1
|
Govindaraj K, Kannan S, Coutinho de Almeida R, Jansen Klomp L, Karperien M, Meulenbelt I, Post JN. Dissecting SOX9 dynamics reveals its differential regulation in osteoarthritis. J Cell Physiol 2024; 239:e31443. [PMID: 39344191 DOI: 10.1002/jcp.31443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024]
Abstract
The transcription factor SOX9 is integral to tissue homeostasis and is implicated in skeletal malformation, campomelic dysplasia, and osteoarthritis (OA). Despite extensive research, the complete regulatory landscape of SOX9 transcriptional activity, interconnected with signaling pathways (TGFβ, WNT, BMP, IHH, NFκB, and HIF), remains challenging to decipher. This study focuses on elucidating SOX9 signaling in OA pathology using Fluorescence Recovery After Photobleaching (FRAP) to assess SOX9 activity directly in live human primary chondrocytes (hPCs). Single cell FRAP data revealed two distinct subpopulations with differential SOX9 dynamics, showing varied distribution between healthy and OA hPCs. Moreover, inherently elevated SOX9-DNA binding was observed in healthy hPCs compared to preserved and OA counterparts. Anabolic factors (BMP7 and GREM1) and catabolic inhibitors (DKK1 and FRZb) were found to modulate SOX9 transcriptional activity in OA-hPCs. These findings provide valuable insights into the intricate regulation of SOX9 signaling in OA, suggesting potential therapeutic avenues for modulating SOX9 activity in diseased states.
Collapse
Affiliation(s)
- Kannan Govindaraj
- Department of Developmental Bioengineering, Faculty of Science and Technology, Technical Medical Center, University of Twente, Enschede, The Netherlands
| | - Sakshi Kannan
- Department of Developmental Bioengineering, Faculty of Science and Technology, Technical Medical Center, University of Twente, Enschede, The Netherlands
| | - Rodrigo Coutinho de Almeida
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Lucas Jansen Klomp
- Department of Developmental Bioengineering, Faculty of Science and Technology, Technical Medical Center, University of Twente, Enschede, The Netherlands
- Department of Applied Mathematics, University of Twente, Enschede, The Netherlands
| | - Marcel Karperien
- Department of Developmental Bioengineering, Faculty of Science and Technology, Technical Medical Center, University of Twente, Enschede, The Netherlands
| | - Ingrid Meulenbelt
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Janine N Post
- Department of Developmental Bioengineering, Faculty of Science and Technology, Technical Medical Center, University of Twente, Enschede, The Netherlands
| |
Collapse
|
2
|
Liu H, Chi R, Xu J, Guo J, Guo Z, Zhang X, Hou L, Zheng Z, Lu F, Xu T, Sun K, Guo F. DMT1-mediated iron overload accelerates cartilage degeneration in Hemophilic Arthropathy through the mtDNA-cGAS-STING axis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167058. [PMID: 38331112 DOI: 10.1016/j.bbadis.2024.167058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/03/2024] [Accepted: 02/04/2024] [Indexed: 02/10/2024]
Abstract
INTRODUCTION Excess iron contributes to Hemophilic Arthropathy (HA) development. Divalent metal transporter 1 (DMT1) delivers iron into the cytoplasm, thus regulating iron homeostasis. OBJECTIVES We aimed to investigate whether DMT1-mediated iron homeostasis is involved in bleeding-induced cartilage degeneration and the molecular mechanisms underlying iron overload-induced chondrocyte damage. METHODS This study established an in vivo HA model by puncturing knee joints of coagulation factor VIII gene knockout mice with a needle, and mimicked iron overload conditions in vitro by treatment of Ferric ammonium citrate (FAC). RESULTS We demonstrated that blood exposure caused iron overload and cartilage degeneration, as well as elevated expression of DMT1. Furthermore, DMT1 silencing alleviated blood-induced iron overload and cartilage degeneration. In hemophilic mice, articular cartilage degeneration was also suppressed by intro-articularly injection of DMT1 adeno-associated virus 9 (AAV9). Mechanistically, RNA-sequencing analysis indicated the association between iron overload and cGAS-STING pathway. Further, iron overload triggered mtDNA-cGAS-STING pathway activation, which could be effectively mitigated by DMT1 silencing. Additionally, we discovered that RU.521, a potent Cyclic GMP-AMP Synthase (cGAS) inhibitor, successfully suppressed the downward cascades of cGAS-STING, thereby protecting against chondrocyte damage. CONCLUSION Taken together, DMT1-mediated iron overload promotes chondrocyte damage and murine HA development, and targeted DMT1 may provide therapeutic and preventive approaches in HA.
Collapse
Affiliation(s)
- Haigang Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ruimin Chi
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingting Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jiachao Guo
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhou Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiong Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Liangcai Hou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zehang Zheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Fan Lu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Tao Xu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Sun
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
3
|
Reich H, Savage-Dunn C. Signaling circuits and the apical extracellular matrix in aging: connections identified in the nematode Caenorhabditis elegans. Am J Physiol Cell Physiol 2023; 325:C1201-C1211. [PMID: 37721005 PMCID: PMC10861026 DOI: 10.1152/ajpcell.00195.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/24/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
Numerous conserved signaling pathways play critical roles in aging, including insulin/IGF-1, TGF-β, and Wnt pathways. Some of these pathways also play prominent roles in the formation and maintenance of the extracellular matrix. The nematode Caenorhabditis elegans has been an enduringly productive system for the identification of conserved mechanisms of biological aging. Recent studies in C. elegans highlight the regulatory circuits between conserved signaling pathways and the extracellular matrix, revealing a bidirectional relationship between these factors and providing a platform to address how regulation of and by the extracellular matrix can impact lifespan and organismal health during aging. These discoveries provide new opportunities for clinical advances and novel therapeutic strategies.
Collapse
Affiliation(s)
- Hannah Reich
- Department of Biology, Queens College, City University of New York, Flushing, New York, United States
| | - Cathy Savage-Dunn
- Department of Biology, Queens College, City University of New York, Flushing, New York, United States
- PhD Program in Biology, The Graduate Center, City University of New York, New York, New York, United States
| |
Collapse
|
4
|
Jin YJ, Park DY, Noh S, Kwon H, Shin DI, Park JH, Min BH. Effects of glycosaminoglycan content in extracellular matrix of donor cartilage on the functional properties of osteochondral allografts evaluated by micro-CT non-destructive analysis. PLoS One 2023; 18:e0285733. [PMID: 37220126 DOI: 10.1371/journal.pone.0285733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/28/2023] [Indexed: 05/25/2023] Open
Abstract
Osteochondral allograft (OCA) is an important surgical procedure used to repair extensive articular cartilage damage. It is known that chondrocyte viability is crucial for maintaining the biochemical and biomechanical properties of OCA, which is directly related to the clinical success of the operation and is the only standard for preoperative evaluation of OCA. However, there is a lack of systematic research on the effect of the content of cellular matrix in OCA cartilage tissue on the efficacy of transplantation. Therefore, we evaluated the effect of different GAG contents on the success of OCA transplantation in a rabbit animal model. Each rabbit OCA was treated with chondroitinase to regulate glycosaminoglycan (GAG) content in the tissue. Due to the different action times of chondroitinase, they were divided into 4 experimental groups (including control group, 2h, 4h, and 8h groups). The treated OCAs of each group were used for transplantation. In this study, transplant surgery effects were assessed using micro-computed tomography (μCT) and histological analysis. Our results showed that tissue integration at the graft site was poorer in the 4h and 8h groups compared to the control group at 4 and 12 weeks in vivo, as were the compressive modulus, GAG content, and cell density reduced. In conclusion, we evaluated the biochemical composition of OCAs before and after surgery using μCT analysis and demonstrated that the GAG content of the graft decreased, it also decreased during implantation; this resulted in decreased chondrocyte viability after transplantation and ultimately affected the functional success of OCAs.
Collapse
Affiliation(s)
- Yong Jun Jin
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Republic of Korea
- Cell Therapy Center, Ajou University Medical Center, Suwon, Republic of Korea
| | - Do Young Park
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Republic of Korea
- Cell Therapy Center, Ajou University Medical Center, Suwon, Republic of Korea
| | - Sujin Noh
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea
| | - HyeonJae Kwon
- Cell Therapy Center, Ajou University Medical Center, Suwon, Republic of Korea
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Dong Il Shin
- Cell Therapy Center, Ajou University Medical Center, Suwon, Republic of Korea
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Jin Ho Park
- Cell Therapy Center, Ajou University Medical Center, Suwon, Republic of Korea
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Byoung-Hyun Min
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Republic of Korea
- Cell Therapy Center, Ajou University Medical Center, Suwon, Republic of Korea
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
5
|
Antiosteoarthritic Effect of Morroniside in Chondrocyte Inflammation and Destabilization of Medial Meniscus-Induced Mouse Model. Int J Mol Sci 2021; 22:ijms22062987. [PMID: 33804203 PMCID: PMC7999654 DOI: 10.3390/ijms22062987] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis (OA) is a common degenerative disease that results in joint inflammation as well as pain and stiffness. A previous study has reported that Cornus officinalis (CO) extract inhibits oxidant activities and oxidative stress in RAW 264.7 cells. In the present study, we isolated bioactive compound(s) by fractionating the CO extract to elucidate its antiosteoarthritic effects. A single bioactive component, morroniside, was identified as a potential candidate. The CO extract and morroniside exhibited antiosteoarthritic effects by downregulating factors associated with cartilage degradation, including cyclooxygenase-2 (Cox-2), matrix metalloproteinase 3 (Mmp-3), and matrix metalloproteinase 13 (Mmp-13), in interleukin-1 beta (IL-1β)-induced chondrocytes. Furthermore, morroniside prevented prostaglandin E2 (PGE2) and collagenase secretion in IL-1β-induced chondrocytes. In the destabilization of the medial meniscus (DMM)-induced mouse osteoarthritic model, morroniside administration attenuated cartilage destruction by decreasing expression of inflammatory mediators, such as Cox-2, Mmp3, and Mmp13, in the articular cartilage. Transverse microcomputed tomography analysis revealed that morroniside reduced DMM-induced sclerosis in the subchondral bone plate. These findings suggest that morroniside may be a potential protective bioactive compound against OA pathogenesis.
Collapse
|
6
|
Yu SM, Han Y, Kim SJ. Simvastatin induces differentiation in rabbit articular chondrocytes via Wnt/β-catenin pathway. Eur J Pharmacol 2019; 863:172672. [DOI: 10.1016/j.ejphar.2019.172672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/05/2019] [Accepted: 09/18/2019] [Indexed: 01/31/2023]
|
7
|
Drozdov VN, Shikh EV, Serebrova SY, Abrosimov AG, Starodubtsev AK. [Alflutop - in modern symptom - modifying osteoarthritis therapy]. TERAPEVT ARKH 2019; 91:134-140. [PMID: 32598688 DOI: 10.26442/00403660.2019.05.000169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Indexed: 11/22/2022]
Abstract
One of the serious problems during the treatment of osteoarthritis (OA) is the developing of adverse drug events during therapy. Nonsteroidal anti - inflammatory drugs (NSAIDs) are the first drugs with the high incidence and severity of adverse events. This article describes OA treatment strategies approaches for OA are presented using the complex drug Alflutop, which has a composition similar to the human hyaline cartilage. The drug has anti - inflammatory and analgesic effects, normalizes the function of the affected joints, improves the quality of patients' life, also has a structure - modifying effect. Such therapy is safe, well tolerable for patients, and can be used used as a starting complex OA treatment.
Collapse
Affiliation(s)
- V N Drozdov
- Clinical pharmacology and internal medicine propaedeutics of I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Department of general medicine
| | - E V Shikh
- Clinical pharmacology and internal medicine propaedeutics of I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Department of general medicine
| | - S Y Serebrova
- Clinical pharmacology and internal medicine propaedeutics of I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Department of general medicine
| | - A G Abrosimov
- Clinical pharmacology and internal medicine propaedeutics of I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Department of general medicine
| | - A K Starodubtsev
- Clinical pharmacology and internal medicine propaedeutics of I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Department of general medicine
| |
Collapse
|
8
|
Yuan FL, Xu RS, Ye JX, Zhao MD, Ren LJ, Li X. Apoptotic bodies from endplate chondrocytes enhance the oxidative stress-induced mineralization by regulating PPi metabolism. J Cell Mol Med 2019; 23:3665-3675. [PMID: 30892812 PMCID: PMC6484318 DOI: 10.1111/jcmm.14268] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 02/01/2019] [Accepted: 02/03/2019] [Indexed: 12/22/2022] Open
Abstract
This study aimed to investigate the role of apoptotic bodies (Abs) from the oxidative stressed endplate chondrocytes in regulating mineralization and potential mechanisms. Endplate chondrocytes were isolated from rats and treated with H2O2 to induce oxidative stress. The calcium deposition for matrix mineralization in the cells was examined by histological staining. The expression levels of calcification‐related genes in individual groups of cells were determined by quantitative real time‐PCR (qRT‐PCR). Subsequently, extracellular vesicles (EVs) were purified and characterized. The effect of treatment with H2O2 and/or Abs on the mineralization, extracellular PPi metabolism and related gene expression were determined. Oxidative stress significantly increased the mineralization and promoted the generation of main Abs from endplate chondrocytes. Abs were effectively endocytosed by endplate chondrocytes and co‐localized with collagen (COL)‐II in the cytoplasm, which enhanced the mineralization, alkaline phosphatase (ALP), osteocalcin (OCN), Runt‐related transcription factor 2 (RUNX2) and COL‐I expression in endplate chondrocytes. Furthermore, treatment either H2O2 or Abs significantly decreased PPi, but increased Pi production and treatment with both further enhancing the changes in endplate chondrocytes. Similarly, treatment either H2O2 or Abs significantly decreased the ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), and ankylosis protein (ANK) expression and ENPP1 promoter activity, but increased the tissue‐nonspecific alkaline phosphatase (TNAP) expression and TNAP promoter activity in endplate chondrocytes. Oxidative stress promoted the generation of Abs, which might enhance the oxidative stress‐mediated mineralization in endplate chondrocytes by regulating the PPi metabolism.
Collapse
Affiliation(s)
- Feng-Lai Yuan
- Department of Orthopaedics and Central Laboratory, The Third Hospital Affiliated to Nantong University, Wuxi, China.,Department of Orthopaedics and Central Laboratory, The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Rui-Sheng Xu
- Department of Orthopaedics and Central Laboratory, The Third Hospital Affiliated to Nantong University, Wuxi, China
| | - Jun-Xing Ye
- Department of Orthopaedics and Central Laboratory, The Third Hospital Affiliated to Nantong University, Wuxi, China
| | - Ming-Dong Zhao
- Department of Orthopaedics, Jinshan Hospital, Fudan University, Shanghai, China
| | - Li-Jun Ren
- Department of Medicine, Anhui College of Traditional Chinese Medicine, Wuhu, China
| | - Xia Li
- Department of Orthopaedics and Central Laboratory, The Third Hospital Affiliated to Nantong University, Wuxi, China.,Department of Orthopaedics and Central Laboratory, The Hospital Affiliated to Jiangnan University, Wuxi, China
| |
Collapse
|
9
|
Impact of obesity on autoimmune arthritis and its cardiovascular complications. Autoimmun Rev 2018; 17:821-835. [PMID: 29885537 PMCID: PMC9996646 DOI: 10.1016/j.autrev.2018.02.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 02/25/2018] [Indexed: 02/06/2023]
Abstract
Obesity can instigate and sustain a systemic low-grade inflammatory environment that can amplify autoimmune disorders and their associated comorbidities. Metabolic changes and inflammatory factors produced by the adipose tissue have been reported to aggravate autoimmunity and predispose the patient to cardiovascular disease (CVD) and metabolic comorbidities. Rheumatoid arthritis (RA) and psoriatic arthritis (PsA) are autoimmune arthritic diseases, often linked with altered body mass index (BMI). Severe joint inflammation and bone destruction have a debilitating impact on the patient's life; there is also a staggering risk of cardiovascular morbidity and mortality. Furthermore, these patients are at risk of developing metabolic symptoms, including insulin resistance resulting in type 2 diabetes mellitus (T2DM). In addition, arthritis severity, progression and response to therapy can be markedly affected by the patient's BMI. Hence, a complex integrative pathogenesis interconnects autoimmunity with metabolic and cardiovascular disorders. This review aims to shed light on the network that connects obesity with RA, PsA, systemic lupus erythematosus and Sjӧgren's syndrome. We have focused on clarifying the mechanism by which obesity affects different cell types, inflammatory factors and traditional therapies in these autoimmune disorders. We conclude that to further optimize arthritis therapy and to prevent CVD, it is imperative to uncover the intricate relation between obesity and arthritis pathology.
Collapse
|
10
|
Jeon J, Kang LJ, Lee KM, Cho C, Song EK, Kim W, Park TJ, Yang S. 3'-Sialyllactose protects against osteoarthritic development by facilitating cartilage homeostasis. J Cell Mol Med 2017; 22:57-66. [PMID: 28782172 PMCID: PMC5742729 DOI: 10.1111/jcmm.13292] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/31/2017] [Indexed: 12/31/2022] Open
Abstract
3′‐Sialyllactose has specific physiological functions in a variety of tissues; however, its effects on osteoarthritic development remain unknown. Here, we demonstrated the function of 3′‐sialyllactose on osteoarthritic cartilage destruction. In vitro and ex vivo, biochemical and histological analysis demonstrated that 3′‐sialyllactose was sufficient to restore the synthesis of Col2a1 and accumulation of sulphated proteoglycan, a critical factor for cartilage regeneration in osteoarthritic development, and blocked the expression of Mmp3, Mmp13 and Cox2 induced by IL‐1β, IL‐6, IL‐17 and TNF‐α, which mediates cartilage degradation. Further, reporter gene assays revealed that the activity of Sox9 as a transcription factor for Col2a1 expression was accelerated by 3′‐sialyllactose, whereas the direct binding of NF‐κB to the Mmp3, Mmp13 and Cox2 promoters was reduced by 3′‐sialyllactose in IL‐1β‐treated chondrocytes. Additionally, IL‐1β induction of Erk phosphorylation and IκB degradation, representing a critical signal pathway for osteoarthritic development, was totally blocked by 3′‐sialyllactose in a dose‐dependent manner. In vivo, 3′‐sialyllactose protected against osteoarthritic cartilage destruction in an osteoarthritis mouse model induced by destabilization of the medial meniscus, as demonstrated by histopathological analysis. Our results strongly suggest that 3′‐sialyllactose may ameliorate osteoarthritic cartilage destruction by cartilage regeneration via promoting Col2a1 production and may inhibit cartilage degradation and inflammation by suppressing Mmp3, Mmp13 and Cox2 expression. The effects of 3′‐sialyllactose could be attributed in part to its regulation of Sox9 or NF‐κB and inhibition of Erk phosphorylation and IκB degradation. Taken together, these effects indicate that 3′‐sialyllactose merits consideration as a natural therapeutic agent for protecting against osteoarthritis.
Collapse
Affiliation(s)
- Jimin Jeon
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea.,Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea
| | - Li-Jung Kang
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea
| | - Kwang Min Lee
- Korea Food Research Institute, Seongnam-si, Gyeonggi-do, Korea
| | - Chanmi Cho
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea.,Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea
| | - Eun Kyung Song
- School of Life Science, Ulsan National Institute of Science and Technology, Ulsan, Korea.,Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| | - Wook Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Tae Joo Park
- School of Life Science, Ulsan National Institute of Science and Technology, Ulsan, Korea.,Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| | - Siyoung Yang
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea.,Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
11
|
Tan AR, Hung CT. Concise Review: Mesenchymal Stem Cells for Functional Cartilage Tissue Engineering: Taking Cues from Chondrocyte-Based Constructs. Stem Cells Transl Med 2017; 6:1295-1303. [PMID: 28177194 PMCID: PMC5442836 DOI: 10.1002/sctm.16-0271] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 12/21/2016] [Indexed: 01/01/2023] Open
Abstract
Osteoarthritis, the most prevalent form of joint disease, afflicts 9% of the U.S. population over the age of 30 and costs the economy nearly $100 billion annually in healthcare and socioeconomic costs. It is characterized by joint pain and dysfunction, though the pathophysiology remains largely unknown. Due to its avascular nature and limited cellularity, articular cartilage exhibits a poor intrinsic healing response following injury. As such, significant research efforts are aimed at producing engineered cartilage as a cell-based approach for articular cartilage repair. However, the knee joint is mechanically demanding, and during injury, also a milieu of harsh inflammatory agents. The unforgiving mechano-chemical environment requires tissue replacements that are capable of bearing such burdens. The use of mesenchymal stem cells (MSCs) for cartilage tissue engineering has emerged as a promising cell source due to their ease of isolation, capacity to readily expand in culture, and ability to undergo lineage-specific differentiation into chondrocytes. However, to date, very few studies utilizing MSCs have successfully recapitulated the structural and functional properties of native cartilage, exposing the difficult process of uniformly differentiating stem cells into desired cell fates and maintaining the phenotype during in vitro culture and after in vivo implantation. To address these shortcomings, here, we present a concise review on modulating stem cell behavior, tissue development and function using well-developed techniques from chondrocyte-based cartilage tissue engineering. Stem Cells Translational Medicine 2017;6:1295-1303.
Collapse
|
12
|
Manunta AF, Zedde P, Cudoni S, Caggiari G, Pintus G. Early joint degeneration and antagonism between growth factors and reactive oxygen species. Is non-surgical management possible? JOINTS 2016; 3:123-8. [PMID: 26889468 DOI: 10.11138/jts/2015.3.3.123] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE in pathological conditions such as osteo-arthritis (OA), overproduction of reactive oxygen species (ROS) may overwhelm the antioxidant defenses of chondrocytes, thus promoting oxidative stress and cell death. It can be hypothesized that increasing the antioxidant machinery of chondrocytes may prevent the age-associated progression of this disease. Growth factors (GFs) play an important role in promoting both the resolution of inflammatory processes and tissue repair. In view of these considerations, we set out to investigate the protective effect, against H2O2-induced oxidative cell death, potentially exerted by fluid drained from the joint postoperatively. METHODS the present study was conducted in 20 patients diagnosed with bilateral knee osteoarthritis and treated, between January 2013 and June 2014, with prosthetic knee implantation on the side more affected by the arthritic process, together with intraoperative placement of a closed-circuit drainage aspiration system. As a result, 20 different serum samples were collected from the drained articular fluid, prepared using two different methodologies. In addition, forty blood serum samples were obtained and prepared: 20 from the surgically treated patients and 20 from healthy controls. The present work was undertaken to investigate the potential protective effect of sera obtained from articular fluid drainage against hydrogen peroxide-induced oxidative stress in cultured human chondrocytes. RESULTS exposure of chondrocytes to hydrogen peroxide elicited a dose-dependent increase in oxidative stress and chondrocyte cell death, phenomena that were significantly counteracted by the pre-treatment of cell cultures with sera from articular fluid drainage. CONCLUSIONS oxidatively stressed chondrocytes treated with sera obtained from articular fluid drainage lived longer than those treated with blood serum samples and longer than untreated ones. CLINICAL RELEVANCE synovial fluids are usually discarded once the drainage reservoir is full; instead they could benefit the patients from whom they are collected, as they are rich in growth factors and they may act as antagonists of ROS effects. Accordingly, they could be used to treat chondropathies, early OA, and mild OA located in other sites.
Collapse
Affiliation(s)
| | - Pietro Zedde
- Orthopaedic and Traumatology Unit, Nuoro Hospital, Italy
| | | | | | | |
Collapse
|
13
|
Papathanasiou I, Michalitsis S, Hantes ME, Vlychou M, Anastasopoulou L, Malizos KN, Tsezou A. Molecular changes indicative of cartilage degeneration and osteoarthritis development in patients with anterior cruciate ligament injury. BMC Musculoskelet Disord 2016; 17:21. [PMID: 26762166 PMCID: PMC4712525 DOI: 10.1186/s12891-016-0871-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/05/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Anterior cruciate ligament (ACL) tear is considered a risk factor for osteoarthritis development. The purpose of our study was to investigate the expression levels of the apoptotic enzyme caspase 3, pro-inflammatory cytokines interleukin-1β (IL-1β) and interleukin-6 (IL-6) and degrading enzyme matrix metalloproteinase 13 (MMP-13), all indicative of cartilage degeneration and osteoarthritis development in patients' chondrocytes after ACL rupture. METHODS We investigated the correlation between grade of cartilage degradation and time from injury or patients' age. IL-1β, IL-6 and MMP-13 mRNA expression levels were investigated in normal (n = 4) and chondrocytes from patients with ACL rupture (n = 33) using real-time polymerase chain reaction (PCR). Moreover, MMP-13 and caspase-3 protein expression levels were evaluated by western blot analysis. Trend analysis and correlation coefficient were performed to derive the relations between gene expression (MMP13, IL-6, IL-1β) and grading of cartilage defects and between gene expression (MMP13, IL-6, IL-1β) and patients' age, respectively. RESULTS Correlations were established between grade of cartilage degradation and time from injury. MMP-13, IL-6, IL-1β and caspase 3 expression levels were significantly upregulated in chondrocytes from ACL-deficient knee compared to normal. Among the patients with ACL-deficient knees, a significant upregulation of MMP-13 was observed in patients with ACL-rupture > 18 months from the time of injury to arthroscopy compared to patients with ACL-injury up to 18 months, whereas IL-6 and IL-1β expression was higher in chondrocytes from patients with more than 10 months ACL injury compared to those that underwent surgery within the first 10 months after injury. Νο association was observed between IL-1β, IL-6 and MMP-13 expression levels and cartilage defects or patients' age. CONCLUSION Our results showed that increased levels of apoptotic, inflammatory and catabolic factors in chondrocytes are associated with time from injury and could contribute to cartilage degradation and osteoarthritis development after ACL rupture.
Collapse
Affiliation(s)
- Ioanna Papathanasiou
- Laboratory of Cytogenetics and Molecular Genetics, University of Thessaly, Faculty of Medicine, Biopolis, 41500, Larissa, Greece.
| | - Sotirios Michalitsis
- Department of Orthopaedic Surgery, University of Thessaly, Faculty of Medicine, Biopolis, 41500, Larissa, Greece.
| | - Michael E Hantes
- Department of Orthopaedic Surgery, University of Thessaly, Faculty of Medicine, Biopolis, 41500, Larissa, Greece.
| | - Marianna Vlychou
- Department of Radiology, University of Thessaly, Faculty of Medicine, Biopolis, 41500, Larissa, Greece.
| | - Lydia Anastasopoulou
- Laboratory of Cytogenetics and Molecular Genetics, University of Thessaly, Faculty of Medicine, Biopolis, 41500, Larissa, Greece.
| | - Konstantinos N Malizos
- Department of Orthopaedic Surgery, University of Thessaly, Faculty of Medicine, Biopolis, 41500, Larissa, Greece.
| | - Aspasia Tsezou
- Laboratory of Cytogenetics and Molecular Genetics, University of Thessaly, Faculty of Medicine, Biopolis, 41500, Larissa, Greece. .,Department of Biology, University of Thessaly, Faculty of Medicine, Biopolis, 41500, Larissa, Greece.
| |
Collapse
|
14
|
Ríos DL, López C, Carmona JU. Evaluation of the anti-inflammatory effects of two platelet-rich gel supernatants in an in vitro system of cartilage inflammation. Cytokine 2015; 76:505-513. [PMID: 26185893 DOI: 10.1016/j.cyto.2015.07.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 07/06/2015] [Accepted: 07/08/2015] [Indexed: 11/18/2022]
Abstract
OBJECTIVES To study, in normal cartilage explants (CEs) challenged with lipopolysaccharide (LPS), the temporal effects (at 48 and 96h) of leukocyte- and platelet-rich gel (L-PRG) and pure platelet-rich gel (P-PRG) supernatants on the production and degradation of platelet-associated growth factors (GFs) (platelet-derived GF isoform BB [PDGF-BB] and transforming growth factor beta-1 [TGF-β1]), pro-inflammatory (tumour necrosis factor alpha [TNF-α]) and anti-inflammatory cytokines (interleukin 4 [IL-4] and IL-1 receptor antagonist [IL-1ra]). METHODS CEs from six horses were challenged with LPS and cultured for 96h with L-PRG and P-PRG supernatants at concentrations of 25% and 50%, respectively. The CE culture medium was changed every 48h and used for determination, by ELISA, of PDGF-BB, TGF-β1, TNF-α, IL-4 and IL-1ra. RESULTS Both the 25% and 50% PRG supernatants produced a different molecular profile in the culture media, unlike that of the CE challenged with LPS only. 50% L-PRG produced the most sustained release of growth factors and anti-inflammatory cytokines, although it produced the highest TNF-α release. PDGF-BB was significantly correlated with IL-1ra and TNF-α concentrations, whereas TNF-α was correlated with IL-4. CONCLUSIONS 50% L-PRG supernatant produced a more sustained concentration of growth factors and anti-inflammatory cytokines than the other hemoderivatives evaluated. This substance could be evaluated in animal models of arthritis or in patients with arthropathies.
Collapse
Affiliation(s)
- D L Ríos
- Grupo de Investigación Terapia Regenerativa, Departamento de Salud Animal, Universidad de Caldas, Calle 65 No 26-10, Manizales, Colombia
| | - C López
- Grupo de Investigación Terapia Regenerativa, Departamento de Salud Animal, Universidad de Caldas, Calle 65 No 26-10, Manizales, Colombia
| | - J U Carmona
- Grupo de Investigación Terapia Regenerativa, Departamento de Salud Animal, Universidad de Caldas, Calle 65 No 26-10, Manizales, Colombia.
| |
Collapse
|
15
|
Kobayashi-Miura M, Miura T, Osago H, Yamaguchi Y, Aoyama T, Tanabe T, Matsumoto KI, Fujita Y. Rat Articular Cartilages Change Their Tissue and Protein Compositions During Perinatal Period. Anat Histol Embryol 2014; 45:9-18. [DOI: 10.1111/ahe.12165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 10/26/2014] [Indexed: 11/28/2022]
Affiliation(s)
- M. Kobayashi-Miura
- Department of Public Health; Faculty of Medicine; Shimane University; 89-1 Enya Izumo Shimane 693-8501 Japan
| | - T. Miura
- Department of Anatomy and Cell Biology; Graduate School of Medicine; Kyusyu University; 3-1-1 Maidashi Higashi-ku Fukuoka 812-8582 Japan
| | - H. Osago
- Department of Biochemistry; Faculty of Medicine; Shimane University; 89-1 Enya Izumo Shimane 693-8501 Japan
| | - Y. Yamaguchi
- Department of Anatomy and Cell Biology; Graduate School of Medicine; Kyusyu University; 3-1-1 Maidashi Higashi-ku Fukuoka 812-8582 Japan
| | - T. Aoyama
- Department of Human Health Sciences; Graduate School of Medicine; Kyoto University; 53 Shogoin-Kawahara-cho Sakyo-ku Kyoto 606-8507 Japan
| | - T. Tanabe
- Department of Public Health; Graduate School of Medicine; Yamaguchi University; 1-1-1 Minamikogushi Ube Yamaguchi 755-8505 Japan
| | - K.-i. Matsumoto
- Department of Biosignaling and Radioisotope Experiment; Interdisciplinary Center for Science Research; Organization for Research; Shimane University; 89-1 Enya Izumo Shimane 693-8501 Japan
| | - Y. Fujita
- Department of Public Health; Faculty of Medicine; Shimane University; 89-1 Enya Izumo Shimane 693-8501 Japan
| |
Collapse
|
16
|
Revision of meniscal transplants: long-term clinical follow-up. Knee Surg Sports Traumatol Arthrosc 2014; 22:351-6. [PMID: 23400911 DOI: 10.1007/s00167-013-2439-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 01/29/2013] [Indexed: 10/27/2022]
Abstract
PURPOSE The primary aim is to document objective and subjective clinical outcome after knee arthroplasty for failed meniscal allograft transplantation; secondly, to investigate the influence of previous meniscal allograft surgery on the clinical outcome after a knee arthroplasty procedure; thirdly, to identify possible prognostic factors for the failure of meniscal allograft, such as potential number of concomitant procedures or pre-transplantation HSS-scores. The study population was compared to a control group of primary total knee arthroplasties. METHODS The pre-operative phase, prior to meniscal allograft transplantation, was evaluated by the HSS questionnaire. At final follow-up, the clinical outcome was evaluated by the HSS, KOOS and SF-36 questionnaires. The mean follow-up was 16 years and 2 months. The control group, matched for age and sex, comprised patients with primary total knee arthroplasty. RESULTS Statistical analysis showed that for the HSS-scores, there was no significant difference between the study population and the control group. KOOS data showed that the control group scored better overall. There was no significant difference between the HSS-scores after the transplantation and after the knee prosthesis. However, both showed a significant improvement regarding the clinical condition before meniscal transplantation. CONCLUSIONS The clinical results after revised meniscal transplantation by means of knee prosthesis are highly variable with a tendency to have a lower score than patients with a primary knee prosthesis. Patients who underwent a revision of their meniscal allograft transplantation by means of a knee arthroplasty still had a significant better clinical outcome than prior to the meniscal allograft transplantation. There were no prognostic factors found by which one can determine whether a meniscal allograft will have a good survival or not.
Collapse
|
17
|
Pulsed electromagnetic fields increased the anti-inflammatory effect of A₂A and A₃ adenosine receptors in human T/C-28a2 chondrocytes and hFOB 1.19 osteoblasts. PLoS One 2013; 8:e65561. [PMID: 23741498 PMCID: PMC3669296 DOI: 10.1371/journal.pone.0065561] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 04/27/2013] [Indexed: 12/30/2022] Open
Abstract
Adenosine receptors (ARs) have an important role in the regulation of inflammation and their activation is involved in the inhibition of pro-inflammatory cytokine release. The effects of pulsed electromagnetic fields (PEMFs) on inflammation have been reported and we have demonstrated that PEMFs increased A2A and A3AR density and functionality in different cell lines. Chondrocytes and osteoblasts are two key cell types in the skeletal system that play important role in cartilage and bone metabolism representing an interesting target to study the effect of PEMFs. The primary aim of the present study was to evaluate if PEMF exposure potentiated the anti-inflammatory effect of A2A and/or A3ARs in T/C-28a2 chondrocytes and hFOB 1.19 osteoblasts. Immunofluorescence, mRNA analysis and saturation binding assays revealed that PEMF exposure up-regulated A2A and A3AR expression. A2A and A3ARs were able to modulate cAMP production and cell proliferation. The activation of A2A and A3ARs resulted in the decrease of some of the most relevant pro-inflammatory cytokine release such as interleukin (IL)-6 and IL-8, following the treatment with IL-1β as an inflammatory stimuli. In human chondrocyte and osteoblast cell lines, the inhibitory effect of A2A and A3AR stimulation on the release of prostaglandin E2 (PGE2), an important lipid inflammatory mediator, was observed. In addition, in T/C-28a2 cells, the activation of A2A or A3ARs elicited an inhibition of vascular endothelial growth factor (VEGF) secretion. In hFOB 1.19 osteoblasts, PEMF exposure determined an increase of osteoprotegerin (OPG) production. The effect of the A2A or A3AR agonists in the examined cells was enhanced in the presence of PEMFs and completely blocked by using well-known selective antagonists. These results demonstrated that PEMF exposure significantly increase the anti-inflammatory effect of A2A or A3ARs suggesting their potential therapeutic use in the therapy of inflammatory bone and joint disorders.
Collapse
|
18
|
Williams EL, Edwards CJ, Cooper C, Oreffo ROC. Impact of inflammation on the osteoarthritic niche: implications for regenerative medicine. Regen Med 2012; 7:551-70. [DOI: 10.2217/rme.12.34] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Osteoarthritis (OA) is the most common form of arthritis worldwide and is the sixth leading cause of disability. It costs the UK economy approximately 1% of gross national product per annum. With an aging population, the cost of chronic conditions such as OA continues to rise. Historically, treatments for OA have been limited to painkillers, physiotherapy and joint injections. When these fail, patients are referred for joint replacement surgery. With the advent of tissue engineering strategies aimed at generating new bone and cartilage for repair of osteochondral defects, there has been considerable interest in exploiting these techniques to devise new treatments for OA. To date, little consideration has been given to the OA niche and attendant inflammatory milieu for any regenerative skeletal strategy. This review highlights the importance of understanding the osteoarthritic niche in order to modify existing tissue engineering and regenerative medicine strategies for the future treatment of OA.
Collapse
Affiliation(s)
- Emma L Williams
- Bone & Joint Research Group, Centre for Human Development, Stem Cells & Regeneration, Human Development & Health, University of Southampton Medical School, Southampton, UK
| | - Christopher J Edwards
- Bone & Joint Research Group, Centre for Human Development, Stem Cells & Regeneration, Human Development & Health, University of Southampton Medical School, Southampton, UK
- Rheumatology Department, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Cyrus Cooper
- Rheumatology Department, University Hospital Southampton NHS Foundation Trust, Southampton, UK
- MRC Lifecourse Epidemiology Unit, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Richard OC Oreffo
- Bone & Joint Research Group, Centre for Human Development, Stem Cells & Regeneration, Human Development & Health, University of Southampton Medical School, Southampton, UK
| |
Collapse
|
19
|
Williams EL, Edwards CJ, Cooper C, Oreffo ROC. The osteoarthritic niche and modulation of skeletal stem cell function for regenerative medicine. J Tissue Eng Regen Med 2012; 7:589-608. [PMID: 22489025 DOI: 10.1002/term.1455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 10/18/2011] [Accepted: 11/24/2011] [Indexed: 12/15/2022]
Abstract
Osteoarthritis (OA) is the most common cause of arthritis worldwide and represents a significant healthcare burden, particularly in the context of an ageing population. Traditionally, painkillers, injections and physiotherapy have been the mainstay of treatment, with patients being referred for joint replacement surgery (arthroplasty) when these options fail. Whilst effective in reducing pain and improving joint function, these approaches are not without potential complications. With the development of tissue-engineering techniques over recent years there has been considerable interest in applying these strategies to provide new, innovative, alternative effective means of treating OA. This review explores the unique microenvironment present within an osteoarthritic joint, highlighting the features that comprise the osteoarthritic niche and could be modulated in the development of novel treatments for OA. Existing tissue-engineering strategies for repairing bone and cartilage defects are discussed, with particular reference to how these might be modified, both to improve existing treatments, such as impaction bone grafting, as well as in the development of future treatments for OA.
Collapse
Affiliation(s)
- E L Williams
- Bone and Joint Research Group, Human Development and Health, University of Southampton Medical School, UK.
| | | | | | | |
Collapse
|
20
|
Verbruggen G, Wittoek R, Vander Cruyssen B, Elewaut D. Tumour necrosis factor blockade for the treatment of erosive osteoarthritis of the interphalangeal finger joints: a double blind, randomised trial on structure modification. Ann Rheum Dis 2011; 71:891-8. [PMID: 22128078 PMCID: PMC3371224 DOI: 10.1136/ard.2011.149849] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background Adalimumab blocks the action of tumor necrosis factor-α and reduces disease progression in rheumatoid arthritis and psoriatic arthritis. The effects of adalimumab in controlling progression of structural damage in erosive hand osteoarthritis (HOA) were assessed. Methods Sixty patients with erosive HOA on radiology received 40 mg adalimumab or placebo subcutaneously every two weeks during a 12-month randomized double-blind trial. Response was defined as the reduction in progression of structural damage according to the categorical anatomic phase scoring system. Furthermore, subchondral bone, bone plate erosion, and joint-space narrowing were scored according to the continuous Ghent University Score System (GUSSTM). Results The disease appeared to be active since 40.0% and 26,7% of patients out of the placebo and adalimumab group, respectively, showed at least one new interphalangeal (IP) joint that became erosive during the 12 months follow-up. These differences were not significant and the overall results showed no effect of adalimumab. Risk factors for progression were then identified and the presence of palpable soft tissue swelling at baseline was recognized as the strongest predictor for erosive progression. In this subpopulation at risk, statistically significant less erosive evolution on the radiological image (3.7%) was seen in the adalimumab treated group compared to the placebo group (14.5%) (P = 0.009). GUSSTM scoring confirmed a less rapid rate of mean increase in the erosion scores during the first 6 months of treatment in patients in adalimumab-treated patients. Conclusion Palpable soft tissue swelling in IP joints in patients with erosive HOA is a strong predictor for erosive progression. In these joints adalimumab significantly halted the progression of joint damage compared to placebo.
Collapse
Affiliation(s)
- Gust Verbruggen
- Rheumatology Department, Ghent University Hospital, Ghent, Belgium.
| | | | | | | |
Collapse
|
21
|
The effect of Lidocaine on the viability of cultivated mature human cartilage cells: an in vitro study. Knee Surg Sports Traumatol Arthrosc 2011; 19:1206-13. [PMID: 21311864 DOI: 10.1007/s00167-011-1420-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Accepted: 01/24/2011] [Indexed: 10/18/2022]
Abstract
PURPOSE More and more orthopedic procedures are performed in an outpatient setting. A commonly used strategy in pain management is the intra-articular injection of local anesthetics. Recent attention has been drawn to their possible toxic effect on chondrocytes. Local anesthetics, and in particular Lidocaine, are also used for diagnostic joint infiltrations. A controlled laboratory study was performed to investigate the possible toxic effect of Lidocaine on human articular chondrocytes. METHODS Mature human articular chondrocytes were harvested from the knees of human tissue donors or patients undergoing total knee replacement. The cells were exposed to Lidocaine 1 and 2% with and without epinephrine and to a saline 0.9% control group, with variable exposure times in different experiments. The activity and viability of the cells were assessed by lactate dehydrogenase activity, interleukin-6 production and a live/dead cell count. RESULTS After a 1-h exposure, devastating results were seen for Lidocaine 1, 2 and 2% with epinephrine showing cell death rates of 91, 99 and 97%, respectively, compared with 26% in the saline control group (P-values of 0.004, 0.010, 0.006, respectively). Exposing the chondrocytes to a 50/50 mixture of culture medium and local anesthetics substantially decreased cytotoxicity but still showed high toxicity when compared with the saline group (90% dead cells for Lidocaine 2%, P = 0.047). Lidocaine also showed a time-dependent cytotoxicity with gradually more dead cells after exposure for 15, 30 or 60 min. CONCLUSION In vitro, local anesthetics containing Lidocaine are significantly more toxic to mature human articular chondrocytes than a saline 0.9% control group. The effect of Lidocaine on the viability of human chondrocytes in vivo needs further investigation. However, based on our in vitro results, cautious use of intra-articular Lidocaine in clinical practice is recommended.
Collapse
|
22
|
Groeneboer S, Lambrecht S, Dhollander A, Jacques P, Cruyssen BV, Lories RJ, Devreese K, Chiers K, Elewaut D, Verbruggen G. Optimized alkylated cyclodextrin polysulphates with reduced risks on thromboembolic accidents improve osteoarthritic chondrocyte metabolism. Rheumatology (Oxford) 2011; 50:1226-35. [PMID: 21345936 PMCID: PMC3116210 DOI: 10.1093/rheumatology/keq396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 10/27/2010] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVES To compare the ability of different cyclodextrin polysulphate (CDPS) derivatives to affect human articular cartilage cell metabolism in vitro. METHODS OA chondrocytes were cultured in alginate and exposed to 5 µg/ml of 2,3,6-tri-O-methyl-β-cyclodextrin (ME-CD), 2,3-di-O-methyl-6-sulphate-β-cyclodextrin (ME-CD-6-S), 2,6-di-O-methyl-3-sulphate-β-cyclodextrin (ME-CD-3-S), (2-carboxyethyl)-β-CDPS (CE-CDPS), (2-hydroxypropyl)-β-CDPS (HP-CDPS), 6-monoamino-6-monodeoxy-β-CDPS (MA-CDPS) or β-CDPS for 5 days. Effects on IL-1-driven chondrocyte extracellular matrix (ECM) metabolism were assayed by analysis of the accumulation of aggrecan in the interterritorial matrix, IL-6 secretion and qPCR. MA-CDPS, HP-CDPS, CE-CDPS and CDPS were analysed for their in vitro effect on coagulation and their ability to activate platelets in an in vitro assay to detect possible cross-reactivity with heparin-induced thrombocytopenia (HIT) antibodies. RESULTS The monosulphated cyclodextrins ME-CD-6-S and -3-S failed to affect aggrecan synthesis and IL-6 secretion by the OA chondrocytes. Polysulphated cyclodextrins MA-CDPS, HP-CDPS, CE-CDPS and CDPS at 5 µg/ml concentrations, on the other hand, significantly induced aggrecan production and repressed IL-6 release by the chondrocytes in culture. aPTT and PT for all derivatives were lengthened for polysaccharide concentrations >50 µg/ml. Five micrograms per millilitre of β-CDPS concentrations that significantly modulated ECM ground substance production in vitro did not affect aPTT or PT. Furthermore, CE-CDPS, in contrast to MA-CDPS, HP-CDPS and CDPS, did not significantly activate platelets, suggesting a minimal potential to induce HIT thromboembolic accidents in vivo. CONCLUSIONS CE-CDPS is a new, structurally adjusted, sulphated β-cyclodextrin derivative with preserved chondroprotective capacity and a promising safety profile.
Collapse
Affiliation(s)
- Sara Groeneboer
- Department of Rheumatology, Laboratory of Connective Tissue Biology, Ghent University Hospital, Ghent, Department of Musculoskeletal Sciences, Division of Rheumatology, Laboratory for Skeletal Development and Joint Disorders, KU Leuven, Department of Clinical Chemistry, Microbiology and Immunology, Coagulation Laboratory, Ghent University Hospital and Department of Pathology, Bacteriology and Avian Diseases, Ghent University, Ghent, Belgium
| | - Stijn Lambrecht
- Department of Rheumatology, Laboratory of Connective Tissue Biology, Ghent University Hospital, Ghent, Department of Musculoskeletal Sciences, Division of Rheumatology, Laboratory for Skeletal Development and Joint Disorders, KU Leuven, Department of Clinical Chemistry, Microbiology and Immunology, Coagulation Laboratory, Ghent University Hospital and Department of Pathology, Bacteriology and Avian Diseases, Ghent University, Ghent, Belgium
| | - Aad Dhollander
- Department of Rheumatology, Laboratory of Connective Tissue Biology, Ghent University Hospital, Ghent, Department of Musculoskeletal Sciences, Division of Rheumatology, Laboratory for Skeletal Development and Joint Disorders, KU Leuven, Department of Clinical Chemistry, Microbiology and Immunology, Coagulation Laboratory, Ghent University Hospital and Department of Pathology, Bacteriology and Avian Diseases, Ghent University, Ghent, Belgium
| | - Peggy Jacques
- Department of Rheumatology, Laboratory of Connective Tissue Biology, Ghent University Hospital, Ghent, Department of Musculoskeletal Sciences, Division of Rheumatology, Laboratory for Skeletal Development and Joint Disorders, KU Leuven, Department of Clinical Chemistry, Microbiology and Immunology, Coagulation Laboratory, Ghent University Hospital and Department of Pathology, Bacteriology and Avian Diseases, Ghent University, Ghent, Belgium
| | - Bert Vander Cruyssen
- Department of Rheumatology, Laboratory of Connective Tissue Biology, Ghent University Hospital, Ghent, Department of Musculoskeletal Sciences, Division of Rheumatology, Laboratory for Skeletal Development and Joint Disorders, KU Leuven, Department of Clinical Chemistry, Microbiology and Immunology, Coagulation Laboratory, Ghent University Hospital and Department of Pathology, Bacteriology and Avian Diseases, Ghent University, Ghent, Belgium
| | - Rik J. Lories
- Department of Rheumatology, Laboratory of Connective Tissue Biology, Ghent University Hospital, Ghent, Department of Musculoskeletal Sciences, Division of Rheumatology, Laboratory for Skeletal Development and Joint Disorders, KU Leuven, Department of Clinical Chemistry, Microbiology and Immunology, Coagulation Laboratory, Ghent University Hospital and Department of Pathology, Bacteriology and Avian Diseases, Ghent University, Ghent, Belgium
| | - Katrien Devreese
- Department of Rheumatology, Laboratory of Connective Tissue Biology, Ghent University Hospital, Ghent, Department of Musculoskeletal Sciences, Division of Rheumatology, Laboratory for Skeletal Development and Joint Disorders, KU Leuven, Department of Clinical Chemistry, Microbiology and Immunology, Coagulation Laboratory, Ghent University Hospital and Department of Pathology, Bacteriology and Avian Diseases, Ghent University, Ghent, Belgium
| | - Koen Chiers
- Department of Rheumatology, Laboratory of Connective Tissue Biology, Ghent University Hospital, Ghent, Department of Musculoskeletal Sciences, Division of Rheumatology, Laboratory for Skeletal Development and Joint Disorders, KU Leuven, Department of Clinical Chemistry, Microbiology and Immunology, Coagulation Laboratory, Ghent University Hospital and Department of Pathology, Bacteriology and Avian Diseases, Ghent University, Ghent, Belgium
| | - Dirk Elewaut
- Department of Rheumatology, Laboratory of Connective Tissue Biology, Ghent University Hospital, Ghent, Department of Musculoskeletal Sciences, Division of Rheumatology, Laboratory for Skeletal Development and Joint Disorders, KU Leuven, Department of Clinical Chemistry, Microbiology and Immunology, Coagulation Laboratory, Ghent University Hospital and Department of Pathology, Bacteriology and Avian Diseases, Ghent University, Ghent, Belgium
| | - Gust Verbruggen
- Department of Rheumatology, Laboratory of Connective Tissue Biology, Ghent University Hospital, Ghent, Department of Musculoskeletal Sciences, Division of Rheumatology, Laboratory for Skeletal Development and Joint Disorders, KU Leuven, Department of Clinical Chemistry, Microbiology and Immunology, Coagulation Laboratory, Ghent University Hospital and Department of Pathology, Bacteriology and Avian Diseases, Ghent University, Ghent, Belgium
| |
Collapse
|
23
|
Joint inflammation and early degeneration induced by high-force reaching are attenuated by ibuprofen in an animal model of work-related musculoskeletal disorder. J Biomed Biotechnol 2011; 2011:691412. [PMID: 21403884 PMCID: PMC3051200 DOI: 10.1155/2011/691412] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 12/11/2010] [Indexed: 11/18/2022] Open
Abstract
We used our voluntary rat model of reaching and grasping to study the effect of performing a high-repetition and high-force (HRHF) task for 12 weeks on wrist joints. We also studied the effectiveness of ibuprofen, administered in the last 8 weeks, in attenuating HRHF-induced changes in these joints. With HRHF task performance, ED1+ and COX2+ cells were present in subchondral radius, carpal bones and synovium; IL-1alpha and TNF-alpha increased in distal radius/ulna/carpal bones; chondrocytes stained with Terminal deoxynucleotidyl Transferase- (TDT-) mediated dUTP-biotin nick end-labeling (TUNEL) increased in wrist articular cartilages; superficial structural changes (e.g., pannus) and reduced proteoglycan staining were observed in wrist articular cartilages. These changes were not present in normal controls or ibuprofen treated rats, although IL-1alpha was increased in reach limbs of trained controls. HRHF-induced increases in serum C1,2C (a biomarker of collagen I and II degradation), and the ratio of collagen degradation to synthesis (C1,2C/CPII; the latter a biomarker of collage type II synthesis) were also attenuated by ibuprofen. Thus, ibuprofen treatment was effective in attenuating HRHF-induced inflammation and early articular cartilage degeneration.
Collapse
|
24
|
Uric acid is a danger signal of increasing risk for osteoarthritis through inflammasome activation. Proc Natl Acad Sci U S A 2011; 108:2088-93. [PMID: 21245324 DOI: 10.1073/pnas.1012743108] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Uric acid (UA) is known to activate the NLRP3 (Nacht, leucine-rich repeat and pyrin domain containing protein 3) inflammasome. When activated, the NLRP3 (also known as NALP3) inflammasome leads to the production of IL-18 and IL-1β. In this cohort of subjects with knee osteoarthritis (OA), synovial fluid uric acid was strongly correlated with synovial fluid IL-18 and IL-1β. Synovial fluid uric acid and IL-18 were strongly and positively associated with OA severity as measured by both radiograph and bone scintigraphy, and synovial fluid IL-1β was associated with OA severity but only by radiograph. Furthermore, synovial fluid IL-18 was associated with a 3-y change in OA severity, on the basis of the radiograph. We conclude that synovial fluid uric acid is a marker of knee OA severity. The correlation of synovial fluid uric acid with the two cytokines (IL-18 and IL-1β) known to be produced by uric acid-activated inflammasomes and the association of synovial fluid IL-18 with OA progression, lend strong support to the potential involvement of the innate immune system in OA pathology and OA progression.
Collapse
|
25
|
Han SK, Seerattan R, Herzog W. Mechanical loading of in situ chondrocytes in lapine retropatellar cartilage after anterior cruciate ligament transection. J R Soc Interface 2009; 7:895-903. [PMID: 19933220 DOI: 10.1098/rsif.2009.0458] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aims of this study were (i) to quantify chondrocyte mechanics in fully intact articular cartilage attached to its native bone and (ii) to compare the chondrocyte mechanics for cells in healthy and early osteoarthritis (OA) tissue. We hypothesized that cells in the healthy tissue would deform less for given articular surface pressures than cells in the early OA tissue because of a loss of matrix integrity in early OA and the associated loss of structural integrity that is thought to protect chondrocytes. Chondrocyte dynamics were quantified by measuring the deformation response of the cells to controlled loading of fully intact cartilage using a custom-designed confocal indentation system. Early OA was achieved nine weeks following transection of the anterior cruciate ligament (ACL) in rabbit knees. Experiments were performed on the retropatellar cartilage of early OA rabbit knees (four joints and 48 cells), the corresponding intact contralateral control knees (four joints and 48 cells) and knees from normal control rabbits (four joints and 48 cells). Nine weeks following ACL transection, articular cartilage of the experimental joints showed substantial increases in thickness, and progression towards OA as assessed using histological grading. Local matrix strains in the superficial zone were greater for the experimental (38 +/- 4%) compared with the contralateral (27 +/- 5%) and normal (28 +/- 4%) joints (p = 0.04). Chondrocyte deformations in the axial and depth directions were similar during indentation loading for all experimental groups. However, cell width increased more for the experimental cartilage chondrocytes (12 +/- 1%) than the contralateral (6 +/- 1%) and normal control chondrocytes (6 +/- 1%; p < 0.001). On average, chondrocyte volume increased with indentation loading in the early OA cartilage (8 +/- 3%, p = 0.001), while it decreased for the two control groups (-8 +/- 2%, p = 0.002 for contralateral and -8 +/- 1%, p = 0.004 for normal controls). We conclude from these results that our hypothesis of cell deformations in the early OA tissue was only partially supported: specifically, changes in chondrocyte mechanics in early OA were direction-specific with the primary axial deformations remaining unaffected despite vastly increased average axial matrix deformations. Surprisingly, chondrocyte deformations increased in early OA in specific transverse directions which have received little attention to date but might be crucial to chondrocyte signalling in early OA.
Collapse
Affiliation(s)
- Sang-Kuy Han
- Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Alberta, Canada
| | | | | |
Collapse
|
26
|
Palmer AW, Wilson CG, Baum EJ, Levenston ME. Composition-function relationships during IL-1-induced cartilage degradation and recovery. Osteoarthritis Cartilage 2009; 17:1029-39. [PMID: 19281879 PMCID: PMC2745941 DOI: 10.1016/j.joca.2009.02.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 11/24/2008] [Accepted: 02/16/2009] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To examine the relationships between biochemical composition and mechanical properties of articular cartilage explants during interleukin-1 (IL-1)-induced degradation and post-exposure recovery. DESIGN Bovine articular cartilage explants were cultured for up to 32 days with or without 20 ng/mL IL-1. The dynamic shear modulus |G*(dyn)| and equilibrium and dynamic unconfined compression moduli (E(equil) and |E*(dyn)|) were measured at intervals throughout the culture period. In a subsequent recovery study, explants were cultured for 4 days with or without 20ng/mL IL-1 and for an additional 16 days in control media. The dynamic moduli |E*(dyn)| and |G*(dyn)| were measured at intervals during degeneration and recovery. Conditioned media and explant digests were assayed for sulfated glycosaminoglycans (sGAG) and collagen content. RESULTS Continuous IL-1 stimulation triggered progressive decreases in E(equil), |E*(dyn)|, and |G*(dyn)| concomitant with the sequential release of sGAG and collagen from the explants. Brief IL-1 exposure resulted in a short release of sGAG but not collagen, followed by a gradual and incomplete repopulation of sGAG. The temporary sGAG depletion was associated with decreases in both |E*(dyn)| and |G*(dyn)| which also recovered after removal of IL-1. During IL-1-induced degradation and post-exposure recovery, explant mechanical properties correlated well with tissue sGAG concentration. CONCLUSIONS As previously shown for developing cartilages and engineered cartilage constructs, cytokine-induced changes in sGAG concentration (i.e., fixed charge density) are coincident with changes in compressive and shear properties of articular cartilage. Further, recovery of cartilage mechanical properties can be achieved by relief from proinflammatory stimuli and subsequent restoration of tissue sGAG concentration.
Collapse
Affiliation(s)
- Ashley W. Palmer
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332,Parker H. Petit Institute for Bioengineering and Bioscience, Atlanta, GA 30332
| | - Christopher G. Wilson
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332,Parker H. Petit Institute for Bioengineering and Bioscience, Atlanta, GA 30332
| | - Elyse J. Baum
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332,Parker H. Petit Institute for Bioengineering and Bioscience, Atlanta, GA 30332
| | - Marc E. Levenston
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332,Parker H. Petit Institute for Bioengineering and Bioscience, Atlanta, GA 30332,To whom correspondence should be addressed: Marc E. Levenston, Ph.D. Stanford University Department of Mechanical Engineering 233 Durand Building Stanford, CA 94305-4038 phone: (650) 723-9464 fax: (650) 725-1587
| |
Collapse
|
27
|
Lauer-Fields JL, Minond D, Chase PS, Baillargeon PE, Saldanha SA, Stawikowska R, Hodder P, Fields GB. High throughput screening of potentially selective MMP-13 exosite inhibitors utilizing a triple-helical FRET substrate. Bioorg Med Chem 2009; 17:990-1005. [PMID: 18358729 PMCID: PMC3298815 DOI: 10.1016/j.bmc.2008.03.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2007] [Revised: 02/29/2008] [Accepted: 03/04/2008] [Indexed: 11/26/2022]
Abstract
The major components of the cartilage extracellular matrix are type II collagen and aggrecan. Matrix metalloproteinase 13 (MMP-13) has been implicated as the protease responsible for collagen degradation in cartilage during osteoarthritis (OA). In the present study, a triple-helical FRET substrate has been utilized for high throughput screening (HTS) of MMP-13 with the MLSCN compound library (n approximately 65,000). Thirty-four compounds from the HTS produced pharmacological dose-response curves. A secondary screen using RP-HPLC validated 25 compounds as MMP-13 inhibitors. Twelve of these compounds were selected for counter-screening with 6 representative MMP family members. Five compounds were found to be broad-spectrum MMP inhibitors, 3 inhibited MMP-13 and one other MMP, and 4 were selective for MMP-13. One of the selective inhibitors was more active against MMP-13 triple-helical peptidase activity compared with single-stranded peptidase activity. Since the THP FRET substrate has distinct conformational features that may interact with MMP secondary binding sites (exosites), novel non-active site-binding inhibitors may be identified via HTS protocols utilizing such assays.
Collapse
Affiliation(s)
- Janelle L. Lauer-Fields
- Department of Chemistry & Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991
| | - Dmitriy Minond
- Lead Identification Department, The Scripps Research Institute Molecular Screening Center, Scripps Florida, 5353 Parkside Drive, RF-1, Jupiter, FL 33458
| | - Peter S. Chase
- Lead Identification Department, The Scripps Research Institute Molecular Screening Center, Scripps Florida, 5353 Parkside Drive, RF-1, Jupiter, FL 33458
| | - Pierre E. Baillargeon
- Lead Identification Department, The Scripps Research Institute Molecular Screening Center, Scripps Florida, 5353 Parkside Drive, RF-1, Jupiter, FL 33458
| | - S. Adrian Saldanha
- Lead Identification Department, The Scripps Research Institute Molecular Screening Center, Scripps Florida, 5353 Parkside Drive, RF-1, Jupiter, FL 33458
| | - Roma Stawikowska
- Department of Chemistry & Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991
| | - Peter Hodder
- Lead Identification Department, The Scripps Research Institute Molecular Screening Center, Scripps Florida, 5353 Parkside Drive, RF-1, Jupiter, FL 33458
| | - Gregg B. Fields
- Department of Chemistry & Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991
| |
Collapse
|
28
|
Elewaut D, Van den Bosch F, Verbruggen G, de Keyser F, Cruyssen BV, Mielants H. Clinical observations programme in SpA: disease parameters, treatment options and practical management issues. Rheumatol Int 2008; 29:239-50. [PMID: 18818924 DOI: 10.1007/s00296-008-0714-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Accepted: 09/07/2008] [Indexed: 12/17/2022]
Abstract
Spondyloarthritides (SpAs) are a cluster of chronic inflammatory rheumatic diseases that typically involve inflammation of axial and peripheral joint or tendon and ligament insertions, distinct radiographic changes and diverse extra-articular features. Conventional treatments relieve the signs and symptoms but do not prevent disease progression. TNFalpha inhibitors provide clinicians with the potential to treat the underlying pathology and to alter disease progression. By targeting the underlying inflammatory mechanisms, TNFalpha blockade can treat any extra-articular manifestations of SpA.
Collapse
Affiliation(s)
- Dirk Elewaut
- Department of Rheumatology, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium.
| | | | | | | | | | | |
Collapse
|
29
|
Lambrecht S, Verbruggen G, Verdonk PCM, Elewaut D, Deforce D. Differential proteome analysis of normal and osteoarthritic chondrocytes reveals distortion of vimentin network in osteoarthritis. Osteoarthritis Cartilage 2008; 16:163-73. [PMID: 17643325 DOI: 10.1016/j.joca.2007.06.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Accepted: 06/05/2007] [Indexed: 02/02/2023]
Abstract
OBJECTIVE We conducted a proteome analysis of human articular chondrocytes, in order to identify proteins differentially expressed in chondrocytes during the progression of osteoarthritis (OA) and to characterize the phosphorylation status of these proteins. METHODS The proteins of 20 samples of human chondrocytes obtained from the cartilage of human knees (six from healthy cartilage (NoNo), seven from visually intact zones (NoOA) and seven from visually damaged zones (OAOA) of OA cartilage from the same knee joint) were sequentially extracted and subjected to two-dimensional gel electrophoresis (2-DE). Protein expression patterns were subjected to statistical analysis and protein spots of interest were identified by electrospray ionization tandem mass spectrometry. RESULTS We identified several protein spots, showing a differential expression between the sample groups. Cleaved vimentin was upregulated in OAOA samples, this was confirmed by 1-DE and Western blot. The possible impact of vimentin cleavage on the chondrocyte's cytoskeleton was illustrated by confocal microscopy analysis, which revealed a distorted vimentin organization in OA chondrocytes. In contrast, F-actin staining did not reveal differences. CONCLUSION All together, this study revealed substantial alterations in the vimentin cytoskeleton in OA-affected human articular chondrocytes.
Collapse
Affiliation(s)
- S Lambrecht
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium
| | | | | | | | | |
Collapse
|
30
|
Näslund J, Waldén M, Lindberg LG. Decreased pulsatile blood flow in the patella in patellofemoral pain syndrome. Am J Sports Med 2007; 35:1668-73. [PMID: 17567822 DOI: 10.1177/0363546507303115] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Anterior knee pain without clinical and radiologic abnormalities has primarily been explained from a purely structural view. A recently proposed biologic and homeostatic explanation questions the malalignment theory. No objective measurement of the pathophysiology responsible for changes in local homeostasis has been presented. HYPOTHESIS Flexing the knee joint interferes with the perfusion of the patellar bone in patellofemoral pain syndrome. STUDY DESIGN Case control study; Level of evidence, 4. METHODS Pulsatile blood flow in the patella was measured continuously and noninvasively using photoplethysmography. Measurements were made with the patient in a resting position with knee flexion of 20 degrees and after passive knee flexion to 90 degrees. In total, 22 patients with patellofemoral pain syndrome were examined bilaterally, and 33 subjects with healthy knees served as controls. RESULTS The pulsatile blood flow in the patient group decreased after passive knee flexion from 20 degrees to 90 degrees (systematic change in position, or relative position [RP] = -0.32; 95% confidence interval for RP, -0.48 to -0.17), while the response in the control group showed no distinct pattern (RP = 0.17; 95% confidence interval for RP, -0.05 to 0.31). The difference between the groups was significant (P = .0002). The median change in patients was -26% (interquartile range, 37). CONCLUSIONS Pulsatile patellar blood flow in patellofemoral pain syndrome patients is markedly reduced when the knee is being flexed, which supports the previous notion of an ischemic mechanism involved in the pathogenesis of this pain syndrome.
Collapse
Affiliation(s)
- Jan Näslund
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | | | | |
Collapse
|
31
|
Lauer-Fields JL, Spicer TP, Chase PS, Cudic M, Burstein GD, Nagase H, Hodder P, Fields GB. Screening of potential a disintegrin and metalloproteinase with thrombospondin motifs-4 inhibitors using a collagen model fluorescence resonance energy transfer substrate. Anal Biochem 2007; 373:43-51. [PMID: 17949675 DOI: 10.1016/j.ab.2007.09.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 08/29/2007] [Accepted: 09/03/2007] [Indexed: 01/07/2023]
Abstract
The major components of the cartilage extracellular matrix are type II collagen and aggrecan. Type II collagen provides cartilage with its tensile strength, whereas the water-binding capacity of aggrecan provides compressibility and elasticity. Aggrecan breakdown leads to an increase in proteolytic susceptibility of articular collagen; hence, aggrecan may also have a protective effect on type II collagen. Given their role in aggrecan degradation and differing substrate specificity profiles, the pursuit of inhibitors for both aggrecanase 1 (a disintegrin and metalloproteinase with thrombospondin motifs-4 [ADAMTS-4]) and aggrecanase 2 (ADAMTS-5) is desirable. We previously described collagen model fluorescence resonance energy transfer (FRET) substrates for aggrecan-degrading members of the ADAMTS family. These FRET substrate assays are also fully compatible with multiwell formats. In the current study, a collagen model FRET substrate was examined for inhibitor screening of ADAMTS-4. ADAMTS-4 was screened against a small compound library (n=960) with known pharmacological activity. Five compounds that inhibited ADAMTS-4>60% at a concentration of 1muM were identified. A secondary screen using reversed-phase high-performance liquid chromatography (RP-HPLC) was developed and performed for verification of the five potential inhibitors. Ultimately, piceatannol was confirmed as a novel inhibitor of ADAMTS-4, with an IC(50) value of 1muM. Because the collagen model FRET substrates have distinct conformational features that may interact with protease secondary substrate sites (exosites), nonactive site-binding inhibitors can be identified via this approach. Selective inhibitors for ADAMTS-4 would allow a more definitive evaluation of this protease in osteoarthritis and also represent a potential next generation in metalloproteinase therapeutics.
Collapse
Affiliation(s)
- Janelle L Lauer-Fields
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Verbruggen G, Wittoek R, Groeneboer S, Cruyssen BV, Goemaere S, Elewaut D. Osteochondral repair in synovial joints. Curr Opin Rheumatol 2007; 19:265-71. [PMID: 17414953 DOI: 10.1097/bor.0b013e3280be58ff] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW One of the major challenges in rheumatology remains the induction of osteochondral repair in synovial joints. Remarkable progress has been made in controlling the inflammatory pathways of chronic synovitis and tissue damage in rheumatoid arthritis and spondyloarthropathy. Here, we provide an overview of the current knowledge on the mechanisms involved in osteochondral repair in degenerative joint diseases, as well as in immune mediated inflammatory arthritides, with special emphasis on tumor necrosis factor alpha and IL-1. RECENT FINDINGS Homeostasis of articular cartilage and subchondral bone are essential for maintaining the integrity of osteochondral structures within synovial joints. This is achieved by the regulation of a delicate balance between anabolic and catabolic signals. In articular cartilage one cell type, the chondrocyte, is responsible for regulation of homeostasis. In bone, however, two distinct cell types, osteoblasts and osteoclasts, are responsible for anabolic and catabolic pathways, respectively. In inflammatory joint disorders, this tight regulation is profoundly dysregulated, with tumor necrosis factor alpha acting as an important catalyst of a disturbed homeostasis, together with IL-1. Targeting these cytokines may restore the intrinsic repair capacity of osteochondral structures. SUMMARY To restore catabolic cytokine balances appears to be a suitable strategy to promote osteochondral repair.
Collapse
Affiliation(s)
- Gust Verbruggen
- Ghent University Hospital, Department of Rheumatology, Ghent, Belgium.
| | | | | | | | | | | |
Collapse
|
33
|
Blaney Davidson EN, van der Kraan PM, van den Berg WB. TGF-beta and osteoarthritis. Osteoarthritis Cartilage 2007; 15:597-604. [PMID: 17391995 DOI: 10.1016/j.joca.2007.02.005] [Citation(s) in RCA: 286] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Accepted: 02/04/2007] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Cartilage damage is a major problem in osteoarthritis (OA). Growth factors like transforming growth factor-beta (TGF-beta) have great potential in cartilage repair. In this review, we will focus on the potential therapeutic intervention in OA with TGF-beta, application of the growth factor TGF-beta in cartilage repair and on the side effects of TGF-beta treatment that could occur. METHODS This review summarizes peer-reviewed articles published in the PubMed database before November 2006. In addition, this review is supplemented with recent data of our own group on the use of TGF-beta as a cartilage reparative factor in OA. RESULTS TGF-beta is crucial for cartilage maintenance and lack there of results in OA-like changes. Moreover, TGF-beta supplementation can enhance cartilage repair and is therefore a potential therapeutic tool. However, application of TGF-beta supplementation provides problems in other tissues of the joint and results in fibrosis and osteophyte formation. This can potentially be overcome by local inhibition of TGF-beta at sites of unwanted side-effects or by blocking downstream mediators of TGF-beta that are important for the induction of fibrosis or osteophyte formation. CONCLUSION Current understanding of TGF-beta suggests that it essential for cartilage integrity and that it is a powerful tool to prevent or repair cartilage damage. The side-effects that occur with TGF-beta supplementation can be overcome by local inhibition of TGF-beta itself or downstream mediators.
Collapse
Affiliation(s)
- E N Blaney Davidson
- Experimental Rheumatology and Advanced Therapeutics, Radboud University Nijmegen Medical Centre, The Netherlands
| | | | | |
Collapse
|
34
|
Porter RM, Akers RM, Howard RD, Forsten-Williams K. Alginate Encapsulation Impacts the Insulin-like Growth Factor-I System of Monolayer-Expanded Equine Articular Chondrocytes and Cell Response to Interleukin-1β. ACTA ACUST UNITED AC 2007; 13:1333-45. [PMID: 17518712 DOI: 10.1089/ten.2006.0345] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Alginate hydrogel culture has been shown to reestablish chondrocytic phenotype following monolayer expansion; however, previous studies have not adequately addressed how culture conditions affect the signaling systems responsible for chondrocyte metabolic activity. Here we investigate whether chondrocyte culture history influences the insulin-like growth factor-I (IGF-I) signaling system and its regulation by interleukin-1 (IL-1). Articular chondrocytes (ACs) from equine stifle joints were expanded by serial passage and were either encapsulated in alginate beads or maintained in monolayer culture for 10 days. Alginate-derived cells (ADCs) and monolayer-derived cells (MDCs) were then plated at high density, stimulated with IL-1beta (1 and 10 ng/mL) or IGF-I (50 ng/mL) for 48 h, and assayed for levels of type I IGF receptor (IGF-IR), IGF binding proteins (IGFBPs), and endogenously secreted IGF-I. Intermediate alginate culture yielded relatively low IGF-IR levels that increased in response to IL-1beta, whereas higher receptor levels on MDCs were reduced by cytokine. MDCs also secreted substantially more IGFBP-2, the predominant binding protein in conditioned media (CM), though IL-1beta suppressed levels for both cell populations. Concentrations of autocrine/paracrine IGF-I paralleled IGFBP-2 secretion. Disparate basal levels of IGF-IR and IGFBP-2, but not IGF-I, were attributed to relative transcript expression. Systemic differences coincided with varied effects of IL-1beta and IGF-I on cell growth and type I collagen expression. We conclude that culture strategy impacts the IGF-I signaling system of ACs, potentially altering their capacity to mediate cartilage repair. Consideration of hormonal regulators may be an essential element to improve chondrocyte culture protocols used in tissue engineering applications.
Collapse
Affiliation(s)
- Ryan M Porter
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0211, USA
| | | | | | | |
Collapse
|
35
|
Toegel S, Huang W, Piana C, Unger FM, Wirth M, Goldring MB, Gabor F, Viernstein H. Selection of reliable reference genes for qPCR studies on chondroprotective action. BMC Mol Biol 2007; 8:13. [PMID: 17324259 PMCID: PMC1820791 DOI: 10.1186/1471-2199-8-13] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Accepted: 02/26/2007] [Indexed: 12/19/2022] Open
Abstract
Background Chondroprotective agents (CPA) such as glucosamine, curcumin and diacerein represent potential remedies for the management of osteoarthritis and several studies have been performed on their effects in-vitro and in-vivo. For the investigation of chondroprotective action on chondrocyte gene expression, quantitative real-time RT-PCR is the method of choice. However, validation of applied normalization strategies represents a crucial and sometimes neglected step in the analysis process. Therefore, the present study aimed to determine the expression stability of common reference genes (ACTB, Beta actin; GAPDH, Glyceraldehyde-3-phosphate; B2M, Beta-2-microglobulin; HPRT1, Hypoxanthine phosphoribosyl-transferase I; SDHA, Succinate dehydrogenase complex, subunit A; YWHAZ, Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta polypeptide) under the influence of glucosamine, curcumin and diacerein in the IL-1β-stimulated C-28/I2 chondrocyte model, using the geNorm software tool. Results CPA treatment of C-28/I2 chondrocytes significantly affected the expression level of many reference genes (p < 0.05). According to their expression stability, geNorm analysis revealed rankings of the 3 most stable genes (from most stable to least stable) as follows: GAPDH, B2M and SDHA in glucosamine treated samples and HPRT1, GAPDH and B2M in curcumin or diacerein treated samples. Interestingly, ACTB was one of the most variably expressed genes throughout all experiments. Conclusion Our study points out the problem of relying on commonly used reference genes without an accurate validation process. For normalization purposes in gene profiling studies on glucosamine action, the genes GAPDH, B2M and SDHA are recommended as single reference genes depending on the expression level of the target gene or more favourably in combination. For experiments with curcumin and diacerein the use of HPRT1, GAPDH and B2M should be considered.
Collapse
Affiliation(s)
- Stefan Toegel
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Wenwen Huang
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Claudia Piana
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Frank M Unger
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Michael Wirth
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Mary B Goldring
- Beth Israel Deaconess Medical Center, New England Baptist Bone and Joint Institute, and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Franz Gabor
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Helmut Viernstein
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| |
Collapse
|
36
|
Cucchiarini M, Thurn T, Weimer A, Kohn D, Terwilliger EF, Madry H. Restoration of the extracellular matrix in human osteoarthritic articular cartilage by overexpression of the transcription factor SOX9. ACTA ACUST UNITED AC 2007; 56:158-67. [PMID: 17195218 DOI: 10.1002/art.22299] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Human osteoarthritis (OA) is characterized by a pathologic shift in articular cartilage homeostasis toward the progressive loss of extracellular matrix (ECM). The purpose of this study was to investigate the ability of rAAV-mediated SOX9 overexpression to restore major ECM components in human OA articular cartilage. METHODS We monitored the synthesis and content of proteoglycans and type II collagen in 3-dimensional cultures of human normal and OA articular chondrocytes and in explant cultures of human normal and OA articular cartilage following direct application of a recombinant adeno-associated virus (rAAV) SOX9 vector in vitro and in situ. We also analyzed the effects of this treatment on cell proliferation in these systems. RESULTS Following SOX9 gene transfer, expression levels of proteoglycans and type II collagen increased over time in normal and OA articular chondrocytes in vitro. In situ, overexpression of SOX9 in normal and OA articular cartilage stimulated proteoglycan and type II collagen synthesis in a dose-dependent manner. These effects were not associated with changes in chondrocyte proliferation. Notably, expression of the 2 principal matrix components could be restored in OA articular cartilage to levels similar to those in normal cartilage. CONCLUSION These data support the concept of using direct, rAAV-mediated transfer of chondrogenic genes to articular cartilage for the treatment of OA in humans.
Collapse
|
37
|
Aigner T, Fundel K, Saas J, Gebhard PM, Haag J, Weiss T, Zien A, Obermayr F, Zimmer R, Bartnik E. Large-scale gene expression profiling reveals major pathogenetic pathways of cartilage degeneration in osteoarthritis. ACTA ACUST UNITED AC 2006; 54:3533-44. [PMID: 17075858 DOI: 10.1002/art.22174] [Citation(s) in RCA: 269] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Despite many research efforts in recent decades, the major pathogenetic mechanisms of osteoarthritis (OA), including gene alterations occurring during OA cartilage degeneration, are poorly understood, and there is no disease-modifying treatment approach. The present study was therefore initiated in order to identify differentially expressed disease-related genes and potential therapeutic targets. METHODS This investigation consisted of a large gene expression profiling study performed based on 78 normal and disease samples, using a custom-made complementary DNA array covering >4,000 genes. RESULTS Many differentially expressed genes were identified, including the expected up-regulation of anabolic and catabolic matrix genes. In particular, the down-regulation of important oxidative defense genes, i.e., the genes for superoxide dismutases 2 and 3 and glutathione peroxidase 3, was prominent. This indicates that continuous oxidative stress to the cells and the matrix is one major underlying pathogenetic mechanism in OA. Also, genes that are involved in the phenotypic stability of cells, a feature that is greatly reduced in OA cartilage, appeared to be suppressed. CONCLUSION Our findings provide a reference data set on gene alterations in OA cartilage and, importantly, indicate major mechanisms underlying central cell biologic alterations that occur during the OA disease process. These results identify molecular targets that can be further investigated in the search for therapeutic interventions.
Collapse
Affiliation(s)
- Thomas Aigner
- Osteoarticular and Arthritis Research, Institute of Pathology, University of Leipzig, Liebigstrasse 26, D-04103 Leipzig, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Smith KJ, Bertone AL, Weisbrode SE, Radmacher M. Gross, histologic, and gene expression characteristics of osteoarthritic articular cartilage of the metacarpal condyle of horses. Am J Vet Res 2006; 67:1299-306. [PMID: 16881840 DOI: 10.2460/ajvr.67.8.1299] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To identify patterns and correlations of gross, histologic, and gene expression characteristics of articular cartilage from horses with osteoarthritis. ANIMALS 10 clinically normal horses and 11 horses with osteoarthritis of the metacarpal condyles. PROCEDURES Metacarpophalangeal joints were opened and digitally photographed, and gross lesions were scored and quantified. Representative cartilage specimens were stained for histologic scoring. Total RNA from dorsal and palmar articular surfaces was processed on an equine gene expression microarray. RESULTS Histologic scores were greater in both regions of osteoarthritic joints, compared with corresponding regions in control joints. Cartilage from the palmar aspect of diseased joints had the highest histologic scores of osteoarthritic sites or of either region in control joints. A different set of genes for dorsal and palmar osteoarthritis was identified for high and low gene expression. Articular cartilage from the dorsal region had surface fraying and greater expression of genes coding for collagen matrix components and proteins with anti-apoptotic function, compared with control specimens. Articular cartilage from the palmar region had greater fraying, deep fissures, and less expression of genes coding for glycosaminoglycan matrix formation and proteins with anti-apoptotic function, compared with cartilage from disease-free joints and the dorsal aspect of affected joints. CONCLUSIONS AND CLINICAL RELEVANCE Metacarpal condyles of horses with naturally occurring osteoarthritis had an identifiable and regional gene expression signature with typical morphologic features.
Collapse
Affiliation(s)
- Katie J Smith
- Comparative Orthopedic Research Laboratories, Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, 43210, USA
| | | | | | | |
Collapse
|
39
|
Abstract
Catabolic cytokine and anabolic growth factor pathways control destruction and repair in osteoarthritis (OA). A unidirectional TNF-alpha/IL-1-driven cytokine cascade disturbs the homeostasis of the extracellular matrix of articular cartilage in OA. Although chondrocytes in OA cartilage overexpress anabolic insulin-like growth factor (IGF) and its specific receptor (IGFRI) autocrine TNF-alpha released by apoptotic articular cartilage cells sets off an auto/paracrine IL-1-driven cascade that overrules the growth factor activities that sustain repair in degenerative joint disease. Chondroprotection with reappearance of a joint space that had disappeared has been documented unmistakably in peripheral joints of patients suffering from spondyloarthropathy when treated with TNF-alpha-blocking agents that repressed the unidirectional TNF-alpha/IL-1-driven cytokine cascade. A series of connective tissue structure-modifying agents (CTSMAs) that directly affect IL-1 synthesis and release in vitro and down-modulate downstream IL-1 features, e.g. collagenase, proteoglycanase and matrix metalloproteinase activities, the expression of inducible nitric oxide synthase, the increased release of nitric oxide, and the secretion of prostaglandin E(2), IL-6 and IL-8, have been shown to possess disease-modifying OA drug (DMOAD) activities in experimental models of OA and in human subjects with finger joint and knee OA. Examples are corticosteroids, some sulphated polysaccharides, chemically modified tetracyclines, diacetylrhein/rhein, glucosamine and avocado/soybean unsaponifiables.
Collapse
Affiliation(s)
- G Verbruggen
- Polikliniek Reumatologie, 0K12, Universitair Hospitaal, De Pintelaan 185, B-9000 Ghent, Belgium.
| |
Collapse
|
40
|
Verdonk P, Wang J, Groeneboer S, Broddelez C, Elewaut D, Veys EM, Verbruggen G. Cyclodextrin polysulphates repress IL-1 and promote the accumulation of chondrocyte extracellular matrix. Osteoarthritis Cartilage 2005; 13:887-95. [PMID: 16202919 DOI: 10.1016/j.joca.2005.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Accepted: 02/19/2005] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To evaluate the influence of cyclodextrin polysulphate (CDPS) on the extracellular matrix (ECM) metabolism of human articular cartilage chondrocytes. METHODS Isolated chondrocytes from femoral condyle cartilage of human knee joints were cultured in gelled alginate to maintain their differentiated phenotype. During 1 week of culture, the cells were exposed to different concentrations of CDPS. Synthesis of aggrecans was investigated in these cultures after using Na(2)(35)SO(4) as a radioactive precursor during the last 24h of culture. The artificial matrix was then solubilised with Na-citrate and newly synthesised aggrecan aggregates, accumulated during culture, were liberated and assayed. The isolated chondrocytes were labelled with antibodies against aggrecan and type II collagen to analyse the ECM molecules in the cell-associated matrix (CAM). Plasma membrane levels of receptors for insulin-like growth factor-1 (IGF-1RI) and for interleukin-1 (IL-1RI and IL-1RII), as well as levels of IGF-1, IL-1alpha and -beta were determined after the cells had been permeabilized and stained with the appropriate antibodies. The release of IL-6 in the culture media was used as a variable reflecting auto/paracrine IL-1 activity of the cells in different experimental conditions. RESULTS CDPS significantly increased total (35)S-incorporation rates in ECM aggrecan. When compared with controls, CDPS-treated chondrocytes expressed significantly higher CAM aggrecan and type II collagen levels. As plasma membrane-bound IGFR1 and intracellular IGF-1 levels remained unchanged, this increase in accumulated CAM compounds may have resulted from suppressed catabolic activities by the chondrocytes in culture. CDPS-treated cells expressed significantly lower amounts of intracellular IL-1alpha and -beta levels. Plasma membrane-bound IL-1RI and decoy IL-1RII remained unchanged. beta-cyclodextrin-treated chondrocytes released significantly less IL-6 in the supernatant culture media. CONCLUSION CDPS is a novel polysulfated polysaccharide showing cartilage structure modifying effects in vitro as it improves the synthesis of aggrecan and the accumulation of CAM macromolecules. This effect probably resulted in part from the downregulation of IL-1.
Collapse
Affiliation(s)
- P Verdonk
- Department of Rheumatology, Ghent University Hospital, Ghent University, De Pintelaan 185, B-9000 Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
41
|
Strehl R, Tallheden T, Sjögren-Jansson E, Minuth WW, Lindahl A. Long-term maintenance of human articular cartilage in culture for biomaterial testing. Biomaterials 2005; 26:4540-9. [PMID: 15722123 DOI: 10.1016/j.biomaterials.2004.11.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2004] [Accepted: 11/09/2004] [Indexed: 11/24/2022]
Abstract
Cartilage is a tissue that derives its unique mechanical and biological properties from the combination of relatively few cells and a large amount of a complex extracellular matrix. Furthermore, cartilage tissue is comparatively slow to respond to changes or harmful influences. To date, the optimal generation and long-term maintenance of cultured human articular cartilage for in vitro testing of biomaterials, poses an experimental difficulty. Experiments using cultured isolated chondrocytes in combination with scaffolds often fail to yield results comparable to the in-vivo situation. Consequently, our aim was to develop a culture method that allows in vitro maintenance of human hyaline cartilage explants in an optimal quality over an extended period of time. Such a culture could, for example, be used to determine the long-term effect of a new scaffold on intact cartilage, as an in vitro model for repair processes and to investigate biomaterial integration. In this study we compared conventional static cultures with and without serum supplementation to a serum-free perfusion culture for the ability to maintain human articular cartilage explants in a morphologically intact and differentiated state over an extended period of time of up to 56 days. Results were evaluated and compared by morphological, histochemical and immunohistochemical methods. The experiments showed that short-term maintenance of cartilage in a differentiated state for up to 14 days is possible under all culture conditions tested. However, best long-term culture results for up to 56 days were obtained with perfusion culture under serum-free conditions. Such a perfusion culture system can be used to perform biocompatabilty tests in vitro by long-term coculture of biomaterial and intact human articular cartilage.
Collapse
Affiliation(s)
- Raimund Strehl
- Institute of Laboratory Medicine, Department of Clinical Chemistry and Transfusion Medicine, RCEM1 Sahlgrenska University Hospital, Bruna Stråket 16, SE 41345 Göteborg, Sweden.
| | | | | | | | | |
Collapse
|
42
|
Abstract
UNLABELLED Fundamental to rational, safe, and effective treatment for any orthopaedic condition is an accurate understanding of the etiology of the symptoms. The decades-old paradigm of a pure structural and biomechanical explanation for the genesis of patellofemoral pain is giving way to one in which biologic factors are being given more consideration. It is increasingly evident that a variable mosaic of possible pathophysiologic processes, often caused by simple overload, best accounts for the etiology of patellofemoral pain in most patients. Inflamed synovial lining and fat pad tissues, retinacular neuromas, increased intraosseous pressure, and increased osseous metabolic activity of the patella all have been documented as contributing to the perception of anterior knee pain. Considered together, these processes can be characterized as loss of tissue homeostasis and can be seen as providing a new and alternative explanation for the conundrum of anterior knee pain. Certain high loading conditions of the patellofemoral joint can be of sufficient magnitude to induce the symptomatic loss of tissue homeostasis so that, once initiated, they may persist indefinitely. From this new biologic perspective, it clinically matters little what structural factors may be present in a given joint (such as chondromalacia, patellar tilt or a Q angle above a certain value) if the pain free condition of tissue homeostasis is safely achieved and maintained. LEVEL OF EVIDENCE Level V (expert opinion). See the Guidelines for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Scott F Dye
- University of California San Francisco, CA, USA.
| |
Collapse
|
43
|
Henrotin Y, Sanchez C, Balligand M. Pharmaceutical and nutraceutical management of canine osteoarthritis: present and future perspectives. Vet J 2005; 170:113-23. [PMID: 15993795 DOI: 10.1016/j.tvjl.2004.08.014] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2004] [Indexed: 12/01/2022]
Abstract
Osteoarthritis (OA) is one of the most common chronic musculoskeletal diseases and causes of lameness in the dogs. The osteoarthritic disease process involves the entire synovial joint, encompassing the synovium, cartilage and underlying bone. Joint failure results from an abnormal mechanical strain causing damage to normal tissue or failure of pathologically impaired articular cartilage and bone under the influence of normal physiological strain or a combination of both. In both cases, the end point is cartilage loss and joint impairment. Osteoarthritic chondrocytes show an altered phenotype characterised by an excess production of catabolic factors, including metalloproteinases and reactive oxygen species. These factors constitute potential therapeutic targets and some new drugs and nutraceuticals have been proposed to promote the return to homeostasis. Until now, the therapeutic management of OA in dogs has been dominated by nonsteroidal anti-inflammatory drugs, but some new compounds, including diacerhein, with potential structure-modifying effects, are already used to treat OA in humans and could be helpful to manage OA in the dog. In addition, novel nutraceuticals, such as avocado/soybean unsaponifiable substances, have shown symptomatic effects in knee OA in humans, and could offer an alternative to prevent OA progression. This paper provides an overview of recent discoveries in the pathophysiology and in the therapeutic management of osteoarthritis in dogs.
Collapse
Affiliation(s)
- Yves Henrotin
- Bone and Cartilage Research Unit, Institute of Pathology, Level +5, CHU Sart-Tilman, 4000 Liège, Belgium.
| | | | | |
Collapse
|
44
|
Dorotka R, Bindreiter U, Vavken P, Nehrer S. Behavior of Human Articular Chondrocytes Derived from Nonarthritic and Osteoarthritic Cartilage in a Collagen Matrix. ACTA ACUST UNITED AC 2005; 11:877-86. [PMID: 15998227 DOI: 10.1089/ten.2005.11.877] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The purpose of this study was to evaluate the morphologic and biochemical behavior and activity of human chondrocytes taken from nonarthritic and osteoarthritic cartilage and seeded on a three-dimensional matrix consisting of collagen types I, II, and III. Human articular chondrocytes were isolated from either nonarthritic or osteoarthritic cartilage of elderly subjects, and from nonarthritic cartilage of an adolescent subject, seeded on collagen matrices, and cultured for 12 h, 7 days, and 14 days. Histological analysis, immunohistochemistry, and biochemical assays for glycosaminoglycans (GAGs) and DNA content were performed for cell-seeded and unseeded matrices. Chondrocytes of nonarthritic cartilage revealed a larger number of spherical cells, consistent with a chondrocytic phenotype. The biochemical assay showed a net increase in GAG content in nonarthritic chondrocytes, whereas almost no GAGs were seen in osteoarthritic cells. The DNA results suggest that more osteoarthritic cells than chondrocytes from nonarthritic cartilage attached to the matrix within the first week. Human articular chondrocytes isolated from osteoarthritic cartilage seem to have less bioactivity after expansion and culture in a sponge consisting of type I, II, and III collagen compared with chondrocytes from nonarthritic cartilage.
Collapse
Affiliation(s)
- Ronald Dorotka
- Department of Orthopedic Surgery, Medical University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
45
|
Petrov R, MacDonald MH, Tesch AM, Benton HP. Inhibition of adenosine kinase attenuates interleukin-1- and lipopolysaccharide-induced alterations in articular cartilage metabolism. Osteoarthritis Cartilage 2005; 13:250-7. [PMID: 15727892 DOI: 10.1016/j.joca.2004.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Accepted: 12/11/2004] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate the effect of adenosine kinase inhibition on interleukin (IL)-1beta- and lipopolysaccharide (LPS)-induced cartilage damage. DESIGN Articular cartilage was obtained from the metacarpophalangeal joints of 10 young adult horses. Following a stabilization period, weighed cartilage explants were exposed to IL-1beta (10 ng/ml) or LPS (50 microg/ml) to induce cartilage degradation. To test the potential protective effects of adenosine, these explants were simultaneously exposed to adenosine (100 microM), the adenosine kinase inhibitor 5'iodotubercidin (ITU, 1 microM) or to both adenosine and ITU. After 72 h in culture, conditioned medium was collected for evaluation of glycosaminoglycan (GAG), nitric oxide (NO), prostaglandin E2 (PGE2) and matrix metalloproteinase (MMP)-3 release. RESULTS IL-1beta and LPS stimulated significant release of GAG, NO, PGE2 and MMP-3. Incubation with ITU significantly inhibited both IL-1beta- and LPS-induced GAG release, but did not alter MMP-3 production. Exposure to ITU also reduced IL-1beta-induced PGE2 release and LPS-induced NO production. Direct adenosine supplementation did not attenuate the effects of IL-1beta or LPS, and the addition of adenosine or ITU in the absence of IL-1beta or LPS did not have any detectable effect on cartilage metabolism in this model. CONCLUSIONS The adenosine kinase inhibitor ITU attenuated experimentally induced cartilage damage in an in vitro cartilage explant model. Release of adenosine from chondrocytes may play a role in the cellular response to tissue damage in arthritic conditions and modulation of these pathways in the joint may have potential for treatment of arthropathies.
Collapse
Affiliation(s)
- Raina Petrov
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
46
|
Cho YR, Lee SJ, Jeon HB, Park ZY, Chun JS, Yoo YJ. Under-sulfation by PAPS synthetase inhibition modulates the expression of ECM molecules during chondrogenesis. Biochem Biophys Res Commun 2004; 323:769-75. [PMID: 15381066 DOI: 10.1016/j.bbrc.2004.08.173] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2004] [Indexed: 11/16/2022]
Abstract
Sulfation of proteoglycans is an important post-translational modification in chondrocytes. We previously found that 3'-phosphoadenosine 5'-phosphosulfate (PAPS) synthetase-2 levels increased more than 10-fold during mesenchymal cell chondrogenesis. Given that PAPS is the sole sulfur donor, and is produced only by PAPS synthetase in all cells, increased expression of PAPS synthetase-2 should be a prerequisite for increased sulfation activity of chondrocytes. We found that sodium chlorate, a specific inhibitor of PAPS synthetase, inhibited proteoglycan sulfation during chondrogenesis. In contrast, sodium chlorate unexpectedly induced early expression of type II collagen and increased the number of cartilage nodules during chondrogenesis. Inhibition of sulfation also accelerated the down-regulation of N-cadherin and fibronectin during chondrogenesis. These findings suggest that sulfation has an important regulatory role in coordinating the timely expression of extracellular matrix molecules during chondrogenesis, and that under-sulfation may cause the breakdown of this coordination, leading to premature chondrogenesis.
Collapse
Affiliation(s)
- Young Rae Cho
- Department of Life Science, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
Cartilage aging can contribute to the development of osteoarthritis (OA), the most common cause of chronic pain and disability in older adults. Articular cartilage is a unique tissue from the perspective of aging in that the cells (chondrocytes) and the majority of the extracellular matrix proteins experience little turnover, resulting in a tissue that must withstand years of use and can also accumulate years of aging-associated changes. Accumulation of advanced glycation end products (AGEs) occurs in cartilage, and the potential role of AGEs in the development of OA is being investigated. An age-associated reduction in growth factor signaling and an increase in oxidative stress may also play an important role in the age-OA connection. Further elucidation of mechanisms that affect chondrocyte function with aging should lead to novel interventions designed to slow the aging process in cartilage with the goal of preventing age-associated OA.
Collapse
Affiliation(s)
- Richard F Loeser
- Department of Medicine, Rush Medical College, Rush University Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|