1
|
Madsen JJ, Ohkubo YZ. Elucidating the complex membrane binding of a protein with multiple anchoring domains using extHMMM. PLoS Comput Biol 2024; 20:e1011421. [PMID: 38976709 PMCID: PMC11257402 DOI: 10.1371/journal.pcbi.1011421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 07/18/2024] [Accepted: 06/19/2024] [Indexed: 07/10/2024] Open
Abstract
Membrane binding is a crucial mechanism for many proteins, but understanding the specific interactions between proteins and membranes remains a challenging endeavor. Coagulation factor Va (FVa) is a large protein whose membrane interactions are complicated due to the presence of multiple anchoring domains that individually can bind to lipid membranes. Using molecular dynamics simulations, we investigate the membrane binding of FVa and identify the key mechanisms that govern its interaction with membranes. Our results reveal that FVa can either adopt an upright or a tilted molecular orientation upon membrane binding. We further find that the domain organization of FVa deviates (sometimes significantly) from its crystallographic reference structure, and that the molecular orientation of the protein matches with domain reorganization to align the C2 domain toward its favored membrane-normal orientation. We identify specific amino acid residues that exhibit contact preference with phosphatidylserine lipids over phosphatidylcholine lipids, and we observe that mostly electrostatic effects contribute to this preference. The observed lipid-binding process and characteristics, specific to FVa or common among other membrane proteins, in concert with domain reorganization and molecular tilt, elucidate the complex membrane binding dynamics of FVa and provide important insights into the molecular mechanisms of protein-membrane interactions. An updated version of the HMMM model, termed extHMMM, is successfully employed for efficiently observing membrane bindings of systems containing the whole FVa molecule.
Collapse
Affiliation(s)
- Jesper J. Madsen
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- Center for Global Health and Infectious Diseases Research, Global and Planetary Health, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - Y. Zenmei Ohkubo
- Department of Bioinformatics, School of Life and Natural Sciences, Abdullah Gül University, Kayseri, Turkey
| |
Collapse
|
2
|
De Vos O, Venable RM, Van Hecke T, Hummer G, Pastor RW, Ghysels A. Membrane Permeability: Characteristic Times and Lengths for Oxygen and a Simulation-Based Test of the Inhomogeneous Solubility-Diffusion Model. J Chem Theory Comput 2018; 14:3811-3824. [PMID: 29894626 DOI: 10.1021/acs.jctc.8b00115] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The balance of normal and radial (lateral) diffusion of oxygen in phospholipid membranes is critical for biological function. Based on the Smoluchowski equation for the inhomogeneous solubility-diffusion model, Bayesian analysis (BA) can be applied to molecular dynamics trajectories of oxygen to extract the free energy and the normal and radial diffusion profiles. This paper derives a theoretical formalism to convert these profiles into characteristic times and lengths associated with entering, escaping, or completely crossing the membrane. The formalism computes mean first passage times and holds for any process described by rate equations between discrete states. BA of simulations of eight model membranes with varying lipid composition and temperature indicate that oxygen travels 3 to 5 times further in the radial than in the normal direction when crossing the membrane in a time of 15 to 32 ns, thereby confirming the anisotropy of passive oxygen transport in membranes. Moreover, the preceding times and distances estimated from the BA are compared to the aggregate of 280 membrane exits explicitly observed in the trajectories. BA predictions for the distances of oxygen radial diffusion within the membrane are statistically indistinguishable from the corresponding simulation values, yet BA oxygen exit times from the membrane interior are approximately 20% shorter than the simulation values, averaged over seven systems. The comparison supports the BA approach and, therefore, the applicability of the Smoluchowski equation to membrane diffusion. Given the shorter trajectories required for the BA, these results validate the BA as a computationally attractive alternative to direct observation of exits when estimating characteristic times and radial distances. The effect of collective membrane undulations on the BA is also discussed.
Collapse
Affiliation(s)
- Oriana De Vos
- Center for Molecular Modeling , Ghent University , Technologiepark 903 , 9052 Gent , Belgium
| | - Richard M Venable
- Laboratory of Computational Biology , National Heart Lung Blood Institute, National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Tanja Van Hecke
- Department of Information Technology , Ghent University , 9000 Gent , Belgium
| | - Gerhard Hummer
- Department of Theoretical Biophysics , Max Planck Institute of Biophysics , 60438 Frankfurt am Main , Germany.,Institute for Biophysics , Goethe University Frankfurt , 60438 Frankfurt am Main , Germany
| | - Richard W Pastor
- Laboratory of Computational Biology , National Heart Lung Blood Institute, National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - An Ghysels
- Center for Molecular Modeling , Ghent University , Technologiepark 903 , 9052 Gent , Belgium
| |
Collapse
|
3
|
Vermaas JV, Trebesch N, Mayne CG, Thangapandian S, Shekhar M, Mahinthichaichan P, Baylon JL, Jiang T, Wang Y, Muller MP, Shinn E, Zhao Z, Wen PC, Tajkhorshid E. Microscopic Characterization of Membrane Transporter Function by In Silico Modeling and Simulation. Methods Enzymol 2016; 578:373-428. [PMID: 27497175 PMCID: PMC6404235 DOI: 10.1016/bs.mie.2016.05.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Membrane transporters mediate one of the most fundamental processes in biology. They are the main gatekeepers controlling active traffic of materials in a highly selective and regulated manner between different cellular compartments demarcated by biological membranes. At the heart of the mechanism of membrane transporters lie protein conformational changes of diverse forms and magnitudes, which closely mediate critical aspects of the transport process, most importantly the coordinated motions of remotely located gating elements and their tight coupling to chemical processes such as binding, unbinding and translocation of transported substrate and cotransported ions, ATP binding and hydrolysis, and other molecular events fueling uphill transport of the cargo. An increasing number of functional studies have established the active participation of lipids and other components of biological membranes in the function of transporters and other membrane proteins, often acting as major signaling and regulating elements. Understanding the mechanistic details of these molecular processes require methods that offer high spatial and temporal resolutions. Computational modeling and simulations technologies empowered by advanced sampling and free energy calculations have reached a sufficiently mature state to become an indispensable component of mechanistic studies of membrane transporters in their natural environment of the membrane. In this article, we provide an overview of a number of major computational protocols and techniques commonly used in membrane transporter modeling and simulation studies. The article also includes practical hints on effective use of these methods, critical perspectives on their strengths and weak points, and examples of their successful applications to membrane transporters, selected from the research performed in our own laboratory.
Collapse
Affiliation(s)
- J V Vermaas
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; University of Illinois at Urbana-Champaign, Urbana, IL, United States; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - N Trebesch
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; University of Illinois at Urbana-Champaign, Urbana, IL, United States; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - C G Mayne
- University of Illinois at Urbana-Champaign, Urbana, IL, United States; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - S Thangapandian
- University of Illinois at Urbana-Champaign, Urbana, IL, United States; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - M Shekhar
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; University of Illinois at Urbana-Champaign, Urbana, IL, United States; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - P Mahinthichaichan
- University of Illinois at Urbana-Champaign, Urbana, IL, United States; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - J L Baylon
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; University of Illinois at Urbana-Champaign, Urbana, IL, United States; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - T Jiang
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; University of Illinois at Urbana-Champaign, Urbana, IL, United States; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Y Wang
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; University of Illinois at Urbana-Champaign, Urbana, IL, United States; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - M P Muller
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; University of Illinois at Urbana-Champaign, Urbana, IL, United States; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - E Shinn
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; University of Illinois at Urbana-Champaign, Urbana, IL, United States; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Z Zhao
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; University of Illinois at Urbana-Champaign, Urbana, IL, United States; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - P-C Wen
- University of Illinois at Urbana-Champaign, Urbana, IL, United States; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - E Tajkhorshid
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; University of Illinois at Urbana-Champaign, Urbana, IL, United States; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
4
|
Hirsh DJ, Schieler BM, Fomchenko KM, Jordan ET, Bidle KD. A liposome-encapsulated spin trap for the detection of nitric oxide. Free Radic Biol Med 2016; 96:199-210. [PMID: 27112665 DOI: 10.1016/j.freeradbiomed.2016.04.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/09/2016] [Accepted: 04/21/2016] [Indexed: 01/08/2023]
Abstract
Electron paramagnetic resonance (EPR) is one of the few methods that allows for the unambiguous detection of nitric oxide (NO). However, the dithiocarbamate-iron spin traps employed with this method inhibit the activity of nitric oxide synthase and catalyze NO production from nitrite. These disadvantages limit EPR's application to biological NO detection. We present a liposome-encapsulated spin-trap (LEST) method for the capture and in situ detection of NO by EPR. The method shows a linear response for [NO]≥4µM and can detect [NO]≥40nM in a 500µL sample (≥20 pmol). The kinetics of NO production can be followed in real time over minutes to hours. LEST does not inhibit the activity of inducible nitric oxide synthase or nitrate reductase and shows minimal abiotic NO production in the presence of nitrite and NADH. Nitrate reductase-like activity is detected in cell lysates of the coccolithophore Emiliania huxleyi and is elevated in virus-infected culture. This method shows particular promise for NO detection in cell lysates and crude preparations of NO-producing tissues.
Collapse
Affiliation(s)
- Donald J Hirsh
- Department of Chemistry, The College of New Jersey, Ewing, NJ 08628, United States
| | - Brittany M Schieler
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, United States
| | | | - Ethan T Jordan
- Department of Biology, Marine Biology & Environmental Science, William Rogers University, Bristol, RI 02809, United States
| | - Kay D Bidle
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, United States
| |
Collapse
|
5
|
Geyer RR, Musa-Aziz R, Enkavi G, Mahinthichaichan P, Tajkhorshid E, Boron WF. Movement of NH₃ through the human urea transporter B: a new gas channel. Am J Physiol Renal Physiol 2013; 304:F1447-57. [PMID: 23552862 PMCID: PMC3680674 DOI: 10.1152/ajprenal.00609.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 03/28/2013] [Indexed: 12/21/2022] Open
Abstract
Aquaporins and Rh proteins can function as gas (CO₂ and NH₃) channels. The present study explores the urea, H₂O, CO₂, and NH₃ permeability of the human urea transporter B (UT-B) (SLC14A1), expressed in Xenopus oocytes. We monitored urea uptake using [¹⁴C]urea and measured osmotic water permeability (Pf) using video microscopy. To obtain a semiquantitative measure of gas permeability, we used microelectrodes to record the maximum transient change in surface pH (ΔpHS) caused by exposing oocytes to 5% CO₂/33 mM HCO₃⁻ (pHS increase) or 0.5 mM NH₃/NH₄⁺ (pHS decrease). UT-B expression increased oocyte permeability to urea by >20-fold, and Pf by 8-fold vs. H₂O-injected control oocytes. UT-B expression had no effect on the CO₂-induced ΔpHS but doubled the NH₃-induced ΔpHS. Phloretin reduced UT-B-dependent urea uptake (Jurea*) by 45%, Pf* by 50%, and (- ΔpHS*)NH₃ by 70%. p-Chloromercuribenzene sulfonate reduced Jurea* by 25%, Pf* by 30%, and (ΔpHS*)NH₃ by 100%. Molecular dynamics (MD) simulations of membrane-embedded models of UT-B identified the monomeric UT-B pores as the main conduction pathway for both H₂O and NH₃ and characterized the energetics associated with permeation of these species through the channel. Mutating each of two conserved threonines lining the monomeric urea pores reduced H₂O and NH₃ permeability. Our data confirm that UT-B has significant H₂O permeability and for the first time demonstrate significant NH₃ permeability. Thus the UTs become the third family of gas channels. Inhibitor and mutagenesis studies and results of MD simulations suggest that NH₃ and H₂O pass through the three monomeric urea channels in UT-B.
Collapse
Affiliation(s)
- R Ryan Geyer
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | | | | | | | |
Collapse
|
6
|
Shaikh S, Li J, Enkavi G, Wen PC, Huang Z, Tajkhorshid E. Visualizing functional motions of membrane transporters with molecular dynamics simulations. Biochemistry 2013; 52:569-87. [PMID: 23298176 PMCID: PMC3560430 DOI: 10.1021/bi301086x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 12/21/2012] [Indexed: 01/08/2023]
Abstract
Computational modeling and molecular simulation techniques have become an integral part of modern molecular research. Various areas of molecular sciences continue to benefit from, indeed rely on, the unparalleled spatial and temporal resolutions offered by these technologies, to provide a more complete picture of the molecular problems at hand. Because of the continuous development of more efficient algorithms harvesting ever-expanding computational resources, and the emergence of more advanced and novel theories and methodologies, the scope of computational studies has expanded significantly over the past decade, now including much larger molecular systems and far more complex molecular phenomena. Among the various computer modeling techniques, the application of molecular dynamics (MD) simulation and related techniques has particularly drawn attention in biomolecular research, because of the ability of the method to describe the dynamical nature of the molecular systems and thereby to provide a more realistic representation, which is often needed for understanding fundamental molecular properties. The method has proven to be remarkably successful in capturing molecular events and structural transitions highly relevant to the function and/or physicochemical properties of biomolecular systems. Herein, after a brief introduction to the method of MD, we use a number of membrane transport proteins studied in our laboratory as examples to showcase the scope and applicability of the method and its power in characterizing molecular motions of various magnitudes and time scales that are involved in the function of this important class of membrane proteins.
Collapse
Affiliation(s)
- Saher
A. Shaikh
- Department of Biochemistry, Beckman Institute for Advanced
Science and Technology, and Center for Biophysics and Computational
Biology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801, United States
| | - Jing Li
- Department of Biochemistry, Beckman Institute for Advanced
Science and Technology, and Center for Biophysics and Computational
Biology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801, United States
| | - Giray Enkavi
- Department of Biochemistry, Beckman Institute for Advanced
Science and Technology, and Center for Biophysics and Computational
Biology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801, United States
| | - Po-Chao Wen
- Department of Biochemistry, Beckman Institute for Advanced
Science and Technology, and Center for Biophysics and Computational
Biology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801, United States
| | - Zhijian Huang
- Department of Biochemistry, Beckman Institute for Advanced
Science and Technology, and Center for Biophysics and Computational
Biology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801, United States
| | - Emad Tajkhorshid
- Department of Biochemistry, Beckman Institute for Advanced
Science and Technology, and Center for Biophysics and Computational
Biology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
7
|
Ohkubo YZ, Pogorelov TV, Arcario MJ, Christensen GA, Tajkhorshid E. Accelerating membrane insertion of peripheral proteins with a novel membrane mimetic model. Biophys J 2012; 102:2130-9. [PMID: 22824277 DOI: 10.1016/j.bpj.2012.03.015] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 02/21/2012] [Accepted: 03/06/2012] [Indexed: 11/26/2022] Open
Abstract
Characterizing atomic details of membrane binding of peripheral membrane proteins by molecular dynamics (MD) has been significantly hindered by the slow dynamics of membrane reorganization associated with the phenomena. To expedite lateral diffusion of lipid molecules without sacrificing the atomic details of such interactions, we have developed a novel membrane representation, to our knowledge, termed the highly mobile membrane-mimetic (HMMM) model to study binding and insertion of various molecular species into the membrane. The HMMM model takes advantage of an organic solvent layer to represent the hydrophobic core of the membrane and short-tailed phospholipids for the headgroup region. We demonstrate that using these components, bilayer structures are formed spontaneously and rapidly, regardless of the initial position and orientation of the lipids. In the HMMM membrane, lipid molecules exhibit one to two orders of magnitude enhancement in lateral diffusion. At the same time, the membrane atomic density profile of the headgroup region produced by the HMMM model is essentially identical to those obtained for full-membrane models, indicating the faithful representation of the membrane surface by the model. We demonstrate the efficiency of the model in capturing spontaneous binding and insertion of peripheral proteins by using the membrane anchor (γ-carboxyglutamic-acid-rich domain; GLA domain) of human coagulation factor VII as a test model. Achieving full insertion of the GLA domain consistently in 10 independent unbiased simulations within short simulation times clearly indicates the robustness of the HMMM model in capturing membrane association of peripheral proteins very efficiently and reproducibly. The HMMM model will provide significant improvements to the current all-atom models by accelerating lipid dynamics to examine protein-membrane interactions more efficiently.
Collapse
Affiliation(s)
- Y Zenmei Ohkubo
- Department of Biochemistry, Beckman Institute for Advanced Science and Technology, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | | | | | |
Collapse
|
8
|
Aguayo D, González-Nilo FD, Chipot C. Insight into the Properties of Cardiolipin Containing Bilayers from Molecular Dynamics Simulations, Using a Hybrid All-Atom/United-Atom Force Field. J Chem Theory Comput 2012; 8:1765-73. [PMID: 26593668 DOI: 10.1021/ct200849k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Simulation of three models of cardiolipin (CL) containing membranes using a new set of parameters for tetramyristoyl and tetraoleoyl CLs has been developed in the framework of the united-atom CHARMM27-UA and the all-atom CHARMM36 force fields with the aim of performing molecular dynamics (MD) simulations of cardiolipin-containing mixed-lipid membranes. The new parameters use a hybrid representation of all-atom head groups in conjunction with implicit-hydrogen united-atom (UA) to describe the oleoyl and myristoyl chains of the CLs, in lieu of the fully atomistic description, thereby allowing longer simulations to be undertaken. The physicochemical properties of the bilayers were determined and compared with previously reported data. Furthermore, using tetramyristoyl CL mixed with POPG and POPE lipids, a mitochondrial membrane was simulated. The results presented here show the different behavior of the bilayers as a result of the lipid composition, where the length of the acyl chain and the conformation of the headgroup can be associated with the mitochondrial membrane properties. The new hybrid CL parameters prove to be well suited for the simulation of the molecular structure of CL-containing bilayers and can be extended to other lipid bilayers composed of CLs with different acyl chains or alternate head groups.
Collapse
Affiliation(s)
- Daniel Aguayo
- Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería en Bioinformática, Universidad de Talca , 2 Norte 685, Casilla 721, Talca, Chile.,Centro de Bioinformática y Biología Integrativa, Facultad de Ciencias Biológicas, Universidad Andrés Bello , República 239, Santiago, Chile.,Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso , Valparaíso, Chile
| | - Fernando D González-Nilo
- Centro de Bioinformática y Biología Integrativa, Facultad de Ciencias Biológicas, Universidad Andrés Bello , República 239, Santiago, Chile.,Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso , Valparaíso, Chile
| | - Christophe Chipot
- Theoretical and Computational Biophysics Group, Beckman Institute for Advanced Science and Engineering, University of Illinois at Urbana-Champaign , 405 North Mathews, Urbana, Illinois 61801, United States.,Équipe de dynamique des assemblages membranaires, UMR 7565, Université de Lorraine , BP 239, 54506 Vandoeuvre-lès-Nancy cedex, France
| |
Collapse
|
9
|
Boettcher JM, Davis-Harrison RL, Clay MC, Nieuwkoop AJ, Ohkubo YZ, Tajkhorshid E, Morrissey JH, Rienstra CM. Atomic view of calcium-induced clustering of phosphatidylserine in mixed lipid bilayers. Biochemistry 2011; 50:2264-73. [PMID: 21294564 PMCID: PMC3069658 DOI: 10.1021/bi1013694] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Membranes play key regulatory roles in biological processes, with bilayer composition exerting marked effects on binding affinities and catalytic activities of a number of membrane-associated proteins. In particular, proteins involved in diverse processes such as vesicle fusion, intracellular signaling cascades, and blood coagulation interact specifically with anionic lipids such as phosphatidylserine (PS) in the presence of Ca(2+) ions. While Ca(2+) is suspected to induce PS clustering in mixed phospholipid bilayers, the detailed structural effects of this ion on anionic lipids are not established. In this study, combining magic angle spinning (MAS) solid-state NMR (SSNMR) measurements of isotopically labeled serine headgroups in mixed lipid bilayers with molecular dynamics (MD) simulations of PS lipid bilayers in the presence of different counterions, we provide site-resolved insights into the effects of Ca(2+) on the structure and dynamics of lipid bilayers. Ca(2+)-induced conformational changes of PS in mixed bilayers are observed in both liposomes and Nanodiscs, a nanoscale membrane mimetic of bilayer patches. Site-resolved multidimensional correlation SSNMR spectra of bilayers containing (13)C,(15)N-labeled PS demonstrate that Ca(2+) ions promote two major PS headgroup conformations, which are well resolved in two-dimensional (13)C-(13)C, (15)N-(13)C, and (31)P-(13)C spectra. The results of MD simulations performed on PS lipid bilayers in the presence or absence of Ca(2+) provide an atomic view of the conformational effects underlying the observed spectra.
Collapse
Affiliation(s)
- John M. Boettcher
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | | | - Mary C. Clay
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Andrew J. Nieuwkoop
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Y. Zenmei Ohkubo
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Emad Tajkhorshid
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - James H. Morrissey
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Chad M. Rienstra
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
10
|
Wang Y, Shaikh SA, Tajkhorshid E. Exploring transmembrane diffusion pathways with molecular dynamics. Physiology (Bethesda) 2010; 25:142-54. [PMID: 20551228 DOI: 10.1152/physiol.00046.2009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Transmembrane exchange of materials is a fundamental process in biology. Molecular dynamics provides a powerful method to investigate in great detail various aspects of the phenomenon, particularly the permeation of small uncharged molecules, which continues to pose a challenge to experimental studies. We will discuss some of the recent simulation studies investigating the role of lipid-mediated and protein-mediated mechanisms in permeation of water and gas molecules across the membrane.
Collapse
Affiliation(s)
- Yi Wang
- Department of Biochemistry, Center for Biophysics and Computational Biology, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | | | | |
Collapse
|
11
|
Abstract
Involvement of aquaporins in gas conduction across the membrane and the physiological significance of this process have attracted marked attention from both experimental and theoretical studies. Previous work demonstrated that AQP1 is permeable to both CO(2) and O(2). Here we employ various simulation techniques to examine the permeability of the brain aquaporin AQP4 to NO and O(2) and to describe energetics and pathways associated with these phenomena. The energy barrier to NO and O(2) permeation through AQP4 central pore is found to be only approximately 3 kcal mol(-1). The results suggest that the central pore of AQP4, similar to that of AQP1, can indeed conduct gas molecules. Interestingly, despite a longer and narrower central pore, AQP4 appears to provide an energetically more favorable permeation pathway for gas molecules than AQP1, mainly due to the different orientation of its charged residues near the pore entrance. Although the low barrier against gas permeation through AQP4 indicates that it can participate in gas conduction across the cellular membrane, physiological relevance of the phenomenon remains to be established experimentally, particularly since pure lipid bilayers appear to present a more favorable pathway for gas conduction across the membrane. With an energy well of -1.8 kcal mol(-1), the central pore of AQP4 may also act as a reservoir for NO molecules to accumulate in the membrane.
Collapse
Affiliation(s)
- Yi Wang
- Department of Biochemistry, and Beckman Institute for Advanced Science and Technology, Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | |
Collapse
|