1
|
Ding Y, Tan K, Sheng L, Ren H, Su Z, Yang H, Zhang X, Li J, Hu P. Integrated mental stress smartwatch based on sweat cortisol and HRV sensors. Biosens Bioelectron 2024; 265:116691. [PMID: 39182413 DOI: 10.1016/j.bios.2024.116691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/11/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
Mental stress, a human's common emotion that is difficult to recognize and describe, can give rise to serious psychological disorders. Skin and sweat are easily accessible sources of biomarkers and bio-signals that contain information about mental stress. It is challenging for current wearable devices to monitor psychological stress in real-time with a non-invasive manner. Therefore, we have developed a smartwatch integrated with a sweat cortisol sensor and a heart rate variation (HRV) sensor. This smartwatch can simultaneously record the cortisol levels in sweat and HRV index in real time over a long period. The cortisol sensors based on organic electrochemical transistor (OECT) are fabricated by utilizing the Prussian-blue (PB) doped molecular imprinting polymer (MIP) modified gate electrode. The sensor signal current will decrease following the combination of sweat cortisol, due to the blocking of the PBMIP conductive path, demonstrating good sensitivity, selectivity, and stability. The HRV sensor is manufactured by a photoplethysmography method. We have integrated the two sensors into a wearable smartwatch that can match well with the mobile phone APP and the upper computer software. Through the use of this smartwatch, we have observed a negative correlation between cortisol levels in sweat and the HRV index in short-term stressful environments. Our research presents a great progress in real-time and non-invasive monitoring human's stress levels, which promotes not only the stress management, but also better psychological research.
Collapse
Affiliation(s)
- Yanan Ding
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Kaiwen Tan
- School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin, 150001, China
| | - Li Sheng
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Huiwen Ren
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhen Su
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Hongying Yang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xin Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Jianyang Li
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - PingAn Hu
- Key Laboratory of Micro-systems and Micro-structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin, 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China; School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
2
|
Jahanban-Esfahlan A, Amarowicz R. Molecularly imprinted polymers for sensing/depleting human serum albumin (HSA): A critical review of recent advances and current challenges. Int J Biol Macromol 2024; 266:131132. [PMID: 38531529 DOI: 10.1016/j.ijbiomac.2024.131132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
Human serum albumin (HSA) is an essential biomacromolecule in the blood circulatory system because it carries numerous molecules, including fatty acids (FAs), bilirubin, metal ions, hormones, and different pharmaceuticals, and plays a significant role in regulating blood osmotic pressure. Fluctuations in HSA levels in human biofluids, particularly urine and serum, are associated with several disorders, such as elevated blood pressure, diabetes mellitus (DM), liver dysfunction, and a wide range of renal diseases. Thus, the ability to quickly and accurately measure HSA levels is important for the rapid identification of these disorders in human populations. Molecularly imprinted polymers (MIPs), well known as artificial antibodies (Abs), have been extensively used for the quantitative detection of small molecules and macromolecules, especially HSA, in recent decades. This review highlights major challenges and recent developments in the application of MIPs to detect HSA in artificial and real samples. The fabrication and application of various MIPs for the depletion of HSA are also discussed, as well as different MIP preparation approaches and strategies for overcoming obstacles that hinder the development of MIPs with high efficiency and recognition capability for HSA determination/depletion.
Collapse
Affiliation(s)
- Ali Jahanban-Esfahlan
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665813, Iran.
| | - Ryszard Amarowicz
- Division of Food Sciences, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Street Tuwima 10, 10-748 Olsztyn, Poland.
| |
Collapse
|
3
|
Karuppaiah G, Lee MH, Bhansali S, Manickam P. Electrochemical sensors for cortisol detection: Principles, designs, fabrication, and characterisation. Biosens Bioelectron 2023; 239:115600. [PMID: 37611448 DOI: 10.1016/j.bios.2023.115600] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/09/2023] [Accepted: 08/12/2023] [Indexed: 08/25/2023]
Abstract
Psychological stress is a major factor contributing to health discrepancies among individuals. Sustained exposure to stress triggers signalling pathways in the brain, which leading to the release of stress hormones in the body. Cortisol, a steroid hormone, is a significant biomarker for stress management due to its responsibility in the body's reply to stress. The release of cortisol in bloodstream prepares the body for a "fight or flight" response by increasing heart rate, blood pressure, metabolism, and suppressing the immune system. Detecting cortisol in biological samples is crucial for understanding its role in stress and personalized healthcare. Traditional techniques for cortisol detection have limitations, prompting researchers to explore alternative strategies. Electrochemical sensing has emerged as a reliable method for point-of-care (POC) cortisol detection. This review focuses on the progress made in electrochemical sensors for cortisol detection, covering their design, principle, and electroanalytical methodologies. The analytical performance of these sensors is also analysed and summarized. Despite significant advancements, the development of electrochemical cortisol sensors faces challenges such as biofouling, sample preparation, sensitivity, flexibility, stability, and recognition layer performance. Therefore, the need to develop more sensitive electrodes and materials is emphasized. Finally, we discussed the potential strategies for electrode design and provides examples of sensing approaches. Moreover, the encounters of translating research into real world applications are addressed.
Collapse
Affiliation(s)
- Gopi Karuppaiah
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, 630 003, Tamil Nadu, India; School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Shekhar Bhansali
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL, 33174, USA.
| | - Pandiaraj Manickam
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, 630 003, Tamil Nadu, India; Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India.
| |
Collapse
|
4
|
Mugo SM, Lu W, Robertson S. A Wearable, Textile-Based Polyacrylate Imprinted Electrochemical Sensor for Cortisol Detection in Sweat. BIOSENSORS 2022; 12:bios12100854. [PMID: 36290991 PMCID: PMC9599184 DOI: 10.3390/bios12100854] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 06/12/2023]
Abstract
A wearable, textile-based molecularly imprinted polymer (MIP) electrochemical sensor for cortisol detection in human sweat has been demonstrated. The wearable cortisol sensor was fabricated via layer-by-layer assembly (LbL) on a flexible cotton textile substrate coated with a conductive nanoporous carbon nanotube/cellulose nanocrystal (CNT/CNC) composite suspension, conductive polyaniline (PANI), and a selective cortisol-imprinted poly(glycidylmethacrylate-co-ethylene glycol dimethacrylate) (poly(GMA-co-EGDMA)) decorated with gold nanoparticles (AuNPs), or plated with gold. The cortisol sensor rapidly (<2 min) responded to 9.8−49.5 ng/mL of cortisol, with an average relative standard deviation (%RSD) of 6.4% across the dynamic range, indicating excellent precision. The cortisol sensor yielded an excellent limit of detection (LOD) of 8.00 ng/mL, which is within the typical physiological levels in human sweat. A single cortisol sensor patch could be reused 15 times over a 30-day period with no loss in performance, attesting to excellent reusability. The cortisol sensor patch was successfully verified for use in quantification of cortisol levels in human sweat.
Collapse
|
5
|
Kempe H, Kempe M. Ouzo polymerization: A bottom-up green synthesis of polymer nanoparticles by free-radical polymerization of monomers spontaneously nucleated by the Ouzo effect; Application to molecular imprinting. J Colloid Interface Sci 2022; 616:560-570. [DOI: 10.1016/j.jcis.2022.02.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 11/25/2022]
|
6
|
Peters JT, Wechsler ME, Peppas NA. Advanced biomedical hydrogels: molecular architecture and its impact on medical applications. Regen Biomater 2021; 8:rbab060. [PMID: 34925879 PMCID: PMC8678442 DOI: 10.1093/rb/rbab060] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022] Open
Abstract
Hydrogels are cross-linked polymeric networks swollen in water, physiological aqueous solutions or biological fluids. They are synthesized by a wide range of polymerization methods that allow for the introduction of linear and branched units with specific molecular characteristics. In addition, they can be tuned to exhibit desirable chemical characteristics including hydrophilicity or hydrophobicity. The synthesized hydrogels can be anionic, cationic, or amphiphilic and can contain multifunctional cross-links, junctions or tie points. Beyond these characteristics, hydrogels exhibit compatibility with biological systems, and can be synthesized to render systems that swell or collapse in response to external stimuli. This versatility and compatibility have led to better understanding of how the hydrogel's molecular architecture will affect their physicochemical, mechanical and biological properties. We present a critical summary of the main methods to synthesize hydrogels, which define their architecture, and advanced structural characteristics for macromolecular/biological applications.
Collapse
Affiliation(s)
- Jonathan T Peters
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, 200 E. Dean Keeton, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
| | - Marissa E Wechsler
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Nicholas A Peppas
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, 200 E. Dean Keeton, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
- Department of Surgery and Perioperative Care, and Department of Pediatrics, Dell Medical School, The University of Texas at Austin, 1601 Trinity St., Bldg. B, Austin, TX 78712, USA
| |
Collapse
|
7
|
Sajini T, Mathew B. A brief overview of molecularly imprinted polymers: Highlighting computational design, nano and photo-responsive imprinting. TALANTA OPEN 2021. [DOI: 10.1016/j.talo.2021.100072] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
8
|
Mugo SM, Lu W, Wood M, Lemieux S. Wearable microneedle dual electrochemical sensor for simultaneous pH and cortisol detection in sweat. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Samuel M. Mugo
- Physical Sciences Department MacEwan University Edmonton Canada
| | - Weihao Lu
- Physical Sciences Department MacEwan University Edmonton Canada
| | - Marika Wood
- Physical Sciences Department MacEwan University Edmonton Canada
| | - Stephane Lemieux
- Department of Decision Sciences MacEwan University Edmonton Canada
| |
Collapse
|
9
|
Lee MA, Wang S, Jin X, Bakh NA, Nguyen FT, Dong J, Silmore KS, Gong X, Pham C, Jones KK, Muthupalani S, Bisker G, Son M, Strano MS. Implantable Nanosensors for Human Steroid Hormone Sensing In Vivo Using a Self-Templating Corona Phase Molecular Recognition. Adv Healthc Mater 2020; 9:e2000429. [PMID: 32940022 DOI: 10.1002/adhm.202000429] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/13/2020] [Indexed: 12/19/2022]
Abstract
Dynamic measurements of steroid hormones in vivo are critical, but steroid sensing is currently limited by the availability of specific molecular recognition elements due to the chemical similarity of these hormones. In this work, a new, self-templating synthetic approach is applied using corona phase molecular recognition (CoPhMoRe) targeting the steroid family of molecules to produce near infrared fluorescent, implantable sensors. A key limitation of CoPhMoRe has been its reliance on library generation for sensor screening. This problem is addressed with a self-templating strategy of polymer design, using the examples of progesterone and cortisol sensing based on a styrene and acrylic acid copolymer library augmented with an acrylated steroid. The pendant steroid attached to the corona backbone is shown to self-template the phase, providing a unique CoPhMoRE design strategy with high efficacy. The resulting sensors exhibit excellent stability and reversibility upon repeated analyte cycling. It is shown that molecular recognition using such constructs is viable even in vivo after sensor implantation into a murine model by employing a poly (ethylene glycol) diacrylate (PEGDA) hydrogel and porous cellulose interface to limit nonspecific absorption. The results demonstrate that CoPhMoRe templating is sufficiently robust to enable a new class of continuous, in vivo biosensors.
Collapse
Affiliation(s)
- Michael A. Lee
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Song Wang
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Xiaojia Jin
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Naveed Ali Bakh
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Freddy T. Nguyen
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Juyao Dong
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Kevin S. Silmore
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Xun Gong
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Crystal Pham
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Kelvin K. Jones
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Sureshkumar Muthupalani
- Division of Comparative Medicine Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Gili Bisker
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Biomedical Engineering Tel‐Aviv University Tel Aviv 6997801 Israel
| | - Manki Son
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Michael S. Strano
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| |
Collapse
|
10
|
Zamkah A, Hui T, Andrews S, Dey N, Shi F, Sherratt RS. Identification of Suitable Biomarkers for Stress and Emotion Detection for Future Personal Affective Wearable Sensors. BIOSENSORS-BASEL 2020; 10:bios10040040. [PMID: 32316280 PMCID: PMC7235866 DOI: 10.3390/bios10040040] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023]
Abstract
Skin conductivity (i.e., sweat) forms the basis of many physiology-based emotion and stress detection systems. However, such systems typically do not detect the biomarkers present in sweat, and thus do not take advantage of the biological information in the sweat. Likewise, such systems do not detect the volatile organic components (VOC’s) created under stressful conditions. This work presents a review into the current status of human emotional stress biomarkers and proposes the major potential biomarkers for future wearable sensors in affective systems. Emotional stress has been classified as a major contributor in several social problems, related to crime, health, the economy, and indeed quality of life. While blood cortisol tests, electroencephalography and physiological parameter methods are the gold standards for measuring stress; however, they are typically invasive or inconvenient and not suitable for wearable real-time stress monitoring. Alternatively, cortisol in biofluids and VOCs emitted from the skin appear to be practical and useful markers for sensors to detect emotional stress events. This work has identified antistress hormones and cortisol metabolites as the primary stress biomarkers that can be used in future sensors for wearable affective systems.
Collapse
Affiliation(s)
- Abdulaziz Zamkah
- Biomedical Sciences and Biomedical Engineering, The University of Reading, Reading RG6 6AY, UK; (A.Z.); (T.H.); (S.A.)
| | - Terence Hui
- Biomedical Sciences and Biomedical Engineering, The University of Reading, Reading RG6 6AY, UK; (A.Z.); (T.H.); (S.A.)
| | - Simon Andrews
- Biomedical Sciences and Biomedical Engineering, The University of Reading, Reading RG6 6AY, UK; (A.Z.); (T.H.); (S.A.)
| | - Nilanjan Dey
- Department of Information Technology, Techno India College of Technology, West Bengal 700156, India;
| | - Fuqian Shi
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08903, USA;
| | - R. Simon Sherratt
- Biomedical Sciences and Biomedical Engineering, The University of Reading, Reading RG6 6AY, UK; (A.Z.); (T.H.); (S.A.)
- Correspondence: ; Tel.: +44-118-378-8588
| |
Collapse
|
11
|
Mugo SM, Alberkant J. Flexible molecularly imprinted electrochemical sensor for cortisol monitoring in sweat. Anal Bioanal Chem 2020; 412:1825-1833. [PMID: 32002581 DOI: 10.1007/s00216-020-02430-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 01/15/2020] [Indexed: 11/27/2022]
Abstract
A selective cortisol sensor based on molecularly imprinted poly(glycidylmethacrylate-co ethylene glycol dimethacrylate) (poly(GMA-co-EGDMA)) has been demonstrated for detection of cortisol in human sweat. The non-enzymatic biomimetric flexible sweat sensor was fabricated inexpensively by layer by layer (LbL) assembly. The sensor layers comprised a stretchable polydimethylsiloxane (PDMS) base with carbon nanotubes-cellulose nanocrystals (CNC/CNT) conductive nanoporous nanofilms. The imprinted (MIP) poly(GMA-co-EGDMA) deposited on the CNC/CNT was the cortisol biomimetric receptor. Rapid in analyte response (3 min), the cortisol MIP sensor demonstrated excellent performance. The sensor has a limit of detection (LOD) of 2.0 ng/mL ± 0.4 ng/mL, dynamic range of 10-66 ng/mL, and a sensor reproducibility of 2.6% relative standard deviation (RSD). The MIP sensor also had high cortisol specificity and was inherently blind to selected interfering species including glucose, epinephrine, β-estradiol, and methoxyprogestrone. The MIP was four orders of magnitude more sensitive than its non-imprinted (NIP) counterpart. The MIP sensor remains stable over time, responding proportionately to doses of cortisol in human sweat. Graphical abstract.
Collapse
Affiliation(s)
- Samuel M Mugo
- Physical Sciences Department, MacEwan University, 10700-104 Avenue, Edmonton, AB, T5J 4S2, Canada.
| | - Jonathan Alberkant
- Physical Sciences Department, MacEwan University, 10700-104 Avenue, Edmonton, AB, T5J 4S2, Canada
| |
Collapse
|
12
|
Refaat D, Aggour MG, Farghali AA, Mahajan R, Wiklander JG, Nicholls IA, Piletsky SA. Strategies for Molecular Imprinting and the Evolution of MIP Nanoparticles as Plastic Antibodies-Synthesis and Applications. Int J Mol Sci 2019; 20:E6304. [PMID: 31847152 PMCID: PMC6940816 DOI: 10.3390/ijms20246304] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/30/2022] Open
Abstract
Materials that can mimic the molecular recognition-based functions found in biology are a significant goal for science and technology. Molecular imprinting is a technology that addresses this challenge by providing polymeric materials with antibody-like recognition characteristics. Recently, significant progress has been achieved in solving many of the practical problems traditionally associated with molecularly imprinted polymers (MIPs), such as difficulties with imprinting of proteins, poor compatibility with aqueous environments, template leakage, and the presence of heterogeneous populations of binding sites in the polymers that contribute to high levels of non-specific binding. This success is closely related to the technology-driven shift in MIP research from traditional bulk polymer formats into the nanomaterial domain. The aim of this article is to throw light on recent developments in this field and to present a critical discussion of the current state of molecular imprinting and its potential in real world applications.
Collapse
Affiliation(s)
- Doaa Refaat
- Department of Pathology, Animal Health Research Institute (AHRI), Agricultural Research Center (ARC), Giza 12618, Egypt;
- Department of Materials Science and Nanotechnology, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62511, Egypt;
| | - Mohamed G. Aggour
- Department of Biotechnology, Animal Health Research Institute (AHRI), Agricultural Research Center (ARC), Giza 12618, Egypt;
| | - Ahmed A. Farghali
- Department of Materials Science and Nanotechnology, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62511, Egypt;
| | - Rashmi Mahajan
- Bioorganic & Biophysical Chemistry Laboratory, Linnaeus University Centre for Biomaterials Chemistry, Department of Chemistry & Biomedical Sciences, Linnaeus University, SE-39182 Kalmar, Sweden; (R.M.); (J.G.W.)
| | - Jesper G. Wiklander
- Bioorganic & Biophysical Chemistry Laboratory, Linnaeus University Centre for Biomaterials Chemistry, Department of Chemistry & Biomedical Sciences, Linnaeus University, SE-39182 Kalmar, Sweden; (R.M.); (J.G.W.)
| | - Ian A. Nicholls
- Bioorganic & Biophysical Chemistry Laboratory, Linnaeus University Centre for Biomaterials Chemistry, Department of Chemistry & Biomedical Sciences, Linnaeus University, SE-39182 Kalmar, Sweden; (R.M.); (J.G.W.)
| | - Sergey A. Piletsky
- Chemistry Department, College of Science and Engineering, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
13
|
Uzunoğlu G, Çimen D, Bereli N, Çetin K, Denizli A. Cholesterol removal from human plasma with biologically modified cryogels. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:1276-1290. [PMID: 31156065 DOI: 10.1080/09205063.2019.1627652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In this study, low molecular weight heparin immobilized P(HEMA) cryogels were fabricated for the removal of LDL-C in hypercholesterolemic human plasma. After characterization studies for P(HEMA) cryogels, effects of the parameters including medium pH, CNBr concentration, heparin concentration and contact time on heparin immobilization were investigated. Blood compatibility and cell adhesion tests were also performed, and platelet and leucocyte loss for P(HEMA)-Hp cryogels were found to be 2.95% and 4.91%, respectively. Maximum adsorption capacity for LDL-C from hypercholesterolemic human plasma was found to be 26.7 mg/g for P(HEMA)-Hp cryogel while it was only 1.67 mg/g for bare P(HEMA) cryogel. The P(HEMA)-Hp cryogels exhibit high desorption ratios up to 96% after 10 adsorption-desorption cycles with no significant decrease in the adsorption capacity. The findings indicated that these reusable P(HEMA)-based cryogels proposed good alternative adsorbents for removal of LDL-C.
Collapse
Affiliation(s)
- Gizem Uzunoğlu
- a Biochemistry Division, Department of Chemistry , Hacettepe University , Ankara , Turkey
| | - Duygu Çimen
- a Biochemistry Division, Department of Chemistry , Hacettepe University , Ankara , Turkey
| | - Nilay Bereli
- a Biochemistry Division, Department of Chemistry , Hacettepe University , Ankara , Turkey
| | - Kemal Çetin
- b Biochemistry Division, Department of Chemistry, Faculty of Science , Necmettin Erbakan University , Konya , Turkey
| | - Adil Denizli
- a Biochemistry Division, Department of Chemistry , Hacettepe University , Ankara , Turkey
| |
Collapse
|
14
|
Tarannum N, Hendrickson OD, Khatoon S, Zherdev AV, Dzantiev BB. Molecularly imprinted polymers as receptors for assays of antibiotics. Crit Rev Anal Chem 2019; 50:291-310. [DOI: 10.1080/10408347.2019.1626697] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Nazia Tarannum
- Department of Chemistry, Chaudhary Charan Singh University, Meerut, India
| | - Olga D. Hendrickson
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Shahjadi Khatoon
- Department of Chemistry, Chaudhary Charan Singh University, Meerut, India
| | - Anatoly V. Zherdev
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Boris B. Dzantiev
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
15
|
|
16
|
Hüseynli S, Çimen D, Bereli N, Denizli A. Molecular Imprinted Based Quartz Crystal Microbalance Nanosensors for Mercury Detection. GLOBAL CHALLENGES (HOBOKEN, NJ) 2019; 3:1800071. [PMID: 31565367 PMCID: PMC6436597 DOI: 10.1002/gch2.201800071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/08/2018] [Indexed: 06/10/2023]
Abstract
Mercury(II) ions are emerging as a result of more human activity, especially coal-fired power plants, industrial processes, waste incineration plants, and mining. The mercury found in different forms after spreading around diffuses the nature of other living things. Although the damage to health is not yet clear, it is obvious that it is the cause of many diseases. This work detects the problem of mercury(II) ions, one of the active pollutants in wastewater. For this purpose, it is possible to detect the smallest amount of mercury(II) ions by means of the mercury(II) ions suppressed quartz crystal microbalance nanosensor developed. Zinc(II) and cadmium(II) ions are chosen as competitor elements. Developed nanosensor technology is known as the ideal method in the laboratory environment to detect mercury(II) ions from wastewater because of its low cost and precise result orientation. The range of linearity and the limit of detection are measured as 0.25 × 10-9-50 × 10-9 m. The detection limit is found to be 0.21 × 10-9 m. The mercury(II) ions imprinted nanosensors prepared according to the obtained experimental findings show high selectivity and sensitivity to detect mercury(II) ions from wastewater.
Collapse
Affiliation(s)
- Sabina Hüseynli
- Department of ChemistryHacettepe UniversityBeytepeAnkara06800Turkey
| | - Duygu Çimen
- Department of ChemistryHacettepe UniversityBeytepeAnkara06800Turkey
| | - Nilay Bereli
- Department of ChemistryHacettepe UniversityBeytepeAnkara06800Turkey
| | - Adil Denizli
- Department of ChemistryHacettepe UniversityBeytepeAnkara06800Turkey
| |
Collapse
|
17
|
Parlak O, Keene ST, Marais A, Curto VF, Salleo A. Molecularly selective nanoporous membrane-based wearable organic electrochemical device for noninvasive cortisol sensing. SCIENCE ADVANCES 2018; 4:eaar2904. [PMID: 30035216 PMCID: PMC6054510 DOI: 10.1126/sciadv.aar2904] [Citation(s) in RCA: 264] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 06/04/2018] [Indexed: 05/18/2023]
Abstract
Wearable biosensors have emerged as an alternative evolutionary development in the field of healthcare technology due to their potential to change conventional medical diagnostics and health monitoring. However, a number of critical technological challenges including selectivity, stability of (bio)recognition, efficient sample handling, invasiveness, and mechanical compliance to increase user comfort must still be overcome to successfully bring devices closer to commercial applications. We introduce the integration of an electrochemical transistor and a tailor-made synthetic and biomimetic polymeric membrane, which acts as a molecular memory layer facilitating the stable and selective molecular recognition of the human stress hormone cortisol. The sensor and a laser-patterned microcapillary channel array are integrated in a wearable sweat diagnostics platform, providing accurate sweat acquisition and precise sample delivery to the sensor interface. The integrated devices were successfully used with both ex situ methods using skin-like microfluidics and on human subjects with on-body real-sample analysis using a wearable sensor assembly.
Collapse
Affiliation(s)
- Onur Parlak
- Department of Materials Science and Engineering, Stanford University, 450 Serra Mall, Stanford, CA 94305, USA
| | - Scott Tom Keene
- Department of Materials Science and Engineering, Stanford University, 450 Serra Mall, Stanford, CA 94305, USA
| | - Andrew Marais
- Department of Materials Science and Engineering, Stanford University, 450 Serra Mall, Stanford, CA 94305, USA
| | - Vincenzo F. Curto
- Department of Bioelectronics, Ecole Nationale Supérieure des Mines, Centre Microélectronique de Provence–École nationale supérieure des mines de Saint-Étienne, Center Microelectronics De Provence Georges Charpak, 880 Avenue de Mimet, Gardanne 13541, France
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, 450 Serra Mall, Stanford, CA 94305, USA
| |
Collapse
|
18
|
Suda N, Sunayama H, Kitayama Y, Kamon Y, Takeuchi T. Oriented, molecularly imprinted cavities with dual binding sites for highly sensitive and selective recognition of cortisol. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170300. [PMID: 28878979 PMCID: PMC5579094 DOI: 10.1098/rsos.170300] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/17/2017] [Indexed: 06/07/2023]
Abstract
Novel, molecularly imprinted polymers (MIPs) were developed for the highly sensitive and selective recognition of the stress marker cortisol. Oriented, homogeneous cavities with two binding sites for cortisol were fabricated by surface-initiated atom transfer radical polymerization, using a cortisol motif template molecule (TM1) which consists of a polymerizable moiety attached at the 3-carbonyl group of cortisol via an oxime linkage and an adamantane carboxylate moiety coupled with the 21-hydroxyl group. TM1 was orientationally immobilized on a β-cyclodextrin (β-CD)-grafted gold-coated sensor chip by inclusion of the adamantane moiety of TM1, followed by copolymerization of a hydrophilic comonomer, 2-methacryloyloxyethyl phosphorylcholine, with or without a cross-linker, N,N'-methylenebisacrylamide. Subsequent cleavage of the oxime linkage leaves the imprinted cavities that contain dual binding sites-namely, the aminooxy group and β-CD-capable of oxime formation and hydrophobic interaction, respectively. As an application, MIP-based picomolar level detection of cortisol was demonstrated by a competitive binding assay using a fluorescent competitor. Cross-linking of the MIP imparts rigidity to the binding cavities, and improves the selectivity and sensitivity significantly, reducing the limit of detection to 4.8 pM. In addition, detection of cortisol in saliva samples was demonstrated as a feasibility study.
Collapse
Affiliation(s)
| | | | | | | | - Toshifumi Takeuchi
- Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
19
|
Zhang Z, Liu J. Molecularly Imprinted Polymers with DNA Aptamer Fragments as Macromonomers. ACS APPLIED MATERIALS & INTERFACES 2016; 8:6371-6378. [PMID: 26910515 DOI: 10.1021/acsami.6b00461] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Molecularly imprinted polymers (MIPs) are produced in the presence of a template molecule. After removing the template, the cavity can selectively rebind the template. MIPs are attractive functional materials with a low cost and high stability, but traditional MIPs often suffer from low binding affinity. This study employs DNA aptamer fragments as macromonomers to improve MIPs. The DNA aptamer for adenosine was first split into two halves, fluorescently labeled, and copolymerized into MIPs. With a fluorescence quenching assay, the importance of imprinting was confirmed. Further studies were carried out using isothermal titration calorimetry (ITC). Compared to the mixture of the free aptamer fragments, their MIPs doubled the binding affinity. Each free aptamer fragment alone cannot bind adenosine, whereas MIPs containing each fragment are effective binders. We further shortened one of the aptamer fragments, and the DNA length was pushed to as short as six nucleotides, yielding MIPs with a dissociation constant of 27 μM adenosine. This study provides a new method for preparing functional MIP materials by combining high-affinity biopolymer fragments with low-cost synthetic monomers, allowing higher binding affinity and providing a method for signaling binding based on DNA chemistry.
Collapse
Affiliation(s)
- Zijie Zhang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
20
|
Koetting MC, Peters JT, Steichen SD, Peppas NA. Stimulus-responsive hydrogels: Theory, modern advances, and applications. MATERIALS SCIENCE & ENGINEERING. R, REPORTS : A REVIEW JOURNAL 2015; 93:1-49. [PMID: 27134415 PMCID: PMC4847551 DOI: 10.1016/j.mser.2015.04.001] [Citation(s) in RCA: 564] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Over the past century, hydrogels have emerged as effective materials for an immense variety of applications. The unique network structure of hydrogels enables very high levels of hydrophilicity and biocompatibility, while at the same time exhibiting the soft physical properties associated with living tissue, making them ideal biomaterials. Stimulus-responsive hydrogels have been especially impactful, allowing for unprecedented levels of control over material properties in response to external cues. This enhanced control has enabled groundbreaking advances in healthcare, allowing for more effective treatment of a vast array of diseases and improved approaches for tissue engineering and wound healing. In this extensive review, we identify and discuss the multitude of response modalities that have been developed, including temperature, pH, chemical, light, electro, and shear-sensitive hydrogels. We discuss the theoretical analysis of hydrogel properties and the mechanisms used to create these responses, highlighting both the pioneering and most recent work in all of these fields. Finally, we review the many current and proposed applications of these hydrogels in medicine and industry.
Collapse
Affiliation(s)
- Michael C. Koetting
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, United States
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, United States
| | - Jonathan T. Peters
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, United States
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, United States
| | - Stephanie D. Steichen
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, United States
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, United States
| | - Nicholas A. Peppas
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, United States
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, United States
- College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, United States
| |
Collapse
|
21
|
Murase N, Taniguchi SI, Takano E, Kitayama Y, Takeuchi T. Fluorescence Reporting of Binding Interactions of Target Molecules with Core-Shell-Type Cortisol-Imprinted Polymer Particles Using Environmentally Responsible Fluorescent-Labeled Cortisol. MACROMOL CHEM PHYS 2015. [DOI: 10.1002/macp.201500065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Nobuo Murase
- Graduate School of Engineering; Kobe University; 1-1, Rokkodai-cho Nada-ku Kobe 657-8501 Japan
| | - Shin-Ichi Taniguchi
- Yokohama Research Laboratory; Hitachi, Ltd.; 292, Yoshida-cho Totsuka-ku, Yokohama 244-0817 Japan
| | - Eri Takano
- Graduate School of Engineering; Kobe University; 1-1, Rokkodai-cho Nada-ku Kobe 657-8501 Japan
| | - Yukiya Kitayama
- Graduate School of Engineering; Kobe University; 1-1, Rokkodai-cho Nada-ku Kobe 657-8501 Japan
| | - Toshifumi Takeuchi
- Graduate School of Engineering; Kobe University; 1-1, Rokkodai-cho Nada-ku Kobe 657-8501 Japan
| |
Collapse
|
22
|
Kartal F, Denizli A. Surface molecularly imprinted magnetic microspheres for the recognition of albumin. J Sep Sci 2014; 37:2077-86. [DOI: 10.1002/jssc.201400086] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/25/2014] [Accepted: 04/30/2014] [Indexed: 12/26/2022]
Affiliation(s)
- Fatma Kartal
- Department of Chemistry; Biochemistry Division, Hacettepe University; Ankara Turkey
| | - Adil Denizli
- Department of Chemistry; Biochemistry Division, Hacettepe University; Ankara Turkey
| |
Collapse
|
23
|
Seifi M, Hassanpour Moghadam M, Hadizadeh F, Ali-Asgari S, Aboli J, Mohajeri SA. Preparation and study of tramadol imprinted micro-and nanoparticles by precipitation polymerization: microwave irradiation and conventional heating method. Int J Pharm 2014; 471:37-44. [PMID: 24792981 DOI: 10.1016/j.ijpharm.2014.04.071] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 04/29/2014] [Accepted: 04/30/2014] [Indexed: 10/25/2022]
Abstract
In the present work a series of tramadole imprinted micro- and nanoparticles were prepared and study their recognition properties. Methacrylic acid (MAA), as a functional monomer, ethylene glycol dimethacrylate (EGDMA) as a cross-linker and different solvents (chloroform, toluene and acetonitrile (ACN)) were used for the preparation of molecularly imprinted polymers (MIPs) and non-imprinted polymers (NIPs). Several factors such as template/monomer molar ratio, volume of polymerization solvent, total monomers/solvent volume ratio, polymerization condition (heating or microwave irradiation) were also investigated. Particle size of the polymers, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), rebinding, selectivity tests and release study were applied for evaluation of the polymers. The optimized polymers with smaller particle size and superior binding properties were obtained in acetonitrile under heating method. MIPA4 with a size of 42.6 nm and a binding factor (BF) of 6.79 was selected for selectivity and release tests. The polymerization was not successful in acetonitrile and toluene under microwave irradiation. The MIPA4 could selectively adsorb tramadol, compared to imipramine, naltrexone and gabapentin. The data showed that tramadol release from MIPA4 was significantly slower than that of its non-imprinted polymer. Therefore, MIP nanoparticles with high selectivity, binding capacity and ability to control tramadol release could be obtained in precipitation polymerization with optimized condition.
Collapse
Affiliation(s)
- Mahmoud Seifi
- Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Chemistry, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | - Maryam Hassanpour Moghadam
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Safa Ali-Asgari
- Department of Chemistry, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | - Jafar Aboli
- Department of Chemistry, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | - Seyed Ahmad Mohajeri
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
24
|
Pardo A, Mespouille L, Dubois P, Blankert B, Duez P. Molecularly Imprinted Polymers: Compromise between Flexibility and Rigidity for Improving Capture of Template Analogues. Chemistry 2014; 20:3500-9. [DOI: 10.1002/chem.201303216] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 11/24/2013] [Indexed: 01/30/2023]
|
25
|
Molecularly imprinted polymers for corticosteroids: impact of polymer format on recognition behaviour. Mikrochim Acta 2013. [DOI: 10.1007/s00604-013-1034-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
26
|
Preparation and Evaluation of Histamine Imprinted Polymer as a Selective Sorbent in Molecularly Imprinted Solid-Phase Extraction Coupled with High Performance Liquid Chromatography Analysis in Canned Fish. FOOD ANAL METHOD 2013. [DOI: 10.1007/s12161-013-9579-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
A novel dual-function molecularly imprinted polymer on CdTe/ZnS quantum dots for highly selective and sensitive determination of ractopamine. Anal Chim Acta 2013; 762:76-82. [DOI: 10.1016/j.aca.2012.11.047] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 11/18/2012] [Accepted: 11/24/2012] [Indexed: 11/22/2022]
|
28
|
Barde LN, Ghule MM, Roy AA, Mathur VB, Shivhare UD. Development of molecularly imprinted polymer as sustain release drug carrier for propranolol HCL. Drug Dev Ind Pharm 2012; 39:1247-53. [DOI: 10.3109/03639045.2012.710236] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
Affiliation(s)
- Sujit S. Mahajan
- a UC Chemical and Biosensors Group, Department of Chemistry , University of Cincinnati , Cincinnati , OH , 45221-0172 , USA
| | - Suri S. Iyer
- a UC Chemical and Biosensors Group, Department of Chemistry , University of Cincinnati , Cincinnati , OH , 45221-0172 , USA
| |
Collapse
|
30
|
Targeted extraction of active compounds from natural products by molecularly imprinted polymers. OPEN CHEM 2012. [DOI: 10.2478/s11532-012-0018-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AbstractOne of the most promising separation techniques that have emerged during the last decade is based on the use of molecularly imprinted polymers (MIPs). MIPs are stable polymers that possess specific cavities designed for a template molecule, endowed with excellent selectivity compared to regular solid phase extraction techniques. Molecularly imprinted solid-phase extraction (MISPE) has already shown a high efficiency for the sample preparation from complex matrices. Natural products received huge attention in recent years. Indeed, the application of MISPE for the screening of natural products appears extremely interesting not only for the selective extraction of a target compound but also for the concomitant discovery of new drug candidates, promising sources of therapeutic benefits. In the present review, examples of recognition and separation of active components from natural extracts are emphasized. MIPs are very promising materials to mimic the recognition characteristics exhibited by enzymes or receptors although further developments are necessary to fully exploit their wide potential.
Collapse
|
31
|
Silvestri D, Cristallini C, Domenichini M, Gagliardi M, Giusti P. NON CONVENTIONAL SURFACE FUNCTIONALIZATION OF POROUS POLY-ε-CAPROLACTONE SCAFFOLDS USING BIOACTIVE MOLECULARLY IMPRINTED NANOSPHERES. BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS 2012. [DOI: 10.4015/s1016237210002109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Polymeric scaffolds, in the form of porous membranes, modified to favour cell adhesion and proliferation on their surface, were prepared using an innovative technique of functionalization, based on molecularly imprinting technology. A series of membranes based on poly-ε-caprolactone were obtained through phase inversion using different solvents and non-solvents. Diffusion tests showed that prepared membranes exhibited a good permeability towards important nutrients such as folic acid and glucose. The ability of membranes, modified with imprinted nanoparticles, to facilitate cell adhesion and proliferation was evaluated by cell culture method using murine fibroblast cell line. SEM analysis at 72 h after seeding revealed an improved cell distribution on the surface of the membranes functionalized by deposition of molecularly imprinted nanoparticles.
Collapse
Affiliation(s)
- Davide Silvestri
- Department of Chemical Engineering, Industrial Chemistry and Materials Science, DICCISM University of Pisa, Italy
| | - Caterina Cristallini
- CNR Institute of Composite and Biomedical Materials, IMCB, c/o Department of Chemical Engineering, University of Pisa, Italy
| | - Marco Domenichini
- Department of Chemical Engineering, Industrial Chemistry and Materials Science, DICCISM University of Pisa, Italy
| | - Mariacristina Gagliardi
- Department of Chemical Engineering, Industrial Chemistry and Materials Science, DICCISM University of Pisa, Italy
| | - Paolo Giusti
- Department of Chemical Engineering, Industrial Chemistry and Materials Science, DICCISM University of Pisa, Italy
| |
Collapse
|
32
|
Ciardelli G, Silvestri D, Cristallini C, Barbani N, Giusti P. The relevance of the transfer of molecular information between natural and synthetic materials in the realisation of biomedical devices with enhanced properties. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 16:219-36. [PMID: 15794487 DOI: 10.1163/1568562053115417] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Past and recent attempts to introduce in synthetic polymers molecular information from natural substances through simple blending, template polymerization and molecular imprinting are reviewed. The most promising approaches that can open the way to the realisation of new materials with improved biocompatibility, antibody- or enzyme-like performances are analysed more deeply. The realisation of bioartificial blends from natural and synthetic polymers, molecularly imprinted nanospheres or membranes that can act as recognition element in (bio)sensing devices, as synthetic enzymes or as key constituents of body fluids purification tools is presented in order to make the reader aware of the fascinating possibilities that these techniques make available to the biomedical science and engineering in the close future. The last part of the paper describes recent attempts to insert recognition elements for large molecules as proteins, DNA segments, viruses or whole cells in synthetic polymer systems, in order to develop new systems in the treatments of diseases and for tissue-engineering applications.
Collapse
Affiliation(s)
- G Ciardelli
- Department of Chemical Engineering, Industrial Chemistry and Materials Science, University of Pisa, Pisa, Italy.
| | | | | | | | | |
Collapse
|
33
|
Kong Y, Yao C, Ni J, Zhou Y, Chen Z. Identification of Aspartic Acid Enantiomers Based on Molecularly Imprinted Polyaniline. CHINESE J CHEM 2011. [DOI: 10.1002/cjoc.201180436] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
34
|
Xu ZX, Gao HJ, Zhang LM, Chen XQ, Qiao XG. The biomimetic immunoassay based on molecularly imprinted polymer: a comprehensive review of recent progress and future prospects. J Food Sci 2011; 76:R69-75. [PMID: 21535786 DOI: 10.1111/j.1750-3841.2010.02020.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
UNLABELLED Immunoassay, based on a selective affinity of the biological antibody for its antigen, is one of the most usual analytical methods in food safety and environmental chemistry. However, it presents several drawbacks because of the nature of the antibody. Molecular imprinting technique, due to its high selectivity and stability, ease of preparation and low cost, has shown great potential in producing artificial antibodies in biomimetic immunoassays. This article focuses on the recent states, advantages, current problems and outlooks of molecularly imprinted radio, fluoro, enzyme-linked and chemiluminescent immunoassays, and biomimetic immunosensor, with special emphasis on the challenges in developing biomimetic enzyme-linked immunosorbent assays (BELISAs). The biomimetic immunoassay method will provide an important new analysis platform in food safety, although the sensitivity and specificity is relatively low. PRACTICAL APPLICATION As a new simple analysis method, the biomimetic immunoassay has attractive prospect, although some limitations were existed in real-sample assay. In this critical review, some promising solutions for overcoming its drawbacks were put forward, which may promote the more quick development and extensive application of this method in food safety.
Collapse
Affiliation(s)
- Z X Xu
- College of Food Science and Engineering, Shandong Agricultural Univ, Taian 271018, China
| | | | | | | | | |
Collapse
|
35
|
|
36
|
Ju H, Zhang X, Wang J. Biosensing Applications of Molecularly Imprinted Nanomaterials. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/978-1-4419-9622-0_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
37
|
Lopez C, Claude B, Morin P, Max JP, Pena R, Ribet JP. Synthesis and study of a molecularly imprinted polymer for the specific extraction of indole alkaloids from Catharanthus roseus extracts. Anal Chim Acta 2011; 683:198-205. [DOI: 10.1016/j.aca.2010.09.051] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 09/28/2010] [Accepted: 09/29/2010] [Indexed: 11/27/2022]
|
38
|
Karlsson BCG, Rosengren AM, Näslund I, Andersson PO, Nicholls IA. Synthetic Human Serum Albumin Sudlow I Binding Site Mimics. J Med Chem 2010; 53:7932-7. [DOI: 10.1021/jm100491v] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Björn C. G. Karlsson
- Bioorganic and Biophysical Chemistry Laboratory, School of Natural Sciences, Linnæus University, SE-391 82 Kalmar, Sweden
| | - Annika M. Rosengren
- Bioorganic and Biophysical Chemistry Laboratory, School of Natural Sciences, Linnæus University, SE-391 82 Kalmar, Sweden
| | - Inga Näslund
- Swedish Defence Research Agency, FOI, CBRN Defence and Security, SE-901 82 Umeå, Sweden
| | - Per Ola Andersson
- Swedish Defence Research Agency, FOI, CBRN Defence and Security, SE-901 82 Umeå, Sweden
| | - Ian A. Nicholls
- Bioorganic and Biophysical Chemistry Laboratory, School of Natural Sciences, Linnæus University, SE-391 82 Kalmar, Sweden
- Department of Biochemistry and Organic Chemistry Laboratory, Uppsala University, SE-751 23 Uppsala, Sweden
| |
Collapse
|
39
|
Vozzi G, Morelli I, Vozzi F, Andreoni C, Salsedo E, Morachioli A, Giusti P, Ciardelli G. SOFT-MI: a novel microfabrication technique integrating soft-lithography and molecular imprinting for tissue engineering applications. Biotechnol Bioeng 2010; 106:804-17. [PMID: 20564617 DOI: 10.1002/bit.22740] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
An innovative approach has been employed for the realization of bioactive scaffolds able to mimic the in vivo cellular microenvironment for tissue engineering applications. This method is based on the combination of molecular imprinting and soft-lithography technology to enhance cellular adhesion and to guide cell growth and proliferation due to presence of highly specific recognition sites of selected biomolecules on a well-defined polymeric microstructure. In this article polymethylmethacrylate (PMMA) scaffolds have been realized by using poly(dimethylsiloxane) (PDMS) microstructured molds imprinted with FITC-albumin and TRITC-lectin. In addition gelatin, an adhesion protein, was employed for the molecular imprinting of polymeric scaffolds for cellular tests. The most innovative aspect of this research was the molecular imprinting of whole cells for the development of substrates able to enhance the cell adhesion processes.
Collapse
Affiliation(s)
- Giovanni Vozzi
- Department of Chemical Engineering, Industrial Chemistry and Material Science, University of Pisa, Via Diotisalvi 2, 56126 Pisa, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Guo HS, He XW, Li YJ. Imprinted Polymeric Film-Based Sensor for the Detection of Dopamine Using Cyclic Voltammetry. CHINESE J CHEM 2010. [DOI: 10.1002/cjoc.20030211220] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
41
|
Buszewski B, Ricanyová J, Gadzała-Kopciuch R, Szumski M. Supramolecular recognition of estrogens via molecularly imprinted polymers. Anal Bioanal Chem 2010; 397:2977-86. [PMID: 20549493 PMCID: PMC2906748 DOI: 10.1007/s00216-010-3859-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Revised: 05/14/2010] [Accepted: 05/18/2010] [Indexed: 11/23/2022]
Abstract
The isolation and preconcentration of estrogens from new types of biological samples (acellular and protein-free simulated body fluid) by molecularly imprinted solid-phase extraction has been described. In this technique, supramolecular receptors, namely molecularly imprinted polymers (MIPs) are used as a sorbent material. The recognition sites of MIPs were prepared by non-covalent multiple interactions and formed with the target 17beta-estradiol as a template molecule. High-performance liquid chromatography with spectroscopic UV, selective, and a sensitive electrochemical CoulArray detector was used for the determination of 17beta-estradiol, estrone, and estriol in simulated body fluid which mimicked human plasma.
Collapse
Affiliation(s)
- Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarin St, 87 100 Toruń, Poland.
| | | | | | | |
Collapse
|
42
|
Moreno-Bondi MC, Benito-Peña ME, Urraca JL, Orellana G. Immuno-like assays and biomimetic microchips. Top Curr Chem (Cham) 2010; 325:111-64. [PMID: 22415415 DOI: 10.1007/128_2010_94] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Biomimetic assays with molecularly imprinted polymers (MIPs) are bound to be an alternative to the traditional immuno-analytical methods based on antibodies. This is due to the unique combination of advantages displayed by the artificial materials including the absence of animal inoculation and sacrifice, unnecessary hapten conjugation to a carrier protein for stimulated production, the possibility of manufacturing MIPs against toxic substances, excellent physicochemical stability, reusability, ease of storage, and recognition in organic media. If the selectivity and affinity of MIPs are increased, many more immuno-like assays will be developed using radioactive, enzymatic, colorimetric, fluorescent, chemiluminescent, or electrochemical interrogation methods. This chapter provides a comprehensive comparison between the bio- and biomimetic entities and their usage.
Collapse
Affiliation(s)
- M C Moreno-Bondi
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense, 28040 Madrid, Spain.
| | | | | | | |
Collapse
|
43
|
Sergeyeva TA. Molecularly-imprinted polymers as synythetic mimics of bioreceptors. 2. Applications in modern biotechnology. ACTA ACUST UNITED AC 2009. [DOI: 10.7124/bc.0007f5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- T. A. Sergeyeva
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| |
Collapse
|
44
|
Celiz MD, Aga DS, Colón LA. Evaluation of a molecularly imprinted polymer for the isolation/enrichment of β-estradiol. Microchem J 2009. [DOI: 10.1016/j.microc.2009.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
45
|
Kryscio DR, Peppas NA. Mimicking Biological Delivery Through Feedback-Controlled Drug Release Systems Based on Molecular Imprinting. AIChE J 2009; 55:1311-1324. [PMID: 26500352 DOI: 10.1002/aic.11779] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Intelligent drug delivery systems (DDS) are able to rapidly detect a biological event and respond appropriately by releasing a therapeutic agent; thus, they are advantageous over their conventional counterparts. Molecular imprinting is a promising area that generates a polymeric network which can selectively recognize a desired analyte. This field has been studied for a variety of applications over a long period of time, but only recently has it been investigated for biomedical and pharmaceutical applications. Recent work in the area of molecularly imprinted polymers in drug delivery highlights the potential of these recognitive networks as environmentally responsive DDS that can ultimately lead to feedback controlled recognitive release systems.
Collapse
Affiliation(s)
- David R Kryscio
- Dept. of Chemical Engineering, The University of Texas at Austin, Cockrell School of Engineering, Austin, TX 78712
| | - Nicholas A Peppas
- Dept. of Chemical Engineering and Dept. of Biomedical Engineering, The University of Texas at Austin, Cockrell School of Engineering, Austin, TX 78712 Dept. of Pharmaceutics, The University of Texas at Austin, College of Pharmacy, Austin, TX 78712
| |
Collapse
|
46
|
Ričanyová J, Gadzała-Kopciuch R, Reiffová K, Buszewski B. Estrogens and Their Analytics by Hyphenated Separation Techniques. Crit Rev Anal Chem 2009. [DOI: 10.1080/10408340802569506] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
47
|
Imprinting of Molecular Recognition Sites on Nanostructures and Its Applications in Chemosensors. SENSORS 2008; 8:8291-8320. [PMID: 27873989 PMCID: PMC3791020 DOI: 10.3390/s8128291] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 11/21/2008] [Accepted: 12/09/2008] [Indexed: 11/29/2022]
Abstract
Biological receptors including enzymes, antibodies and active proteins have been widely used as the detection platform in a variety of chemo/biosensors and bioassays. However, the use of artificial host materials in chemical/biological detections has become increasingly attractive, because the synthetic recognition systems such as molecularly imprinted polymers (MIPs) usually have lower costs, higher physical/chemical stability, easier preparation and better engineering possibility than biological receptors. Molecular imprinting is one of the most efficient strategies to offer a synthetic route to artificial recognition systems by a template polymerization technique, and has attracted considerable efforts due to its importance in separation, chemo/biosensors, catalysis and biomedicine. Despite the fact that MIPs have molecular recognition ability similar to that of biological receptors, traditional bulky MIP materials usually exhibit a low binding capacity and slow binding kinetics to the target species. Moreover, the MIP materials lack the signal-output response to analyte binding events when used as recognition elements in chemo/biosensors or bioassays. Recently, various explorations have demonstrated that molecular imprinting nanotechniques may provide a potential solution to these difficulties. Many successful examples of the development of MIP-based sensors have also been reported during the past several decades. This review will begin with a brief introduction to the principle of molecular imprinting nanotechnology, and then mainly summarize various synthesis methodologies and recognition properties of MIP nanomaterials and their applications in MIP-based chemosensors. Finally, the future perspectives and efforts in MIP nanomaterials and MIP-based sensors are given.
Collapse
|
48
|
Khorrami AR, Mehrseresht S. Synthesis and evaluation of a selective molecularly imprinted polymer for the contraceptive drug levonorgestrel. J Chromatogr B Analyt Technol Biomed Life Sci 2008; 867:264-9. [DOI: 10.1016/j.jchromb.2008.04.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 03/25/2008] [Accepted: 04/13/2008] [Indexed: 11/26/2022]
|
49
|
Selective solid-phase extraction of a triterpene acid from a plant extract by molecularly imprinted polymer. Talanta 2008; 75:344-50. [DOI: 10.1016/j.talanta.2007.11.037] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 10/01/2007] [Accepted: 11/07/2007] [Indexed: 11/18/2022]
|
50
|
Molecular recognition of endocrine disruptors by synthetic and natural 17β-estradiol receptors: a comparative study. Anal Bioanal Chem 2008; 390:2081-8. [DOI: 10.1007/s00216-008-1949-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 01/25/2008] [Accepted: 02/06/2008] [Indexed: 11/25/2022]
|