1
|
Pløen GG, Sørensen CB, Bentzon JF. Smooth muscle cells clonally expand in a murine carotid allograft model complicated by immune reactions to reporter transgenes. Transpl Immunol 2024; 87:102129. [PMID: 39260676 DOI: 10.1016/j.trim.2024.102129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/27/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND AND AIMS Most experimental studies of allograft vasculopathy (AV) have relied on transplantation between major histocompatibility complex-mismatched inbred mouse strains, but this leads to the complete eradication of donor smooth muscle cells (SMCs) and lesions formed by recipient cells. This is unlike human AV which is thought to form mainly by donor SMCs. Here, we studied sources of neointimal cells in a minor histocompatibility antigen-mismatched AV model by combining male-to-female orthotopic carotid transplantations and lineage tracing by SMC-specific expression of fluorescent proteins. METHODS To track SMC-derived cells in allograft vasculopathy, we used male donor mice with SMC-restricted Cre recombination of the mT/mG reporter transgene, which switches expression of membrane-bound red fluorescent protein (RFP) to green fluorescent protein (GFP), or the stochastically recombining Confetti reporter transgene, which yields a mosaic expression of four fluorescent proteins. Donor carotid segments were harvested and orthotopically allografted to female recipients that were wildtype or had non-recombined reporter transgenes. Inhibition of T cell responses by CTLA4Ig was used in some experiments. Sections of lesions harvested after 4 weeks were analyzed by fluorescence microscopy. RESULTS Donor-derived SMCs survived and gave rise to part of the neointimal cells in experiments where carotid segments from recombined mT/mG male mice were transplanted into wild-type or non-recombined mT/mG female mice. Sex-mismatched transplants developed significant lesions, increasing the intimal and medial area 4.6-fold (p = 0.038) and 2.0-fold (p = 0.024) compared to sex- and fluorescence-matched controls, respectively. Interestingly, sex-matched fluorescence-positive transplants developed intimal lesions in 50% of fluorescence-naïve recipient controls. To study the clonal structure of the neointimal donor-derived SMC lineage cells, we then transplanted male carotids with heterozygous or homozygous recombined Confetti transgenes into female recipients. These transplants developed lesions with few surviving donor SMCs, indicating that expression of the Confetti reporter increased rejection and donor-specific SMC death. Some of the few remaining donor SMCs underwent clonal expansion. CTLA4Ig administration at the time of surgery did not improve SMC survival in mT/mG or Confetti transplants. CONCLUSION Male-to-female transplant models feature donor-derived SMCs, some of which undergo clonal expansion, but immune rejection to fluorescence reporters appears to bias results in lineage tracing models. Overcoming these challenges with alternative reporter transgenes or tolerant recipients is necessary to study the mechanisms by which donor SMCs contribute to allograft vasculopathy.
Collapse
Affiliation(s)
| | | | - Jacob Fog Bentzon
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
| |
Collapse
|
2
|
Weis M, Weis M. Transplant Vasculopathy Versus Native Atherosclerosis: Similarities and Differences. Transplantation 2024; 108:1342-1349. [PMID: 37899386 DOI: 10.1097/tp.0000000000004853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Cardiac allograft vasculopathy (CAV) is one of the leading causes of graft failure and death after heart transplantation. Alloimmune-dependent and -independent factors trigger the pathogenesis of CAV through activation of the recipients' (and to a lesser extent donor-derived) immune system. Early diagnosis of CAV is complicated by the lack of clinical symptoms for ischemia in the denervated heart, by the impact of early functional coronary alterations, by the insensitivity of coronary angiography, and by the involvement of small intramyocardial vessels. CAV in general is a panarterial disease confined to the allograft and characterized by diffuse concentric longitudinal intimal hyperplasia in the epicardial coronary arteries and concentric medial disease in the microvasculature. Plaque composition in CAV may include early fibrous and fibrofatty tissue and late atheromatous calcification. In contrast, native coronary atherosclerosis usually develops over decades, is focal, noncircumferential, and typically diminishes proximal parts of the epicardial vessels. The rapid and early development of CAV has an adverse prognostic impact, and current prevention and treatment strategies are of limited efficacy compared with established strategies in native atherosclerosis. Following acute coronary syndromes, patients after heart transplantation were more likely to have accompanying cardiogenic shock and higher mortality compared with acute coronary syndromes patients with native hearts.
Collapse
Affiliation(s)
- Michael Weis
- Department of Internal Medicine I, Krankenhaus Neuwittelsbach, Munich, Germany
| | | |
Collapse
|
3
|
Chang A, Martin KA, Colvin M, Bellumkonda L. Role of ascorbic acid in cardiac allograft vasculopathy. Clin Transplant 2023; 37:e15153. [PMID: 37792313 DOI: 10.1111/ctr.15153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/04/2023] [Accepted: 09/22/2023] [Indexed: 10/05/2023]
Abstract
PURPOSE OF THE REVIEW Cardiac allograft vasculopathy (CAV) is a progressive fibroproliferative disease which occurs after heart transplantation and is associated with significant long-term morbidity and mortality. Currently available strategies including statins, mammalian target of rapamycin (mTOR) inhibitors, and revascularization, have limited overall effectiveness in treating this pathology once the disease process is established. mTOR inhibitors, while effective when used early in the disease process, are not well tolerated, and hence not routinely used in post-transplant care. RECENT DATA Recent work on rodent models have given us a novel mechanistic understanding of effects of ascorbic acid in preventing CAV. TET methyl cytosine dioxygenase2 (TET2) reduces vascular smooth muscle cell (VSMC) apoptosis and intimal thickening. TET2 is repressed by interferon γ (IFNγ) in the setting of CAV. Ascorbic acid has been shown to promote TET2 activity and attenuate allograft vasculopathy in animal models and CAV progression in a small clinical trial. SUMMARY CAV remains a challenging disease process and needs better preventative strategies. Ascorbic acid improves endothelial dysfunction, reduces reactive oxygen species, and prevents development of intimal hyperplasia by preventing smooth muscle cell apoptosis and hyperproliferation. Further large-scale randomized control studies of ascorbic acid are needed to establish the role in routine post-transplant management.
Collapse
Affiliation(s)
- Alyssa Chang
- Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Kathleen A Martin
- Division of Cardiology, Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Monica Colvin
- Division of Cardiology, Department of Medicine, Yale University, New Haven, Connecticut, USA
| | - Lavanya Bellumkonda
- Division of Cardiology, Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Liu JX, Huang T, Xie D, Yu Q. Bves maintains vascular smooth muscle cell contractile phenotype and protects against transplant vasculopathy via Dusp1-dependent p38MAPK and ERK1/2 signaling. Atherosclerosis 2022; 357:20-32. [PMID: 36037759 DOI: 10.1016/j.atherosclerosis.2022.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/26/2022] [Accepted: 08/10/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND AIMS Vascular smooth muscle cell (VSMC) plasticity is tightly associated with the pathological process of vasculopathy. Blood vessel epicardial substance (Bves) has emerged as an important regulator of intracardiac vasculogenesis and organ homeostasis. However, the involvement and role of Bves in VSMC plasticity and neointimal lesion development remain unclear. METHODS We used an in vivo rat model of graft arteriosclerosis and in vitro PDGF-treated VSMCs and identified the novel VSMC contractile phenotype-related gene Bves using a transcriptomic analysis and literature search. In vitro knockdown and overexpression approaches were used to investigate the mechanisms underlying VSMC phenotypic plasticity. In vivo, VSMC-specific Bves overexpression in rat aortic grafts was generated to assess the physiological function of Bves in neointimal lesion development. RESULTS Here, we found that Bves expression was negatively regulated in aortic allografts in vivo and PDGF-treated VSMCs in vitro. The genetic knockdown of Bves dramatically inhibited, whereas Bves overexpression markedly promoted, the VSMC contractile phenotype. Furthermore, RNA sequencing unraveled a positive correlation between Bves and dual-specificity protein phosphatase 1 (Dusp1) expression in VSMCs. We found that Bves knockdown restrained Dusp1 expression, but enhanced p38MAPK and ERK1/2 activation, resulting in the loss of the VSMC contractile phenotype. In vivo, an analysis of a rat graft model confirmed that VSMC-specific Bves and Dusp1 overexpression in aortic allografts significantly attenuated neointimal lesion formation. CONCLUSIONS Bves maintains the VSMC contractile phenotype through Dusp1-dependent p38MAPK and ERK1/2 signaling, and protects against neointimal formation, underscoring the important role of Bves in preventing transplant vasculopathy.
Collapse
Affiliation(s)
- Jin-Xin Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tong Huang
- The Eight Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Dawei Xie
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qihong Yu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.
| |
Collapse
|
5
|
Failing Heart Transplants and Rejection-A Cellular Perspective. J Cardiovasc Dev Dis 2021; 8:jcdd8120180. [PMID: 34940535 PMCID: PMC8708043 DOI: 10.3390/jcdd8120180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 11/17/2022] Open
Abstract
The median survival of patients with heart transplants is relatively limited, implying one of the most relevant questions in the field—how to expand the lifespan of a heart allograft? Despite optimal transplantation conditions, we do not anticipate a rise in long-term patient survival in near future. In order to develop novel strategies for patient monitoring and specific therapies, it is critical to understand the underlying pathological mechanisms at cellular and molecular levels. These events are driven by innate immune response and allorecognition driven inflammation, which controls both tissue damage and repair in a spatiotemporal context. In addition to immune cells, also structural cells of the heart participate in this process. Novel single cell methods have opened new avenues for understanding the dynamics driving the events leading to allograft failure. Here, we review current knowledge on the cellular composition of a normal heart, and cellular mechanisms of ischemia-reperfusion injury (IRI), acute rejection and cardiac allograft vasculopathy (CAV) in the transplanted hearts. We highlight gaps in current knowledge and suggest future directions, in order to improve cellular and molecular understanding of failing heart allografts.
Collapse
|
6
|
Pober JS, Chih S, Kobashigawa J, Madsen JC, Tellides G. Cardiac allograft vasculopathy: current review and future research directions. Cardiovasc Res 2021; 117:2624-2638. [PMID: 34343276 PMCID: PMC8783389 DOI: 10.1093/cvr/cvab259] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/02/2021] [Accepted: 07/29/2021] [Indexed: 12/25/2022] Open
Abstract
Cardiac allograft vasculopathy (CAV) is a pathologic immune-mediated remodelling of the vasculature in transplanted hearts and, by impairing perfusion, is the major cause of late graft loss. Although best understood following cardiac transplantation, similar forms of allograft vasculopathy occur in other vascularized organ grafts and some features of CAV may be shared with other immune-mediated vasculopathies. Here, we describe the incidence and diagnosis, the nature of the vascular remodelling, immune and non-immune contributions to pathogenesis, current therapies, and future areas of research in CAV.
Collapse
MESH Headings
- Adaptive Immunity
- Animals
- Coronary Artery Disease/epidemiology
- Coronary Artery Disease/immunology
- Coronary Artery Disease/metabolism
- Coronary Artery Disease/pathology
- Coronary Vessels/immunology
- Coronary Vessels/metabolism
- Coronary Vessels/pathology
- Endothelial Cells/immunology
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Graft Rejection/epidemiology
- Graft Rejection/immunology
- Graft Rejection/metabolism
- Graft Rejection/pathology
- Graft Survival
- Heart Transplantation/adverse effects
- Humans
- Immunity, Innate
- Muscle, Smooth, Vascular/immunology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/immunology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Risk Factors
- Signal Transduction
- Treatment Outcome
- Vascular Remodeling
Collapse
Affiliation(s)
- Jordan S Pober
- Department of Immunobiology, Pathology and Dermatology, Yale School of Medicine, 10 Amistad Street, New Haven CT 06520-8089, USA
| | - Sharon Chih
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Jon Kobashigawa
- Department of Medicine, Cedars-Sinai Smidt Heart Institute, Los Angeles, CA, USA
| | - Joren C Madsen
- Division of Cardiac Surgery and Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - George Tellides
- Department of Surgery (Cardiac Surgery), Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
7
|
Almonte VM, Uriyanghai U, Egaña-Gorroño L, Parikh D, Oliveira-Paula GH, Zhang J, Jayakumar S, Riascos-Bernal DF, Sibinga NES. PLX3397, a CSF1 receptor inhibitor, limits allotransplantation-induced vascular remodelling. Cardiovasc Res 2021; 118:2718-2731. [PMID: 34478521 PMCID: PMC9890458 DOI: 10.1093/cvr/cvab289] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 09/01/2021] [Indexed: 02/05/2023] Open
Abstract
AIMS Graft vascular disease (GVD), a clinically important and highly complex vascular occlusive disease, arises from the interplay of multiple cellular and molecular pathways. While occlusive intimal lesions are composed predominantly of smooth-muscle-like cells (SMLCs), the origin of these cells and the stimuli leading to their accumulation in GVD are uncertain. Macrophages have recently been identified as both potential drivers of intimal hyperplasia and precursors that undergo transdifferentiation to become SMLCs in non-transplant settings. Colony-stimulating factor-1 (CSF1) is a well-known regulator of macrophage development and differentiation, and prior preclinical studies have shown that lack of CSF1 limits GVD. We sought to identify the origins of SMLCs and of cells expressing the CSF1 receptor (CSF1R) in GVD, and to test the hypothesis that pharmacologic inhibition of CSF1 signalling would curtail both macrophage and SMLC activities and decrease vascular occlusion. METHODS AND RESULTS We used genetically modified mice and a vascular transplant model with minor antigen mismatch to assess cell origins. We found that neointimal SMLCs derive from both donor and recipient, and that transdifferentiation of macrophages to SMLC phenotype is minimal in this model. Cells expressing CSF1R in grafts were identified as recipient-derived myeloid cells of Cx3cr1 lineage, and these cells rarely expressed smooth muscle marker proteins. Blockade of CSF1R activity using the tyrosine kinase inhibitor PLX3397 limited the expression of genes associated with innate immunity and decreased levels of circulating monocytes and intimal macrophages. Importantly, PLX3397 attenuated the development of GVD in arterial allografts. CONCLUSION These studies provide proof of concept for pharmacologic inhibition of the CSF1/CSF1R signalling pathway as a therapeutic strategy in GVD. Further preclinical testing of this pathway in GVD is warranted.
Collapse
Affiliation(s)
- Vanessa M Almonte
- Department of Medicine (Cardiology Division), Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA,Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Unimunkh Uriyanghai
- Department of Medicine (Cardiology Division), Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA,Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Lander Egaña-Gorroño
- Present address: Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Langone Medical Center, New York, NY 10016, USA
| | - Dippal Parikh
- Department of Medicine (Cardiology Division), Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA,Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gustavo H Oliveira-Paula
- Department of Medicine (Cardiology Division), Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA,Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jinghang Zhang
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Smitha Jayakumar
- Department of Medicine (Cardiology Division), Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA,Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Dario F Riascos-Bernal
- Department of Medicine (Cardiology Division), Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA,Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
8
|
Tharp DL, Bowles DK. K Ca3.1 Inhibition Decreases Size and Alters Composition of Atherosclerotic Lesions Induced by Low, Oscillatory Flow. Artery Res 2021; 27:93-100. [PMID: 34457083 PMCID: PMC8388312 DOI: 10.2991/artres.k.210202.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Low, oscillatory flow/shear patterns are associated with atherosclerotic lesion development. Increased expression of KCa3.1 has been found in Vascular Smooth Muscle (VSM), macrophages and T-cells in lesions from humans and mice. Increased expression of KCa3.1, is also required for VSM cell proliferation and migration. Previously, we showed that the specific KCa3.1 inhibitor, TRAM-34, could inhibit coronary neointimal development following balloon injury in swine. Atherosclerosis develops in regions with a low, oscillatory (i.e. atheroprone) flow pattern. Therefore, we used the Partial Carotid Ligation (PCL) model in high-fat fed, Apoe−/− mice to determine the role of KCa3.1 in atherosclerotic lesion composition and development. PCL was performed on 8–10 week old male Apoe−/− mice and subsequently placed on a Western diet (TD.88137, Teklad) for 4 weeks. Mice received daily s.c. injections of TRAM-34 (120 mg/kg) or equal volumes of vehicle (peanut oil, PO). 1-[(2-chlorophenyl) diphenylmethyl]-1H-pyrazole (TRAM-34) treatment reduced lesion size ~50% (p < 0.05). In addition, lesions from TRAM-34 treated mice contained less collagen (6% ± 1% vs. 15% ± 2%; p < 0.05), fibronectin (14% ± 3% vs. 32% ± 3%; p < 0.05) and smooth muscle content (19% ± 2% vs. 29% ± 3%; p < 0.05). Conversely, TRAM-34 had no effect on total cholesterol (1455 vs. 1334 mg/dl, PO and TRAM, resp.) or body weight (29.1 vs. 28.8 g, PO and TRAM, resp.). Medial smooth muscle of atherosclerotic carotids showed diminished RE1-Silencing Transcription Factor (REST)/Neural Restrictive Silencing Factor (NRSF) expression, while REST overexpression in vitro inhibited smooth muscle migration. Together, these data support a downregulation of REST/NRSF and upregulation of KCa3.1 in determining smooth muscle and matrix content of atherosclerotic lesions.
Collapse
Affiliation(s)
- Darla L Tharp
- Department of Biomedical Sciences, E102 Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Douglas K Bowles
- Department of Biomedical Sciences, E102 Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
9
|
Ostriker AC, Xie Y, Chakraborty R, Sizer AJ, Bai Y, Ding M, Song WL, Huttner A, Hwa J, Martin KA. TET2 Protects Against Vascular Smooth Muscle Cell Apoptosis and Intimal Thickening in Transplant Vasculopathy. Circulation 2021; 144:455-470. [PMID: 34111946 PMCID: PMC8643133 DOI: 10.1161/circulationaha.120.050553] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Coronary allograft vasculopathy (CAV) is a devastating sequela of heart transplant in which arterial intimal thickening limits coronary blood flow. There are currently no targeted therapies to prevent or reduce this pathology that leads to transplant failure. Vascular smooth muscle cell (VSMC) phenotypic plasticity is critical in CAV neointima formation. TET2 (TET methylcytosine dioxygenase 2) is an important epigenetic regulator of VSMC phenotype, but the role of TET2 in the progression of CAV is unknown. METHODS We assessed TET2 expression and activity in human CAV and renal transplant samples. We also used the sex-mismatched murine aortic graft model of graft arteriopathy (GA) in wild-type and inducible smooth muscle-specific Tet2 knockout mice; and in vitro studies in murine and human VSMCs using knockdown, overexpression, and transcriptomic approaches to assess the role of TET2 in VSMC responses to IFNγ (interferon γ), a cytokine elaborated by T cells that drives CAV progression. RESULTS In the present study, we found that TET2 expression and activity are negatively regulated in human CAV and renal transplant samples and in the murine aortic graft model of GA. IFNγ was sufficient to repress TET2 and induce an activated VSMC phenotype in vitro. TET2 depletion mimicked the effects of IFNγ, and TET2 overexpression rescued IFNγ-induced dedifferentiation. VSMC-specific TET2 depletion in aortic grafts, and in the femoral wire restenosis model, resulted in increased VSMC apoptosis and medial thinning. In GA, this apoptosis was tightly correlated with proliferation. In vitro, TET2-deficient VSMCs undergo apoptosis more readily in response to IFNγ and expressed a signature of increased susceptibility to extrinsic apoptotic signaling. Enhancing TET2 enzymatic activity with high-dose ascorbic acid rescued the effect of GA-induced VSMC apoptosis and intimal thickening in a TET2-dependent manner. CONCLUSIONS TET2 is repressed in CAV and GA, likely mediated by IFNγ. TET2 serves to protect VSMCs from apoptosis in the context of transplant vasculopathy or IFNγ stimulation. Promoting TET2 activity in vivo with systemic ascorbic acid reduces VSMC apoptosis and intimal thickening. These data suggest that promoting TET2 activity in CAV may be an effective strategy for limiting CAV progression.
Collapse
Affiliation(s)
- Allison C. Ostriker
- Department of Medicine (Cardiovascular Medicine), Yale University School of Medicine, New Haven, CT 06511
- Pharmacology, Yale University School of Medicine, New Haven, CT 06511
| | - Yi Xie
- Department of Medicine (Cardiovascular Medicine), Yale University School of Medicine, New Haven, CT 06511
- Pharmacology, Yale University School of Medicine, New Haven, CT 06511
| | - Raja Chakraborty
- Department of Medicine (Cardiovascular Medicine), Yale University School of Medicine, New Haven, CT 06511
- Pharmacology, Yale University School of Medicine, New Haven, CT 06511
| | - Ashley J. Sizer
- Department of Medicine (Cardiovascular Medicine), Yale University School of Medicine, New Haven, CT 06511
- Pharmacology, Yale University School of Medicine, New Haven, CT 06511
| | - Yalai Bai
- Pathology, Yale University School of Medicine, New Haven, CT 06511
| | - Min Ding
- Department of Medicine (Cardiovascular Medicine), Yale University School of Medicine, New Haven, CT 06511
- Pharmacology, Yale University School of Medicine, New Haven, CT 06511
| | | | - Anita Huttner
- Pathology, Yale University School of Medicine, New Haven, CT 06511
| | - John Hwa
- Pharmacology, Yale University School of Medicine, New Haven, CT 06511
| | - Kathleen A. Martin
- Department of Medicine (Cardiovascular Medicine), Yale University School of Medicine, New Haven, CT 06511
| |
Collapse
|
10
|
Transferring Plasmon Effect on a Biological System: Expression of Biological Polymers in Chronic Rejection and Inflammatory Rat Model. Polymers (Basel) 2021; 13:polym13111827. [PMID: 34072966 PMCID: PMC8199201 DOI: 10.3390/polym13111827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 01/08/2023] Open
Abstract
The plasmon-activated water (PAW) that reduces hydrogen bonds is made of deionized reverse osmosis water (ROW). However, compared with ROW, PAW has a significantly higher diffusion coefficient and electron transfer rate constant in electrochemical reactions. PAW has a boiling point of 97 °C and specific heat of0.94; the energy of PAW is also 1121 J/mol higher than ordinary water. The greater the force of hydrogen bonds between H2O, the larger the volume of the H2O cluster, and the easier it is to lose the original characteristics. The hydrogen bonding force of PAW is weak, so the volume of its cluster is small, and it exists in a state very close to a single H2O. PAW has a high permeability and diffusion rate, which can improve the needs of biological applications and meet the dependence of biological organisms on H2O when performing physiological functions. PAW can successfully remove free radicals, and efficiently reduce lipopolysaccharide (LPS)-induced monocytes to release nitric oxide. PAW can induce expression of the antioxidant gene Nrf2 in human gingival fibroblasts, lower amyloid burden in mice with Alzheimer’s disease, and decrease metastasis in mice grafted with Lewis lung carcinoma cells. Because the transferring plasmon effect may improve the abnormality of physiological activity in a biological system, we aimed to evaluate the influence of PAW on orthotopic allograft transplantation (OAT)-induced vasculopathy in this study. Here, we demonstrated that daily intake of PAW lowered the progression of vasculopathy in OAT-recipient ACI/NKyo rats by inhibiting collagen accumulation, proliferation of smooth muscle cells and fibroblasts, and T lymphocyte infiltration in the vessel wall. The results showed reduced T and B lymphocytes, plasma cells, and macrophage activation in the spleen of the OAT-recipient ACI/NKyo rats that were administered PAW. In contrast to the control group, the OAT-recipient ACI/NKyo rats that were administered PAW exhibited higher mobilization and levels of circulating endothelial progenitor cells associated with vessel repair. We use the transferring plasmon effect to adjust and maintain the biochemical properties of water, and to meet the biochemical demand of organisms. Therefore, this study highlights the therapeutic roles of PAW and provides more biomedical applicability for the transferring plasmon effect.
Collapse
|
11
|
Dipeptidyl Peptidase-4 Inhibitor Decreases Allograft Vasculopathy Via Regulating the Functions of Endothelial Progenitor Cells in Normoglycemic Rats. Cardiovasc Drugs Ther 2020; 35:1111-1127. [PMID: 32623597 DOI: 10.1007/s10557-020-07013-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE Chronic rejection induces the occurrence of orthotopic allograft transplantation (OAT) vasculopathy, which results in failure of the donor organ. Numerous studies have demonstrated that in addition to regulating blood sugar homeostasis, dipeptidyl peptidase-4 (DPP-4) inhibitors can also provide efficacious therapeutic and protective effects against cardiovascular diseases. However, their effects on OAT-induced vasculopathy remain unknown. Thus, the aim of this study was to investigate the direct effects of sitagliptin on OAT vasculopathy in vivo and in vitro. METHODS The PVG/Seac rat thoracic aorta graft to ACI/NKyo rat abdominal aorta model was used to explore the effects of sitagliptin on vasculopathy. Human endothelial progenitor cells (EPCs) were used to investigate the possible underlying mechanisms. RESULTS We demonstrated that sitagliptin decreases vasculopathy in OAT ACI/NKyo rats. Treatment with sitagliptin decreased BNP and HMGB1 levels, increased GLP-1 activity and stromal cell-derived factor 1α (SDF-1α) expression, elevated the number of circulating EPCs, and improved the differentiation possibility of mononuclear cells to EPCs ex vivo. However, in vitro studies showed that recombinant B-type natriuretic peptide (BNP) and high mobility group box 1 (HMGB1) impaired EPC function, whereas these phenomena were reversed by glucagon-like peptide 1 (GLP-1) receptor agonist treatment. CONCLUSIONS We suggest that the mechanisms underlying sitagliptin-mediated inhibition of OAT vasculopathy probably occur through a direct increase in GLP-1 activity. In addition to the GLP-1-dependent pathway, sitagliptin may regulate SDF-1α levels and EPC function to reduce OAT-induced vascular injury. This study may provide new prevention and treatment strategies for DPP-4 inhibitors in chronic rejection-induced vasculopathy.
Collapse
|
12
|
Yu Q, Li W, Xie D, Zheng X, Huang T, Xue P, Guo B, Gao Y, Zhang C, Sun P, Li M, Wang G, Cheng X, Zheng Q, Song Z. PI3Kγ promotes vascular smooth muscle cell phenotypic modulation and transplant arteriosclerosis via a SOX9-dependent mechanism. EBioMedicine 2018; 36:39-53. [PMID: 30241919 PMCID: PMC6197754 DOI: 10.1016/j.ebiom.2018.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/31/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022] Open
Abstract
Background Transplant arteriosclerosis (TA) remains the major cause of chronic graft failure in solid organ transplantation. The phenotypic modulation of vascular smooth muscle cells (VSMCs) is a key event for the initiation and progression of neointimal formation and TA. This study aims to explore the role and underlying mechanism of phosphoinositide 3-kinases γ (PI3Kγ) in VSMC phenotypic modulation and TA. Methods The rat model of aortic transplantation was established to detect PI3Kγ expression and its role in neointimal formation and vascular remodeling in vivo. PI3Kγ shRNA transfection was employed to knockdown PI3Kγ gene. Aortic VSMCs was cultured and treated with TNF-α to explore the role and molecular mechanism of PI3Kγ in VSMC phenotypic modulation. Findings Activated PI3Kγ/p-Akt signaling was observed in aortic allografts and in TNF-α-treated VSMCs. Lentivirus-mediated shRNA transfection effectively inhibited PI3Kγ expression in medial VSMCs while restoring the expression of VSMC contractile genes, associated with impaired neointimal formation in aortic allografts. In cultured VSMCs, PI3Kγ blockade with pharmacological inhibitor or genetic knockdown markedly abrogated TNF-α-induced downregulation of VSMC contractile genes and increase in cellular proliferation and migration. Moreover, SOX9 located in nucleus competitively inhibited the interaction of Myocardin and SRF, while PI3Kγ inhibition robustly reduced SOX9 expression and its nuclear translocation and repaired the Myocardin/SRF association. Interpretation These results suggest that PI3Kγ plays a critical role in VSMC phenotypic modulation via a SOX9-dependent mechanism. Therefore, PI3Kγ in VSMCs may represent a promising therapeutic target for the treatment of TA. Fund National Natural Science Foundation of China.
Collapse
Affiliation(s)
- Qihong Yu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Li
- Departments of Gerontology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dawei Xie
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xichuan Zheng
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tong Huang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Xue
- Departments of Gerontology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bing Guo
- Department of Hepatology and Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Yang Gao
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Zhang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Sun
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Li
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoliang Wang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Cheng
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qichang Zheng
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zifang Song
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
13
|
Lee MS, Lluri G, Finch W, Park KW. Role of Percutaneous Coronary Intervention in the Treatment of Cardiac Allograft Vasculopathy. Am J Cardiol 2018; 121:1051-1055. [PMID: 29598855 DOI: 10.1016/j.amjcard.2018.01.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/31/2017] [Accepted: 01/09/2018] [Indexed: 01/21/2023]
Abstract
We evaluated our quarter-century experience with percutaneous coronary intervention (PCI) in patients with cardiac allograft vasculopathy (CAV). CAV is a progressive form of atherosclerosis that is characterized by diffuse intimal thickening. It is a major cause of morbidity and mortality after orthotopic heart transplantation (OHT). Effective treatment options are limited. PCI has been used as a palliative treatment in selected patients. We retrospectively analyzed 140 patients with CAV who underwent PCI from 1992 to 2017 at the University of California, Los Angeles (UCLA) Medical Center. The primary end point was freedom from death, myocardial infarction (MI), target vessel revascularization (TVR), and repeat OHT, at a follow-up of 10 years. PCI was unsuccessful in 3 patients (2%). Balloon angioplasty (n = 7), bare metal stents (n = 50), or drug-eluting stents (DES, n = 80) were used for PCI. Freedom from the primary end point was 17 ± 8%. The use of DES did not provide significant benefit for the primary end point (23 ± 14% vs 10 ± 9%, p = 0.16). Freedom from the individual end points was low: death was 43 ± 10%, MI was 74 ± 12%, TVR was 54 ± 12%, and repeat OHT was 42 ± 15%. Freedom from TVR was not significantly different from DES and bare metal stent (67 ± 14% vs 52 ± 20%, p = 0.46). In conclusion, among patients who underwent PCI for CAV, freedom from the composite of death, MI, TVR, and repeat OHT was low.
Collapse
|
14
|
Abstract
Cardiac allograft vasculopathy (CAV) has a high prevalence among patients that have undergone heart transplantation. Cardiac allograft vasculopathy is a multifactorial process in which the immune system is the driving force. In this review, the data on the immunological and fibrotic processes that are involved in the development of CAV are summarized. Areas where a lack of knowledge exists and possible additional research can be completed are pinpointed. During the pathogenesis of CAV, cells from the innate and the adaptive immune system cooperate to reject the foreign heart. This inflammatory response results in dysfunction of the endothelium and migration and proliferation of smooth muscle cells (SMCs). Apoptosis and factors secreted by both the endothelium as well as the SMCs lead to fibrosis. The migration of SMCs together with fibrosis provoke concentric intimal thickening of the coronary arteries, which is the main characteristic of CAV.
Collapse
|
15
|
Inhibitory role of reactive oxygen species in the differentiation of multipotent vascular stem cells into vascular smooth muscle cells in rats: a novel aspect of traditional culture of rat aortic smooth muscle cells. Cell Tissue Res 2015; 362:97-113. [PMID: 26022334 DOI: 10.1007/s00441-015-2193-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 04/03/2015] [Indexed: 12/24/2022]
Abstract
Proliferative or synthetic vascular smooth muscle cells (VSMCs) are widely accepted to be mainly derived from the dedifferentiation or phenotypic modulation of mature contractile VSMCs, i.e., a phenotype switch from a normally quiescent and contractile type into a proliferative or synthetic form. However, this theory has been challenged by recent evidence that synthetic VSMCs predominantly originate instead from media-derived multipotent vascular stem cells (MVSCs). To test these hypotheses further, we re-examine whether the conventional rat aortic SMC (RASMC) culture involves the VSMC differentiation of MVSCs or the dedifferentiation of mature VSMCs and the potential mechanism for controlling the synthetic phenotype of RASMCs. We enzymatically isolated RASMCs and cultured the cells in both a regular growth medium (RGM) and a stem cell growth medium (SCGM). Regardless of culture conditions, only a small portion of freshly isolated RASMCs attaches, survives and grows slowly during the first 7 days of primary culture, while expressing both SMC- and MVSC-specific markers. RGM-cultured cells undergo a process of synthetic SMC differentiation, whereas SCGM-cultured cells can be differentiated into not only synthetic SMCs but also other somatic cells. Notably, compared with the RGM-cultured differentiated RASMCs, the SCGM-cultured undifferentiated cells exhibit the phenotype of MVSCs and generate greater amounts of reactive oxygen species (ROS) that act as a negative regulator of differentiation into synthetic VSMCs. Knockdown of phospholipase A2, group 7 (Pla2g7) suppresses ROS formation in the MVSCs while enhancing SMC differentiation of MVSCs. These results suggest that cultured synthetic VSMCs can be derived from the SMC differentiation of MVSCs with ROS as a negative regulator.
Collapse
|
16
|
Cardiac allograft vasculopathy: a donor or recipient induced pathology? J Cardiovasc Transl Res 2015; 8:106-16. [PMID: 25652948 PMCID: PMC4382530 DOI: 10.1007/s12265-015-9612-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 01/14/2015] [Indexed: 01/16/2023]
Abstract
Cardiac allograft vasculopathy (CAV) is one of the main causes of late-stage heart failure after heart transplantation. CAV is characterized by concentric luminal narrowing of the coronary arteries, but the exact pathogenesis of CAV is still not unraveled. Many researchers show evidence of an allogeneic immune response of the recipient, whereas others show contrasting results in which donor-derived cells induce an immune response against the graft. In addition, fibrosis of the neo-intima can be induced by recipient-derived circulating cells or donor-derived cells. In this review, both donor and recipient sides of the story are described to obtain better insight in the pathogenesis of CAV. Dual outcomes were found regarding the contribution of donor and recipient cells in the initiation of the immune response and the development of fibrosis during CAV. Future research could focus more on the potential synergistic interaction of donor and recipient cells leading to CAV.
Collapse
|
17
|
Distinct phenotypes of cardiac allograft vasculopathy after heart transplantation: A histopathological study. Atherosclerosis 2014; 236:353-9. [DOI: 10.1016/j.atherosclerosis.2014.07.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 06/12/2014] [Accepted: 07/17/2014] [Indexed: 11/22/2022]
|
18
|
Amano J, Akashima T, Terasaki T, Wada Y, Ito-Amano M, Suzuki JI, Isobe M. Characteristics of cardiac allograft vasculopathy induced by immunomodulation in the miniature Swine. Ann Thorac Cardiovasc Surg 2014; 21:45-52. [PMID: 24747545 DOI: 10.5761/atcs.oa.13-00311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
PURPOSE We aimed to develop swine cardiac transplantation model for study of cardiac allograft vasculopathy (CAV) and to characterize the mechanisms of its formation. METHODS Heterotropic cardiac transplantation was performed in swine leukocyte antigen mismatched miniature swine, and CAV was induced by immunomodulation by cyclosporine A (CyA). Histology and immunohistochemistry were performed to identify cellular components of CAV. Fluorescence in situ hybridization (FISH) was developed for detection of 1 and Y-chromosome for identification of cell origin in the female donor to the male recipient heart transplantation model. RESULTS CAV was successfully developed by immunomodulation of CyA. Severity of CAV revealed more prominent in the distal epicardial coronary arteries than proximal coronary arteries. Phenotype of the SMCs proliferated in the intimal thickening of CAV were mostly embryonal/secretory type. Our new chromosome specific probes for FISH method were useful for discrimination of sex of each cell, and proliferated SMCs were revealed to be mainly donor origin. CONCLUSION CAV mimicking human heart transplantation can be developed by appropriate immunomodulation in the swine. In swine CAV, proliferated SMCs seen in the intimal thickening were demonstrated to be from the donor origin.
Collapse
Affiliation(s)
- Jun Amano
- Department of Cardiovascular Surgery, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Seminal studies in rabbits and rodent transplantation models by Peter Medawar revealed that cellular processes, rather than humoral antibodies, are central to the acute rejection of transplanted organs, and much of basic transplantation research continues to be focused on the biology and control of these cells, which were subsequently shown to be T cells. However, the success of current immunosuppression at controlling T-cell-mediated rejection has resulted in an increasing awareness of antibody-mediated rejection in the clinic. This, in turn, has fueled an emerging interest in the biology of allospecific antibodies, the B cells that produce these antibodies, and the development of mouse models that allow their investigation. Here we summarize some of the more widely used mouse models that have been developed to study the immunobiology of alloreactivity, transplantation rejection and tolerance, and used to identify therapeutic strategies that modulate these events.
Collapse
Affiliation(s)
- Anita S Chong
- Section of Transplantation, Department of Surgery, The University of Chicago, Chicago, Illinois 60637
| | | | | | | |
Collapse
|
20
|
Jane-Wit D, Manes TD, Yi T, Qin L, Clark P, Kirkiles-Smith NC, Abrahimi P, Devalliere J, Moeckel G, Kulkarni S, Tellides G, Pober JS. Alloantibody and complement promote T cell-mediated cardiac allograft vasculopathy through noncanonical nuclear factor-κB signaling in endothelial cells. Circulation 2013; 128:2504-16. [PMID: 24045046 DOI: 10.1161/circulationaha.113.002972] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Cardiac allograft vasculopathy is the major cause of late allograft loss after heart transplantation. Cardiac allograft vasculopathy lesions contain alloreactive T cells that secrete interferon-γ, a vasculopathic cytokine, and occur more frequently in patients with donor-specific antibody. Pathological interactions between these immune effectors, representing cellular and humoral immunity, respectively, remain largely unexplored. METHODS AND RESULTS We used human panel reactive antibody to form membrane attack complexes on allogeneic endothelial cells in vitro and in vivo. Rather than inducing cytolysis, membrane attack complexes upregulated inflammatory genes, enhancing the capacity of endothelial cells to recruit and activate allogeneic interferon-γ--producing CD4(+) T cells in a manner dependent on the activation of noncanonical nuclear factor-κB signaling. Noncanonical nuclear factor-κB signaling was detected in situ within endothelial cells both in renal biopsies from transplantation patients with chronic antibody-mediated rejection and in panel-reactive antibody--treated human coronary artery xenografts in immunodeficient mice. On retransplantation into immunodeficient hosts engrafted with human T cells, panel-reactive antibody--treated grafts recruited more interferon-γ--producing T cells and enhanced cardiac allograft vasculopathy lesion formation. CONCLUSIONS Alloantibody and complement deposition on graft endothelial cells activates noncanonical nuclear factor-κB signaling, initiating a proinflammatory gene program that enhances alloreactive T cell activation and development of cardiac allograft vasculopathy. Noncanonical nuclear factor-κB signaling in endothelial cells, observed in human allograft specimens and implicated in lesion pathogenesis, may represent a target for new pharmacotherapies to halt the progression of cardiac allograft vasculopathy.
Collapse
Affiliation(s)
- Dan Jane-Wit
- Section of Cardiovascular Medicine, Department of Internal Medicine (D.J.-w.), Department of Immunobiology (T.D.M., N.C.K.-S., P.A., J.D., J.S.P.), Department of Surgery (T.Y., L.W., S.K., G.T.), Department of Neurology (P.C.), and Department of Pathology (G.M., J.S.P.), Yale School of Medicine, New Haven, CT
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Impact of donor benign intimal thickening on cardiac allograft vasculopathy. J Heart Lung Transplant 2013; 32:454-60. [DOI: 10.1016/j.healun.2013.01.1044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 12/20/2012] [Accepted: 01/22/2013] [Indexed: 11/21/2022] Open
|
22
|
Colvin-Adams M, Harcourt N, Duprez D. Endothelial dysfunction and cardiac allograft vasculopathy. J Cardiovasc Transl Res 2012; 6:263-77. [PMID: 23135991 DOI: 10.1007/s12265-012-9414-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 10/02/2012] [Indexed: 12/19/2022]
Abstract
Cardiac allograft vasculopathy remains a major challenge to long-term survival after heart transplantation. Endothelial injury and dysfunction, as a result of multifactorial immunologic and nonimmunologic insults in the donor and the recipient, are prevalent early after transplant and may be precursors to overt cardiac allograft vasculopathy. Current strategies for managing cardiac allograft vasculopathy, however, rely on the identification and treatment of established disease. Improved understanding of mechanisms leading to endothelial dysfunction in heart transplant recipients may provide the foundation for the development of sensitive screening techniques and preventive therapies.
Collapse
Affiliation(s)
- Monica Colvin-Adams
- Cardiovascular Division, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
23
|
Tsai TN, Kirton JP, Campagnolo P, Zhang L, Xiao Q, Zhang Z, Wang W, Hu Y, Xu Q. Contribution of stem cells to neointimal formation of decellularized vessel grafts in a novel mouse model. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:362-73. [PMID: 22613026 DOI: 10.1016/j.ajpath.2012.03.021] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 03/20/2012] [Accepted: 03/27/2012] [Indexed: 11/19/2022]
Abstract
Artificial vessel grafts are often used for the treatment of occluded blood vessels, but neointimal lesions commonly occur. To both elucidate and quantify which cell types contribute to the developing neointima, we established a novel mouse model of restenosis by grafting a decellularized vessel to the carotid artery. Typically, the graft developed neointimal lesions after 2 weeks, resulting in lumen closure within 4 weeks. Immunohistochemical staining revealed the presence of endothelial and smooth muscle cells, monocytes, and stem/progenitor cells at 2 weeks after implantation. Explanted cultures of neointimal tissues displayed heterogeneous outgrowth in stem cell medium. These lesional cells expressed a panel of stem/progenitor markers, including c-kit, stem cell antigen-1 (Sca-1), and CD34. Furthermore, these cells showed clonogenic and multilineage differentiation capacities. Isolated Sca-1(+) cells were able to differentiate into endothelial and smooth muscle cells in response to vascular endothelial growth factor (VEGF) or platelet-derived growth factor (PDGF)-BB stimulation in vitro. In vivo, local application of VEGF to the adventitial side of the decellularized vessel increased re-endothelialization and reduced neointimal formation in samples at 4 weeks after implantation. A population of stem/progenitor cells exists within developing neointima, which displays the ability to differentiate into both endothelial and smooth muscle cells and can contribute to restenosis. Our findings also indicate that drugs or cytokines that direct cell differentiation toward an endothelial lineage may be effective tools in the prevention or delay of restenosis.
Collapse
MESH Headings
- Animals
- Antigens, Ly/metabolism
- Blood Vessel Prosthesis
- Blood Vessel Prosthesis Implantation/methods
- Carotid Stenosis/pathology
- Carotid Stenosis/physiopathology
- Carotid Stenosis/prevention & control
- Carotid Stenosis/surgery
- Cell Differentiation
- Cells, Cultured
- Colony-Forming Units Assay
- Disease Models, Animal
- Endothelium, Vascular/pathology
- Graft Occlusion, Vascular/pathology
- Graft Occlusion, Vascular/prevention & control
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Muscle, Smooth, Vascular/pathology
- Neointima/pathology
- Neointima/prevention & control
- Stem Cells/pathology
- Stem Cells/physiology
- Tissue Scaffolds
- Transplantation Chimera
- Vascular Endothelial Growth Factor A/therapeutic use
Collapse
Affiliation(s)
- Tsung-Neng Tsai
- Cardiovascular Division, King's College London, British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Huibers M, De Jonge N, Van Kuik J, Koning ESD, Van Wichen D, Dullens H, Schipper M, De Weger R. Intimal fibrosis in human cardiac allograft vasculopathy. Transpl Immunol 2011; 25:124-32. [PMID: 21782945 DOI: 10.1016/j.trim.2011.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 07/06/2011] [Indexed: 11/30/2022]
Abstract
Human Cardiac Allograft Vasculopathy (CAV) is one of the major complications for patients after heart transplantation. It is characterized by a concentric luminal narrowing due to (neo) intimal expansion in the coronary arteries of donor hearts after heart transplantation. In this process fibrosis plays an important role. Aim of this study is to analyze the factors and cells involved in this fibrotic process. Coronary arteries from five heart transplantation patients and three controls were obtained at autopsy. Quantitative real-time PCR was performed on mRNA obtained from various arterial layers isolated by laser micro dissection. Positive gene expression was confirmed by immunohistochemistry and/or in situ hybridisation. The strongest mRNA expression of fibrotic factors (predominantly pro-fibrotic) was found in the neo-intima. Especially, connective tissue growth factor expression was higher in the CAV vessels than in the controls. The lymphocyte activity of interferon gamma was only detected in CAV vessels. Furthermore as shown by in situ hybridisation, the lymphocytes producing interferon gamma also expressed transforming growth factor beta. Anti-fibrotic factors, such as bone morphogenic protein 4, were only expressed in CD3(-)/CD68(-) stromal cells. Macrophages present in the CAV and control vessels showed to be of the M2 type and did not produce any fibrotic factor(s). In conclusion, T-cells producing both interferon gamma and transforming growth factor beta, may play an important role in the fibrotic process in CAV vessels by upregulation of connective tissue growth factor production.
Collapse
Affiliation(s)
- Manon Huibers
- Department of Pathology, University Medical Center Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Tobiasova Z, Zhang L, Yi T, Qin L, Manes TD, Kulkarni S, Lorber MI, Rodriguez FC, Choi JM, Tellides G, Pober JS, Kawikova I, Bothwell ALM. Peroxisome proliferator-activated receptor-γ agonists prevent in vivo remodeling of human artery induced by alloreactive T cells. Circulation 2011; 124:196-205. [PMID: 21690493 DOI: 10.1161/circulationaha.110.015396] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Ligands activating the transcription factor peroxisome proliferator-activated receptor-γ (PPARγ) have antiinflammatory effects. Vascular rejection induced by allogeneic T cells can be responsible for acute and chronic graft loss. Studies in rodents suggest that PPARγ agonists may inhibit graft vascular rejection, but human T-cell responses to allogeneic vascular cells differ from those in rodents, and the effects of PPARγ in human transplantation are unknown. METHODS AND RESULTS We tested the effects of PPARγ agonists on human vascular graft rejection using a model in which human artery is interposed into the abdominal aorta of immunodeficient mice, followed by adoptive transfer of allogeneic (to the artery donor) human peripheral blood mononuclear cells. Interferon-γ-dependent rejection ensues within 4 weeks, characterized by intimal thickening, T-cell infiltrates, and vascular cell activation, a response resembling clinical intimal arteritis. The PPARγ agonists 15-deoxy-prostaglandin-J(2), ciglitazone, and pioglitazone reduced intimal expansion, intimal infiltration of CD45RO(+) memory T cells, and plasma levels of inflammatory cytokines. The PPARγ antagonist GW9662 reversed the protective effects of PPARγ agonists, confirming the involvement of PPARγ-mediated pathways. In vitro, pioglitazone inhibited both alloantigen-induced proliferation and superantigen-induced transendothelial migration of memory T cells, indicating the potential mechanisms of PPARγ effects. CONCLUSION Our results suggest that PPARγ agonists inhibit allogeneic human memory T cell responses and may be useful for the treatment of vascular graft rejection.
Collapse
Affiliation(s)
- Zuzana Tobiasova
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hagensen MK, Shim J, Falk E, Bentzon JF. Flanking recipient vasculature, not circulating progenitor cells, contributes to endothelium and smooth muscle in murine allograft vasculopathy. Arterioscler Thromb Vasc Biol 2011; 31:808-13. [PMID: 21233450 DOI: 10.1161/atvbaha.110.221184] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The prevailing view assumes that circulating endothelial and smooth muscle progenitor cells participate in allograft vasculopathy (AV), although the seminal studies in the field were not designed to distinguish between circulating and migrating cells of recipient origin. We developed a double-transplantation technique to overcome this problem and reinvestigated the origin of endothelial cells (ECs) and smooth muscle cells (SMCs) in murine AV. METHODS AND RESULTS Carotid artery segments from BALB/c mice were allografted to apolipoprotein E(-/-) B6 mice with or without a "flanking" isograft interpositioned between the allograft and the recipient artery. Either recipient mice or interpositioned isografts expressed enhanced green fluorescent protein, and consequently, cells migrating into the allograft from the flanking vasculature could easily be tracked and distinguished from recruited circulating cells. Without immunosuppression, allograft donor cells vanished as expected, and AV developed by replacement and accumulation of ECs and SMCs of recipient origin. The double transplantation models revealed that all ECs and SMCs in AV had migrated into the allograft from the flanking vasculature without any contribution from putative progenitor cells in the blood. CONCLUSIONS Migrating cells from the flanking vasculature, not circulating progenitor cells, are the source of recipient-derived ECs and SMCs in murine AV.
Collapse
Affiliation(s)
- Mette K Hagensen
- Atherosclerosis Research Unit, Department of Cardiology, Institute of Clinical Medicine, Aarhus University Hospital, Skejby, Denmark.
| | | | | | | |
Collapse
|
27
|
Daniel JM, Sedding DG. Circulating smooth muscle progenitor cells in arterial remodeling. J Mol Cell Cardiol 2010; 50:273-9. [PMID: 21047514 DOI: 10.1016/j.yjmcc.2010.10.030] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 10/17/2010] [Accepted: 10/26/2010] [Indexed: 10/18/2022]
Abstract
The proliferation and migration of vascular smooth muscle cells (SMCs) from the media toward the intimal layer are key components in vascular proliferative diseases. In addition, the differentiation of circulating bone marrow-derived mononuclear cells (BMMCs) into SMCs has been described to contribute to lesion progression in experimental models of atherosclerosis, transplant arteriosclerosis, and neointima formation. In vitro, CD14(+) BMMCs from peripheral blood acquire a spindle-shaped phenotype and express specific SMC markers in response to platelet-derived growth factor-BB. However, the 'trans-differentiation' capacity of BMMCs into definitive SMCs in vivo remains a highly controversial issue. Whereas SMCs within atherosclerotic plaques have been demonstrated to be exclusively of local origin, more severe injury models have shown a wide diversity of SMCs or smooth muscle-like cells derived from BMMCs. In hindsight, these discrepancies may be attributed to methodological differences, e.g., the use of high-resolution microscopy or the specificity of the SMC marker proteins. In fact, the analysis of mouse strains that express marker genes under the control of a highly specific smooth muscle-myosin heavy chain (SM-MHC) promoter and a time-course analysis on the dynamic process of neointima formation have recently shown that BMMCs temporarily express α-smooth muscle actin, not SM-MHC. Additionally, BM-derived cells disappear from the neointimal lesion after the inflammatory response to the injury has subsided. Although CD14(+)/CD68(+) have important paracrine effects on arterial lesion progression, BMMCs account for more of the 'SMC-like macrophages' than the highly 'trans-differentiated' and definitive SMCs in vivo. This article is part of a special issue entitled, "Cardiovascular Stem Cells Revisited".
Collapse
Affiliation(s)
- Jan-Marcus Daniel
- Department of Cardiology, Justus-Liebig-University, Giessen, Germany
| | | |
Collapse
|
28
|
Daniel JM, Bielenberg W, Stieger P, Weinert S, Tillmanns H, Sedding DG. Time-course analysis on the differentiation of bone marrow-derived progenitor cells into smooth muscle cells during neointima formation. Arterioscler Thromb Vasc Biol 2010; 30:1890-6. [PMID: 20576944 DOI: 10.1161/atvbaha.110.209692] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Bone marrow-derived progenitor cells have been implicated to contribute to neointima formation, but the time course and extent of their accumulation and differentiation into vascular cells and, most importantly, the long-term contribution of bone marrow-derived progenitor cells to the vascular lesion remain undefined. METHODS AND RESULTS Wire-induced injury of the femoral artery was performed on chimeric C57BL/6 mice transplanted with bone marrow from transgenic mice expressing enhanced green fluorescence protein, and vessels were harvested at 3 days, 1, 2, 3, 4, 6, and 16 weeks after dilatation (n=8 animals per time point). Using high-resolution microscopy, we unexpectedly found that the expression of smooth muscle cell or endothelial cell markers in enhanced green fluorescence protein positive cells was a very rare event. Indeed, most of the enhanced green fluorescence protein positive cells that accumulated during the acute inflammatory response were identified as monocytes/macrophages, and their number declined at later time points. In contrast, a substantial fraction of highly proliferative stem cell antigen-1 and CD34(+) but enhanced green fluorescence protein negative and thus locally derived cells were detected in the adventitia. CONCLUSIONS These data provide evidence that the differentiation of bone marrow-derived progenitor cells into smooth muscle cell or endothelial cell lineages seems to be an exceedingly rare event. Moreover, the contribution of bone marrow-derived cells to the cellular compartment of the neointima is limited to a transient period of the inflammatory response.
Collapse
Affiliation(s)
- Jan-Marcus Daniel
- Department of Cardiology, Justus-Liebig-University, Giessen, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Hart-Matyas M, Nejat S, Jordan JL, Hirsch GM, Lee TD. IFN-γ and Fas/FasL pathways cooperate to induce medial cell loss and neointimal lesion formation in allograft vasculopathy. Transpl Immunol 2010; 22:157-64. [DOI: 10.1016/j.trim.2009.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 10/22/2009] [Accepted: 10/23/2009] [Indexed: 10/20/2022]
|
30
|
Zaki AM, Hirsch GM, Lee TDG. Contribution of pre-existing vascular disease to allograft vasculopathy in a murine model. Transpl Immunol 2009; 22:93-8. [PMID: 19632325 DOI: 10.1016/j.trim.2009.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 07/15/2009] [Accepted: 07/15/2009] [Indexed: 10/20/2022]
Abstract
Allograft vasculopathy (AV) has emerged as a major obstacle for long-term graft survival after cardiac transplantation. The shortage of donor hearts has meant fewer restrictions have been placed on acceptable hearts over the past few years resulting in an increase in the number of older hearts in the donor pool. This increase has subsequently led to the increase of donor hearts containing pre-existing disease. The importance of this pre-existing donor vascular disease in AV outcomes remains controversial. In this study we address this by taking advantage of the fact that B6 Apolipoprotein-E knockout mice develop atherosclerotic lesions in their aortic tracts that closely model human naturally occurring vascular disease. By using these mice as donors, we transplant known levels of pre-existing disease into fully disparate (C3H) recipients. Cyclosporin A is used to prevent acute rejection and allow for allograft vasculopathy. We found that pre-existing lesions are retained in this model after transplantation and that they contribute to increase in lesion size and to increased lumenal narrowing. The de novo AV lesions overlay the pre-existing lesions and this leads to areas of eccentric lesion formation in the vessels with likely accompanying exacerbation of flow perturbation.
Collapse
Affiliation(s)
- Amr M Zaki
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
31
|
Abstract
Transplant vasculopathy (TV) remains the leading cause of late death among heart transplant recipients. Transplant vasculopathy is characterized by progressive neointimal proliferation, leading to ischemic failure of the allograft. Multiple experimental and clinical studies have shown that injury to the graft at various stages of transplantation can be a risk factor for development of transplant vasculopathy. The hallmark of cardiac allograft injury is the infiltration of leukocytes. Recruitment of leukocytes requires intercellular communication between infiltrating cells, endothelium, parenchymal cells, and components of extracellular matrix. These events are mediated via the generation of adhesion molecules, cytokines, and chemokines. The chemokines, by virtue of their specific cell receptor expression, can selectively mediate the local recruitment/activation of distinct leukocytes/cells, allowing for migration across the endothelium and beyond the vascular compartment. This report provides a comprehensive review of the chemokines that participate in the development of transplant vasculopathy.
Collapse
Affiliation(s)
- John A Belperio
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California, Los Angele, CA 90095, USA
| | | |
Collapse
|
32
|
Abstract
Stem cells can differentiate into a variety of cells to replace dead cells or to repair damaged tissues. Recent evidence indicates that stem cells are involved in the pathogenesis of transplant arteriosclerosis, an alloimmune initiated vascular stenosis that often results in transplant organ failure. Although the pathogenesis of transplant arteriosclerosis is not yet fully understood, recent developments in stem cell research have suggested novel mechanisms of vascular remodeling in allografts. For example, stem cells derived from the recipient may repair damaged endothelial cells of arteries in transplant organs. Further evidence suggests that stem cells or endothelial progenitor cells may be released from both bone marrow and non–bone marrow tissues. Vascular stem cells appear to replenish cells that died in donor vessels. Concomitantly, stem/progenitor cells may also accumulate in the intima, where they differentiate into smooth muscle cells. However, several issues concerning the contribution of stem cells to the pathogenesis of transplant arteriosclerosis are controversial, eg, whether bone marrow–derived stem cells can differentiate into smooth muscle cells that form neointimal lesions of the vessel wall. This review summarizes recent research on the role of stem cells in transplant arteriosclerosis, discusses the mechanisms of stem cell homing and differentiation into mature endothelial and smooth muscle cells, and highlights the controversial issues in the field.
Collapse
Affiliation(s)
- Qingbo Xu
- From the Cardiovascular Division, King’s College London, United Kingdom
| |
Collapse
|
33
|
Hagemeijer MC, van Oosterhout MFM, van Wichen DF, van Kuik J, Siera-de Koning E, Gmelig Meyling FHJ, Schipper MEI, de Jonge N, de Weger RA. T cells in cardiac allograft vasculopathy are skewed to memory Th-1 cells in the presence of a distinct Th-2 population. Am J Transplant 2008; 8:1040-50. [PMID: 18416740 DOI: 10.1111/j.1600-6143.2008.02198.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cardiac allograft vasculopathy (CAV) in heart transplantation (HTx) patients remains the major complication for long-term survival, due to concentric neointima hyperplasia induced by infiltrating mononuclear cells (MNC). Previously, we showed that activated memory T-helper-1 (Th-1) cells are the major component of infiltrating MNC in coronary arteries with CAV. In this study, a more detailed characterization of the MNC in human coronary arteries with CAV (n = 5) was performed and compared to coronary arteries without CAV (n = 5), by investigating MNC markers (CD1a, DRC-1, CD3, CD20, CD27, CD28, CD56, CD68, CD69, FOXP3 and HLA-DR), cytokines (IL-1A, 2, 4, 10, 12B, IFN-gamma, and TGF-beta1), and chemokine receptors (CCR3, CCR4, CCR5, CCR7, CCR8, CXCR3 and CX3CR1) by immunohistochemical double-labeling and quantitative PCR on mRNA isolated from laser microdissected layers of coronary arteries. T cells in the neointima and adventitia of CAV were skewed toward an activated memory Th-1 phenotype, but in the presence of a distinct Th-2 population. FOXP3 positive T cells were not detected and production of most cytokines was low or absent, except for IFN-gamma, and TGF-beta. This typical composition of T-helper cells and especially production of IFN-gamma and TGF-beta may play an important role in the proliferative CAV reaction.
Collapse
Affiliation(s)
- M C Hagemeijer
- Department of Pathology, University Medical Center Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Vascular progenitor cells have been the focus of much attention in recent years; both from the point of view of their pathophysiological roles and their potential as therapeutic agents. However, there is as yet no definitive description of either endothelial or vascular smooth muscle progenitor cells. Cells with the ability to differentiate into mature endothelial and vascular smooth muscle reportedly reside within a number of different tissues, including bone marrow, spleen, cardiac muscle, skeletal muscle and adipose tissue. Within these niches, vascular progenitor cells remain quiescent, until mobilized in response to injury or disease. Once mobilized, these progenitor cells enter the circulation and migrate to sites of damage, where they contribute to the remodelling process. It is generally perceived that endothelial progenitors are reparative, acting to restore vascular homeostasis, while smooth muscle progenitors contribute to pathological changes. Indeed, the number of circulating endothelial progenitor cells inversely correlates with exposure to cardiovascular risk factors and numbers of animal models and human studies have demonstrated therapeutic roles for endothelial progenitor cells, which can be enhanced by manipulating them to overexpress vasculo-protective genes. It remains to be determined whether smooth muscle progenitor cells, which are less well studied than their endothelial counterparts, can likewise be manipulated to achieve therapeutic benefit. This review outlines our current understanding of endothelial and smooth muscle progenitor cell biology, their roles in vascular disease and their potential as therapeutic agents.
Collapse
Affiliation(s)
- M Jevon
- Department of Cardiothoracic Surgery, National Heart & Lung Institute, Imperial College London, Hammersmith Hospital, London, UK.
| | | | | |
Collapse
|
35
|
|
36
|
Ollinger R, Wang H, Yamashita K, Wegiel B, Thomas M, Margreiter R, Bach FH. Therapeutic applications of bilirubin and biliverdin in transplantation. Antioxid Redox Signal 2007; 9:2175-85. [PMID: 17919067 DOI: 10.1089/ars.2007.1807] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bilirubin is the end product of heme catabolism by heme oxygenases. The inducible form of these enzymes is heme oxygenase-1 (HO-1), which is the rate-limiting enzyme that can degrade heme into equimolar quantities of carbon monoxide (CO), biliverdin, and free iron. Biliverdin is very rapidly converted to bilirubin by the enzyme biliverdin reductase, and free iron upregulates the expression of ferritin. HO-1 is a ubiquitous stress protein and is induced in many cell types by various stimuli. Induced HO-1 exerts antiinflammatory effects and modulates apoptosis. Expression of HO-1 in vivo suppresses the inflammatory responses in endotoxic shock, hyperoxia, acute pleurisy, and organ transplantation, as well as ischemia-reperfusion injury, and thereby provides salutary effects in these conditions. Accumulating evidence indicates that biliverdin/bilirubin can mediate the protective effects of HO-1 in many disease models, such as IRI and organ transplantation, via its antiinflammatory, antiapoptotic, antiproliferative, and antioxidant properties, as well as its effects on the immune response. This review attempts to summarize these protective roles as well as the molecular mechanisms by which biliverdin/bilirubin benefit IRI and solid-organ transplantation, including chronic rejection, and islet transplantation.
Collapse
Affiliation(s)
- Robert Ollinger
- Department of Surgery, Medical University Innsbruck, Innsbruck, Austria.
| | | | | | | | | | | | | |
Collapse
|
37
|
Chen XL, Chen ZS, Ding Z, Dong C, Guo H, Gong NQ. Antisense extracellular signal-regulated kinase-2 gene therapy inhibits platelet-derived growth factor-induced proliferation, migration and transforming growth factor-beta(1) expression in vascular smooth muscle cells and attenuates transplant vasculopathy. Transpl Int 2007; 21:30-8. [PMID: 17927678 DOI: 10.1111/j.1432-2277.2007.00570.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Platelet-derived growth factor-BB (PDGF-BB) enables vascular smooth muscle cells (VSMCs) to proliferate, migrate and secrete connective tissue matrix, which are critical events in transplant vasculopathy. However, little is known about the intracellular pathways that mediate these biologic responses of VSMCs. Extracellular signal-regulated kinase (ERK) pathway plays a major role in cellular responses and vascular diseases. In this study, we observed that the inhibition of ERK2 activity by recombinant adenovirus encoding antisense ERK2 (Adanti-ERK2) significantly suppressed the proliferation, converting of cell cycle from G(1) phase to S phase and directed migration, and partially abrogated transforming growth factor-beta(1) (TGF-beta(1)) expression in VSMCs stimulated with PDGF-BB. Ex vivo gene transfer of Adanti-ERK2 into rat aortic allograft attenuated chronic transplant vasculopathy by the inhibition of VSMC proliferation and migration. In conclusion, ERK2 is involved in PDGF-BB-induced VSMCs proliferation, migration and TGF-beta(1) expression and may be a potential therapeutic target for transplant vasculopathy.
Collapse
Affiliation(s)
- Xi-Lin Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | |
Collapse
|
38
|
Qian H, Yang Y, Li J, Huang J, Dou K, Yang G. The role of vascular stem cells in atherogenesis and post-angioplasty restenosis. Ageing Res Rev 2007; 6:109-27. [PMID: 17324640 DOI: 10.1016/j.arr.2007.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2006] [Revised: 09/16/2006] [Accepted: 01/19/2007] [Indexed: 12/20/2022]
Abstract
It is well known that atherosclerosis prevails in elderly populations as ageing acts as a recognized risk factor for this disease. Although the pathogenic factors leading to atherosclerosis are highly heterogeneous, traditionally speaking, the causative risk factors include hyperlipidemia, hypertension, diabetes mellitus and smoking, which can damage to endothelial function, and subsequently promote lipid penetration and inflammatory cell infiltration. Damaged endothelial cells (ECs) may be replaced by neighboring cell division, while damaged smooth muscle cells (SMCs) may be replaced by medial SMCs emigrating into the intima during atherogenesis. However, this standpoint is challenged by recent findings that vascular progenitor/stem cells (VPCs) may contribute to atherogenesis and post-angioplasty restenosis. VPCs are a group of primitive cells that have the potential to produce mature, functional cells in the vascular wall. VPCs residing in bone marrow, vascular wall or circulating in the peripheral blood may be stimulated by a variety of pathogenic factors. These stem cells then participate in regeneration, repair and remodeling of the injured arterial wall. This new concept may bring about a great breakthrough in understanding the pathogenesis of atherosclerosis and develop novel therapeutic strategies for coronary heart disease. This article will mainly review the role of VPCs in atherogenesis, thus providing a novel understanding about the pathophysiology of atherosclerosis.
Collapse
Affiliation(s)
- Haiyan Qian
- Department of Cardiology, Fuwai Hospital and Cardiovascular Institute, Peking Union Medical College and Chinese Academy of Medical Sciences, 167 BeiLiShi Road, Beijing 100037, PR China
| | | | | | | | | | | |
Collapse
|
39
|
Houser S, Muniappan A, Allan J, Sachs D, Madsen J. Cardiac allograft vasculopathy: real or a normal morphologic variant? J Heart Lung Transplant 2007; 26:167-73. [PMID: 17258151 PMCID: PMC1802125 DOI: 10.1016/j.healun.2006.11.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Revised: 09/21/2006] [Accepted: 11/13/2006] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Naive coronary vessels may appear to have intimal thickening histologically characteristic of cardiac allograft vasculopathy (CAV). This study appraises the experimental and clinical impact of this observation. METHODS Tissue sections from 12 naive hearts of miniature swine, 13 native porcine hearts of recipients of heterotopic cardiac allografts, 3 native human hearts and 3 human hearts with CAV were compared with light microscopy and morphometric analysis. Results were also compared with morphometric data previously gathered from 3 grafts in a standard experimental model of CAV (rejectors) and 3 grafts harvested from swine rendered tolerant to their donor hearts (chimeras). RESULTS In the naive and native porcine hearts, the prevalence of CAV "mimics" was 0% to 6.94% (mean +/- SD: 1.99 +/- 1.97%) and 0% to 7.57% (2.97 +/- 2.20%), respectively (p = 0.12). The prevalence of CAV in the grafts of porcine rejectors and chimeras was 9.9% to 14.8% (12.4 +/- 2.5%) and 0.6% to 4.5% (2.6 +/- 2.0%), respectively (p < 0.05). CAV in the chimeras was similar in prevalence to that of the naive and native hearts. In native human hearts and human grafts, the prevalence was 1.86% to 2.00% (1.95 +/- 0.08%) and 9.09% to 17.50% (12.80 +/- 4.29%), respectively (p = 0.01). CONCLUSIONS Smooth muscle bundles inside the internal elastic laminae are similarly prevalent in human and porcine coronary vasculature. Their histologic similarity to intimal thickening of CAV could lead to an inaccurate distinction between graft tolerance and CAV in both clinical and experimental studies of heart transplantation.
Collapse
Affiliation(s)
- Stuart Houser
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | | | | | | | |
Collapse
|
40
|
Raisky O, Nykänen AI, Krebs R, Hollmén M, Keränen MAI, Tikkanen JM, Sihvola R, Alhonen L, Salven P, Wu Y, Hicklin DJ, Alitalo K, Koskinen PK, Lemström KB. VEGFR-1 and -2 Regulate Inflammation, Myocardial Angiogenesis, and Arteriosclerosis in Chronically Rejecting Cardiac Allografts. Arterioscler Thromb Vasc Biol 2007; 27:819-25. [PMID: 17290032 DOI: 10.1161/01.atv.0000260001.55955.6c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Interplay between inflammation and angiogenesis is important in pathological reparative processes such as arteriosclerosis. We investigated how the two vascular endothelial growth factor receptors VEGFR-1 and -2 regulate these events in chronically rejecting cardiac allografts. METHODS AND RESULTS Chronic rejection in mouse cardiac allografts induced primitive myocardial, adventitial, and intimal angiogenesis with endothelial expression of CD31, stem cell marker c-kit, and VEGFR-2. Experiments using marker gene mice or rats as cardiac allograft recipients revealed that replacement of cardiac allograft endothelial cells with recipient bone marrow- or non-bone marrow-derived cells was rare and restricted only to sites with severe injury. Targeting VEGFR-1 with neutralizing antibodies in mice reduced allograft CD11b+ myelomonocyte infiltration and allograft arteriosclerosis. VEGFR-2 inhibition prevented myocardial c-kit+ and CD31+ angiogenesis in the allograft, and decreased allograft inflammation and arteriosclerosis. CONCLUSIONS These results suggest interplay of inflammation, primitive donor-derived myocardial angiogenesis, and arteriosclerosis in transplanted hearts, and that targeting VEGFR-1 and -2 differentially regulate these pathological reparative processes.
Collapse
Affiliation(s)
- Olivier Raisky
- Transplantation Laboratory, University of Helsinki and Helsinki University Central Hospital, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
van Loosdregt J, van Oosterhout MFM, Bruggink AH, van Wichen DF, van Kuik J, de Koning E, Baan CC, de Jonge N, Gmelig-Meyling FHJ, de Weger RA. The Chemokine and Chemokine Receptor Profile of Infiltrating Cells in the Wall of Arteries With Cardiac Allograft Vasculopathy Is Indicative of a Memory T–Helper 1 Response. Circulation 2006; 114:1599-607. [PMID: 17015796 DOI: 10.1161/circulationaha.105.597526] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Despite improvement in short-term patient survival after heart transplantation (HTx), long-term survival rates have not improved much, mainly because of cardiac allograft vasculopathy (CAV). Cytokines and chemokines are considered to play an important role in CAV development. METHODS AND RESULTS We focused on coronary arteries of HTx patients and made an inventory of the infiltrating cells and the expression of cytokines as well as chemokines and chemokine receptors (C+CR) in the different layers of the vessel wall with CAV. Tissue slides were stained for a variety of cell markers (CD3, CD4, CD8, CD20, CD68, CD79a), chemokines (monokine induced by interferon [MIG], interferon-inducible protein 10 [IP-10], interferon-inducible T cell-alpha chemoattractant [ITAC], RANTES [regulated on activation normal T cell expressed and secreted], and fractalkine), and chemokine receptors (CXCR3, CCR5, and CX3CR1). In reference coronary arteries (not transplanted), almost no infiltrating cells were found, and in transplanted hearts with CAV (HTx+CAV), a large number of T cells were observed (CD4:CD8=2:1), mainly localized in the neointima and adventitia. Most of these T cells appeared to be activated (human leukocyte antigen DR positive). Coronary arteries from transplanted hearts without CAV (HTx-CAV), HTx+CAV, and references were also analyzed for cytokine and C+CR mRNA expression with the use of quantitative polymerase chain reaction. Interferon-gamma was highly expressed in HTx+CAV compared with HTx-CAV. Interleukin-4 and interleukin-10 were expressed at the same level in both HTx groups and references. In HTx+CAV, all C+CR, but especially the T-helper 1 (TH1) C+CR, were more abundant than in the HTx-CAV and references. However, TH2 CCR4 expression did not differ significantly between both HTx groups. CONCLUSIONS In coronary arteries with CAV, most T cells are CD4+ and express human leukocyte antigen DR. These activated TH cells are mainly memory TH1 cells on the basis of their C+CR profile and cytokine expression.
Collapse
Affiliation(s)
- Jorg van Loosdregt
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, PO Box 85500, 3508 GA Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Yamani MH, Ratliff NB, Cook DJ, Tuzcu EM, Yu Y, Hobbs R, Rincon G, Bott-Silverman C, Young JB, Smedira N, Starling RC. Peritransplant ischemic injury is associated with up-regulation of stromal cell-derived factor-1. J Am Coll Cardiol 2005; 46:1029-35. [PMID: 16168287 DOI: 10.1016/j.jacc.2005.04.059] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Revised: 04/24/2005] [Accepted: 04/25/2005] [Indexed: 10/25/2022]
Abstract
OBJECTIVES We evaluated chimerism and stromal cell-derived factor-1 (SDF-1) expression in response to peritransplant ischemic injury following human heart transplantation. BACKGROUND Myocardial ischemia has been shown to trigger mobilization of stem cells to the heart in animal experiments. METHODS Between January 1998 and April 2002, a total of 114 male recipients received hearts from female donors. Of these 114 recipients, 26 had evidence of ischemic injury on their initial heart biopsies (ischemia group). These were compared to the remaining 88 patients (control group). Heart biopsy specimens obtained initially at one week and at one year after transplant were evaluated from 20 matched patients of each group for the presence of Y chromosome-containing nuclei. The SDF-1 messenger ribonucleic acid (mRNA) and protein expression were also evaluated on initial heart biopsy specimens. RESULTS At one week, Y chromosome-containing nuclei were significantly increased in the ischemia group (0.68% vs. 0.04%; p < 0.0001) compared to the control group. These were positive for the stem cell factor receptor c-kit. A significant 3.3-fold increased mRNA expression (p = 0.001) and 2.8-fold increased protein expression (p = 0.01) of SDF-1 was noted in the ischemia group. At one year, Y chromosome was detected in 0.29% of cardiomyocyte nuclei in the ischemia group but none in the control group. The ischemia group had poorer survival and increased vasculopathy. CONCLUSIONS This is the first report to describe chimerism and up-regulation of SDF-1 in human heart transplantation in response to ischemic injury.
Collapse
Affiliation(s)
- Mohamad H Yamani
- Department of Cardiovascular Medicine, Kaufman Center for Heart Failure, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Rezai N, Corbel SY, Dabiri D, Kerjner A, Rossi FMV, McManus BM, Podor TJ. Bone marrow-derived recipient cells in murine transplanted hearts: potential roles and the effect of immunosuppression. J Transl Med 2005; 85:982-91. [PMID: 16205656 DOI: 10.1038/labinvest.3700302] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Currently, there is intense debate regarding the origin of reparative cells in injured hearts and vasculature. To determine the contribution of recipient bone marrow (BM)-derived cells to the regeneration of cells in the vasculature of transplanted hearts and to examine the effect of immunosuppression on this phenomenon, we evaluated the fate of green fluorescent protein (GFP)-positive recipient BM cells in non-GFP-expressing cardiac allografts. C57BL/6 BM-GFP chimeric recipients underwent cardiac transplantation. Allografts were immunosuppressed with tacrolimus for 14 or 30 days post-transplantation or were saline treated. Hearts were excised and stained with markers for endothelial cells (EC) or smooth muscle cells (SMC). Colocalization with BM-derived recipient cells was evaluated using confocal microscopy with three-dimensional image analysis. Immunosuppression with tacrolimus did not affect the frequency of recipient BM-derived cell chimerism as EC or SMC phenotypes. A higher frequency of EC chimerism was found at 14 days as compared to 30 days post-transplantation in allograft hearts. BM-derived recipient cells are recruited to areas of donor vascular injury with intercalation of recipient EC and SMC in the setting of ongoing alloimmune recognition of the allograft. Our findings confirm that immunosuppression with tacrolimus does not affect the frequency of recipient BM-derived cell repopulation at an early time point 14 days post-transplantation. EC repopulation by BM-derived recipient cells was found to be an early event in transplanted allograft hearts, which decreased in frequency over time.
Collapse
Affiliation(s)
- Nana Rezai
- Department of Pathology and Laboratory Medicine, The James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research, St Paul's Hospital-University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | | | |
Collapse
|
45
|
Yamani MH, Cook DJ, Tuzcu EM, Paul P, Ratliff NB, Yu Y, Hobbs R, Rincon G, Bott-Silverman C, Smedira N, Young JB, Starling RC. Systemic Activation of Integrin αVβ3 in Donors with Spontaneous Intracerebral Hemorrhage is Associated with Subsequent Development of Vasculopathy in the Heart Transplant Recipient. J Heart Lung Transplant 2005; 24:1014-8. [PMID: 16102435 DOI: 10.1016/j.healun.2004.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2004] [Revised: 05/27/2004] [Accepted: 06/03/2004] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Recipients of hearts from donors with spontaneous intracerebral hemorrhage (ICH) are at increased risk of allograft vasculopathy compared with trauma donors. We have recently shown that the vitronectin receptor (integrin alpha(V)beta3) is upregulated in transplant vasculopathy. We hypothesized that donor ICH is associated with systemic activation of alpha(V)beta3 in the donor before transplantation. METHODS We evaluated mRNA expressions of alpha(V)beta3 (TaqMan PCR) in endomyocardial biopsy samples at 1-week post-transplant in 20 recipients from ICH donors and 20 recipients from trauma donors. To investigate whether systemic activation of alpha(V)beta3 was present in the donor before transplantation, alpha(V)beta3 expression was also evaluated in the corresponding donor spleen lymphocytes. All patients underwent serial coronary intravascular ultrasound to evaluate for coronary vasculopathy. The baseline characteristics were similar except for increased donor age in the ICH Group. RESULTS The ICH Group showed significant increased mRNA expression of alpha(V)beta3 in the heart biopsy samples (3.8-fold, p = 0.012) and in the corresponding donor spleen lymphocytes (3.5-fold, p = 0.014) compared with the Trauma Group. At 1 year, the ICH Group also showed increased progression of coronary vasculopathy. Multivariate regression analysis found that donor lymphocytic alpha(V)beta3 mRNA expression was independently associated with increased risk of vasculopathy (odds ratio, 1.9; 95% CI, 1.21-3.98, p = 0.03). CONCLUSIONS Our report demonstrates the presence of systemic activation of alpha(V)beta3 in donors with spontaneous intracerebral hemorrhage and its association with the subsequent development of allograft vasculopathy in the recipient.
Collapse
Affiliation(s)
- Mohamad H Yamani
- Department of Cardiovascular Medicine, Kaufman Center for Heart Failure, The Cleveland Clinic Foundation, Ohio, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Hillebrands JL, Onuta G, Rozing J. Role of progenitor cells in transplant arteriosclerosis. Trends Cardiovasc Med 2005; 15:1-8. [PMID: 15795157 DOI: 10.1016/j.tcm.2004.10.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Revised: 10/06/2004] [Accepted: 10/11/2004] [Indexed: 11/21/2022]
Abstract
To date, chronic transplant dysfunction (CTD) is recognized as the major cause of transplant loss long term after transplantation. CTD has the remarkable histologic feature that the luminal areas of the intragraft arteries become obliterated as a result of occlusive neointima formation. Neointimal lesions contain predominantly vascular smooth muscle cells (VSMCs) and extracellular matrix admixed with inflammatory cells. At the luminal side, neointimal lesions are covered with a monolayer of endothelial cells (ECs). The etiology of transplant arteriosclerosis (TA) is largely unknown, and adequate prevention and treatment protocols are not available. In contrast to the largely accepted "response-to-injury" hypothesis for the development of TA that attributes an important role to graft-derived ECs and VSMCs, recent data indicate that host-derived vascular progenitor cells play a major role in the development of TA. The process leading to TA appears to be heterogeneous, and neointimal ECs and VSMCs can be recruited from different sources, possibly depending on the severity and duration of vascular damage. These data suggest a significant role of host-derived circulating EC/VSMC progenitor cells, which may be partly bone marrow derived. Circulating vascular progenitor cells are potential targets for therapeutic intervention to ameliorate TA development. Therefore, identification of mediators and cellular mechanisms that promote recruitment of vascular progenitors to sites of injury is warranted to dissect their detrimental and possible beneficial effects in the development of TA.
Collapse
Affiliation(s)
- Jan-Luuk Hillebrands
- Department of Cell Biology, Section Immunology & Histology, University Medical Center Groningen, A. Deusinglaan 1, NL-9713 AV Groningen, The Netherlands.
| | | | | |
Collapse
|
47
|
Hegner B, Weber M, Dragun D, Schulze-Lohoff E. Differential regulation of smooth muscle markers in human bone marrow-derived mesenchymal stem cells. J Hypertens 2005; 23:1191-202. [PMID: 15894895 DOI: 10.1097/01.hjh.0000170382.31085.5d] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To study smooth-muscle differentiation and de-differentiation of human bone marrow-derived mesenchymal stem cells (MSCs), which have been shown to enter the circulation and to contribute to vascular repair and atherosclerosis. DESIGN Human MSCs from bone marrow were cultured with 20% fetal calf serum (FCS) or with 10% FCS and various concentrations of dimethyl sulfoxide (DMSO). Expression of smooth muscle markers was determined by Western blot analysis and immunofluorescence. For signalling studies, involvement of the mammalian target of rapamycin (mTOR) pathway was tested by treatment with rapamycin. RESULTS MSCs cultured with 20% FCS acquired a smooth muscle-like appearance and expressed the smooth muscle (sm) markers sm-alpha-actin, desmin, sm-calponin and myosin light chain kinase (MLCK). DMSO induced a spindle-like morphology with marked reduction of stress fibers. As judged by Western blot analysis, treatment with 2.5% DMSO strongly downregulated expression of sm-calponin (-85%), short MLCK (-98%) and sm-alpha-actin expression (-51%). Reduced calponin expression was detected by day 2 of treatment with 0.5-2.5% DMSO. After withdrawal of DMSO, MSCs regained high expression of sm-calponin. Treatment with 6 nmol/l rapamycin partly antagonized the effect of DMSO, indicating the involvement of mTOR in regulation of the smooth muscle phenotype of MSCs. CONCLUSIONS DMSO strongly downregulates the smooth muscle markers sm-calponin, short MLCK and sm-alpha-actin in human MSCs, indicating a transition from a smooth muscle-like phenotype to an undifferentiated state by an mTOR-dependent mechanism. Regulating the phenotype of human MSCs may be of relevance for novel therapeutic approaches in atherosclerosis and intimal hyperplasia after vascular injury.
Collapse
Affiliation(s)
- Björn Hegner
- Department of Medicine, Merheim Medical Center, Cologne General Hospital, Germany
| | | | | | | |
Collapse
|
48
|
Abstract
The presence of ectopic tissue in the diseased artery wall is evidence for the presence of multipotential stem cells in the vasculature. Mesenchymal stem cells were first identified in the marrow stroma, and they differentiate along multiple lineages giving rise to cartilage, bone, fat, muscle, and vascular tissue in vitro and in vivo. Transplantation studies show that marrow-derived mesenchymal stem cells appear to enter the circulation and engraft other tissues, including the artery wall, at sites of injury. Recent evidence indicates that mesenchymal stem cells are also present in normal artery wall and microvessels and that they also may enter the circulation, contributing to the population of circulating progenitor cells and engrafting other tissues. Thus, the artery wall is not only a destination but also a source of progenitor cells that have regenerative potential. Although potential artifacts, such as fusion, need to be taken into consideration, these new developments in vascular biology open important therapeutic avenues. A greater understanding of how mesenchymal stem cells from the bone marrow or artery wall bring about vascular regeneration and repair may lead to novel cell-based treatments for cardiovascular disease.
Collapse
Affiliation(s)
- Moeen Abedin
- Department of Medicine, The David Geffen School of Medicine at University of California at Los Angeles, CA 90095-1679, USA
| | | | | |
Collapse
|
49
|
Skaro AI, Liwski RS, O'Neill J, Vessie EL, Zhou J, Hirsch GM, Lee TDG. Impairment of recipient cytolytic activity attenuates allograft vasculopathy. Transpl Immunol 2005; 14:27-35. [PMID: 15814279 DOI: 10.1016/j.trim.2004.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Revised: 12/03/2004] [Accepted: 12/08/2004] [Indexed: 11/21/2022]
Abstract
We investigated the role of CD4+ and CD8+ T subsets as well as T cell cytolytic effector mechanisms in the aortic allograft model of allograft vasculopathy using CD4 and CD8 gene knockout mice (CD4(-/-), CD8(-/-)) and mice deficient in cytolytic effector pathways. Medial apoptosis at 2 weeks was reduced in CD8(-/-) mice and in mice where cytotoxic T cell activity was compromised. At 8 weeks, substantial medial damage was observed in wild-type (WT) and CD4(-/-) recipients but medial preservation was evident in CD8(-/-) mice and in mice with impaired cytotoxic T cell activity. The intima/media ratio, a comprehensive measure of allograft vasculopathy, was similar in WT and CD4(-/-) recipients but was significantly reduced in CD8(-/-) mice and mice with impaired cytotoxic T cell activity. These data indicate that CD8+ T cells contribute to the vascular remodeling that is characteristic of allograft vasculopathy. They also show that CD8+ T cells participate in allograft vasculopathy in the absence of CD4+ T cell help. We further demonstrated that WT mice exhibited robust allograft vasculopathy in the presence of cyclosporin A immunosuppression but that allograft vasculopathy was ablated in cyclosporin-treated CD8(-/-) mice. This supports the hypothesis that non-CD8+ T cell effector mechanisms are sensitive to calcineurin inhibitor therapy but that CD8+ T cell-mediated allograft vasculopathy is refractory to such treatment. Taken together, our data suggest that CD8+ T cells contribute to the induction of vascular remodeling in allograft vasculopathy and provide evidence that novel therapies which target CD8+ T cell effector function might be effective in mitigating AV in the clinical setting.
Collapse
Affiliation(s)
- Anton I Skaro
- Department of Surgery, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7
| | | | | | | | | | | | | |
Collapse
|
50
|
|