1
|
Matthee C, Terre'Blanche G, Legoabe LJ, Janse van Rensburg HD. Exploration of chalcones and related heterocycle compounds as ligands of adenosine receptors: therapeutics development. Mol Divers 2021; 26:1779-1821. [PMID: 34176057 DOI: 10.1007/s11030-021-10257-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022]
Abstract
Adenosine receptors (ARs) are ubiquitously distributed throughout the mammalian body where they are involved in an extensive list of physiological and pathological processes that scientists have only begun to decipher. Resultantly, AR agonists and antagonists have been the focus of multiple drug design and development programmes within the past few decades. Considered to be a privileged scaffold in medicinal chemistry, the chalcone framework has attracted a substantial amount of interest in this regard. Due to the potential liabilities associated with its structure, however, it has become necessary to explore other potentially promising compounds, such as heterocycles, which have successfully been obtained from chalcone precursors in the past. This review aims to summarise the emerging therapeutic importance of adenosine receptors and their ligands, especially in the central nervous system (CNS), while highlighting chalcone and heterocyclic derivatives as promising AR ligand lead compounds.
Collapse
Affiliation(s)
- Chrisna Matthee
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, North West, South Africa
| | - Gisella Terre'Blanche
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, North West, South Africa.,Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, North West, South Africa
| | - Lesetja J Legoabe
- Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, North West, South Africa
| | - Helena D Janse van Rensburg
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, North West, South Africa.
| |
Collapse
|
2
|
Adenosine and ATPγS protect against bacterial pneumonia-induced acute lung injury. Sci Rep 2020; 10:18078. [PMID: 33093565 PMCID: PMC7581771 DOI: 10.1038/s41598-020-75224-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/08/2020] [Indexed: 12/20/2022] Open
Abstract
Lipopolysaccharide (LPS), a component of the outer membrane of gram-negative bacteria, disrupts the alveolar-capillary barrier, triggering pulmonary vascular leak thus inducing acute lung injury (ALI). Extracellular purines, adenosine and ATP, protected against ALI induced by purified LPS. In this study, we investigated whether these purines can impact vascular injury in more clinically-relevant E.coli (non-sterile LPS) murine ALI model. Mice were inoculated with live E. coli intratracheally (i.t.) with or without adenosine or a non-hydrolyzable ATP analog, adenosine 5'-(γ-thio)-triphosphate (ATPγS) added intravenously (i.v.). After 24 h of E. coli treatment, we found that injections of either adenosine or ATPγS 15 min prior or adenosine 3 h after E.coli insult significantly attenuated the E.coli-mediated increase in inflammatory responses. Furthermore, adenosine prevented weight loss, tachycardia, and compromised lung function in E. coli-exposed mice. Accordingly, treatment with adenosine or ATPγS increased oxygen saturation and reduced histopathological signs of lung injury in mice exposed to E. coli. Lastly, lung-targeting gene delivery of adenosine or ATPγS downstream effector, myosin phosphatase, significantly attenuated the E. coli-induced compromise of lung function. Collectively, our study has demonstrated that adenosine or ATPγS mitigates E. coli-induced ALI in mice and may be useful as an adjuvant therapy in future pre-clinical studies.
Collapse
|
3
|
Ko J, Rounds S, Lu Q. Sustained adenosine exposure causes endothelial mitochondrial dysfunction via equilibrative nucleoside transporters. Pulm Circ 2020; 10:2045894020924994. [PMID: 32523687 PMCID: PMC7235668 DOI: 10.1177/2045894020924994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Adenosine is a potent signaling molecule that has paradoxical effects on lung diseases. We have previously demonstrated that sustained adenosine exposure by inhibition of adenosine degradation impairs lung endothelial barrier integrity and causes intrinsic apoptosis through equilibrative nucleoside transporter1/2-mediated intracellular adenosine signaling. In this study, we further demonstrated that sustained adenosine exposure increased mitochondrial reactive oxygen species and reduced mitochondrial respiration via equilibrative nucleoside transporter1/2, but not via adenosine receptor-mediated signaling. We have previously shown that sustained adenosine exposure activates p38 and c-Jun N-terminal kinases in mitochondria. Here, we show that activation of p38 and JNK partially contributed to sustained adenosine-induced mitochondrial reactive oxygen species production. We also found that sustained adenosine exposure promoted mitochondrial fission and increased mitophagy. Finally, mitochondria-targeted antioxidants prevented sustained adenosine exposure-induced mitochondrial fission and improved cell survival. Our results suggest that inhibition of equilibrative nucleoside transporter1/2 and mitochondria-targeted antioxidants may be potential therapeutic approaches for lung diseases associated with sustained elevated adenosine.
Collapse
Affiliation(s)
- Junsuk Ko
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, RI, USA.,MD Anderson Cancer Center and University of Texas Health Science at Houston Graduate School, Houston, TX, USA.,Department of Biochemistry and Molecular Biology, McGovern Medical School, Houston, TX, USA
| | - Sharon Rounds
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, RI, USA.,Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| | - Qing Lu
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, RI, USA.,Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
4
|
Lau CL, Beller JP, Boys JA, Zhao Y, Phillips J, Cosner M, Conaway MR, Petroni G, Charles EJ, Mehaffey JH, Mannem HC, Kron IL, Krupnick AS, Linden J. Adenosine A2A receptor agonist (regadenoson) in human lung transplantation. J Heart Lung Transplant 2020; 39:563-570. [PMID: 32503727 DOI: 10.1016/j.healun.2020.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 12/20/2019] [Accepted: 02/06/2020] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Currently, there are no clinically approved treatments for ischemia-reperfusion injury after lung transplantation. Pre-clinical animal models have demonstrated a promising efficacy of adenosine 2A receptor (A2AR) agonists as a treatment option for reducing ischemia-reperfusion injury. The purpose of this human study, is to conduct a Phase I clinical trial for evaluating the safety of continuous infusion of an A2AR agonist in lung transplant recipients. METHODS An adaptive, two-stage continual reassessment trial was designed to evaluate the safety of regadenoson (A2AR agonist) in the setting of lung transplantation. Continuous infusion of regadenoson was administered to lung transplant recipients that was started at the time of skin incision. Adverse events and dose-limiting toxicities, as pre-determined by a study team and assessed by a clinical team and an independent safety monitor, were the primary end-points for safety in this trial. RESULTS Between January 2018 and March 2019, 14 recipients were enrolled in the trial. Of these, 10 received the maximum infused dose of 1.44 µg/kg/min for 12 hours. No dose-limiting toxicities were observed. The steady-state plasma regadenoson levels sampled before the reperfusion of the first lung were 0.98 ± 0.46 ng/ml. There were no mortalities within 30 days. CONCLUSIONS Regadenoson, an A2AR agonist, can be safely infused in the setting of lung transplantation with no dose-limiting toxicities or drug-related mortality. Although not powered for the evaluation of secondary end-points, the results of this trial and the outcome of pre-clinical studies warrant further investigation with a Phase II randomized controlled trial.
Collapse
Affiliation(s)
- Christine L Lau
- Department of Surgery, University of Maryland, Baltimore, Maryland.
| | - Jared P Beller
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Joshua A Boys
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, University of California, San Diego, California
| | - Yunge Zhao
- Department of Surgery, University of Maryland, Baltimore, Maryland
| | - Jennifer Phillips
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Michael Cosner
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Mark R Conaway
- Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Gina Petroni
- Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Eric J Charles
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - J H Mehaffey
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Hannah C Mannem
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia, Charlottesville, Virginia
| | - Irving L Kron
- Department of Surgery, University of Virginia, Charlottesville, Virginia; Department of Surgery, University of Arizona Health Sciences, Tucson, Arizona
| | | | - Joel Linden
- Division of Developmental Immunology, La Jolla Institute for Immunology and Department of Pharmacology, University of California, San Diego, California
| |
Collapse
|
5
|
Mehaffey JH, Money D, Charles EJ, Schubert S, Piñeros AF, Wu D, Bontha SV, Hawkins R, Teman NR, Laubach VE, Mas VR, Tribble CG, Maluf DG, Sharma AK, Yang Z, Kron IL, Roeser ME. Adenosine 2A Receptor Activation Attenuates Ischemia Reperfusion Injury During Extracorporeal Cardiopulmonary Resuscitation. Ann Surg 2019; 269:1176-1183. [PMID: 31082918 PMCID: PMC6757347 DOI: 10.1097/sla.0000000000002685] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE We tested the hypothesis that systemic administration of an A2AR agonist will reduce multiorgan IRI in a porcine model of ECPR. SUMMARY BACKGROUND DATA Advances in ECPR have decreased mortality after cardiac arrest; however, subsequent IRI contributes to late multisystem organ failure. Attenuation of IRI has been reported with the use of an A2AR agonist. METHODS Adult swine underwent 20 minutes of circulatory arrest, induced by ventricular fibrillation, followed by 6 hours of reperfusion with ECPR. Animals were randomized to vehicle control, low-dose A2AR agonist, or high-dose A2AR agonist. A perfusion specialist using a goal-directed resuscitation protocol managed all the animals during the reperfusion period. Hourly blood, urine, and tissue samples were collected. Biochemical and microarray analyses were performed to identify differential inflammatory markers and gene expression between groups. RESULTS Both the treatment groups demonstrated significantly higher percent reduction from peak lactate after reperfusion compared with vehicle controls. Control animals required significantly more fluid, epinephrine, and higher final pump flow while having lower urine output than both the treatment groups. The treatment groups had lower urine NGAL, an early marker of kidney injury (P = 0.01), lower plasma aspartate aminotransferase, and reduced rate of troponin rise (P = 0.01). Pro-inflammatory cytokines were lower while anti-inflammatory cytokines were significantly higher in the treatment groups. CONCLUSIONS Using a novel and clinically relevant porcine model of circulatory arrest and ECPR, we demonstrated that a selective A2AR agonist significantly attenuated systemic IRI and warrants clinical investigation.
Collapse
Affiliation(s)
- James H Mehaffey
- Department of Surgery, University of Virginia, Charlottesville, VA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Purine nucleosides and nucleotides are released in the extracellular space following cell injury and act as paracrine mediators through a number of dedicated membrane receptors. In particular, extracellular ATP (eATP) significantly influences T-lymphocyte activation and phenotype. The purpose of this review is to discuss the role of ATP signaling in the T-cell-mediated alloimmune response. RECENT FINDINGS In various animal models of solid transplantation, the purinergic axis has been targeted to prevent acute rejection and to promote long-term graft tolerance. The inhibition of ATP-gated P2X receptors has been shown to halt lymphocyte activation, to downregulate both Th1 and Th17 responses and to promote T-regulatory (Treg) cell differentiation. Similarly, the inhibition of ATP signaling attenuated graft-versus-host disease in mice undergoing hematopoietic cell transplantation. Significantly, different drugs targeting the purinergic system have been recently approved for human use and may be a viable therapeutic option for transplant patients. SUMMARY The inhibition of eATP signaling downregulates the alloimmune response, expands Treg cells and promotes graft survival. This robust preclinical evidence and the recent advances in pharmacological research may lead to intriguing clinical applications.
Collapse
|
7
|
van Waarde A, Dierckx RAJO, Zhou X, Khanapur S, Tsukada H, Ishiwata K, Luurtsema G, de Vries EFJ, Elsinga PH. Potential Therapeutic Applications of Adenosine A 2A Receptor Ligands and Opportunities for A 2A Receptor Imaging. Med Res Rev 2017; 38:5-56. [PMID: 28128443 DOI: 10.1002/med.21432] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/31/2016] [Accepted: 11/14/2016] [Indexed: 12/13/2022]
Abstract
Adenosine A2A receptors (A2A Rs) are highly expressed in the human striatum, and at lower densities in the cerebral cortex, the hippocampus, and cells of the immune system. Antagonists of these receptors are potentially useful for the treatment of motor fluctuations, epilepsy, postischemic brain damage, or cognitive impairment, and for the control of an immune checkpoint during immunotherapy of cancer. A2A R agonists may suppress transplant rejection and graft-versus-host disease; be used to treat inflammatory disorders such as asthma, inflammatory bowel disease, and rheumatoid arthritis; be locally applied to promote wound healing and be employed in a strategy for transient opening of the blood-brain barrier (BBB) so that therapeutic drugs and monoclonal antibodies can enter the brain. Increasing A2A R signaling in adipose tissue is also a potential strategy to combat obesity. Several radioligands for positron emission tomography (PET) imaging of A2A Rs have been developed in recent years. This review article presents a critical overview of the potential therapeutic applications of A2A R ligands, the use of A2A R imaging in drug development, and opportunities and limitations of PET imaging in future research.
Collapse
Affiliation(s)
- Aren van Waarde
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, 1, 9713 GZ, Groningen, The Netherlands
| | - Rudi A J O Dierckx
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, 1, 9713 GZ, Groningen, The Netherlands.,Department of Nuclear Medicine, University Hospital, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium
| | - Xiaoyun Zhou
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, 1, 9713 GZ, Groningen, The Netherlands
| | - Shivashankar Khanapur
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, 1, 9713 GZ, Groningen, The Netherlands
| | - Hideo Tsukada
- Central Research Laboratory, Hamamatsu Photonics K.K., Hamakita, Hamamatsu, Shizuoka 434-8601, Japan
| | - Kiichi Ishiwata
- Research Institute of Cyclotron and Drug Discovery Research, Southern TOHOKU Research Institute for Neuroscience, 7-115 Yatsuyamada, Koriyama, 963-8052, Japan.,Department of Biofunctional Imaging, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan.,Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Gert Luurtsema
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, 1, 9713 GZ, Groningen, The Netherlands
| | - Erik F J de Vries
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, 1, 9713 GZ, Groningen, The Netherlands
| | - Philip H Elsinga
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, 1, 9713 GZ, Groningen, The Netherlands
| |
Collapse
|
8
|
Ex Vivo Perfusion With Adenosine A2A Receptor Agonist Enhances Rehabilitation of Murine Donor Lungs After Circulatory Death. Transplantation 2016; 99:2494-503. [PMID: 26262504 DOI: 10.1097/tp.0000000000000830] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Ex vivo lung perfusion (EVLP) enables assessment and rehabilitation of marginal donor lungs before transplantation. We previously demonstrated that adenosine A2A receptor (A2AR) agonism attenuates lung ischemia-reperfusion injury. The current study utilizes a novel murine EVLP model to test the hypothesis that A2AR agonist enhances EVLP-mediated rehabilitation of donation after circulatory death (DCD) lungs. METHODS Mice underwent euthanasia and 60 minutes warm ischemia, and lungs were flushed with Perfadex and underwent cold static preservation (CSP, 60 minutes). Three groups were studied: no EVLP (CSP), EVLP with Steen solution for 60 minutes (EVLP), and EVLP with Steen solution supplemented with ATL1223, a selective A2AR agonist (EVLP + ATL1223). Lung function, wet/dry weight, cytokines and neutrophil numbers were measured. Microarrays were performed using the Affymetrix GeneChip Mouse Genome 430A 2.0 Array. RESULTS Ex vivo lung perfusion significantly improved lung function versus CSP, which was further, significantly improved by EVLP + ATL1223. Lung edema, cytokines, and neutrophil counts were reduced after EVLP and further, significantly reduced after EVLP + ATL1223. Gene array analysis revealed differential expression of 1594 genes after EVLP, which comprise canonical pathways involved in inflammation and innate immunity including IL-1, IL-8, IL-6, and IL-17 signaling. Several pathways were uniquely regulated by EVLP + ATL1223 including the downregulation of genes involved in IL-1 signaling, such as ADCY9, ECSIT, IRAK1, MAPK12, and TOLLIP. CONCLUSIONS Ex vivo lung perfusion modulates proinflammatory genes and reduces pulmonary dysfunction, edema, and inflammation in DCD lungs, which are further reduced by A2AR agonism. This murine EVLP model provides a novel platform to study rehabilitative mechanisms of DCD lungs.
Collapse
|
9
|
Gonzales JN, Gorshkov B, Varn MN, Zemskova MA, Zemskov EA, Sridhar S, Lucas R, Verin AD. Protective effect of adenosine receptors against lipopolysaccharide-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol 2014; 306:L497-507. [PMID: 24414256 DOI: 10.1152/ajplung.00086.2013] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Acute lung injury and acute respiratory distress syndrome (ALI/ARDS) affect 200,000 people a year in the USA. Pulmonary vascular and specifically endothelial cell (EC) barrier compromise is a hallmark of these diseases. We have recently shown that extracellular adenosine enhances human pulmonary (EC) barrier via activation of adenosine receptors (ARs) in cell cultures. On the basis of these data, we hypothesized that activation of ARs might exert barrier-protective effects in a model of ALI/ARDS in mice. To test this hypothesis, we examined the effects of pre- and posttreatment of adenosine and 5'-N-ethylcarboxamidoadenosine (NECA), a nonselective stable AR agonist, on LPS-induced lung injury. Mice were given vehicle or LPS intratracheally followed by adenosine, NECA, or vehicle instilled via the internal jugular vein. Postexperiment cell counts, Evans Blue Dye albumin (EBDA) extravasation, levels of proteins, and inflammatory cytokines were analyzed. Harvested lungs were used for histology and myeloperoxidase studies. Mice challenged with LPS alone demonstrated an inflammatory response typical of ALI. Cell counts, EBDA extravasation, as well as levels of proteins and inflammatory cytokines were decreased in adenosine-treated mice. Histology displayed reduced infiltration of neutrophils. NECA had a similar effect on LPS-induced vascular barrier compromise. Importantly, posttreatment with adenosine or NECA recovers lung vascular barrier and reduces inflammation induced by LPS challenge. Furthermore, adenosine significantly attenuated protein degradation of A2A and A3 receptors induced by LPS. Collectively, our results demonstrate that activation of ARs protects and restores vascular barrier functions and reduces inflammation in LPS-induced ALI.
Collapse
Affiliation(s)
- Joyce N Gonzales
- Assistant Prof. of Medicine, Div. of Pulmonary and Critical Care Medicine, Georgia Regents Univ., Rm. BBR-5513, 1120 15th St., Augusta, GA 30912.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
|
11
|
Adenosine A(2A) receptor activation supports an atheroprotective cholesterol balance in human macrophages and endothelial cells. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:407-16. [PMID: 23168167 DOI: 10.1016/j.bbalip.2012.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 11/07/2012] [Accepted: 11/12/2012] [Indexed: 11/22/2022]
Abstract
The adenosine A(2A) receptor (A(2A)R) plays an important role in the regulation of inflammatory and immune responses. Our previous work has demonstrated that A(2A)R agonists exhibit atheroprotective effects by increasing expression of reverse cholesterol transport proteins in cultured human macrophages. This study explores the impact of pharmacologic activation/inhibition and gene silencing of A(2A)R on cholesterol homeostasis in both THP-1 human monocytes/macrophages and primary human aortic endothelial cells (HAEC). THP-1 human monocytes/macrophages and HAEC exposed to the A(2A)R-specific agonist ATL313 exhibited upregulation of proteins responsible for cholesterol efflux: the ABCA1 and G1 transporters. Further, activation of A(2A)R led to upregulation of the cholesterol metabolizing enzyme P450 27-hydroxylase, accompanied by intracellular changes in level of oxysterols. We demonstrate that anti-atherogenic properties of A(2A)R activation are not limited to the regulation of lipid efflux in vasculature, but include protection from lipid overload in macrophages, particularly via suppression of the CD36 scavenger receptor. The reduced lipid accumulation manifests directly as a diminution in foam cell transformation. In THP-1 macrophages, either A(2A)R pharmacological blockade or gene silencing promote lipid accumulation and enhance foam cell transformation. Our pre-clinical data provides evidence suggesting that A(2A)R stimulation by ATL313 has the potential to be a viable therapeutic strategy for cardiovascular disease prevention, particularly in patients with elevated risk due to immune/inflammatory disorders.
Collapse
|
12
|
Lu Q, Newton J, Hsiao V, Shamirian P, Blackburn MR, Pedroza M. Sustained adenosine exposure causes lung endothelial barrier dysfunction via nucleoside transporter-mediated signaling. Am J Respir Cell Mol Biol 2012; 47:604-13. [PMID: 22744860 DOI: 10.1165/rcmb.2012-0012oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Previous studies by our group as well as others have shown that acute adenosine exposure enhances lung vascular endothelial barrier integrity and protects against increased permeability lung edema. In contrast, there is growing evidence that sustained adenosine exposure has detrimental effects on the lungs, including lung edema. It is well established that adenosine modulates lung inflammation. However, little is known concerning the effect of sustained adenosine exposure on lung endothelial cells (ECs), which are critical to the maintenance of the alveolar-capillary barrier. We show that exogenous adenosine plus adenosine deaminase inhibitor caused sustained elevation of adenosine in lung ECs. This sustained adenosine exposure decreased EC barrier function, elevated cellular reactive oxygen species levels, and activated p38, JNK, and RhoA. Inhibition of equilibrative nucleoside transporters (ENTs) prevented sustained adenosine-induced p38 and JNK activation and EC barrier dysfunction. Inhibition of p38, JNK, or RhoA also partially attenuated sustained adenosine-induced EC barrier dysfunction. These data indicate that sustained adenosine exposure causes lung EC barrier dysfunction via ENT-dependent intracellular adenosine uptake and subsequent activation of p38, JNK, and RhoA. The antioxidant N-acetylcysteine and the NADPH inhibitor partially blunted sustained adenosine-induced JNK activation but were ineffective in attenuation of p38 activation or barrier dysfunction. p38 was activated exclusively in mitochondria, whereas JNK was activated in mitochondria and cytoplasm by sustained adenosine exposure. Our data further suggest that sustained adenosine exposure may cause mitochondrial oxidative stress, leading to activation of p38, JNK, and RhoA in mitochondria and resulting in EC barrier dysfunction.
Collapse
Affiliation(s)
- Qing Lu
- Alpert Medical School of Brown University, Providence VA Medical Center, Research Services, 830 Chalkstone Avenue, Providence, RI 02908, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Adenosine A2A receptors induced on iNKT and NK cells reduce pulmonary inflammation and injury in mice with sickle cell disease. Blood 2010; 116:5010-20. [PMID: 20798237 DOI: 10.1182/blood-2010-06-290643] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We showed previously that pulmonary function and arterial oxygen saturation in NY1DD mice with sickle cell disease (SCD) are improved by depletion of invariant natural killer T (iNKT) cells or blockade of their activation. Here we demonstrate that SCD causes a 9- and 6-fold induction of adenosine A(2A) receptor (A(2A)R) mRNA in mouse pulmonary iNKT and natural killer (NK) cells, respectively. Treating SCD mice with the A(2A)R agonist ATL146e produced a dose-dependent reversal of pulmonary dysfunction with maximal efficacy at 10 ng/kg/minute that peaked within 3 days and persisted throughout 7 days of continuous infusion. Crossing NY1DD mice with Rag1(-/-) mice reduced pulmonary injury that was restored by adoptive transfer of 10(6) purified iNKT cells. Reconstituted injury was reversed by ATL146e unless the adoptively transferred iNKT cells were pretreated with the A(2A)R alkylating antagonist, FSPTP (5-amino-7-[2-(4-fluorosulfonyl)phenylethyl]-2-(2-furyl)-pryazolo[4,3-ε]-1,2,4-triazolo[1,5-c]pyrimidine), which completely prevented pro-tection. In NY1DD mice exposed to hypoxia-reoxygenation, treatment with ATL146e at the start of reoxygenation prevented further lung injury. Together, these data indicate that activation of induced A(2A)Rs on iNKT and NK cells in SCD mice is sufficient to improve baseline pulmonary function and prevent hypoxia-reoxygenation-induced exacerbation of pulmonary injury. A(2A) agonists have promise for treating diseases associated with iNKT or NK cell activation.
Collapse
|
14
|
Ohtsuka T, Changelian PS, Bouïs D, Noon K, Harada H, Lama VN, Pinsky DJ. Ecto-5'-nucleotidase (CD73) attenuates allograft airway rejection through adenosine 2A receptor stimulation. THE JOURNAL OF IMMUNOLOGY 2010; 185:1321-9. [PMID: 20548026 DOI: 10.4049/jimmunol.0901847] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
There are multiple drivers of leukocyte recruitment in lung allografts that contribute to lymphocytic bronchitis (LB) and bronchiolitis obliterans (BO). The innate mechanisms driving (or inhibiting) leukocyte trafficking to allografts remain incompletely understood. This study tested the hypothesis that CD73 (ecto-5'nucleotidase), an enzyme that catalyzes the conversion of AMP to adenosine, is a critical negative regulator of LB and BO. Implantation of tracheal allografts from wild type (WT) mice into CD73(-/-) recipients revealed a striking increase in airway luminal obliteration at 7 d (62 +/- 4% and 47 +/- 5% for CD73(-/-) and WT allograft recipients, respectively; p = 0.046). There was also a concordant increase in CD3(+) lymphocytic infiltration (523 +/- 41 cells and 313 +/- 43 cells for CD73(-/-) and WT allograft recipients, respectively; p = 0.013). Because real-time PCR revealed a 43-fold upregulation of mRNA for the adenosine A2A receptor (A2AR) in WT allografts compared with WT isografts (p = 0.032), additional experiments were performed to determine whether the protective effect of CD73 was due to generation of adenosine and its stimulation of the A2AR. Treatment of WT recipients with an A2AR agonist significantly reduced CD3(+) lymphocyte infiltration and airway luminal obliteration; similar treatment of CD73(-/-) recipients rescued them from LB and airway obliteration. These data implicate CD73 acting through adenosine generation and its stimulation of the A2AR as a critical negative modulator of lymphocyte recruitment into airway allografts. The CD73/adenosine axis might be a new therapeutic target to prevent BO.
Collapse
Affiliation(s)
- Takashi Ohtsuka
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Lu Q, Harrington EO, Newton J, Casserly B, Radin G, Warburton R, Zhou Y, Blackburn MR, Rounds S. Adenosine protected against pulmonary edema through transporter- and receptor A2-mediated endothelial barrier enhancement. Am J Physiol Lung Cell Mol Physiol 2010; 298:L755-67. [PMID: 20228181 DOI: 10.1152/ajplung.00330.2009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have previously demonstrated that adenosine plus homocysteine enhanced endothelial basal barrier function and protected against agonist-induced barrier dysfunction in vitro through attenuation of RhoA activation by inhibition of isoprenylcysteine-O-carboxyl methyltransferase. In the current study, we tested the effect of elevated adenosine on pulmonary endothelial barrier function in vitro and in vivo. We noted that adenosine alone dose dependently enhanced endothelial barrier function. While adenosine receptor A(1) or A(3) antagonists were ineffective, an adenosine transporter inhibitor, NBTI, or a combination of DPMX and MRS1754, antagonists for adenosine receptors A(2A) and A(2B), respectively, partially attenuated the barrier-enhancing effect of adenosine. Similarly, inhibition of both A(2A) and A(2B) receptors with siRNA also blunted the effect of adenosine on barrier function. Interestingly, inhibition of both transporters and A(2A)/A(2B) receptors completely abolished adenosine-induced endothelial barrier enhancement. The adenosine receptor A(2A) and A(2B) agonist, NECA, also significantly enhanced endothelial barrier function. These data suggest that both adenosine transporters and A(2A) and A(2B) receptors are necessary for exerting maximal effect of adenosine on barrier enhancement. We also found that adenosine enhanced Rac1 GTPase activity and overexpression of dominant negative Rac1 attenuated adenosine-induced increases in focal adhesion complexes. We further demonstrated that elevation of cellular adenosine by inhibition of adenosine deaminase with Pentostatin significantly enhanced endothelial basal barrier function, an effect that was also associated with enhanced Rac1 GTPase activity and with increased focal adhesion complexes and adherens junctions. Finally, using a non-inflammatory acute lung injury (ALI) model induced by alpha-naphthylthiourea, we found that administration of Pentostatin, which elevated lung adenosine level by 10-fold, not only attenuated the development of edema before ALI but also partially reversed edema after ALI. The data suggest that adenosine deaminase inhibition may be useful in treatment of pulmonary edema in settings of ALI.
Collapse
Affiliation(s)
- Qing Lu
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island 02908, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Adenosine is an endogenous autocoid that regulates a multitude of bodily functions. Its anti-inflammatory actions are well known to rheumatologists since it mediates many of the anti-inflammatory effects of a number of antirheumatic drugs such as methotrexate. However, inflammatory and tissue regenerative responses are intricately linked, with wound healing being a prime example. It has only recently been appreciated that adenosine has a key role in tissue regenerative and fibrotic processes. An understanding of these processes may shed new light on potential therapeutic options in diseases such as scleroderma where tissue fibrosis features prominently.
Collapse
|
17
|
Abstract
T cells must integrate multiple environmental cues when deciding whether to mount an immunogenic or tolerogenic response. Since not all self-reactive T cells are eliminated during thymic development, mechanisms of peripheral tolerance such as T cell anergy contribute to preventing autoimmunity. Recent studies have implicated extracellular adenosine and the adenosine A(2A) receptor as playing an important role in inhibiting T cell effector function. Herein, we review the current literature regarding T cell anergy and the emerging literature implicating the A(2A) receptor as critical regulator of immune activation. Finally, we present evidence to suggest a possible role for adenosine A(2A) receptor signaling in T cell anergy.
Collapse
Affiliation(s)
- Paul E Zarek
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
| | | |
Collapse
|
18
|
Zhou Y, Schneider DJ, Blackburn MR. Adenosine signaling and the regulation of chronic lung disease. Pharmacol Ther 2009; 123:105-16. [PMID: 19426761 PMCID: PMC2743314 DOI: 10.1016/j.pharmthera.2009.04.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 04/09/2009] [Indexed: 12/20/2022]
Abstract
Chronic lung diseases such as asthma, chronic obstructive pulmonary disease and interstitial lung disease are characterized by inflammation and tissue remodeling processes that compromise pulmonary function. Adenosine is produced in the inflamed and damaged lung where it plays numerous roles in the regulation of inflammation and tissue remodeling. Extracellular adenosine serves as an autocrine and paracrine signaling molecule by engaging cell surface adenosine receptors. Preclinical and cellular studies suggest that adenosine plays an anti-inflammatory role in processes associated with acute lung disease, where activation of the A(2A)R and A(2B)R has promising implications for the treatment of these disorders. In contrast, there is growing evidence that adenosine signaling through the A(1)R, A(2B)R and A(3)R may serve pro-inflammatory and tissue remodeling functions in chronic lung diseases. This review discusses the current progress of research efforts and clinical trials aimed at understanding the complexities of these signaling pathway as they pertain to the development of treatment strategies for chronic lung diseases.
Collapse
MESH Headings
- Acute Disease
- Adenosine/metabolism
- Adenosine Deaminase/genetics
- Adenosine Deaminase/physiology
- Animals
- Chronic Disease
- Disease Models, Animal
- Humans
- Lung Diseases, Interstitial/drug therapy
- Lung Diseases, Interstitial/immunology
- Lung Diseases, Interstitial/metabolism
- Lung Diseases, Interstitial/pathology
- Lung Diseases, Obstructive/drug therapy
- Lung Diseases, Obstructive/immunology
- Lung Diseases, Obstructive/metabolism
- Lung Diseases, Obstructive/pathology
- Purinergic P1 Receptor Agonists
- Purinergic P1 Receptor Antagonists
- Receptors, Purinergic P1/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Yang Zhou
- Department of Biochemistry and Molecular Biology, The University of Texas-Houston Medical School, 6431 Fannin St., Houston, Texas, 77030
| | - Daniel J. Schneider
- Department of Biochemistry and Molecular Biology, The University of Texas-Houston Medical School, 6431 Fannin St., Houston, Texas, 77030
| | - Michael R. Blackburn
- Department of Biochemistry and Molecular Biology, The University of Texas-Houston Medical School, 6431 Fannin St., Houston, Texas, 77030
| |
Collapse
|
19
|
Sharma AK, Linden J, Kron IL, Laubach VE. Protection from pulmonary ischemia-reperfusion injury by adenosine A2A receptor activation. Respir Res 2009; 10:58. [PMID: 19558673 PMCID: PMC2711962 DOI: 10.1186/1465-9921-10-58] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 06/26/2009] [Indexed: 11/29/2022] Open
Abstract
Background Lung ischemia-reperfusion (IR) injury leads to significant morbidity and mortality which remains a major obstacle after lung transplantation. However, the role of various subset(s) of lung cell populations in the pathogenesis of lung IR injury and the mechanisms of cellular protection remain to be elucidated. In the present study, we investigated the effects of adenosine A2A receptor (A2AAR) activation on resident lung cells after IR injury using an isolated, buffer-perfused murine lung model. Methods To assess the protective effects of A2AAR activation, three groups of C57BL/6J mice were studied: a sham group (perfused for 2 hr with no ischemia), an IR group (1 hr ischemia + 1 hr reperfusion) and an IR+ATL313 group where ATL313, a specific A2AAR agonist, was included in the reperfusion buffer after ischemia. Lung injury parameters and pulmonary function studies were also performed after IR injury in A2AAR knockout mice, with or without ATL313 pretreatment. Lung function was assessed using a buffer-perfused isolated lung system. Lung injury was measured by assessing lung edema, vascular permeability, cytokine/chemokine activation and myeloperoxidase levels in the bronchoalveolar fluid. Results After IR, lungs from C57BL/6J wild-type mice displayed significant dysfunction (increased airway resistance, pulmonary artery pressure and decreased pulmonary compliance) and significant injury (increased vascular permeability and edema). Lung injury and dysfunction after IR were significantly attenuated by ATL313 treatment. Significant induction of TNF-α, KC (CXCL1), MIP-2 (CXCL2) and RANTES (CCL5) occurred after IR which was also attenuated by ATL313 treatment. Lungs from A2AAR knockout mice also displayed significant dysfunction, injury and cytokine/chemokine production after IR, but ATL313 had no effect in these mice. Conclusion Specific activation of A2AARs provides potent protection against lung IR injury via attenuation of inflammation. This protection occurs in the absence of circulating blood thereby indicating a protective role of A2AAR activation on resident lung cells such as alveolar macrophages. Specific A2AAR activation may be a promising therapeutic target for the prevention or treatment of pulmonary graft dysfunction in transplant patients.
Collapse
Affiliation(s)
- Ashish K Sharma
- Department of Surgery, University of Virginia Health System, Charlottesville, Virginia, USA.
| | | | | | | |
Collapse
|
20
|
Adenosine A2A receptor is a unique angiogenic target of HIF-2alpha in pulmonary endothelial cells. Proc Natl Acad Sci U S A 2009; 106:10684-9. [PMID: 19541651 DOI: 10.1073/pnas.0901326106] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hypoxia, through the hypoxia-inducible transcription factors HIF-1alpha and HIF-2alpha (HIFs), induces angiogenesis by up-regulating a common set of angiogenic cytokines. Unlike HIF-1alpha, which regulates a unique set of genes, most genes regulated by HIF-2alpha overlap with those induced by HIF-1alpha. Thus, the unique contribution of HIF-2alpha remains largely obscure. By using adenoviral mutant HIF-1alpha and adenoviral mutant HIF-2alpha constructs, where the HIFs are transcriptionally active under normoxic conditions, we show that HIF-2alpha but not HIF-1alpha regulates adenosine A(2A) receptor in primary cultures of human lung endothelial cells. Further, siRNA knockdown of HIF-2alpha completely inhibits hypoxic induction of A(2A) receptor. Promoter studies show a 2.5-fold induction of luciferase activity with HIF-2alpha cotransfection. Analysis of the A(2A) receptor gene promoter revealed a hypoxia-responsive element in the region between -704 and -595 upstream of the transcription start site. By using a ChIP assay, we demonstrate that HIF-2alpha binding to this region is specific. In addition, we demonstrate that A(2A) receptor has angiogenic potential, as assessed by increases in cell proliferation, cell migration, and tube formation. Additional data show increased expression of A(2A) receptor in human lung tumor cancer samples relative to adjacent normal lung tissue. These data also demonstrate that A(2A) receptor is regulated by hypoxia and HIF-2alpha in human lung endothelial cells but not in mouse-derived endothelial cells.
Collapse
|
21
|
Abstract
Extracellular adenosine is produced in a coordinated manner from cells following cellular challenge or tissue injury. Once produced, it serves as an autocrine- and paracrine-signaling molecule through its interactions with seven-membrane-spanning G-protein-coupled adenosine receptors. These signaling pathways have widespread physiological and pathophysiological functions. Immune cells express adenosine receptors and respond to adenosine or adenosine agonists in diverse manners. Extensive in vitro and in vivo studies have identified potent anti-inflammatory functions for all of the adenosine receptors on many different inflammatory cells and in various inflammatory disease processes. In addition, specific proinflammatory functions have also been ascribed to adenosine receptor activation. The potent effects of adenosine signaling on the regulation of inflammation suggest that targeting specific adenosine receptor activation or inactivation using selective agonists and antagonists could have important therapeutic implications in numerous diseases. This review is designed to summarize the current status of adenosine receptor signaling in various inflammatory cells and in models of inflammation, with an emphasis on the advancement of adenosine-based therapeutics to treat inflammatory disorders.
Collapse
Affiliation(s)
- Michael R Blackburn
- Department of Biochemistry and Molecular Biology, The University of Texas-Houston Medical School, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
22
|
Koizumi S, Odashima M, Otaka M, Jin M, Linden J, Watanabe S, Ohnishi H. Attenuation of gastric mucosal inflammation induced by indomethacin through activation of the A2A adenosine receptor in rats. J Gastroenterol 2009; 44:419-25. [PMID: 19333545 PMCID: PMC3328190 DOI: 10.1007/s00535-009-0028-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Accepted: 12/15/2008] [Indexed: 02/04/2023]
Abstract
BACKGROUND Nonsteroidal anti-inflammatory drugs (NSAIDs) such as indomethacin induce gastric mucosal lesions in part by the activation of inflammatory cells and the production of proinflammatory cytokines. The activation of adenosine A(2A) receptors inhibits inflammation by increasing cyclic AMP in leukocytes and reducing both the production of various proinflammatory cytokines and neutrophil chemotaxis. The aim of present study was to determine whether administration of an orally active adenosine A(2A) receptor agonist (4-[3-[6-amino-9-(5-cyclopropylcarbamoyl-3,4-dihydroxy-tetrahydro-furan-2-yl)-9H-purin-2-yl]-prop-2-ynyl]-piperidine-1-carboxylic acid methyl ester; ATL-313) ameliorated indomethacin-induced gastric mucosal lesions in rats. METHODS Gastric lesions were produced by oral gavage of indomethacin (30 mg/kg). ATL-313 (1-10 microg/kg) was given orally just before the indomethacin administration. RESULTS The ulcer index induced by indomethacin was significantly (>50%) reduced by pretreatment with ATL-313 and this effect was blocked completely by the addition of equimolar ZM241385, a selective A(2A) receptor antagonist. The gastric content of myeloperoxidase (MPO) and proinflammatory cytokines was significantly reduced by 10 microg/kg ATL-313, but gastric mucosal prostaglandin 2 (PGE2) was not affected. CONCLUSION We conclude that ATL-313 does not inhibit the mucosal damaging effect of indomethacin, but it does block secondary injury due to stomach inflammation. A(2A) agonists may represent a class of new therapeutic drugs for NSAID-induced gastric ulcers.
Collapse
Affiliation(s)
- Shigeto Koizumi
- Department of Gastroenterology, Akita University School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Masaru Odashima
- Department of Gastroenterology, Akita University School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Michiro Otaka
- Department of Gastroenterology, Juntendo University, Tokyo, Japan
| | - Mario Jin
- Department of Gastroenterology, Akita University School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Joel Linden
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Sumio Watanabe
- Department of Gastroenterology, Juntendo University, Tokyo, Japan
| | - Hirohide Ohnishi
- Department of Gastroenterology, Akita University School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| |
Collapse
|
23
|
Yang Z, Linden J, Berr SS, Kron IL, Beller GA, French BA. Timing of adenosine 2A receptor stimulation relative to reperfusion has differential effects on infarct size and cardiac function as assessed in mice by MRI. Am J Physiol Heart Circ Physiol 2008; 295:H2328-35. [PMID: 18849340 DOI: 10.1152/ajpheart.00091.2008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The activation of adenosine 2A receptors before reperfusion following coronary artery occlusion reduces infarct size and improves ejection fraction (EF). In this study, we examined the effects of delaying treatment with the adenosine 2A receptor agonist ATL146e (ATL) until 1 h postreperfusion. The infarct size and EF were serially assessed by gadolinium-diethylenetriaminepentaacetic acid-enhanced MRI in C57BL/6 mice at 1 and 24 h postreperfusion. The infarct size was also assessed by 2,3,5-triphenyltetrazolium chloride staining at 24 h. Mice were treated with ATL (10 microg/kg ip) either 2 min before reperfusion (early ATL) or 1 h postreperfusion (late ATL) following the 45-min coronary occlusion. The two methods used to assess infarct size at 24 h postreperfusion (MRI and 2,3,5-triphenyltetrazolium chloride) showed an excellent correlation (R=0.96). The risk region, determined at 24 h postreperfusion, was comparable between the control and ATL-treated groups. The infarct size by MRI at 1 versus 24 h postreperfusion was 25+/-1 vs. 26+/-1% of left ventricular mass (means+/-SE) in control mice, 16+/-2 versus 17+/-2% in early-ATL mice, and 24+/-2 versus 25+/-2% in late-ATL mice (intragroup, P=not significant; and intergroup, early ATL vs. control or late ATL, P<0.05). EF was reduced in control mice but was largely preserved between 1 and 24 h in both early-ATL and late-ATL mice (P<0.05). In conclusion, after coronary occlusion in mice, the extent of myocellular death due to ischemia-reperfusion injury is 95% complete within 1 h of reperfusion. The infarct size was significantly reduced by ATL when given just before reperfusion, but not 1 h postreperfusion. Either treatment window helped preserve the EF between 1 and 24 h postreperfusion.
Collapse
Affiliation(s)
- Zequan Yang
- Department of Surgery, University of Virginia, MR5 Bldg. Rm. 1219, Box 800759, 415 Lane Rd., Charlottesville, VA 22903, USA
| | | | | | | | | | | |
Collapse
|
24
|
Ellman PI, Reece TB, Law MG, Gazoni LM, Singh R, Laubach VE, Linden J, Tribble CG, Kron IL. Adenosine A2A Activation Attenuates Nontransplantation Lung Reperfusion Injury. J Surg Res 2008; 149:3-8. [DOI: 10.1016/j.jss.2007.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 08/01/2007] [Accepted: 08/14/2007] [Indexed: 11/17/2022]
|
25
|
Brown JB, Lee G, Grimm GR, Barrett TA. Therapeutic benefit of pentostatin in severe IL-10-/- colitis. Inflamm Bowel Dis 2008; 14:880-7. [PMID: 18340641 PMCID: PMC3065943 DOI: 10.1002/ibd.20410] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Pentostatin, an adenosine deaminase (ADA) inhibitor, is a purine antimetabolite used for the treatment of leukemias. ADA inhibition blunts expansion of proliferating lymphocytes and increases adenosine release, a potent anti-inflammatory molecule. Human inflammatory bowel disease (IBD) is driven by expansion of effector T cells (T(eff)) that overwhelm reulatory T cells (T(reg)) and propagate innate immune reponses. Here we study the therapeutic benefits of ADA inhibition to impair T(eff) cell expansion and reduce inflammatory cytokine release in IL-10-deficient (IL-10-/-) mice. METHODS Colitis was induced in IL-10-/- mice by administering piroxicam for two weeks. Mice were treated with daily pentostatin or phosphate-buffered saline for 1 week and effects on tissue inflammation, lymphocyte numbers and cytokine production examined. RESULTS Pentostatin reduced inflammation by >50% and nearly normalized serum amyloid A levels. Lymphocyte expansions in the colon and mesenteric lymph node (MLN) (3.5-fold and >5-fold respectively) dropped by >50-90%. Pro-inflammatory factors in the colon and MLN (IL-1beta, IFN-gamma, IL-6, CXCL10, TNF) dropped whereas FoxP3 and TGF-beta were unchanged. Reductions in cytokine production from equivalent numbers of T cells from pentostatin-treated mice after in vitro (36h) or in vivo (3h) activation suggested anti-inflammatory effects of pentostatin independent of lymphodepletion contributed to its therapeutic benefit. Analysis of mucosal lymphocyte subsets suggested pentostatin reduced numbers of effector CD4+ CD69+ T cells, while sparing CD4+ CD62L+ T cells. CONCLUSIONS Pentostatin dosages that avoid severe lymphocyte depletion effectively treat colitis by impairing T(eff) cell expansion and reducing pro-inflammatory cytokine production while preserving regulatory T(reg) populations and function.
Collapse
Affiliation(s)
- Jeffrey B. Brown
- Department of Pediatrics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Goo Lee
- Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Gery R. Grimm
- Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Terrence A. Barrett
- Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
26
|
Li W, Dai S, An J, Li P, Chen X, Xiong R, Liu P, Wang H, Zhao Y, Zhu M, Liu X, Zhu P, Chen JF, Zhou Y. Chronic but not acute treatment with caffeine attenuates traumatic brain injury in the mouse cortical impact model. Neuroscience 2007; 151:1198-207. [PMID: 18207647 DOI: 10.1016/j.neuroscience.2007.11.020] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 10/23/2007] [Accepted: 11/30/2007] [Indexed: 11/28/2022]
Abstract
Caffeine, the most consumed psychoactive drug and non-specific adenosine receptor antagonist, has recently been shown to exert a neuroprotective effect against brain injury in animal models of Parkinson's disease (PD) and stroke. However, the effects of caffeine on traumatic brain injury (TBI) are not known. In this study, we investigated the effects of acute and chronic caffeine treatment on brain injury in a cortical-impact model of TBI in mice. Following TBI, neurological deficits, cerebral edema, as well as inflammatory cell infiltration were all significantly attenuated in mice pretreated chronically (for 3 weeks) with caffeine in drinking water compared with the mice pretreated with saline. Furthermore, we found that chronic caffeine treatment attenuated glutamate release and inflammatory cytokine production, effects that were correlated with an upregulation of brain A1 receptor mRNA. By contrast, acute treatment with caffeine (i.p. injection, 30 min before TBI) was not effective in protecting against TBI-induced brain injury. These results suggest that chronic (but not acute) caffeine treatment attenuates brain injury, possibly by A1 receptor-mediated suppression of glutamate release and inhibition of excessive inflammatory cytokine production. These results highlight the potential benefit of chronic caffeine intake for preventing TBI and provide a rationale for the epidemiological investigation of the potential association between TBI and human caffeine intake.
Collapse
Affiliation(s)
- W Li
- Molecular Biology Center, Research Institute of Surgery and Daping Hospital, 10 Changjiang Zhilu, Third Military Medical University, Chongqing 400042, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Additive protection against lung ischemia-reperfusion injury by adenosine A2A receptor activation before procurement and during reperfusion. J Thorac Cardiovasc Surg 2007; 135:156-65. [PMID: 18179933 DOI: 10.1016/j.jtcvs.2007.08.041] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 07/20/2007] [Accepted: 08/01/2007] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Adenosine A2A receptor activation during reperfusion improves lung ischemia-reperfusion injury. In this study we sought to determine whether pretreatment of rabbits with a potent and selective adenosine A2A receptor agonist, ATL-313, before transplantation or whether adding ATL-313 to the preservation solution results in equivalent or additional protection compared with ATL-313 added during reperfusion. METHODS An isolated, ventilated, ex vivo blood-perfused rabbit lung model was used. All groups underwent 2 hours of reperfusion after 18 hours of cold ischemia (4 degrees C). ATL-313 was administered 1 hour before ischemia intravenously, with the preservation solution, and/or during reperfusion. RESULTS Both pretreatment of donor animals with ATL-313 or adding ATL-313 just during reperfusion improved pulmonary function, but significantly greater improvement was observed when pretreatment and treatment during reperfusion were combined (all P < .05). Myeloperoxidase levels, bronchoalveolar lavage tumor necrosis factor alpha levels, and pulmonary edema were all maximally decreased in the combined treatment group. The administration of an equimolar amount of the potent and highly selective adenosine 2A receptor antagonist, ZM 241385, along with ATL-313, resulted in the loss of protection conferred by ATL-313. CONCLUSIONS Adenosine A2A receptor activation with ATL-313 results in the greatest protection against lung ischemia-reperfusion injury when given before ischemia and during reperfusion. Improved pulmonary function observed with adenosine A2A receptor activation was correlated with decreased bronchoalveolar lavage tumor necrosis factor alpha and decreased lung myeloperoxidase. The loss of protection observed with the concurrent administration of the adenosine A2A receptor antagonist, ZM 241385, supports that the mechanism of ATL-313 protection is specifically mediated via adenosine A2A receptor activation.
Collapse
|
28
|
Chatterjee PK. Novel pharmacological approaches to the treatment of renal ischemia-reperfusion injury: a comprehensive review. Naunyn Schmiedebergs Arch Pharmacol 2007; 376:1-43. [PMID: 18038125 DOI: 10.1007/s00210-007-0183-5] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Accepted: 08/01/2007] [Indexed: 02/07/2023]
Abstract
Renal ischemia-reperfusion (I-R) contributes to the development of ischemic acute renal failure (ARF). Multi-factorial processes are involved in the development and progression of renal I-R injury with the generation of reactive oxygen species, nitric oxide and peroxynitrite, and the decline of antioxidant protection playing major roles, leading to dysfunction, injury, and death of the cells of the kidney. Renal inflammation, involving cytokine/adhesion molecule cascades with recruitment, activation, and diapedesis of circulating leukocytes is also implicated. Clinically, renal I-R occurs in a variety of medical and surgical settings and is responsible for the development of acute tubular necrosis (a characteristic feature of ischemic ARF), e.g., in renal transplantation where I-R of the kidney directly influences graft and patient survival. The cellular mechanisms involved in the development of renal I-R injury have been targeted by several pharmacological interventions. However, although showing promise in experimental models of renal I-R injury and ischemic ARF, they have not proved successful in the clinical setting (e.g., atrial natriuretic peptide, low-dose dopamine). This review highlights recent pharmacological developments, which have shown particular promise against experimental renal I-R injury and ischemic ARF, including novel antioxidants and antioxidant enzyme mimetics, nitric oxide and nitric oxide synthase inhibitors, erythropoietin, peroxisome-proliferator-activated receptor agonists, inhibitors of poly(ADP-ribose) polymerase, carbon monoxide-releasing molecules, statins, and adenosine. Novel approaches such as recent research involving combination therapies and the potential of non-pharmacological strategies are also considered.
Collapse
Affiliation(s)
- Prabal K Chatterjee
- Division of Pharmacology and Therapeutics, School of Pharmacy and Biomolecular Sciences, University of Brighton, Cockcroft Building, Lewes Road, Moulsecoomb, Brighton BN2 4GJ, UK.
| |
Collapse
|
29
|
Rivo J, Zeira E, Galun E, Einav S, Linden J, Matot I. Attenuation of reperfusion lung injury and apoptosis by A2A adenosine receptor activation is associated with modulation of Bcl-2 and Bax expression and activation of extracellular signal-regulated kinases. Shock 2007; 27:266-73. [PMID: 17304107 DOI: 10.1097/01.shk.0000235137.13152.44] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Adenosine receptors (AR) and extracellular signal-regulated kinases (ERK) have been implicated in tissue protection and apoptosis regulation during ischemia/reperfusion (I/R) injury. This study tests the hypothesis that reduction of reperfusion lung injury after A2A AR activation is associated with attenuation of apoptosis, modulation of ERK activation, and alterations in antiapoptotic and proapoptotic protein expression (Bcl-2 and Bax, respectively). Experiments were performed in intact-chest, spontaneously breathing cats in which the arterial branch of the left lower lung lobe was occluded for 2 h and reperfused for 3 h (I/R group). Animals were treated with the selective A2A AR agonist ATL313 given 5 min before reperfusion alone or in combination with the selective A2A AR antagonist ZM241385. Western blot analysis showed significant reduction in expression of Bcl-2 and increase in expression of Bax after reperfusion, compared with control lungs. Phosphorylated ERK1/2 levels were also increased after reperfusion. Compared with the I/R group, ATL313 markedly (P < 0.01) attenuated indices of injury and apoptosis including the percentage of injured alveoli, wet-dry weight ratio, myeloperoxidase activity, in situ terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end-labeling-positive cells, and caspase 3 activity and expression. Furthermore, compared with reperfused lungs, in ATL313-pretreated lungs, Western blot analysis demonstrated substantial ERK1/2 activation, increased expression of Bcl-2, and attenuated expression of Bax. The protective effects of ATL313 were blocked by pretreatment with ZM241385. In summary, the present study shows that in vivo activation of A2A AR confers protection against reperfusion lung injury. This protection is associated with decreased apoptosis and involves ERK1/2 activation and alterations in antiapoptotic Bcl-2 and proapoptotic Bax proteins.
Collapse
Affiliation(s)
- Julia Rivo
- Department of Anesthesiology and Critical Care Medicine, Hadassah University Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
30
|
Dwyer KM, Deaglio S, Crikis S, Gao W, Enjyoji K, Strom TB, Cowan PJ, d'Apice AJ, Robson SC. Salutary roles of CD39 in transplantation. Transplant Rev (Orlando) 2007. [DOI: 10.1016/j.trre.2007.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
31
|
Li L, Okusa MD. Blocking the immune response in ischemic acute kidney injury: the role of adenosine 2A agonists. ACTA ACUST UNITED AC 2006; 2:432-44. [PMID: 16932478 DOI: 10.1038/ncpneph0238] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Accepted: 03/17/2006] [Indexed: 12/15/2022]
Abstract
Acute kidney injury (AKI) is associated with a high degree of morbidity and mortality and its incidence is increasing. These factors, together with a lack of successful clinical trials, necessitate a comprehensive evaluation of the pathogenesis of AKI and trial design. The progress that has been made in elucidating the pathogenesis of AKI has defined inflammation as an early event and therefore a potential target for therapeutic intervention. This Review summarizes recent advances in our understanding of the role of inflammation in AKI as well as our approach to limiting inflammation using compounds that stimulate adenosine 2A receptors (A(2A)Rs). A(2A)Rs are members of a family of guanine nucleotide-binding proteins that have become a focus of interest primarily because of their ability to broadly inactivate the inflammatory cascade. An A(2A) agonist-ATL146 ester (ATL146e)-is currently being tested in a phase III clinical trial as a pharmacological stress agent in cardiac perfusion imaging studies. This study, together with extensively published preclinical data, will facilitate testing of ATL146e in human trials of AKI.
Collapse
Affiliation(s)
- Li Li
- Department of Medicine, Carter Immunology Center, University of Virginia, Charlottesville, VA, USA
| | | |
Collapse
|
32
|
Reece TB, Okonkwo DO, Ellman PI, Maxey TS, Tache-Leon C, Warren PS, Laurent JJ, Linden J, Kron IL, Tribble CG, Kern JA. Comparison of systemic and retrograde delivery of adenosine A2A agonist for attenuation of spinal cord injury after thoracic aortic cross-clamping. Ann Thorac Surg 2006; 81:902-9. [PMID: 16488692 DOI: 10.1016/j.athoracsur.2005.09.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Revised: 09/05/2005] [Accepted: 09/09/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND Paraplegia remains a devastating complication of thoracic aortic surgery, which has been attenuated by retrograde adenosine and systemic adenosine A2A receptor activation. We hypothesized that despite retrograde spinal perfusion of an adenosine A2A agonist (ATL-146e), systemic therapy produces superior spinal cord protection with reduced inflammation. METHODS Forty pigs underwent 30-minute thoracic aortic cross-clamping. Pigs received: no therapy (control); retrograde saline (retrograde control); retrograde ATL-146e; systemic ATL-146e; systemic ATL-146e with retrograde saline; or systemic and retrograde ATL-146e. Retrograde therapies were given during ischemia. Systemic ATL-146e (0.06 microg.kg(-1).min(-1)) was given intravenously for 3 hours at reperfusion. At 24 hours, motor function was assessed using the Tarlov scale. Tissue was analyzed for neuronal viability, microtubule-associated protein-2 expression, and neutrophil sequestration (myeloperoxidase activity). RESULTS Four pigs received retrograde barium showing both radiographic and histologic spinal cord perfusion. Tarlov scores at 24 hours were significantly improved versus both control groups in all ATL groups except the combined ATL-146e group (all p < 0.05). Neuronal viability by hematoxylin and eosin stain was significantly preserved in systemic ATL groups compared with both control groups (all p < 0.05). Microtubule-associated protein-2 expression was significantly preserved compared with both control groups in all systemic ATL groups. Systemic ATL significantly lowered myeloperoxidase activity versus both control groups (p < 0.01). CONCLUSIONS Both retrograde and systemic ATL-146e therapies attenuate ischemic spinal cord injury, but combining the two routes was less effective. Given comparable results between the two routes and the simplicity of systemic delivery, peripheral venous ATL-146e at reperfusion should be preferred for spinal cord protection in thoracic aortic surgery.
Collapse
Affiliation(s)
- T Brett Reece
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Odashima M, Otaka M, Jin M, Horikawa Y, Matsuhashi T, Ohba R, Linden J, Watanabe S. A selective adenosine A2A receptor agonist, ATL-146e, prevents concanavalin A-induced acute liver injury in mice. Biochem Biophys Res Commun 2006; 347:949-54. [PMID: 16859640 DOI: 10.1016/j.bbrc.2006.06.185] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Accepted: 06/28/2006] [Indexed: 10/24/2022]
Abstract
BACKGROUND AND AIMS Concanavalin A (Con A) activates T lymphocytes and induces CD4+ T cell-mediated hepatic injury in mice. Pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-alpha), interferon-gamma (IFN-gamma), and interleukin-6 (IL-6), are critical mediators in this experimental model. Activation of adenosine A2A receptors reduces the production of various pro-inflammatory cytokines and suppresses T cell activation. A selective adenosine A2A receptor agonist (ATL-146e) has been shown to be a potent inhibitor of inflammation by increasing intracellular cyclic AMP (cAMP) in leukocytes. The aim of the present study was to determine whether ATL-146e could ameliorate Con A-induced hepatic injury, reduction of pro-inflammatory cytokine production. METHODS Balb/c mice were injected with 25mg/kg Con A with or without a single injection of ATL-146e (0.5-50 microg/kg), 5 min prior to Con A administration. Liver enzymes, histology, and serum levels of tumor necrosis factor-alpha, interferon-gamma, and interleukin-6 were examined. We also assessed the effects of ATL-146e on pro-inflammatory cytokine production with CD4+ T cell. RESULTS Pretreatment with ATL-146e significantly reduced serum levels of liver enzymes (P<0.001). The serum pro-inflammatory cytokines were all increased after Con A administration and reduced to near normal levels by ATL-146e. ATL-146e also inhibited CD4+ T cell pro-inflammatory cytokine production. CONCLUSION A selective adenosine A2A receptor agonist, ATL-146e, can prevent concanavalin A-induced hepatic injury that is presumably mediated by its anti-inflammatory properties.
Collapse
Affiliation(s)
- Masaru Odashima
- Department of Gastroenterology, Akita University School of Medicine, Akita, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Odashima M, Otaka M, Jin M, Komatsu K, Wada I, Horikawa Y, Matsuhashi T, Hatakeyama N, Oyake J, Ohba R, Watanabe S, Linden J. Attenuation of gastric mucosal inflammation induced by aspirin through activation of A 2A adenosine receptor in rats. World J Gastroenterol 2006; 12:568-73. [PMID: 16489670 PMCID: PMC4066089 DOI: 10.3748/wjg.v12.i4.568] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine whether a specific adenosine A2A receptor agonist (ATL-146e) can ameliorate aspirin-induced gastric mucosal lesions in rats, and reduce neutrophil accumulation and production of pro-inflammatory cytokines.
METHODS: Gastric lesions were produced by oral gavage of aspirin (200 mg/kg) and HCl (0.15 mol/L, 8.0 mL/kg). 4-{3-[6-Amino-9-(5-ethylcarbamoyl-3,4-dihydroxy-tetrahydro-furan-2-yl)-9H-purin-2-yl]-prop-2-ynyl}-cyclohexanecarboxylic acid methyl ester (ATL-146e, 2.5-5 μg/kg, IP) was injected 30 min before the administration of aspirin. Tissue myeloperoxidase (MPO) concentration in gastric mucosa was measured as an index of neutrophil infiltration. Gastric mucosal concentrations of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were determined by ELISA. Also, we examined the effect of ATL-146e on tissue prostaglandin E2 (PGE2) production and gastric secretion.
RESULTS: Intragastric administration of aspirin induced multiple hemorrhagic erosions in rat gastric mucosa. The total length of gastric erosions (ulcer index) in control rats was 29.8±7.75 mm and was reduced to 3.8±1.42 mm after pretreatment with 5.0 g/kg ATL-146e (P< 0.01). The gastric contents of MPO and pro-inflammatory cytokines were all increased after the administration of aspirin and reduced to nearly normal levels by ATL-146e. Gastric mucosal PGE2 concentration was not affected by intraperitoneal injection of ATL-146e.
CONCLUSION: The specific adenosine A2A receptor agonist, ATL-146e, has potent anti-ulcer effects presumably mediated by its anti-inflammatory properties.
Collapse
Affiliation(s)
- Masaru Odashima
- Department of Gastroenterology, Akita University School of Medicine, 1-1-1 Hondo, Akita City 010-8543, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Okonkwo DO, Reece TB, Laurent JJ, Hawkins AS, Ellman PI, Linden J, Kron IL, Tribble CG, Stone JR, Kern JA. A comparison of adenosine A2A agonism and methylprednisolone in attenuating neuronal damage and improving functional outcome after experimental traumatic spinal cord injury in rabbits. J Neurosurg Spine 2006; 4:64-70. [PMID: 16506468 DOI: 10.3171/spi.2006.4.1.64] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
Steroid agents remain the lone pharmacological treatment in widespread use for acute spinal cord injury (SCI), although their utility remains in dispute in the neurotrauma literature. Adenosine A2A receptor activation with ATL-146e, a selective A2A agonist, has shown potential benefit in treating SCI; however, it has not been compared with the gold standard, methylprednisolone. The authors of this study evaluated ATL-146e and methylprednisolone for their ability to preserve neuronal viability and motor function in experimental SCI.
Methods
New Zealand White rabbits sustained SCI or sham injury via the Allen weight-drop technique. Ten minutes postinjury, animals received ATL-146e (ATL group, 0.06 μg/kg/min intravenously for 3 hours), methylprednisolone (steroid group, 30 mg/kg intravenously), or saline (trauma control group). Hindlimb motor function was recorded every 12 hours using the Tarlov motor grading scale (0, paralysis–5, normal hop). At 48 hours, fixed spinal cord tissue was evaluated for neuronal viability.
Hindlimb motor function in animals treated with ATL-146e was equivalent to that of sham-injured animals and was significantly better than that of trauma control animals at all time points and that of steroid-treated animals at 12 hours (p = 0.05). Motor function in steroid-treated animals was worse than in those given ATL-146e and better than that of trauma control animals at later time points, but was not statistically significant (both p > 0.05). Neuronal viability (measured in neurons/hpf) was significantly higher in both treatment groups compared with the trauma control group (12.1 ± 1.4 neurons/hpf for the ATL and 13.3 ± 1.4 neurons/hpf for the steroid group compared with 7.5 ± 1.5 neurons/hpf for the trauma control group; both p < 0.04). Neuronal viability did not differ among ATL-146e–treated, steroid-treated, and sham-injured groups.
Conclusions
The use of ATL-146e is at least as effective as methylprednisolone in preserving function and is equivalent to methylprednisolone in preserving the structure of spinal cord tissue after blunt SCI. Adenosine A2A receptor activation may be an effective treatment for acute SCI while avoiding the adverse effects of steroid agents.
Collapse
Affiliation(s)
- David O Okonkwo
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville 22908-0212, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Chunn JL, Molina JG, Mi T, Xia Y, Kellems RE, Blackburn MR. Adenosine-dependent pulmonary fibrosis in adenosine deaminase-deficient mice. THE JOURNAL OF IMMUNOLOGY 2005; 175:1937-46. [PMID: 16034138 DOI: 10.4049/jimmunol.175.3.1937] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pulmonary fibrosis is a common feature of numerous lung disorders, including interstitial lung diseases, asthma, and chronic obstructive pulmonary disease. Despite the prevalence of pulmonary fibrosis, the molecular mechanisms governing inflammatory and fibroproliferative aspects of the disorder are not clear. Adenosine is a purine-signaling nucleoside that is generated in excess during cellular stress and damage. This signaling molecule has been implicated in the regulation of features of chronic lung disease; however, the impact of adenosine on pulmonary fibrosis is not well understood. The goal of this study was to explore the impact of endogenous adenosine elevations on pulmonary fibrosis. To accomplish this, adenosine deaminase (ADA)-deficient mice were treated with various levels of ADA enzyme replacement therapy to regulate endogenous adenosine levels in the lung. Maintaining ADA-deficient mice on low dosages of ADA enzyme therapy led to chronic elevations in lung adenosine levels that were associated with pulmonary inflammation, expression of profibrotic molecules, collagen deposition, and extreme alteration in airway structure. These features could be blocked by preventing elevations in lung adenosine. Furthermore, lowering lung adenosine levels after the establishment of pulmonary fibrosis resulted in a resolution of fibrosis. These findings demonstrate that chronic adenosine elevations are associated with pulmonary fibrosis in ADA-deficient mice and suggest that the adenosine functions as a profibrotic signal in the lung.
Collapse
Affiliation(s)
- Janci L Chunn
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Medical School, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
37
|
Odashima M, Bamias G, Rivera-Nieves J, Linden J, Nast CC, Moskaluk CA, Marini M, Sugawara K, Kozaiwa K, Otaka M, Watanabe S, Cominelli F. Activation of A2A adenosine receptor attenuates intestinal inflammation in animal models of inflammatory bowel disease. Gastroenterology 2005; 129:26-33. [PMID: 16012931 DOI: 10.1053/j.gastro.2005.05.032] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Adenosine has been implicated as an important regulator of the inflammatory response. Four subtypes of adenosine receptors (A 1 , A 2A , A 2B , and A 3 ) have been described, of which A 2A potentially inhibits inflammation. The aim of this study was to investigate the role of A 2A in mucosal inflammation by administering a selective A 2A agonist (ATL-146e) to experimental models of inflammatory bowel disease. METHODS The anti-inflammatory effects of ATL-146e were studied in the acute and chronic rabbit formalin-immune complex models of colitis and the SAMP1/YitFc mouse model of spontaneous ileitis. RESULTS ATL-146e significantly reduced the acute inflammatory index and tissue necrosis compared with vehicle ( P < .01) in the acute model of rabbit immune colitis. In the chronic rabbit immune colitis model, ATL-146e significantly suppressed inflammatory cell infiltration into the colonic mucosa ( P < .05) and prevented mortality. The administration of ATL-146e significantly decreased the chronic inflammatory index ( P < .01) and villus distortion index ( P < .01) in the ileum of SAMP1/YitFc mice, and ameliorated adoptively transferred ileitis in severe combined immunodeficient mice injected with CD4 + T cells from SAMP1/Yit mice ( P < .05). Tumor necrosis factor, interferon gamma, and interleukin 4 concentrations were significantly suppressed by ATL-146e treatment in supernatants from cultures of mesenteric lymph node cells of SAMP1/YitFc mice ( P < .05 vs vehicle-treated mice). CONCLUSIONS A 2A adenosine receptor activation by ATL-146e significantly reduced inflammation in the intestinal mucosa. This effect was associated with decreased leukocyte infiltration and inhibition of proinflammatory cytokines. Activation of A 2A by selective agonism may therefore serve as a novel therapy for the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Masaru Odashima
- Digestive Health Center of Excellence, University of Virginia Health System, Charlottesville 22908, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Reece TB, Ellman PI, Maxey TS, Crosby IK, Warren PS, Chong TW, LeGallo RD, Linden J, Kern JA, Tribble CG, Kron IL. Adenosine A2A receptor activation reduces inflammation and preserves pulmonary function in an in vivo model of lung transplantation. J Thorac Cardiovasc Surg 2005; 129:1137-43. [PMID: 15867791 DOI: 10.1016/j.jtcvs.2004.11.042] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Reperfusion injury continues to significantly affect patients undergoing lung transplantation. Isolated lung models have demonstrated that adenosine A 2A receptor activation preserves function while decreasing inflammation. We hypothesized that adenosine A 2A receptor activation by ATL-146e during the initial reperfusion period preserves pulmonary function and attenuates inflammation in a porcine model of lung transplantation. METHODS Mature pig lungs preserved with Viaspan (Barr Laboratories, Pomona, NY) underwent 6 hours of cold ischemia before transplantation and 4 hours of reperfusion. Animals were treated with (ATL group, n = 7) and without (IR group, n = 7) ATL-146e (0.05 microg kg -1 . min -1 ATL-146e administered intravenously for 3 hours). With occlusion of the opposite pulmonary artery, the animal was maintained for the final 30 minutes on the allograft alone. Recipient lung physiology was monitored before tissue evaluation of pulmonary edema (wet-to-dry weight ratio), myeloperoxidase assay, and tissue tumor necrosis factor alpha by means of enzyme-linked immunosorbent assay. RESULTS When the ATL group was compared with the IR group, the ATL group had better partial pressure of carbon dioxide (43.8 +/- 4.1 vs 68.9 +/- 6.3 mm Hg, P < .01) and partial pressure of oxygen (272.3 +/- 132.7 vs 100.1 +/- 21.4 mm Hg, P < .01). ATL-146e-treated animals exhibited lower pulmonary artery pressures (33.6 +/- 2.1 vs 47.9 +/- 3.5 mm Hg, P < .01) and mean airway pressures (16.25 +/- 0.08 vs 16.64 +/- 0.15 mm Hg, P = .04). ATL-146e-treated lungs had lower wet-to-dry ratios (5.9 +/- 0.39 vs 7.3 +/- 0.38, P < .02), lower myeloperoxidase levels (2.9 x 10 -5 +/- 1.2 x 10 -5 vs 1.3 x 10 -4 +/- 4.0 x 10 -5 DeltaOD mg -1 . min -1 , P = .03), and a trend toward decreased lung tumor necrosis factor alpha levels (57 +/- 12 vs 96 +/- 15 pg/mL, P = .06). The ATL group demonstrated significantly less inflammation on histology. CONCLUSION Adenosine A 2A activation during early reperfusion attenuated lung inflammation and preserved pulmonary function in this model of lung transplantation. ATL-146e and similar compounds could play a significant role in improving outcomes of pulmonary transplantation.
Collapse
Affiliation(s)
- T Brett Reece
- Department of Surgery, University of Virginia Health System, PO Box 801359, Charlottesville, VA 22908, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Cunha RA. Neuroprotection by adenosine in the brain: From A(1) receptor activation to A (2A) receptor blockade. Purinergic Signal 2005; 1:111-34. [PMID: 18404497 PMCID: PMC2096528 DOI: 10.1007/s11302-005-0649-1] [Citation(s) in RCA: 404] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Accepted: 11/10/2004] [Indexed: 12/11/2022] Open
Abstract
Adenosine is a neuromodulator that operates via the most abundant inhibitory adenosine A(1) receptors (A(1)Rs) and the less abundant, but widespread, facilitatory A(2A)Rs. It is commonly assumed that A(1)Rs play a key role in neuroprotection since they decrease glutamate release and hyperpolarize neurons. In fact, A(1)R activation at the onset of neuronal injury attenuates brain damage, whereas its blockade exacerbates damage in adult animals. However, there is a down-regulation of central A(1)Rs in chronic noxious situations. In contrast, A(2A)Rs are up-regulated in noxious brain conditions and their blockade confers robust brain neuroprotection in adult animals. The brain neuroprotective effect of A(2A)R antagonists is maintained in chronic noxious brain conditions without observable peripheral effects, thus justifying the interest of A(2A)R antagonists as novel protective agents in neurodegenerative diseases such as Parkinson's and Alzheimer's disease, ischemic brain damage and epilepsy. The greater interest of A(2A)R blockade compared to A(1)R activation does not mean that A(1)R activation is irrelevant for a neuroprotective strategy. In fact, it is proposed that coupling A(2A)R antagonists with strategies aimed at bursting the levels of extracellular adenosine (by inhibiting adenosine kinase) to activate A(1)Rs might constitute the more robust brain neuroprotective strategy based on the adenosine neuromodulatory system. This strategy should be useful in adult animals and especially in the elderly (where brain pathologies are prevalent) but is not valid for fetus or newborns where the impact of adenosine receptors on brain damage is different.
Collapse
Affiliation(s)
- Rodrigo A Cunha
- Center for Neuroscience of Coimbra, Institute of Biochemistry, Faculty of Medicine, University of Coimbra, Coimbra, Portugal,
| |
Collapse
|
40
|
Day YJ, Li Y, Rieger JM, Ramos SI, Okusa MD, Linden J. A2A adenosine receptors on bone marrow-derived cells protect liver from ischemia-reperfusion injury. THE JOURNAL OF IMMUNOLOGY 2005; 174:5040-6. [PMID: 15814735 DOI: 10.4049/jimmunol.174.8.5040] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activation of the A2A adenosine receptor (A(2A)R) during reperfusion of various tissues has been found to markedly reduce ischemia-reperfusion injury. In this study, we used bone marrow transplantation (BMT) to create chimeric mice that either selectively lack or selectively express the A(2A)R on bone marrow-derived cells. Bolus i.p. injection of the selective A2A agonist, 4-[3-[6-amino-9-(5-cyclopropylcarbamoyl-3,4-dihydroxy-tetrahydro-furan-2-yl)-9H-purin-2-yl]-prop-2-ynyl]-piperidine-1-carboxylic acid methyl ester (ATL313; 3 microg/kg), at the time of reperfusion protects wild-type (wt) mice from liver ischemia-reperfusion injury. ATL313 also protects wt/wt (donor/recipient BMT mouse chimera) and wt/knockout chimera but produces modest protection of knockout/wt chimera as assessed by alanine aminotransferase activity, induction of cytokine transcripts (RANTES, IFN-gamma-inducible protein-10, IL-1alpha, IL-1-beta, IL-1Ralpha, IL-18, IL-6, and IFN-gamma), or histological criteria. ATL313, which is highly selective for the A(2A)R, produces more liver protection of chimeric BMT mice than 4-[3-[6-amino-9-(5-ethylcarbamoyl-3,4-dihydroxy-tetrahydro-furan-2-yl)-9H-purin-2-yl]-prop-2-ynyl]-cyclohexanecarboxylic acid methyl ester, which is rapidly metabolized in mice to produce 4-[3-[6-amino-9-(5-ethylcarbamoyl-3,4-dihydroxy-tetrahydro-furan-2-yl)-9H-purin-2-yl]-prop-2-ynyl]-cyclohexanecarboxylic acid, which has similar affinity for the A(2A)R and the proinflammatory A3 adenosine receptor. GFP chimera mice were created to show that vascular endothelial cells in the injured liver do not account for liver protection because they are not derived by transdifferentiation of bone marrow precursors. The data suggest that activation of the A(2A)R on bone marrow-derived cells is primarily responsible for protecting the liver from reperfusion injury.
Collapse
Affiliation(s)
- Yuan-Ji Day
- Cardiovascular Research Center, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | |
Collapse
|
41
|
Yang Z, Day YJ, Toufektsian MC, Ramos SI, Marshall M, Wang XQ, French BA, Linden J. Infarct-sparing effect of A2A-adenosine receptor activation is due primarily to its action on lymphocytes. Circulation 2005; 111:2190-7. [PMID: 15851591 DOI: 10.1161/01.cir.0000163586.62253.a5] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND A2A-adenosine receptor (A2AAR) activation on reperfusion after ischemia reduces the size of myocardial infarction, but the mechanism of action has not been fully defined. METHODS AND RESULTS We created chimeric mice by bone marrow transplantation from A2AAR-knockout or green fluorescent donor mice to irradiated congenic C57BL/6 (B6) recipients. In the GFP chimeras, we were unable to detect green fluorescent-producing cells in the vascular endothelium, indicating that bone marrow-derived cells were not recruited to endothelium at appreciable levels after bone marrow transplantation and/or acute myocardial infarction. Injection of 5 or 10 microg/kg of a potent and selective agonist of A2AAR, ATL146e, had no effect on hemodynamic parameters but reduced infarct size in B6 mice after 45 minutes of left anterior descending artery occlusion followed by 24 hours of reperfusion to 42.5+/-3.0% and 39.3+/-4.7% of risk region, respectively, compared with 61.0+/-2.3% in vehicle-treated B6 mice (P<0.05). Myocardial myeloperoxidase activity in the risk region measured at 4 hours after reperfusion was significantly reduced by ATL146e. The salutary effects of ATL146e were absent in A2AAR-knockout mice or in mice treated with a selective A2AAR antagonist, ZM241385. ATL146e also reduced infarct size and myeloperoxidase in B6/B6 (donor/recipient) chimeras (P<0.05) but not in A2AAR-knockout/B6 chimeras. In immunocompromised Rag-1-KO mice, infarct size was significantly reduced compared with B6 mice but was not further reduced by ATL146e. CONCLUSIONS The results indicate that A2AAR activation on bone marrow-derived cells, specifically T or B lymphocytes, is responsible for the infarct-sparing and antiinflammatory effects of ATL146e administered at the time of reperfusion after coronary occlusion.
Collapse
Affiliation(s)
- Zequan Yang
- Department of Biomedical Engineering, of Virginia Health System, Charlottesville 22903, USA.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Lange-Sperandio B, Forbes MS, Thornhill B, Okusa MD, Linden J, Chevalier RL. A2A adenosine receptor agonist and PDE4 inhibition delays inflammation but fails to reduce injury in experimental obstructive nephropathy. Nephron Clin Pract 2005; 100:e113-23. [PMID: 15824514 DOI: 10.1159/000085057] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Accepted: 11/02/2004] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Renal interstitial inflammation is a consequence of unilateral ureteral obstruction (UUO). Following ischemia/reperfusion, adenosine reduces renal inflammation and injury, effects which are potentiated by type 4 phosphodiesterase inhibitors. We therefore studied the effects of A2A adenosine receptor agonist (ATL146e), and PDE4 inhibitor (rolipram) in mice subjected to UUO. METHODS Mice were subjected to UUO or sham operation, and received either vehicle or ATL146e + rolipram by osmotic minipump for 1 or 7 days. At 1, 3, 7, or 14 days after operation, renal macrophage infiltration, apoptosis, proliferation, tubular atrophy, and interstitial fibrosis were quantitated, and expressions of IL-6 and TGF-beta mRNA were determined. RESULTS ATL146e + rolipram reduced macrophage infiltration by 40% after 3 days UUO (p < 0.05). Tubular apoptosis, tubular atrophy, and interstitial fibrosis were increased by 7 or 14 days UUO, but were unaffected by ATL146e + rolipram. However, cellular proliferation was increased by ATL146e + rolipram in the obstructed kidney. ATL146e + rolipram had no effect on the renal expression of IL-6 and TGF-beta mRNA. CONCLUSIONS A2A receptor activation and PDE4 inhibition transiently reduce renal macrophage infiltration, but do not ameliorate the renal response to UUO. We speculate that the persistent stimulus for inflammation triggered by UUO cannot be reversed by agents that suppress inflammatory cell activation alone.
Collapse
|
43
|
Reece TB, Laubach VE, Tribble CG, Maxey TS, Ellman PI, Warren PS, Schulman AM, Linden J, Kern JA, Kron IL. Adenosine A2A Receptor Agonist Improves Cardiac Dysfunction From Pulmonary Ischemia-Reperfusion Injury. Ann Thorac Surg 2005; 79:1189-95. [PMID: 15797048 DOI: 10.1016/j.athoracsur.2004.09.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/21/2004] [Indexed: 10/25/2022]
Abstract
BACKGROUND Ischemia-reperfusion (IR) injury negatively impacts patient outcome in lung transplantation. Clinically, we observed that lung transplant patients with ischemia-reperfusion injury tend to have cardiac dysfunction. Previous studies have shown that ATL-146e (4-{3-[6-amino-9-(5-ethylcarbamoyl-3,4-dihydroxy-tetrahydro-furan-2-yl)-9H-purin-2-yl]-prop-2-ynyl}-cyclohexanecarboxylic acid methyl ester), a selective adenosine A2A receptor agonist, reduces lung inflammation after ischemia-reperfusion. We hypothesized that pulmonary ischemia-reperfusion causes secondary heart dysfunction and ATL-146e will improve this dysfunction. METHODS We utilized an in vivo rabbit lung ischemia-reperfusion model. The Sham group underwent 120 minutes single lung ventilation. The IR and ATL groups underwent 90 minutes right lung ischemia with 30 minutes right lung reperfusion. The ATL-146e was given intravenously to the ATL group during reperfusion. Cardiac output and arterial blood gases were monitored, and neutrophil sequestration was measured by myeloperoxidase activity. RESULTS Upon reperfusion, cardiac output (mL/min) significantly dropped in the IR and ATL groups. By 15 minutes reperfusion, cardiac output in the ATL group improved significantly over the IR group and remained significant thereafter. Lung myeloperoxidase activity was significantly reduced by ATL-146e. Although never hypoxemic, arterial oxygenation was lower in the IR and ATL groups while central venous pressures and mean arterial pressures were similar among groups. A separate experiment demonstrated that reperfusion with the antioxidant N-(2-mercaptopropionyl)glycine prevented cardiac dysfunction. CONCLUSIONS Pulmonary ischemia-reperfusion causes cardiac dysfunction independent of preload, afterload, and oxygenation. The ATL-146e improves this dysfunction presumably by the antiinflammatory effects of adenosine A2A receptor activation on neutrophils. One likely mechanism involves the release of oxidants from the ischemic lung upon reperfusion, which has immediate negative effects on the heart.
Collapse
Affiliation(s)
- T Brett Reece
- Department of Surgery, University of Virginia Health System, Charlottesville, Virginia, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Adenosine promotes tissue protection and repair through four general modes of action: increased oxygen supply/demand ratio, preconditioning, anti-inflammatory effects, and stimulation of angiogenesis. A novel means by which adenosine stimulates angiogenesis is the topic of the article by Desai et al. in the April 2005 issue of Molecular Pharmacology. The report demonstrates that agonists of A2A adenosine receptors inhibit the release of the anti-angiogenic factor thrombospondin 1. Multiple cell types and all four adenosine receptors participate in these responses. Exploiting these effects of adenosine has great therapeutic potential.
Collapse
Affiliation(s)
- Joel Linden
- Department of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA.
| |
Collapse
|
45
|
Odashima M, Otaka M, Jin M, Komatsu K, Wada I, Matsuhashi T, Horikawa Y, Hatakeyama N, Oyake J, Ohba R, Linden J, Watanabe S. Selective adenosine A receptor agonist, ATL-146e, attenuates stress-induced gastric lesions in rats. J Gastroenterol Hepatol 2005; 20:275-80. [PMID: 15683432 DOI: 10.1111/j.1440-1746.2004.03555.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Activation of adenosine A(2A) receptors reduces the production of various pro-inflammatory cytokines and suppresses neutrophil activation. Water-immersion restraint is well known to cause gastric mucosal lesions due to stress. The pathogenesis of stress-induced gastric mucosal lesions is characterized by activation of inflammatory cells and production of inflammatory cytokines. Agonists of adenosine A(2A) receptors are known to be anti-inflammatory, but the effects of these compounds on the development of gastric mucosal lesions has not been reported. In the present study, the effect of a potent and selective adenosine A(2A) receptor agonist, ATL-146e, on water-immersion stress-induced gastric mucosal lesions was studied. METHODS Rats were subjected to water-immersion stress with or without pretreatment with a single intraperitoneal injection of a potent and selective agonist of the adenosine A(2A) receptor. The gastric concentrations of myeloperoxidase (MPO), as an index of neutrophil accumulation, and the pro-inflammatory cytokines, tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta), were measured. RESULTS The total length of gastric erosions (ulcer index) in control rats was 21.6 +/- 3.23 mm and was reduced by 86% to 3.1 +/- 0.83 mm by pretreatment with 5.0 microg/kg ATL146e (P < 0.001). The gastric content of MPO, TNF-alpha and IL-1beta were all increased after water-immersion stress and reduced to near normal levels by ATL-146e. CONCLUSION A specific adenosine A(2A) agonist inhibits stress-induced gastric inflammation and damage. A(2A) agonist compounds may be useful for preventing ulcers and appear to act by blocking gastric inflammation.
Collapse
Affiliation(s)
- Masaru Odashima
- Department of Internal Medicine, Akita University of Medicine, 1-1-1 Hondo, Akita City, Akita 010-8543, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Day YJ, Marshall MA, Huang L, McDuffie MJ, Okusa MD, Linden J. Protection from ischemic liver injury by activation of A2A adenosine receptors during reperfusion: inhibition of chemokine induction. Am J Physiol Gastrointest Liver Physiol 2004; 286:G285-93. [PMID: 14715520 DOI: 10.1152/ajpgi.00348.2003] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ischemia-reperfusion (I/R) injury occurs as a result of restoring blood flow to previously hypoperfused vessels or after tissue transplantation and is characterized by inflammation and microvascular occlusion. We report here that 4-[3-[6-amino-9-(5-ethylcarbamoyl-3,4-dihydroxy-tetrahydro-furan-2-yl)-9H-purin-2-yl]-prop-2-ynyl]-cyclohexanecarboxylic acid methyl ester (ATL146e), a selective agonist of the A(2A) adenosine receptor (A(2A)AR), profoundly protects mouse liver from I/R injury when administered at the time of reperfusion, and protection is blocked by the antagonist ZM241385. ATL146e lowers liver damage by 90% as assessed by serum glutamyl pyruvic transaminase and reduces hepatic edema and MPO. Most protection remains if ATL146e treatment is delayed for 1 h but disappears when delayed for 4 h after the start of reperfusion. In mice lacking the A(2A)AR gene, protection by ATL1465e is lost and ischemic injury of short duration is exacerbated compared with wild-type mice, suggesting a protective role for endogenous adenosine. I/R injury causes induction of hepatic transcripts for IL-1alpha, IL-1beta, IL-1Ra, IL-6, IL-10, IL-18, INF-beta, INF-gamma, regulated on activation, normal T cell expressed, and presumably secreted (RANTES), major intrinsic protein (MIP)-1alpha, MIP-2, IFN-gamma-inducible protein (IP)-10, and monocyte chemotactic protein (MCP)-1 that are suppressed by administering ATL146e to wild-type but not to A(2A)AR knockout mice. RANTES, MCP-1, and IP-10 are notable as induced chemokines that are chemotactic to T lymphocytes. The induction of cytokines may contribute to transient lymphopenia and neutrophilia that occur after liver I/R injury. We conclude that most damage after hepatic ischemia occurs during reperfusion and can be blocked by A(2A)AR activation. We speculate that inhibition of chemokine and cytokine production limits inflammation and contributes to tissue protection by the A(2A)AR agonist ATL146e.
Collapse
Affiliation(s)
- Yuan-Ji Day
- Department of Internal Medicine, Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | |
Collapse
|
47
|
Reece TB, Kern JA, Tribble CG, Cassada DC. The role of pharmacology in spinal cord protection during thoracic aortic reconstruction. Semin Thorac Cardiovasc Surg 2003; 15:365-77. [PMID: 14710378 DOI: 10.1053/s1043-0679(03)00088-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Surgery of the thoracic aorta continues to have a significant risk of neurologic complication. Several strategies to minimize this risk are emerging. Pharmacologic protection from these complications continues to be researched, but at this point few medications are being used clinically. This article reviews the pathophysiology of ischemic spinal cord injury and summarizes the investigational pharmacology that may prevent these serious complications.
Collapse
Affiliation(s)
- T Brett Reece
- Department of Surgery, Division of Thoracic and Cardiovascular Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
48
|
Kelly ME, Miller PR, Greenhaw JJ, Fabian TC, Proctor KG. Novel resuscitation strategy for pulmonary contusion after severe chest trauma. THE JOURNAL OF TRAUMA 2003; 55:94-105. [PMID: 12855887 DOI: 10.1097/01.ta.0000029042.37577.a6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Adenosine A2a receptor stimulation can increase coronary perfusion and also reduce leukocyte-mediated inflammatory responses in some conditions. Hextend is a novel colloid solution that may have antioxidant properties. All these actions might be beneficial after severe chest trauma, but have never been investigated. To fill these gaps, this study evaluated the therapeutic potential of a novel adenosine A2a agonist during fluid resuscitation from severe chest trauma with either standard-of-care crystalloid or Hextend. METHODS Anesthetized, ventilated swine received unilateral, blunt trauma to the right chest via captive bolt gun, followed by a 10- to 12-mL/kg arterial hemorrhage. After 25 minutes of shock, ATL-146e was started (10 ng/kg/min intravenously for 180 minutes). After an additional 5 minutes, the minimum amount of either colloid (Hextend, 5% hetastarch in lactate-buffered, balanced electrolyte solution) or crystalloid (lactated Ringer's [LR] solution) was administered to maintain mean arterial pressure > 70 mm Hg and heart rate < 100 beats/min and to correct lactate for 180 minutes postinjury. Cardiopulmonary function was monitored and serial bronchoalveolar lavage samples were analyzed for protein, leukocyte infiltration, and expression of cyclooxygenase (COX)-1 and COX-2 isozymes as markers of the inflammatory cascade. RESULTS Fluid requirements were reduced by half with Hextend compared with LR (p < 0.05). ATL-146e in either Hextend or LR transiently increased cardiac output, cardiac contractility, and systemic oxygen delivery (all p < 0.05). Pao(2)/Fio(2) ratio was 50 to 100 higher and bronchoalveolar lavage leukocytes were reduced by half with Hextend versus LR (both p < 0.05), but there was no added effect of ATL-146e. COX-1 expression was induced in macrophages (Mphis), whereas COX-2 was induced in neutrophils. Neither Hextend nor ATL-146e reduced COX expression. CONCLUSION Hextend reduced the volume for initial resuscitation, which may offer logistical advantages in prehospital field conditions or whenever there is limited medical resources or prolonged transport times; ATL-146e improved early cardiac performance without causing hypotension or bradycardia; when administered 25 to 30 minutes after injury, neither Hextend nor ATL-146e altered inflammatory changes in pulmonary Mphis or infiltrating PMNs; and further studies are needed to determine whether these short-term benefits correlate with long-term outcome.
Collapse
Affiliation(s)
- Michael E Kelly
- Department of Surgery, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | | | | | | | | |
Collapse
|
49
|
Sitkovsky MV. Use of the A(2A) adenosine receptor as a physiological immunosuppressor and to engineer inflammation in vivo. Biochem Pharmacol 2003; 65:493-501. [PMID: 12566076 DOI: 10.1016/s0006-2952(02)01548-4] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inflammation must be inhibited in order to treat, e.g., sepsis or autoimmune diseases or must be selectively enhanced to improve, for example, immunotherapies of tumors or the development of vaccines. Predictable enhancement of inflammation depends upon the knowledge of the "natural" pathways by which it is down-regulated in vivo. Extracellular adenosine and A(2A) adenosine (purinergic) receptors were identified recently as anti-inflammatory signals and as sensors of excessive inflammatory tissue damage, respectively (Ohta A and Sitkovsky M, Nature 2001;414:916-20). These molecules may function as an important part of a physiological "metabolic switch" mechanism, whereby the inflammatory stimuli-produced local tissue damage and hypoxia cause adenosine accumulation and signaling through cyclic AMP-elevating A(2A) adenosine receptors in a delayed negative feedback manner. Patterns of A(2A) receptor expression are activation- and differentiation-dependent, thereby allowing for the "acquisition" of an immunosuppressive "OFF button" and creation of a time-window for immunomodulation. Identification of A(2A) adenosine receptors as "natural" brakes of inflammation provided a useful framework for understanding how tissues regulate inflammation and how to enhance or decrease (engineer) inflammation by targeting this endogenous anti-inflammatory pathway. These findings point to the need of more detailed testing of anti-inflammatory agonists of A(2A) receptors and create a previously unrecognized strategy to enhance inflammation and targeted tissue damage by using antagonists of A(2A) receptors. It is important to further identify the contributions of different types of immune cells at different stages of the inflammatory processes in different tissues to enable the "tailored" treatments with drugs that modulate the signaling through A(2A) purinergic receptors.
Collapse
Affiliation(s)
- Michail V Sitkovsky
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892, USA.
| |
Collapse
|
50
|
Leibovich SJ, Chen JF, Pinhal-Enfield G, Belem PC, Elson G, Rosania A, Ramanathan M, Montesinos C, Jacobson M, Schwarzschild MA, Fink JS, Cronstein B. Synergistic up-regulation of vascular endothelial growth factor expression in murine macrophages by adenosine A(2A) receptor agonists and endotoxin. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 160:2231-44. [PMID: 12057925 PMCID: PMC1850844 DOI: 10.1016/s0002-9440(10)61170-4] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/27/2002] [Indexed: 12/31/2022]
Abstract
Under normoxic conditions, macrophages from C57BL mice produce low levels of vascular endothelial growth factor (VEGF). Hypoxia stimulates VEGF expression by approximately 500%; interferon-gamma (IFN-gamma) with endotoxin [lipopolysaccharide (LPS)] also stimulates VEGF expression by approximately 50 to 150% in an inducible nitric oxide synthase (iNOS)-dependent manner. Treatment of normoxic macrophages with 5'-N-ethyl-carboxamido-adenosine (NECA), a nonselective adenosine A(2) receptor agonist, or with 2-[p-(2-carboxyethyl)-phenylethyl amino]-5'-N-ethyl-carboxamido-adenosine (CGS21680), a specific adenosine A(2A) receptor agonist, modestly increases VEGF expression, whereas 2-chloro-N(6)-cyclopentyl adenosine (CCPA), an adenosine A(1) agonist, does not. Treatment with LPS (0 to 1000 ng/ml), or with IFN-gamma (0 to 300 U/ml), does not affect VEGF expression. In the presence of LPS (EC(50) < 10 ng/ml), but not of IFN-gamma, both NECA and CGS21680 synergistically up-regulate VEGF expression by as much as 10-fold. This VEGF is biologically active in vivo in the rat corneal bioassay of angiogenesis. Inhibitors of iNOS do not affect this synergistic induction of VEGF, and macrophages from iNOS-/- mice produce similar levels of VEGF as wild-type mice, indicating that NO does not play a role in this induction. Under hypoxic conditions, VEGF expression is slightly increased by adenosine receptor agonists but adenosine A(2) or A(1) receptor antagonists 3,7-dimethyl-1-propargyl xanthine (DMPX), ZM241385, and 8-cyclopentyl-1,3-dipropylxanthine (DCPCX) do not modulate VEGF expression. VEGF expression is also not reduced in hypoxic macrophages from A(3)-/- and A(2A)-/- mice. Thus, VEGF expression by hypoxic macrophages does not seem to depend on endogenously released or exogenous adenosine. VEGF expression is strongly up-regulated by LPS/NECA in macrophages from A(3)-/- but not A(2A)-/- mice, confirming the role of adenosine A(2A) receptors in this pathway. LPS with NECA strongly up-regulates VEGF expression by macrophages from C(3)H/HeN mice (with intact Tlr4 receptors), but not by macrophages from C(3)H/HeJ mice (with mutated, functionally inactive Tlr4 receptors), implicating signaling through the Tlr4 pathway in this synergistic up-regulation. Finally, Western blot analysis of adenosine A(2A) receptor expression indicated that the synergistic interaction of LPS with A(2A) receptor agonists does not involve up-regulation of A(2A) receptors by LPS. These results indicate that in murine macrophages there is a novel pathway regulating VEGF production, that involves the synergistic interaction of adenosine A(2A) receptor agonists through A(2A) receptors with LPS through the Tlr4 pathway, resulting in the strong up-regulation of VEGF expression by macrophages in a hypoxia- and NO-independent manner.
Collapse
MESH Headings
- Adenosine/analogs & derivatives
- Adenosine/pharmacology
- Adenosine-5'-(N-ethylcarboxamide)/pharmacology
- Animals
- Blotting, Western
- Cells, Cultured
- Drosophila Proteins
- Endothelial Growth Factors/biosynthesis
- Female
- Interferon-gamma/pharmacology
- Lipopolysaccharides/pharmacology
- Lymphokines/biosynthesis
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/metabolism
- Male
- Membrane Glycoproteins/physiology
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Knockout
- Nitric Oxide/physiology
- Nitric Oxide Synthase/physiology
- Nitric Oxide Synthase Type II
- Phenethylamines/pharmacology
- Protein Kinase Inhibitors
- Purinergic P1 Receptor Agonists
- RNA, Messenger/metabolism
- Receptor, Adenosine A2A
- Receptors, Cell Surface/physiology
- Receptors, Purinergic P1/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Theobromine/analogs & derivatives
- Theobromine/pharmacology
- Toll-Like Receptor 4
- Toll-Like Receptors
- Triazines/pharmacology
- Triazoles/pharmacology
- Up-Regulation
- Vascular Endothelial Growth Factor A
- Vascular Endothelial Growth Factors
- Xanthines/pharmacology
Collapse
Affiliation(s)
- Samuel Joseph Leibovich
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07103, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|