 DOI: 10.1021/acs.analchem.8b02996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, a fast and simple fluorescent genotyping strategy, streptavidin magnetic beads combined with biotin-coupled PCR and restriction-fragment release, was developed for determination of nucleotide variants. This method was further applied for analyzing SMN1 gene in diagnosis of spinal muscular atrophy (SMA). After biotin-coupled PCR, the streptavidin magnetic beads would capture the biotin-labeled SMN genetic fragments, and then the restriction enzyme of HPY188I could only digest and release the fluorescent end of SMN1 genetic fragment into the supernatant. Therefore, the SMN1 gene could be easily fluorescently quantified, and SMN2 would not, for diagnosis of SMA. The copy number of the SMN1 gene could be regressed using the relative fluorescent unit versus the known copy number, and the coefficient of correlation is equal to 0.9617 ( r = 0.9617). In this research, a total of 16 blind DNA samples were analyzed, including 6 wild types, 5 carriers, and 5 SMA patients. Importantly, this fast, simple, and highly efficient method is universal for detection of all nucleotides variants by replacing the specific restriction enzyme. This technique has the potency to be served as a tool for fast and accurate diagnosis of genotypes in clinical medicine.
Collapse
Affiliation(s)
| | - Chung-An Chen
- Institute of Applied Mechanics , National Taiwan University , Taipei , Taiwan
| | | | | |
Collapse
|
21
|
Schlachter S, Chan K, Marras SAE, Parveen N. Detection and Differentiation of Lyme Spirochetes and Other Tick-Borne Pathogens from Blood Using Real-Time PCR with Molecular Beacons. Methods Mol Biol 2018; 1616:155-170. [PMID: 28600768 DOI: 10.1007/978-1-4939-7037-7_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Real-time PCR assays have recently been implemented in diagnostics for many bacterial pathogens, allowing rapid and accurate detection, which ultimately results in improved clinical intervention. Here, we describe a sensitive method of detection for three common tick-borne pathogens Borrelia burgdorferi, Anaplasma phagocytophilum, and Babesia microti since coinfections with these pathogens have started occurring with increasing frequency over the last several years in both North America and Europe. A shared geographic region, the same tick vectors, and similar transmission cycle all favor simultaneous transmission of these three tick-borne pathogens. Furthermore, early symptoms of the diseases are often similar and somewhat nonspecific leading to poor clinical identification. The multiplex real-time PCR assay we describe here utilizes gene-specific primers, molecular beacon probes tagged with different fluorophores, and optimized PCR conditions to detect even small amounts of specific pathogen DNA without interference. Application of this detection method will offer better diagnostics for acute and persistent infection compared to the two-tier serological tests that are currently approved in North America and Europe, which do not necessarily detect active infection.
Collapse
Affiliation(s)
- Samantha Schlachter
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, 225 Warren Street, Newark, NJ, 07103-3535, USA
| | - Kamfai Chan
- AI Biosciences, Inc., 1902 Pinon Drive, Suite C, College Station, TX, 77845-5816, USA
| | - Salvatore A E Marras
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, 225 Warren Street, Newark, NJ, 07103-3535, USA
| | - Nikhat Parveen
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, 225 Warren Street, Newark, NJ, 07103-3535, USA.
| |
Collapse
|
22
|
Kim SU, Batule BS, Mun H, Byun JY, Shim WB, Kim MG. Colorimetric molecular diagnosis of the HIV gag gene using DNAzyme and a complementary DNA-extended primer. Analyst 2018; 143:695-699. [PMID: 29299545 DOI: 10.1039/c7an01520h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have developed a novel strategy for the colorimetric detection of PCR products by utilizing a target-specific primer modified at the 5'-end with an anti-DNAzyme sequence. A single-stranded DNAzyme sequence folds into a G-quadruplex structure with hemin and shows strong peroxidase activity. When the complementary strand binds to the DNAzyme sequence, it blocks the formation of the G-quadraduplex structure and loses its peroxidase activity. In the presence of the target gene, PCR amplification proceeds, and anti-DNAzyme sequence modified primers present in the reaction mixture form a double strand through primer extension. Therefore, it does not block the DNAzyme sequence. Further, a colorimetric signal is generated by the addition of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) and H2O2 at the end of the reaction. We have successfully detected a single copy of the HIV type 1 gag gene in buffer and 10 copies in human serum. The strategy developed could be used to detect DNA and RNA in complex biological samples by simple primer designing that includes DNAzyme and a DNA extended primer.
Collapse
Affiliation(s)
- Seong U Kim
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, 261 Chemdan-gwagiro, Gwangju 500-712, Republic of Korea.
| | - Bhagwan S Batule
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, 261 Chemdan-gwagiro, Gwangju 500-712, Republic of Korea
| | - Hyoyoung Mun
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, 261 Chemdan-gwagiro, Gwangju 500-712, Republic of Korea
| | - Ju-Young Byun
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, 261 Chemdan-gwagiro, Gwangju 500-712, Republic of Korea
| | - Won-Bo Shim
- Department of Agricultural Chemistry and Food Science and Technology, Gyeongsang National University, 900 Gajwa-dong Jinju, Gyeongnam 660-701, Republic of Korea
| | - Min-Gon Kim
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, 261 Chemdan-gwagiro, Gwangju 500-712, Republic of Korea. and Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, 261 Chemdan-gwagiro, Gwangju 500-712, Republic of Korea
| |
Collapse
|
23
|
Abstract
BACKGROUND Bipolar Disorder (BD), along with depression and schizophrenia, is one of the most serious mental illnesses, and one of the top 20 causes of severe impairment in everyday life. Recent molecular studies, using both traditional approaches and new procedures such as Whole-Genome Sequencing (WGS), have suggested that genetic factors could significantly contribute to the development of BD, with heritability estimates of up to 85%. However, it is assumed that BD is a multigenic and multifactorial illness with environmental factors that strongly contribute to disease development/progression, which means that progress in genetic knowledge of BD might be difficult to interpret in clinical practice. OBJECTIVE The aim of this study is to provide a synthetic description of the main SNPs variants identified/confirmed by recent extensive WGS analysis as well as by reconstruction in an in vitro mechanism or by amygdala activation protocol in vivo. METHOD Bibliographic data, genomic and protein Data Banks were consulted so as to carry out a cross genomic study for mutations, SNPs and chromosomal alterations described in these studies in BD patients. RESULTS Fifty-five different mutations have been described in 30 research papers by different genetic analyses including recent WGS analysis. Many of these studies have led to the discovery of the most probable susceptibility genes for BD, including ANK3, CACNA1C, NCAN, ODZ4, SYNE1, and TRANK1. Exploration has started the role of several of these mutations in BD pathophysiology using in vitro and animal models. CONCLUSION Although new genomic research technology in BD opens up new possibilities, the current results for common variants are still controversial because of four broad conditions: analytical validity, clinical validity, clinical utility and a reasonable cost for genetic analysis are not yet accessible.
Collapse
Affiliation(s)
- Germano Orrù
- Department of Surgical Sciences, Molecular Biology Service (MBS), University of Cagliari, Cagliari, Italy
- National Research Council of Italy, ISPA, Sassari, Italy
- Address correspondence to this author at the Department of Surgical Sciences, University of Cagliari, Germano Orrù Ph.D, via Ospedale 54, 09124 Cagliari, Italy; Tel: +39 070 609-2568; E-mail:
| | - Mauro Giovanni Carta
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
24
|
Wang X, Liu W, Yin B, Sang Y, Liu Z, Dai Y, Duan X, Zhang G, Ding S, Tao Z. An isothermal strand displacement amplification strategy for nucleic acids using junction forming probes and colorimetric detection. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2158-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
25
|
A new method for sensitive detection of microphthalmia-associated transcription factor based on “OFF-state” and “ON-state” equilibrium of a well-designed probe and duplex-specific nuclease signal amplification. Biosens Bioelectron 2017; 87:299-304. [DOI: 10.1016/j.bios.2016.08.070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/03/2016] [Accepted: 08/19/2016] [Indexed: 11/17/2022]
|
26
|
Zhang FT, Cai LY, Zhou YL, Zhang XX. Immobilization-free DNA-based homogeneous electrochemical biosensors. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.08.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
27
|
Sensitive detection of transcription factors in cell nuclear extracts by using a molecular beacons based amplification strategy. Biosens Bioelectron 2016; 77:264-9. [DOI: 10.1016/j.bios.2015.09.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 09/16/2015] [Accepted: 09/18/2015] [Indexed: 01/14/2023]
|
28
|
A Massively Parallel Computational Method of Reading Index Files for SOAPsnv. Interdiscip Sci 2015; 7:397-404. [PMID: 26343781 DOI: 10.1007/s12539-015-0123-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/21/2014] [Accepted: 05/06/2014] [Indexed: 10/23/2022]
Abstract
SOAPsnv is the software used for identifying the single nucleotide variation in cancer genes. However, its performance is yet to match the massive amount of data to be processed. Experiments reveal that the main performance bottleneck of SOAPsnv software is the pileup algorithm. The original pileup algorithm's I/O process is time-consuming and inefficient to read input files. Moreover, the scalability of the pileup algorithm is also poor. Therefore, we designed a new algorithm, named BamPileup, aiming to improve the performance of sequential read, and the new pileup algorithm implemented a parallel read mode based on index. Using this method, each thread can directly read the data start from a specific position. The results of experiments on the Tianhe-2 supercomputer show that, when reading data in a multi-threaded parallel I/O way, the processing time of algorithm is reduced to 3.9 s and the application program can achieve a speedup up to 100×. Moreover, the scalability of the new algorithm is also satisfying.
Collapse
|
29
|
Chowdhury JA, Moriguchi T, Shinozuka K. Pseudo-Dumbbell-Type Molecular Beacon Probes Bearing Modified Deoxyuridine Derivatives and a Silylated Pyrene as a Fluorophore. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2015. [DOI: 10.1246/bcsj.20140372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Jakir Ahmed Chowdhury
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University
| | - Tomohisa Moriguchi
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University
| | - Kazuo Shinozuka
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University
| |
Collapse
|
30
|
Del Bonis-O'Donnell JT, Fygenson DK, Pennathur S. Fluorescent silver nanocluster DNA probes for multiplexed detection using microfluidic capillary electrophoresis. Analyst 2015; 140:1609-15. [DOI: 10.1039/c4an01735h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We tune the electrophoretic mobilities of silver nanocluster DNA probes for Hepatitis A, B and C targets for single-color multiplexing by microfluidic capillary electrophoresis.
Collapse
Affiliation(s)
| | | | - Sumita Pennathur
- Department of Mechanical Engineering
- University of California Santa Barbara
- Santa Barbara
- USA
| |
Collapse
|
31
|
Moriguchi T, Ichimura M, Kato M, Suzuki K, Takahashi Y, Shinozuka K. Development of the excimer probe responsible for DNA target bearing the silylated pyrenes at base moiety. Bioorg Med Chem Lett 2014; 24:4372-4375. [DOI: 10.1016/j.bmcl.2014.08.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/04/2014] [Accepted: 08/07/2014] [Indexed: 01/04/2023]
|
32
|
Jia Y, Sanchez JA, Wangh LJ. Kinetic hairpin oligonucleotide blockers for selective amplification of rare mutations. Sci Rep 2014; 4:5921. [PMID: 25082368 PMCID: PMC4118197 DOI: 10.1038/srep05921] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 07/15/2014] [Indexed: 01/13/2023] Open
Abstract
Detection of rare mutant alleles in an excess of wild type alleles is increasingly important in cancer diagnosis. Several methods for selective amplification of a mutant allele via the polymerase chain reaction (PCR) have been reported, but each of these methods has its own limitations. A common problem is that Taq DNA polymerase errors early during amplification generate false positive mutations which also accumulate exponentially. In this paper, we described a novel method using hairpin oligonucleotide blockers that can selectively inhibit the amplification of wild type DNA during LATE-PCR amplification. LATE-PCR generates double-stranded DNA exponentially followed by linear amplification of single-stranded DNA. The efficiency of the blocker is optimized by adjusting the LATE-PCR temperature cycling profile. We also demonstrate that it is possible to minimize false positive signals caused by Taq DNA polymerase errors by using a mismatched excess primer plus a modified PCR profile to preferentially enrich for mutant target sequences prior to the start of the exponential phase of LATE-PCR amplification. In combination these procedures permit amplification of specific KRAS mutations in the presence of more than 10,000 fold excess of wild type DNA without false positive signals.
Collapse
Affiliation(s)
- Yanwei Jia
- 1] Department of Biology, Brandeis University, Waltham, MA 02453, USA [2] State Key Laboratory of Analog and Mixed-Signal VLSI, University of Macau, Macau, China
| | | | - Lawrence J Wangh
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| |
Collapse
|
33
|
Hsieh ATH, Pan PJ, Lee AP. A real-time characterization method to rapidly optimize molecular beacon signal for sensitive nucleic acids analysis. Anal Bioanal Chem 2014; 406:3059-67. [PMID: 24722874 DOI: 10.1007/s00216-014-7721-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 02/15/2014] [Accepted: 02/21/2014] [Indexed: 11/26/2022]
Abstract
This research demonstrates an integrated microfluidic titration assay to characterize the cation concentrations in working buffer to rapidly optimize the signal-to-noise ratio (SNR) of molecular beacons (MBs). The "Microfluidic Droplet Array Titration Assay" (MiDATA) integrated the functions of sample dilution, sample loading, sample mixing, fluorescence analysis, and re-confirmation functions all together in a one-step process. It allows experimentalists to arbitrarily change sample concentration and acquire SNR measurements instantaneously. MiDATA greatly reduces sample dilution time, number of samples needed, sample consumption, and the total titration time. The maximum SNR of molecular beacons is achieved by optimizing the concentrations of the monovalent and divalent cation (i.e., Mg(2+) and K(+)) of the working buffer. MiDATA platform is able to reduce the total consumed reagents to less than 50 μL, and decrease the assay time to less than 30 min. The SNR of the designated MB is increased from 20 to 126 (i.e., enhanced the signal 630 %) using the optimal concentration of MgCl2 and KCl determined by MiDATA. This novel microfluidics-based titration method is not only useful for SNR optimization of molecular beacons but it also can be a general method for a wide range of fluorescence resonance energy transfer (FRET)-based molecular probes.
Collapse
Affiliation(s)
- Albert Tsung-Hsi Hsieh
- Department of Biomedical Engineering, University of California, Irvine, 3120 Natural Sciences II, Irvine, CA, 92697-2715, USA,
| | | | | |
Collapse
|
34
|
Wang F, Lu CH, Willner I. From cascaded catalytic nucleic acids to enzyme-DNA nanostructures: controlling reactivity, sensing, logic operations, and assembly of complex structures. Chem Rev 2014; 114:2881-941. [PMID: 24576227 DOI: 10.1021/cr400354z] [Citation(s) in RCA: 498] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Fuan Wang
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| | | | | |
Collapse
|
35
|
Wang F, Lu CH, Liu X, Freage L, Willner I. Amplified and multiplexed detection of DNA using the dendritic rolling circle amplified synthesis of DNAzyme reporter units. Anal Chem 2014; 86:1614-21. [PMID: 24377284 DOI: 10.1021/ac4033033] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The amplified, highly sensitive detection of DNA using the dendritic rolling circle amplification (RCA) is introduced. The analytical platform includes a circular DNA and a structurally tailored hairpin structure. The circular nucleic acid template includes a recognition sequence for the analyte DNA (the Tay-Sachs mutant gene), a complementary sequence to the Mg(2+)-dependent DNAzyme, and a sequence identical to the loop region of the coadded hairpin structure. The functional hairpin in the system consists of the analyte-sequence that is caged in the stem region and a single-stranded loop domain that communicates with the RCA product. The analyte activates the RCA process, leading to DNA chains consisting of the Mg(2+)-dependent DNAzyme and sequences that are complementary to the loop of the functional hairpin structure. Opening of the coadded hairpin releases the caged analyte sequence, resulting in the dendritic RCA-induced synthesis of the Mg(2+)-dependent DNAzyme units. The DNAzyme-catalyzed cleavage of a fluorophore/quencher-modified substrate leads to a fluorescence readout signal. The method enabled the analysis of the target DNA with a detection limit corresponding to 1 aM. By the design of two different circular DNAs that include recognition sites for two different target genes, complementary sequences for two different Mg(2+)-dependent DNAzyme sequences and two different functional hairpin structures, the dendritic RCA-stimulated multiplexed analysis of two different genes is demonstrated. The amplified dendritic RCA detection of DNA is further implemented to yield the hemin/G-quadruplex horseradish peroxidase (HRP)-mimicking DNAzyme as catalytic labels that provide colorimetric or chemiluminescent readout signals.
Collapse
Affiliation(s)
- Fuan Wang
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| | | | | | | | | |
Collapse
|
36
|
Satterfield BC. Cooperative primers: 2.5 million-fold improvement in the reduction of nonspecific amplification. J Mol Diagn 2013; 16:163-73. [PMID: 24370857 DOI: 10.1016/j.jmoldx.2013.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 10/26/2013] [Accepted: 10/30/2013] [Indexed: 10/25/2022] Open
Abstract
The increasing need to multiplex nucleic acid reactions presses test designers to the limits of amplification specificity in PCR. Although more than a dozen hot starts have been developed for PCR to reduce primer-dimer formation, none can stop the propagation of primer-dimers once formed. Even a small number of primer-dimers can result in false-negatives and/or false-positives. Herein, we demonstrate a new class of primer technology that greatly reduces primer-dimer propagation, showing successful amplification of 60 template copies with no signal dampening in a background of 150,000,000 primer-dimers. In contrast, normal primers, with or without a hot start, experienced signal dampening with as few as 60 primer-dimers and false-negatives with only 600 primer-dimers. This represents more than a 2.5 million-fold improvement in reduction of nonspecific amplification. We also show how a probe can be incorporated into the cooperative primer, with 2.5 times more signal than conventional fluorescent probes.
Collapse
|
37
|
Chan K, Marras SAE, Parveen N. Sensitive multiplex PCR assay to differentiate Lyme spirochetes and emerging pathogens Anaplasma phagocytophilum and Babesia microti. BMC Microbiol 2013; 13:295. [PMID: 24359556 PMCID: PMC3890647 DOI: 10.1186/1471-2180-13-295] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 12/12/2013] [Indexed: 12/24/2022] Open
Abstract
Background The infection with Borrelia burgdorferi can result in acute to chronic Lyme disease. In addition, coinfection with tick-borne pathogens, Babesia species and Anaplasma phagocytophilum has been increasing in endemic regions of the USA and Europe. The currently used serological diagnostic tests are often difficult to interpret and, moreover, antibodies against the pathogens persist for a long time making it difficult to confirm the cure of the disease. In addition, these tests cannot be used for diagnosis of early disease state before the adaptive immune response is established. Since nucleic acids of the pathogens do not persist after the cure, DNA-based diagnostic tests are becoming highly useful for detecting infectious diseases. Results In this study, we describe a real-time multiplex PCR assay to detect the presence of B. burgdorferi, B. microti and A. phagocytophilum simultaneously even when they are present in very low copy numbers. Interestingly, this quantitative PCR technique is also able to differentiate all three major Lyme spirochete species, B. burgdorferi, B. afzelii, and B. garinii by utilizing a post-PCR denaturation profile analysis and a single molecular beacon probe. This could be very useful for diagnosis and discrimination of various Lyme spirochetes in European countries where all three Lyme spirochete species are prevalent. As proof of the principle for patient samples, we detected the presence of low number of Lyme spirochetes spiked in the human blood using our assay. Finally, our multiplex assay can detect all three tick-borne pathogens in a sensitive and specific manner irrespective of the level of each pathogen present in the sample. We anticipate that this novel diagnostic method will be able to simultaneously diagnose early to chronic stages of Lyme disease, babesiosis and anaplasmosis using the patients’ blood samples. Conclusion Real-time quantitative PCR using specific primers and molecular beacon probes for the selected amplicon described in this study can detect three tick-borne pathogens simultaneously in an accurate manner.
Collapse
Affiliation(s)
| | | | - Nikhat Parveen
- Department of Microbiology and Molecular Genetics, Rutgers-New Jersey Medical School, 225 Warren Street, Newark, NJ 07103-3535, USA.
| |
Collapse
|
38
|
Abstract
Real-time PCR or quantitative PCR (QPCR) is a powerful technique that allows measurement of PCR product while the amplification reaction proceeds. It incorporates the fluorescent element into conventional PCR as the calculation standard to provide a quantitative result. In this sense, fluorescent chemistry is the key component in QPCR. Till now, two types of fluorescent chemistries have been adopted in the QPCR systems: one is nonspecific probe and the other is specific. As a brilliant invention by Kramer et al. in 1996, molecular beacon is naturally suited as the reporting element in real-time PCR and has been adapted for many molecular biology applications. In this chapter, we briefly introduce the working principle of QPCR and overview different fluorescent chemistries, and then we focus on the applications of molecular beacons-like gene expression study, single-nucleotide polymorphisms and mutation detection, and pathogenic detection.
Collapse
Affiliation(s)
- Chaoyong James Yang
- Department of Chemical Biology College of Chemistry and Chemical Xiamen University, Xiamen, Fujian China, People's Republic
| | - Weihong Tan
- Department of Biomedical Engineering and Department of Chemistry Hunan University, Changsha, China, People's Republic
| |
Collapse
|
39
|
El-Yazbi AF, Loppnow GR. Chimeric RNA–DNA Molecular Beacons for Quantification of Nucleic Acids, Single Nucleotide Polymophisms, and Nucleic Acid Damage. Anal Chem 2013; 85:4321-7. [DOI: 10.1021/ac301669y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Amira F. El-Yazbi
- Department of Chemistry, University of Alberta, Edmonton, AB
T6G 2G2 Canada
| | - Glen R. Loppnow
- Department of Chemistry, University of Alberta, Edmonton, AB
T6G 2G2 Canada
| |
Collapse
|
40
|
Use of flow cytometry for rapid, quantitative detection of poliovirus-infected cells via TAT peptide-delivered molecular beacons. Appl Environ Microbiol 2012; 79:696-700. [PMID: 23160127 DOI: 10.1128/aem.02429-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rapid and efficient detection of viral infection is crucial for the prevention of disease spread during an outbreak and for timely clinical management. In this paper, the utility of Tat peptide-modified molecular beacons (MBs) as a rapid diagnostic tool for the detection of virus-infected cells was demonstrated. The rapid intracellular delivery mediated by the Tat peptide enabled the detection of infected cells within 30 s, reaching saturation in signal in 30 min. This rapid detection scheme was coupled with flow cytometry (FC), resulting in an automated, high-throughput method for the identification of virus-infected cells. Because of the 2-order-of-magnitude difference in fluorescence intensity between infected and uninfected cells, as few as 1% infected cells could be detected. Because of its speed and sensitivity, this approach may be adapted for the practical diagnosis of multiple viral infections.
Collapse
|
41
|
Xuan F, Luo X, Hsing IM. Ultrasensitive solution-phase electrochemical molecular beacon-based DNA detection with signal amplification by exonuclease III-assisted target recycling. Anal Chem 2012; 84:5216-20. [PMID: 22721426 DOI: 10.1021/ac301033w] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Taking advantage of the preferential exodeoxyribonuclease activity of exonuclease III in combination with the difference in diffusivity between an oligonucleotide and a mononucleotide toward a negatively charged ITO electrode, a highly sensitive and selective electrochemical molecular beacon (eMB)-based DNA sensor has been developed. This sensor realizes electrochemical detection of DNA in a homogeneous solution, with sensing signals amplified by an exonuclease III-based target recycling strategy. A hairpin-shaped oligonucleotide containing the target DNA recognition sequence, with a methylene blue tag close to the 3' terminus, is designed as the signaling probe. Hybridization with the target DNA transforms the probe's exonuclease III-inactive protruding 3' terminus into an exonuclease III-active blunt end, triggering the digestion of the probe into mononucleotides including a methylene blue-labeled electro-active mononucleotide (eNT). The released eNT, due to its less negative charge and small size, diffuses easily to the negative ITO electrode, resulting in an increased electrochemical signal. Meanwhile, the intact target DNA returns freely to the solution and hybridizes with other probes, releasing multiple eNTs and thereby further amplifies the electrochemical signal. This new immobilization-free, signal-amplified electrochemical DNA detection strategy shows great potential to be integrated in portable and cost-effective DNA sensing devices.
Collapse
Affiliation(s)
- Feng Xuan
- Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | | | | |
Collapse
|
42
|
Hall LM, Gerowska M, Brown T. A highly fluorescent DNA toolkit: synthesis and properties of oligonucleotides containing new Cy3, Cy5 and Cy3B monomers. Nucleic Acids Res 2012; 40:e108. [PMID: 22495935 PMCID: PMC3413114 DOI: 10.1093/nar/gks303] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cy3B is an extremely bright and stable fluorescent dye, which is only available for coupling to nucleic acids post-synthetically. This severely limits its use in the fields of genomics, biology and nanotechnology. We have optimized the synthesis of Cy3B, and for the first time produced a diverse range of Cy3B monomers for use in solid-phase oligonucleotide synthesis. This molecular toolkit includes phosphoramidite monomers with Cy3B linked to deoxyribose, to the 5-position of thymine, and to a hexynyl linker, in addition to an oligonucleotide synthesis resin in which Cy3B is linked to deoxyribose. These monomers have been used to incorporate single and multiple Cy3B units into oligonucleotides internally and at both termini. Cy3B Taqman probes, Scorpions and HyBeacons have been synthesized and used successfully in mutation detection, and a dual Cy3B Molecular Beacon was synthesized and found to be superior to the corresponding Cy3B/DABCYL Beacon. Attachment of Cy3, Cy3B and Cy5 to the 5-position of thymidine by an ethynyl linker enabled the synthesis of an oligonucleotide FRET system. The rigid linker between the dye and nucleobase minimizes dye–dye and dye–DNA interactions and reduces fluorescence quenching. These reagents open up new future applications of Cy3B, including more sensitive single-molecule and cell-imaging studies.
Collapse
Affiliation(s)
- Lucy M Hall
- School of Chemistry, University of Southampton, SO17 1BJ, UK
| | | | | |
Collapse
|
43
|
|
44
|
Abstract
Real-time quantitative PCR is an efficient method for high-throughput genotyping of single nucleotide polymorphisms (SNPs). In this chapter, we describe the 5' nuclease allelic discrimination assay for genotyping biallelic SNPs.
Collapse
|
45
|
Steinbrück A, Csaki A, Fritzsche W. Metal Nanoparticles for Molecular Plasmonics. REVIEWS IN PLASMONICS 2012. [DOI: 10.1007/978-1-4614-0884-0_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
46
|
YOSHINAGA H, NAKANO K, SOH N, IMATO T. AFM-Imaging Diagnosis Method for Single Nucleotide Polymorphism Using Molecular Beacon DNA as an Intramolecular Ligation Template of Target DNA and a Viewable Indicator. ANAL SCI 2012; 28:939-45. [DOI: 10.2116/analsci.28.939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Hisao YOSHINAGA
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University
| | - Koji NAKANO
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University
| | | | - Toshihiko IMATO
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University
| |
Collapse
|
47
|
Simultaneous detection of infectious human echoviruses and adenoviruses by an in situ nuclease-resistant molecular beacon-based assay. Appl Environ Microbiol 2011; 78:1584-8. [PMID: 22194298 DOI: 10.1128/aem.05937-11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A multiplex methodology using two nuclease-resistant molecular beacons that target specific genomic regions of adenovirus 2 and echovirus 17 during simultaneous infection in A549 cells is presented. Using fluorescence microscopy, visualization of enteroviral and adenoviral replication was possible within 3 h postinfection.
Collapse
|
48
|
Beni V, Zewdu T, Joda H, Katakis I, O'Sullivan CK. Gold nanoparticle fluorescent molecular beacon for low-resolution DQ2 gene HLA typing. Anal Bioanal Chem 2011; 402:1001-9. [PMID: 22086396 DOI: 10.1007/s00216-011-5493-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 10/05/2011] [Accepted: 10/10/2011] [Indexed: 11/26/2022]
Abstract
Coeliac disease is an inflammation of the small intestine triggered by gluten ingestion. We present a fluorescent genosensor, exploiting molecular-beacon-functionalized gold nanoparticles, for the identification of human leukocyte antigen (HLA) DQ2 gene, a key genetic factor in coeliac disease. Optimization of sensor performance was achieved by tuning the composition of the oligonucleotide monolayer immobilized on the gold nanoparticle and the molecular beacon design. Co-immobilization of the molecular beacon with a spacing oligonucleotide (thiolated ten-thymine oligonucleotide) in the presence of ten-adenine oligonucleotides resulted in a significant increase of the sensor response owing to improved spacing of the molecular beacons and extension of the distance from the nanoparticle surface, which renders them more available for recognition. Further increase in the response (approximately 40%) was shown to be achievable when the recognition sequence of the molecular beacon was incorporated in the stem. Improvement of the specificity of the molecular beacons was also achieved by the incorporation within their recognition sequence of a one-base mismatch. Finally, gold nanoparticles functionalized with two molecular beacons targeting the DQA1*05* and DQB1*02* alleles allowed the low-resolution typing of the DQ2 gene at the nanomolar level.
Collapse
Affiliation(s)
- Valerio Beni
- Nanobiotechnology and Bioanalysis Group, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Pasos Catalans, 26, 43007 Tarragona, Spain.
| | | | | | | | | |
Collapse
|
49
|
Xu H, Zhu X, Ye H, Yu L, Liu X, Chen G. A simple "molecular beacon"-based fluorescent sensing strategy for sensitive and selective detection of mercury (II). Chem Commun (Camb) 2011; 47:12158-60. [PMID: 21986702 DOI: 10.1039/c1cc14265h] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel fluorescent sensor for the detection of Hg(2+) in aqueous media was developed. The method takes advantages of the highly selective thymine-Hg(2+)-thymine coordination and the sensitive "signal-on" structure-switching molecular beacon.
Collapse
Affiliation(s)
- Huifeng Xu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, PR China
| | | | | | | | | | | |
Collapse
|
50
|
Sato Y, Nishizawa S, Teramae N. Label-Free Molecular Beacon System Based on DNAs Containing Abasic Sites and Fluorescent Ligands That Bind Abasic Sites. Chemistry 2011; 17:11650-6. [DOI: 10.1002/chem.201100384] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 05/31/2011] [Indexed: 01/13/2023]
|