1
|
Chalasti M, Iordanou C, Kratiras Z, Stylianaki A, Trigka EA, Lakiotaki E, Makedou K, Iliadis S, Zografos KG, Dimitroulis D, Chrisofos M, Patsouris E, Zografos GC, Bouboulis GC, Papalois AE. Experimental isolation and preservation of solid organs before transplantation: effects of pretreatment using four different molecules. J Int Med Res 2021; 48:300060520933452. [PMID: 32602766 PMCID: PMC7328361 DOI: 10.1177/0300060520933452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES In transplantation surgery, the ischaemic organ and reperfusion impairment after cold storage remains a considerable risk factor for impaired function and potential failure of the grafted organ. Substantial logistical efforts have been undertaken to reduce the cold ischaemic time because the demand for available transplant organs and the periods of cold ischaemia are increasing. METHODS Four molecules were investigated (erythropoietin, sildenafil, lazaroid [U74389G], octreotide) in individual intravenous infusions 1 hour before the organ was harvested. This study was performed in 30 healthy landrace/large-white pigs (male; >10 weeks old; average weight, 22 ± 2 kg) in groups of six. The organs were studied at harvest, and at 8 and 24 hours post-harvest. RESULTS The lazaroid molecule increased malondialdehyde (MDA) levels in the liver and pancreas at 8 hours. Hepatic lazaroid molecules improved liver histology at 8 and 24 hours. For kidneys, erythropoietin had a positive effect at 24 hours post-harvest. For the pancreas, octreotide showed better performance. In the lungs, there was less interstitial oedema with erythropoietin and lazaroid compared with the control group at 8 hours post-harvest. CONCLUSION All molecules had a positive effect and decreased ischaemia/reperfusion graft injury. Thus, pretreatment before organ harvest has a beneficial role.
Collapse
Affiliation(s)
- Maria Chalasti
- Experimental, Educational and Research Centre, ELPEN, Pikermi, Athens, Greece.,First Department of Propaedeutic Surgery, University of Athens, School of Medicine, Hippocration Hospital, Athens, Greece
| | - Christos Iordanou
- Experimental, Educational and Research Centre, ELPEN, Pikermi, Athens, Greece.,First Department of Propaedeutic Surgery, University of Athens, School of Medicine, Hippocration Hospital, Athens, Greece
| | - Zisis Kratiras
- Experimental, Educational and Research Centre, ELPEN, Pikermi, Athens, Greece.,First Department of Propaedeutic Surgery, University of Athens, School of Medicine, Hippocration Hospital, Athens, Greece
| | - Aikaterini Stylianaki
- Experimental, Educational and Research Centre, ELPEN, Pikermi, Athens, Greece.,First Department of Propaedeutic Surgery, University of Athens, School of Medicine, Hippocration Hospital, Athens, Greece
| | - Eleni-Andriana Trigka
- First Department of Pathology, University of Athens, School of Medicine, Athens, Greece
| | - Eleftheria Lakiotaki
- First Department of Pathology, University of Athens, School of Medicine, Athens, Greece
| | - Kali Makedou
- Laboratory of Biochemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Stavros Iliadis
- Laboratory of Biochemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Konstantinos G Zografos
- Experimental, Educational and Research Centre, ELPEN, Pikermi, Athens, Greece.,First Department of Propaedeutic Surgery, University of Athens, School of Medicine, Hippocration Hospital, Athens, Greece
| | - Dimitrios Dimitroulis
- Second Department of Propaedeutic Surgery, University of Athens, School of Medicine, Laikon Hospital, Athens, Greece
| | - Michail Chrisofos
- Second Department of Urology, University of Athens, Sismanoglio General Hospital, Athens, Greece
| | - Efstratios Patsouris
- First Department of Pathology, University of Athens, School of Medicine, Athens, Greece
| | - Georgios C Zografos
- First Department of Propaedeutic Surgery, University of Athens, School of Medicine, Hippocration Hospital, Athens, Greece
| | - George C Bouboulis
- Experimental, Educational and Research Centre, ELPEN, Pikermi, Athens, Greece.,First Department of Propaedeutic Surgery, University of Athens, School of Medicine, Hippocration Hospital, Athens, Greece
| | - Apostolos E Papalois
- Experimental, Educational and Research Centre, ELPEN, Pikermi, Athens, Greece.,First Department of Propaedeutic Surgery, University of Athens, School of Medicine, Hippocration Hospital, Athens, Greece.,European University Cyprus, School of Medicine, Nicosia, Cyprus
| |
Collapse
|
2
|
Wells MA, See Hoe LE, Molenaar P, Pedersen S, Obonyo NG, McDonald CI, Mo W, Bouquet M, Hyslop K, Passmore MR, Bartnikowski N, Suen JY, Peart JN, McGiffin DC, Fraser JF. Compromised right ventricular contractility in an ovine model of heart transplantation following 24 h donor brain stem death. Pharmacol Res 2021; 169:105631. [PMID: 33905863 DOI: 10.1016/j.phrs.2021.105631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/19/2021] [Accepted: 04/16/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Heart failure is an inexorably progressive disease with a high mortality, for which heart transplantation (HTx) remains the gold standard treatment. Currently, donor hearts are primarily derived from patients following brain stem death (BSD). BSD causes activation of the sympathetic nervous system, increases endothelin levels, and triggers significant inflammation that together with potential myocardial injury associated with the transplant procedure, may affect contractility of the donor heart. We examined peri-transplant myocardial catecholamine sensitivity and cardiac contractility post-BSD and transplantation in a clinically relevant ovine model. METHODS Donor sheep underwent BSD (BSD, n = 5) or sham (no BSD) procedures (SHAM, n = 4) and were monitored for 24h prior to heart procurement. Orthotopic HTx was performed on a separate group of donor animals following 24h of BSD (BSD-Tx, n = 6) or SHAM injury (SH-Tx, n = 5). The healthy recipient heart was used as a control (HC, n = 11). A cumulative concentration-effect curve to (-)-noradrenaline (NA) was established using left (LV) and right ventricular (RV) trabeculae to determine β1-adrenoceptor mediated potency (-logEC50 [(-)-noradrenaline] M) and maximal contractility (Emax). RESULTS Our data showed reduced basal and maximal (-)-noradrenaline induced contractility of the RV (but not LV) following BSD as well as HTx, regardless of whether the donor heart was exposed to BSD or SHAM. The potency of (-)-noradrenaline was lower in left and right ventricles for BSD-Tx and SH-Tx compared to HC. CONCLUSION These studies show that the combination of BSD and transplantation are likely to impair contractility of the donor heart, particularly for the RV. For the donor heart, this contractile dysfunction appears to be independent of changes to β1-adrenoceptor sensitivity. However, altered β1-adrenoceptor signalling is likely to be involved in post-HTx contractile dysfunction.
Collapse
Affiliation(s)
- Matthew A Wells
- Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia; School of Medical Sciences, Griffith University, Queensland, Australia
| | - Louise E See Hoe
- Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia; Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Australia.
| | - Peter Molenaar
- Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Australia; Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Australia
| | - Sanne Pedersen
- Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia
| | - Nchafatso G Obonyo
- Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia; Wellcome Trust Centre for Global Health Research, Imperial College London, United Kingdom; Initiative to Develop African Research Leaders (IDeAL), Kilifi, Kenya
| | - Charles I McDonald
- The Department of Anaesthesia and Perfusion, The Prince Charles Hospital, Queensland, Australia
| | - Weilan Mo
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Australia
| | - Mahè Bouquet
- Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia; Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Australia
| | - Kieran Hyslop
- Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia; Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Australia
| | - Margaret R Passmore
- Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia; Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Australia
| | - Nicole Bartnikowski
- Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia; Faculty of Science and Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Australia
| | - Jacky Y Suen
- Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia; Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Australia
| | - Jason N Peart
- School of Medical Sciences, Griffith University, Queensland, Australia
| | - David C McGiffin
- Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia; Cardiothoracic Surgery and Transplantation, The Alfred Hospital, and Monash University, Melbourne, Australia
| | - John F Fraser
- Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia; Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Australia
| | -
- Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia; School of Medical Sciences, Griffith University, Queensland, Australia; Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Australia; Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Australia; Cardiothoracic Surgery and Transplantation, The Alfred Hospital, and Monash University, Melbourne, Australia
| |
Collapse
|
3
|
Heart Transplantation From Brain Dead Donors: A Systematic Review of Animal Models. Transplantation 2021; 104:2272-2289. [PMID: 32150037 DOI: 10.1097/tp.0000000000003217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Despite advances in mechanical circulatory devices and pharmacologic therapies, heart transplantation (HTx) is the definitive and most effective therapy for an important proportion of qualifying patients with end-stage heart failure. However, the demand for donor hearts significantly outweighs the supply. Hearts are sourced from donors following brain death, which exposes donor hearts to substantial pathophysiological perturbations that can influence heart transplant success and recipient survival. Although significant advances in recipient selection, donor and HTx recipient management, immunosuppression, and pretransplant mechanical circulatory support have been achieved, primary graft dysfunction after cardiac transplantation continues to be an important cause of morbidity and mortality. Animal models, when appropriate, can guide/inform medical practice, and fill gaps in knowledge that are unattainable in clinical settings. Consequently, we performed a systematic review of existing animal models that incorporate donor brain death and subsequent HTx and assessed studies for scientific rigor and clinical relevance. Following literature screening via the U.S National Library of Medicine bibliographic database (MEDLINE) and Embase, 29 studies were assessed. Analysis of included studies identified marked heterogeneity in animal models of donor brain death coupled to HTx, with few research groups worldwide identified as utilizing these models. General reporting of important determinants of heart transplant success was mixed, and assessment of posttransplant cardiac function was limited to an invasive technique (pressure-volume analysis), which is limitedly applied in clinical settings. This review highlights translational challenges between available animal models and clinical heart transplant settings that are potentially hindering advancement of this field of investigation.
Collapse
|
4
|
Kura B, Szeiffova Bacova B, Kalocayova B, Sykora M, Slezak J. Oxidative Stress-Responsive MicroRNAs in Heart Injury. Int J Mol Sci 2020; 21:E358. [PMID: 31948131 PMCID: PMC6981696 DOI: 10.3390/ijms21010358] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) are important molecules in the living organisms as a part of many signaling pathways. However, if overproduced, they also play a significant role in the development of cardiovascular diseases, such as arrhythmia, cardiomyopathy, ischemia/reperfusion injury (e.g., myocardial infarction and heart transplantation), and heart failure. As a result of oxidative stress action, apoptosis, hypertrophy, and fibrosis may occur. MicroRNAs (miRNAs) represent important endogenous nucleotides that regulate many biological processes, including those involved in heart damage caused by oxidative stress. Oxidative stress can alter the expression level of many miRNAs. These changes in miRNA expression occur mainly via modulation of nuclear factor erythroid 2-related factor 2 (Nrf2), sirtuins, calcineurin/nuclear factor of activated T cell (NFAT), or nuclear factor kappa B (NF-κB) pathways. Up until now, several circulating miRNAs have been reported to be potential biomarkers of ROS-related cardiac diseases, including myocardial infarction, hypertrophy, ischemia/reperfusion, and heart failure, such as miRNA-499, miRNA-199, miRNA-21, miRNA-144, miRNA-208a, miRNA-34a, etc. On the other hand, a lot of studies are aimed at using miRNAs for therapeutic purposes. This review points to the need for studying the role of redox-sensitive miRNAs, to identify more effective biomarkers and develop better therapeutic targets for oxidative-stress-related heart diseases.
Collapse
Affiliation(s)
- Branislav Kura
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (B.K.); (B.S.B.); (B.K.); (M.S.)
| | - Barbara Szeiffova Bacova
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (B.K.); (B.S.B.); (B.K.); (M.S.)
| | - Barbora Kalocayova
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (B.K.); (B.S.B.); (B.K.); (M.S.)
| | - Matus Sykora
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (B.K.); (B.S.B.); (B.K.); (M.S.)
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia
| | - Jan Slezak
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (B.K.); (B.S.B.); (B.K.); (M.S.)
| |
Collapse
|
5
|
Lazaroid U-74389G for cardioplegia-related ischemia–reperfusion injury: an experimental study. J Surg Res 2017; 207:164-173. [DOI: 10.1016/j.jss.2016.08.075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/23/2016] [Accepted: 08/24/2016] [Indexed: 12/27/2022]
|
6
|
Minasian SM, Galagudza MM, Dmitriev YV, Karpov AA, Vlasov TD. Preservation of the donor heart: from basic science to clinical studies. Interact Cardiovasc Thorac Surg 2014; 20:510-9. [PMID: 25538253 DOI: 10.1093/icvts/ivu432] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The methods of donor heart preservation are aimed at minimizing graft dysfunction caused by ischaemia-reperfusion injury (IRI) which inevitably occurs during the ex vivo transport interval. At present, the standard technique of heart preservation is cardiac arrest followed by static cold storage in a crystalloid heart preservation solution (HPS). This technique ensures an acceptable level of heart protection against IRI for <6 h. In clinical trials, comparable levels of myocardial protection against IRI were provided by various HPSs. The growing shortage of donor hearts is one of the major factors stimulating the development of new techniques of heart preservation. Here, we summarize new HPS formulations and provide a focus for optimization of the composition of existing HPSs. Such methods of donor heart preservation as machine perfusion, preservation at sub-zero temperature and oxygen persufflation are also discussed. Furthermore, we review experimental data showing that pre- and post-conditioning of the cardiac graft can improve its function when used in combination with cold storage. The evidence on the feasibility of cardiac donation after circulatory death, as well as the techniques of heart reconditioning after a period of warm ischaemia, is presented. The implementation of new techniques of donor heart preservation may contribute to the use of hearts from extended criteria donors, thereby expanding the total donor pool.
Collapse
Affiliation(s)
- Sarkis M Minasian
- Institute of Experimental Medicine, Federal Almazov Medical Research Centre, St Petersburg, Russian Federation Department of Pathophysiology, First Pavlov State Medical University of St Petersburg, St Petersburg, Russian Federation
| | - Michael M Galagudza
- Institute of Experimental Medicine, Federal Almazov Medical Research Centre, St Petersburg, Russian Federation Department of Pathophysiology, First Pavlov State Medical University of St Petersburg, St Petersburg, Russian Federation
| | - Yuri V Dmitriev
- Institute of Experimental Medicine, Federal Almazov Medical Research Centre, St Petersburg, Russian Federation
| | - Andrey A Karpov
- Institute of Experimental Medicine, Federal Almazov Medical Research Centre, St Petersburg, Russian Federation Department of Pathophysiology, First Pavlov State Medical University of St Petersburg, St Petersburg, Russian Federation
| | - Timur D Vlasov
- Institute of Experimental Medicine, Federal Almazov Medical Research Centre, St Petersburg, Russian Federation Department of Pathophysiology, First Pavlov State Medical University of St Petersburg, St Petersburg, Russian Federation
| |
Collapse
|
7
|
Willingham FF, Gee DW, Sylla P, Kambadakone A, Singh AH, Sahani D, Mino-Kenudson M, Rattner DW, Brugge WR. Natural orifice versus conventional laparoscopic distal pancreatectomy in a porcine model: a randomized, controlled trial. Gastrointest Endosc 2009; 70:740-7. [PMID: 19560766 DOI: 10.1016/j.gie.2009.03.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Accepted: 03/11/2009] [Indexed: 02/07/2023]
Abstract
BACKGROUND Natural orifice transluminal endoscopic surgery (NOTES) research has primarily involved case series reports of low-risk procedures. Distal pancreatectomy has significant postoperative morbidity and would permit rigorous examination in a controlled trial setting. OBJECTIVE To compare endoscopic transgastric distal pancreatectomy (ETDP) and laparoscopic distal pancreatectomy (LDP). DESIGN Prospective, randomized, controlled trial. SETTING Academic hospital. SUBJECTS Forty-one swine, 28 block randomized. INTERVENTIONS LDP was performed with 3 trocars and stapled transection of the pancreas. ETDP was performed via a gastrotomy, with 1 trocar for visualization, by using endoloop placement, snare transection, and purse-string gastrotomy closure. MAIN OUTCOME MEASUREMENTS Clinical examination, CT, serum chemistries, necropsy, peritoneal fluid analysis, and histologic examination. RESULTS Swine were survived for 8 days. The procedure time for ETDP was significantly greater than for LDP (1:52 vs 0:33 [hours:minutes]; P = .00). Pancreatic specimen weight was similar (4.1 g vs 5.5 g; P = .108). Postoperatively, 26 of 28 animals thrived. In the LDP group, 1 death caused by pancreatic leak and renal failure occurred on day 1. In the ETDP group, 1 death caused by pneumothorax occurred intraoperatively. The necropsy, CT, and histologic examinations revealed focal resection-margin necrosis in 3 to 7 swine in the ETDP group with no proximal necrosis or pancreatitis. The groups were equivalent clinically, by survival, and by serum and peritoneal fluid analysis. The gastrotomy closure was associated with small serosal adhesions, but no gross abscess or necrosis. LIMITATION Animal study. CONCLUSIONS In the largest controlled trial of NOTES orifice surgery to date, there was no clinical or survival difference between NOTES and laparoscopic approaches.
Collapse
Affiliation(s)
- Field F Willingham
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Castedo E, Segovia J, Escudero C, Olmedilla B, Granado F, Blas C, M. Guardiola J, Millán I, A. Pulpón L, Ugarte J. Daño por isquemia-reperfusión durante el trasplante cardíaco experimental. Evaluación del papel citoprotector de la trimetazidina. Rev Esp Cardiol 2005. [DOI: 10.1157/13078131] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|