1
|
Panaccione DG. Derivation of the multiply-branched ergot alkaloid pathway of fungi. Microb Biotechnol 2023; 16:742-756. [PMID: 36636806 PMCID: PMC10034635 DOI: 10.1111/1751-7915.14214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/26/2022] [Revised: 12/16/2022] [Accepted: 01/02/2023] [Indexed: 01/14/2023] Open
Abstract
Ergot alkaloids are a large family of fungal specialized metabolites that are important as toxins in agriculture and as the foundation of powerful pharmaceuticals. Fungi from several lineages and diverse ecological niches produce ergot alkaloids from at least one of several branches of the ergot alkaloid pathway. The biochemical and genetic bases for the different branches have been established and are summarized briefly herein. Several pathway branches overlap among fungal lineages and ecological niches, indicating activities of ergot alkaloids benefit fungi in different environments and conditions. Understanding the functions of the multiple genes in each branch of the pathway allows researchers to parse the abundant genomic sequence data available in public databases in order to assess the ergot alkaloid biosynthesis capacity of previously unexplored fungi. Moreover, the characterization of the genes involved in the various branches provides opportunities and resources for the biotechnological manipulation of ergot alkaloids for experimentation and pharmaceutical development.
Collapse
Affiliation(s)
- Daniel G Panaccione
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
2
|
Kishimoto S, Matsubara Y, Watanabe K. Alkaloid Biosynthetic Enzyme Generates Diastereomeric Pair via Two Distinct Mechanisms. J Am Chem Soc 2022; 144:5485-5493. [PMID: 35302734 DOI: 10.1021/jacs.1c13621] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022]
Abstract
Ergopeptines constitute one of the representative classes of ergoline alkaloids and carry a tripeptide extension on the lysergic acid core. In the current study, we discovered and structurally characterized newly isolated ergopeptine-like compounds named lentopeptins from a filamentous fungus Aspergillus lentulus, a close relative of A. fumigatus. Interestingly, in lentopeptins, the common lysergic acid moiety of ergopeptines is replaced by a cinnamic acid moiety at the N-terminus of the peptide segment. Moreover, lentopeptins lack the C-terminal proline residue necessary for the spontaneous cyclization of the peptide extension. Herein, we report the atypical lentopeptin biosynthetic pathway identified through targeted deletion of the len cluster biosynthetic genes predicted from the genome sequence. Further in vitro characterizations of the thiolation-terminal condensation-like (T-CT) didomain of the nonribosomal peptide synthetase LenA and its site-specific mutants revealed the mechanism of peptide release via diketopiperazine formation, an activity previously unreported for CT domains. Most intriguingly, in vitro assays of the cytochrome P450 LenC illuminated the unique mechanisms to generate two diastereomeric products. Lentopeptin A forms via a stereospecific hydroxylation, followed by a spontaneous bicyclic lactam core formation, while lentopeptin B is produced through an initial dehydrogenation, followed by a bicyclic lactam core formation and stereospecific hydration. Our results showcase how nature exploits common biosynthetic enzymes to forge new complex natural products effectively (213/250).
Collapse
Affiliation(s)
- Shinji Kishimoto
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Yuya Matsubara
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| |
Collapse
|
3
|
Abstract
Ergot alkaloids derived from lysergic acid have impacted humanity as contaminants of crops and as the bases of pharmaceuticals prescribed to treat dementia, migraines, and other disorders. Several plant-associated fungi in the Clavicipitaceae produce lysergic acid derivatives, but many of these fungi are difficult to culture and manipulate. Some Aspergillus species, which may be more ideal experimental and industrial organisms, contain an alternate branch of the ergot alkaloid pathway, but none were known to produce lysergic acid derivatives. We mined the genomes of Aspergillus species for ergot alkaloid synthesis (eas) gene clusters and discovered that three species, A. leporis, A. homomorphus, and A. hancockii, had eas clusters indicative of the capacity to produce a lysergic acid amide. In culture, A. leporis, A. homomorphus, and A. hancockii produced lysergic acid amides, predominantly lysergic acid α-hydroxyethylamide (LAH). Aspergillus leporis and A. homomorphus produced high concentrations of LAH and secreted most of their ergot alkaloid yield into the culture medium. Phylogenetic analyses indicated that genes encoding enzymes leading to the synthesis of lysergic acid were orthologous to those of the lysergic acid amide-producing Clavicipitaceae; however, genes to incorporate lysergic acid into an amide derivative evolved from different ancestral genes in the Aspergillus species. Our data demonstrate that fungi outside the Clavicipitaceae produce lysergic acid amides and indicate that the capacity to produce lysergic acid evolved once, but the ability to insert it into LAH evolved independently in Aspergillus species and the Clavicipitaceae. The LAH-producing Aspergillus species may be useful for the study and production of these pharmaceutically important compounds. IMPORTANCE Lysergic acid derivatives are specialized metabolites with historical, agricultural, and medical significance and were known heretofore only from fungi in one family, the Clavicipitaceae. Our data show that several Aspergillus species, representing a different family of fungi, also produce lysergic acid derivatives and that the ability to put lysergic acid into its amide forms evolved independently in the two lineages of fungi. From microbiological and pharmaceutical perspectives, the Aspergillus species may represent better experimental and industrial organisms than the currently employed lysergic acid producers of the plant-associated Clavicipitaceae. The observation that both lineages independently evolved the derivative lysergic acid α-hydroxyethylamide (LAH), among many possible lysergic acid amides, suggests selection for this metabolite.
Collapse
|
4
|
Králová M, Frébortová J, Pěnčík A, Frébort I. Overexpression of Trp-related genes in Claviceps purpurea leading to increased ergot alkaloid production. N Biotechnol 2020; 61:69-79. [PMID: 33188977 DOI: 10.1016/j.nbt.2020.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/21/2020] [Revised: 11/04/2020] [Accepted: 11/07/2020] [Indexed: 12/23/2022]
Abstract
The parasitic fungus Claviceps purpurea has been used for decades by the pharmaceutical industry as a valuable producer of ergot alkaloids. As the biosynthetic pathway of ergot alkaloids involves a common precursor L-tryptophan, targeted genetic modification of the related genes may improve production yield. In this work, the S76L mutated version of the trpE gene encoding anthranilate synthase was constitutively overexpressed in the fungus with the aim of overcoming feedback inhibition of the native enzyme by an excess of tryptophan. In another approach, the dmaW gene encoding dimethylallyltryptophan synthase, which produces a key intermediate for the biosynthesis of ergot alkaloids, was also constitutively overexpressed. Each of the above manipulations led to a significant increase (up to 7-fold) in the production of ergot alkaloids in submerged cultures.
Collapse
Affiliation(s)
- Michaela Králová
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Šlechtitelů 27, Olomouc, 783 71 Czech Republic
| | - Jitka Frébortová
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Šlechtitelů 27, Olomouc, 783 71 Czech Republic
| | - Aleš Pěnčík
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Šlechtitelů 27, Olomouc, 783 71 Czech Republic
| | - Ivo Frébort
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Šlechtitelů 27, Olomouc, 783 71 Czech Republic.
| |
Collapse
|
5
|
Silva MMD, Andrade MDS, Bauermeister A, Merfa MV, Forim MR, Fernandes JB, Vieira PC, Silva MFDGFD, Lopes NP, Machado MA, Souza AAD. A Simple Defined Medium for the Production of True Diketopiperazines in Xylella fastidiosa and Their Identification by Ultra-Fast Liquid Chromatography-Electrospray Ionization Ion Trap Mass Spectrometry. Molecules 2017; 22:E985. [PMID: 28608830 PMCID: PMC6152636 DOI: 10.3390/molecules22060985] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/30/2017] [Revised: 05/24/2017] [Accepted: 06/08/2017] [Indexed: 11/28/2022] Open
Abstract
Diketopiperazines can be generated by non-enzymatic cyclization of linear dipeptides at extreme temperature or pH, and the complex medium used to culture bacteria and fungi including phytone peptone and trypticase peptone, can also produce cyclic peptides by heat sterilization. As a result, it is not always clear if many diketopiperazines reported in the literature are artifacts formed by the different complex media used in microorganism growth. An ideal method for analysis of these compounds should identify whether they are either synthesized de novo from the products of primary metabolism and deliver true diketopiperazines. A simple defined medium (X. fastidiosa medium or XFM) containing a single carbon source and no preformed amino acids has emerged as a method with a particularly high potential for the grown of X. fastidiosa and to produce genuine natural products. In this work, we identified a range of diketopiperazines from X. fastidiosa 9a5c growth in XFM, using Ultra-Fast Liquid Chromatography coupled with mass spectrometry. Diketopiperazines are reported for the first time from X. fastidiosa, which is responsible for citrus variegated chlorosis. We also report here fatty acids from X. fastidiosa, which were not biologically active as diffusible signals, and the role of diketopiperazines in signal transduction still remains unknown.
Collapse
Affiliation(s)
| | - Moacir Dos Santos Andrade
- Departamento de Química, Universidade Federal de São Carlos, CP 676, 13565-905 São Carlos-SP, Brazil.
| | - Anelize Bauermeister
- Núcleo Pesquisas em Produtos Naturais e Sintéticos, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-903 Ribeirão Preto-SP, Brazil.
| | - Marcus Vinícius Merfa
- Centro APTA Citros Sylvio Moreira, Instituto Agronômico, CP 04, 13490-970 Cordeirópolis-SP, Brazil.
| | - Moacir Rossi Forim
- Departamento de Química, Universidade Federal de São Carlos, CP 676, 13565-905 São Carlos-SP, Brazil.
| | - João Batista Fernandes
- Departamento de Química, Universidade Federal de São Carlos, CP 676, 13565-905 São Carlos-SP, Brazil.
| | - Paulo Cezar Vieira
- Departamento de Química, Universidade Federal de São Carlos, CP 676, 13565-905 São Carlos-SP, Brazil.
| | | | - Norberto Peporine Lopes
- Núcleo Pesquisas em Produtos Naturais e Sintéticos, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-903 Ribeirão Preto-SP, Brazil.
| | - Marcos Antônio Machado
- Centro APTA Citros Sylvio Moreira, Instituto Agronômico, CP 04, 13490-970 Cordeirópolis-SP, Brazil.
| | | |
Collapse
|
6
|
Mishra VK, Passari AK, Leo VV, Singh BP. Molecular Diversity and Detection of Endophytic Fungi Based on Their Antimicrobial Biosynthetic Genes. Fungal Biol 2017. [DOI: 10.1007/978-3-319-34106-4_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
|
7
|
Majeská Čudejková M, Vojta P, Valík J, Galuszka P. Quantitative and qualitative transcriptome analysis of four industrial strains of Claviceps purpurea with respect to ergot alkaloid production. N Biotechnol 2016; 33:743-754. [PMID: 26827914 DOI: 10.1016/j.nbt.2016.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/16/2015] [Revised: 12/22/2015] [Accepted: 01/05/2016] [Indexed: 01/14/2023]
Abstract
The fungus Claviceps purpurea is a biotrophic phytopathogen widely used in the pharmaceutical industry for its ability to produce ergot alkaloids (EAs). The fungus attacks unfertilized ovaries of grasses and forms sclerotia, which represent the only type of tissue where the synthesis of EAs occurs. The biosynthetic pathway of EAs has been extensively studied; however, little is known concerning its regulation. Here, we present the quantitative transcriptome analysis of the sclerotial and mycelial tissues providing a comprehensive view of transcriptional differences between the tissues that produce EAs and those that do not produce EAs and the pathogenic and non-pathogenic lifestyle. The results indicate metabolic changes coupled with sclerotial differentiation, which are likely needed as initiation factors for EA biosynthesis. One of the promising factors seems to be oxidative stress. Here, we focus on the identification of putative transcription factors and regulators involved in sclerotial differentiation, which might be involved in EA biosynthesis. To shed more light on the regulation of EA composition, whole transcriptome analysis of four industrial strains differing in their alkaloid spectra was performed. The results support the hypothesis proposing the composition of the amino acid pool in sclerotia to be an important factor regulating the final structure of the ergopeptines produced by Claviceps purpurea.
Collapse
Affiliation(s)
- Mária Majeská Čudejková
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| | - Petr Vojta
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 1333/5, 779 00 Olomouc, Czech Republic
| | - Josef Valík
- Teva Czech Industries s.r.o., Ostravská 305/29, 747 70 Opava-Komárov, Czech Republic
| | - Petr Galuszka
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
8
|
Kishimoto S, Sato M, Tsunematsu Y, Watanabe K. Evaluation of Biosynthetic Pathway and Engineered Biosynthesis of Alkaloids. Molecules 2016; 21:E1078. [PMID: 27548127 PMCID: PMC6274189 DOI: 10.3390/molecules21081078] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/20/2016] [Revised: 08/15/2016] [Accepted: 08/15/2016] [Indexed: 01/13/2023] Open
Abstract
Varieties of alkaloids are known to be produced by various organisms, including bacteria, fungi and plants, as secondary metabolites that exhibit useful bioactivities. However, understanding of how those metabolites are biosynthesized still remains limited, because most of these compounds are isolated from plants and at a trace level of production. In this review, we focus on recent efforts in identifying the genes responsible for the biosynthesis of those nitrogen-containing natural products and elucidating the mechanisms involved in the biosynthetic processes. The alkaloids discussed in this review are ditryptophenaline (dimeric diketopiperazine alkaloid), saframycin (tetrahydroisoquinoline alkaloid), strictosidine (monoterpene indole alkaloid), ergotamine (ergot alkaloid) and opiates (benzylisoquinoline and morphinan alkaloid). This review also discusses the engineered biosynthesis of these compounds, primarily through heterologous reconstitution of target biosynthetic pathways in suitable hosts, such as Escherichia coli, Saccharomyces cerevisiae and Aspergillus nidulans. Those heterologous biosynthetic systems can be used to confirm the functions of the isolated genes, economically scale up the production of the alkaloids for commercial distributions and engineer the biosynthetic pathways to produce valuable analogs of the alkaloids. In particular, extensive involvement of oxidation reactions catalyzed by oxidoreductases, such as cytochrome P450s, during the secondary metabolite biosynthesis is discussed in details.
Collapse
Affiliation(s)
- Shinji Kishimoto
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan.
| | - Michio Sato
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan.
| | - Yuta Tsunematsu
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan.
| | - Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan.
| |
Collapse
|
9
|
Gerhards N, Neubauer L, Tudzynski P, Li SM. Biosynthetic pathways of ergot alkaloids. Toxins (Basel) 2014; 6:3281-95. [PMID: 25513893 PMCID: PMC4280535 DOI: 10.3390/toxins6123281] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/13/2014] [Revised: 12/04/2014] [Accepted: 12/05/2014] [Indexed: 01/01/2023] Open
Abstract
Ergot alkaloids are nitrogen-containing natural products belonging to indole alkaloids. The best known producers are fungi of the phylum Ascomycota, e.g., Claviceps, Epichloë, Penicillium and Aspergillus species. According to their structures, ergot alkaloids can be divided into three groups: clavines, lysergic acid amides and peptides (ergopeptines). All of them share the first biosynthetic steps, which lead to the formation of the tetracyclic ergoline ring system (except the simplest, tricyclic compound: chanoclavine). Different modifications on the ergoline ring by specific enzymes result in an abundance of bioactive natural products, which are used as pharmaceutical drugs or precursors thereof. From the 1950s through to recent years, most of the biosynthetic pathways have been elucidated. Gene clusters from several ergot alkaloid producers have been identified by genome mining and the functions of many of those genes have been demonstrated by knock-out experiments or biochemical investigations of the overproduced enzymes.
Collapse
Affiliation(s)
- Nina Gerhards
- Philipps-Universität Marburg, Institut für Pharmazeutische Biologie und Biotechnologie, Deutschhausstrasse 17A, D-35037 Marburg, Germany.
| | - Lisa Neubauer
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms Universität Münster, Schlossplatz 8, D-48143 Münster, Germany.
| | - Paul Tudzynski
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms Universität Münster, Schlossplatz 8, D-48143 Münster, Germany.
| | - Shu-Ming Li
- Philipps-Universität Marburg, Institut für Pharmazeutische Biologie und Biotechnologie, Deutschhausstrasse 17A, D-35037 Marburg, Germany.
| |
Collapse
|
10
|
Abstract
An update on new developments in the field of ergot alkaloid biosynthesis since 2011 is highlighted.
Collapse
Affiliation(s)
- Dorota Jakubczyk
- The John Innes Centre
- Department of Biological Chemistry
- Norwich NR4 7UH, UK
| | - Johnathan Z. Cheng
- The John Innes Centre
- Department of Biological Chemistry
- Norwich NR4 7UH, UK
| | - Sarah E. O'Connor
- The John Innes Centre
- Department of Biological Chemistry
- Norwich NR4 7UH, UK
| |
Collapse
|
11
|
Cyclolization of D-Lysergic Acid Alkaloid Peptides. ACTA ACUST UNITED AC 2014; 21:146-55. [DOI: 10.1016/j.chembiol.2013.11.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/23/2013] [Revised: 11/06/2013] [Accepted: 11/12/2013] [Indexed: 11/22/2022]
|
12
|
Hulvová H, Galuszka P, Frébortová J, Frébort I. Parasitic fungus Claviceps as a source for biotechnological production of ergot alkaloids. Biotechnol Adv 2013; 31:79-89. [DOI: 10.1016/j.biotechadv.2012.01.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/30/2011] [Revised: 12/21/2011] [Accepted: 01/05/2012] [Indexed: 01/03/2023]
|
13
|
Xu W, Li L, Du L, Tan N. Various mechanisms in cyclopeptide production from precursors synthesized independently of non-ribosomal peptide synthetases. Acta Biochim Biophys Sin (Shanghai) 2011; 43:757-62. [PMID: 21764803 DOI: 10.1093/abbs/gmr062] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/14/2022] Open
Abstract
An increasing number of cyclopeptides have been discovered as products of ribosomal synthetic pathway. The biosynthetic study of these cyclopeptides has revealed interesting new mechanisms for cyclization. This review highlighted the recent discoveries in cyclization mechanisms for cyclopeptides synthesized independently of non-ribosomal peptide synthetases, including endopeptidase-catalyzed cyclization, intein-mediated cyclization, and peptide synthetase-catalyzed cyclization. This information may help to design hybrid ribosomal and non-ribosomal biosynthetic systems to produce novel cyclopeptides with various bioactivities.
Collapse
Affiliation(s)
- Wenyan Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, China
| | | | | | | |
Collapse
|
14
|
Wallwey C, Li SM. Ergot alkaloids: structure diversity, biosynthetic gene clusters and functional proof of biosynthetic genes. Nat Prod Rep 2011; 28:496-510. [DOI: 10.1039/c0np00060d] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/21/2022]
|
15
|
Bushley KE, Turgeon BG. Phylogenomics reveals subfamilies of fungal nonribosomal peptide synthetases and their evolutionary relationships. BMC Evol Biol 2010; 10:26. [PMID: 20100353 PMCID: PMC2823734 DOI: 10.1186/1471-2148-10-26] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/06/2009] [Accepted: 01/26/2010] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Nonribosomal peptide synthetases (NRPSs) are multimodular enzymes, found in fungi and bacteria, which biosynthesize peptides without the aid of ribosomes. Although their metabolite products have been the subject of intense investigation due to their life-saving roles as medicinals and injurious roles as mycotoxins and virulence factors, little is known of the phylogenetic relationships of the corresponding NRPSs or whether they can be ranked into subgroups of common function. We identified genes (NPS) encoding NRPS and NRPS-like proteins in 38 fungal genomes and undertook phylogenomic analyses in order to identify fungal NRPS subfamilies, assess taxonomic distribution, evaluate levels of conservation across subfamilies, and address mechanisms of evolution of multimodular NRPSs. We also characterized relationships of fungal NRPSs, a representative sampling of bacterial NRPSs, and related adenylating enzymes, including alpha-aminoadipate reductases (AARs) involved in lysine biosynthesis in fungi. RESULTS Phylogenomic analysis identified nine major subfamilies of fungal NRPSs which fell into two main groups: one corresponds to NPS genes encoding primarily mono/bi-modular enzymes which grouped with bacterial NRPSs and the other includes genes encoding primarily multimodular and exclusively fungal NRPSs. AARs shared a closer phylogenetic relationship to NRPSs than to other acyl-adenylating enzymes. Phylogenetic analyses and taxonomic distribution suggest that several mono/bi-modular subfamilies arose either prior to, or early in, the evolution of fungi, while two multimodular groups appear restricted to and expanded in fungi. The older mono/bi-modular subfamilies show conserved domain architectures suggestive of functional conservation, while multimodular NRPSs, particularly those unique to euascomycetes, show a diversity of architectures and of genetic mechanisms generating this diversity. CONCLUSIONS This work is the first to characterize subfamilies of fungal NRPSs. Our analyses suggest that mono/bi-modular NRPSs have more ancient origins and more conserved domain architectures than most multimodular NRPSs. It also demonstrates that the alpha-aminoadipate reductases involved in lysine biosynthesis in fungi are closely related to mono/bi-modular NRPSs. Several groups of mono/bi-modular NRPS metabolites are predicted to play more pivotal roles in cellular metabolism than products of multimodular NRPSs. In contrast, multimodular subfamilies of NRPSs are of more recent origin, are restricted to fungi, show less stable domain architectures, and biosynthesize metabolites which perform more niche-specific functions than mono/bi-modular NRPS products. The euascomycete-only NRPS subfamily, in particular, shows evidence for extensive gain and loss of domains suggestive of the contribution of domain duplication and loss in responding to niche-specific pressures.
Collapse
Affiliation(s)
- Kathryn E Bushley
- Department of Plant Pathology & Plant-Microbe Biology, 334 Plant Science Bldg. Cornell University, Ithaca, NY, 14853, USA
| | - B Gillian Turgeon
- Department of Plant Pathology & Plant-Microbe Biology, 334 Plant Science Bldg. Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
16
|
|
17
|
Damrongkool P, Sedlock AB, Young CA, Johnson RD, Goetz KE, Scott B, Schardl CL, Panaccione DG. Structural analysis of a peptide synthetase gene required for ergopeptine production in the endophytic fungusNeotyphodium lolii. ACTA ACUST UNITED AC 2009; 16:379-85. [PMID: 16243728 DOI: 10.1080/10425170500273005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/25/2022]
Abstract
Lysergyl peptide synthetase 1 catalyzes the assembly of toxic ergopeptines from activated D-lysergic acid and three amino acids. The gene encoding this enzyme in the endophytic fungus Neotyphodium lolii was analyzed and compared to a homologous gene from the ergot fungus Claviceps purpurea. Each gene contained two introns, which were found in the same relative position within two modules of the gene. The 5' ends of the two genes were unusually divergent. Signature sequences determining substrate specificity were similar in adenylation domains that recognized identical amino acids but differed within the adenylation domain for the amino acid that varies between the major ergopeptines of the two fungi. Homologues were detected in several related endophytic fungi; the tall fescue endophyte Neotyphodium coenophialum contained a divergent, second copy of the gene. Our results provide new information on the structure and distribution of this important peptide synthetase involved in ergot alkaloid biosynthesis.
Collapse
|
18
|
Cyclodipeptide synthases are a family of tRNA-dependent peptide bond–forming enzymes. Nat Chem Biol 2009; 5:414-20. [DOI: 10.1038/nchembio.175] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/23/2009] [Accepted: 03/12/2009] [Indexed: 11/09/2022]
|
19
|
McIntosh JA, Donia MS, Schmidt EW. Ribosomal peptide natural products: bridging the ribosomal and nonribosomal worlds. Nat Prod Rep 2009; 26:537-59. [PMID: 19642421 PMCID: PMC2975598 DOI: 10.1039/b714132g] [Citation(s) in RCA: 203] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/03/2023]
Abstract
Ribosomally synthesized bacterial natural products rival the nonribosomal peptides in their structural and functional diversity. The last decade has seen substantial progress in the identification and characterization of biosynthetic pathways leading to ribosomal peptide natural products with new and unusual structural motifs. In some of these cases, the motifs are similar to those found in nonribosomal peptides, and many are constructed by convergent or even paralogous enzymes. Here, we summarize the major structural and biosynthetic categories of ribosomally synthesized bacterial natural products and, where applicable, compare them to their homologs from nonribosomal biosynthesis.
Collapse
Affiliation(s)
- John A. McIntosh
- Department of Medicinal Chemistry, University of Utah, 30 South 2000 East Rm 201, Salt Lake City, UT 84112 USA
| | - Mohamed S. Donia
- Department of Medicinal Chemistry, University of Utah, 30 South 2000 East Rm 201, Salt Lake City, UT 84112 USA
| | - Eric W. Schmidt
- Department of Medicinal Chemistry, University of Utah, 30 South 2000 East Rm 201, Salt Lake City, UT 84112 USA
| |
Collapse
|
20
|
Ortel I, Keller U. Combinatorial assembly of simple and complex D-lysergic acid alkaloid peptide classes in the ergot fungus Claviceps purpurea. J Biol Chem 2009; 284:6650-60. [PMID: 19139103 DOI: 10.1074/jbc.m807168200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
The ergot fungus Claviceps purpurea produces both ergopeptines and simple d-lysergic acid alkylamides. In the ergopeptines, such as ergotamine, d-lysergic acid is linked to a bicyclic tripeptide in amide-like fashion, whereas in the d-lysergylalkanolamides it is linked to an amino alcohol derived from alanine. We show here that these compound classes are synthesized by a set of three non-ribosomal lysergyl peptide synthetases (LPSs), which interact in a combinatorial fashion for synthesis of the relevant product. The trimodular LPS1 assembles with LPS2, the d-lysergic acid recruiting module, to synthesize the d-lysergyltripeptide precursors of ergopeptines from d-lysergic acid and the three amino acids of the peptide chain. Alternatively, LPS2 can assemble with a distinct monomodular non-ribosomal peptide synthetase (NRPS) subunit (ergometrine synthetase) to synthesize the d-lysergic acid alkanolamide ergometrine from d-lysergic acid and alanine. The synthesis proceeds via covalently bound d-lysergyl alanine and release of dipeptide as alcohol with consumption of NADPH. Enzymatic and immunochemical analyses showed that ergometrine synthetase is most probably the enzyme LPS3 whose gene had been identified previously as part of the ergot alkaloid biosynthesis gene cluster in C. purpurea. Inspections of all LPS sequences showed no recognizable peptide linkers for their protein-protein interactions as in NRPS subunits of bacteria. Instead, they all carry conserved N-terminal domains (C0-domains) with similarity to the C-terminal halves of NRPS condensation domains pointing to an alternative mechanism of subunit-subunit interactions in fungal NRPS systems. Phylogenetic analysis of LPS modules and the C0-domains suggests that these enzyme systems most probably evolved by module duplications and rearrangements from a bimodular ancestor.
Collapse
Affiliation(s)
- Ingo Ortel
- Institut für Chemie, Technische Universität Berlin, Arbeitsgruppe Biochemie und Molekulare Biologie, Franklinstrasse 29, Berlin-Charlottenburg D-10587, Germany
| | | |
Collapse
|
21
|
Rigbers O, Li SM. Ergot alkaloid biosynthesis in Aspergillus fumigatus. Overproduction and biochemical characterization of a 4-dimethylallyltryptophan N-methyltransferase. J Biol Chem 2008; 283:26859-68. [PMID: 18678866 DOI: 10.1074/jbc.m804979200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
The putative gene fgaMT was identified in the biosynthetic gene cluster of fumigaclavines in Aspergillus fumigatus. The coding region of fgaMT was amplified by PCR from a cDNA library, cloned into pQE60, and overexpressed in Escherichia coli. FgaMT comprises 339 amino acids with a molecular mass of about 38.1 kDa. The soluble dimeric His(6)-FgaMT was purified to near homogeneity and characterized biochemically. FgaMT was found to catalyze the N-methylation of 4-dimethylallyltryptophan in the presence of S-adenosylmethionine, resulting in the formation of 4-dimethylallyl-l-abrine, which was identified by NMR and mass spectrometry analysis. Therefore, FgaMT represents the second pathway-specific enzyme in the biosynthesis of ergot alkaloids. The enzyme did not require metal ions for its enzymatic reaction and showed a relatively high specificity toward the prenyl moiety at position C-4 of the indole ring. 4-Dimethylallyltryptophan derivatives with modification at the indole ring were also accepted by FgaMT as substrates. K(m) values for 4-dimethylallyltryptophan and S-adenosylmethionine were determined at 0.12 and 2.4 mm, respectively. The turnover number was 2.0 s(-1).
Collapse
Affiliation(s)
- Ole Rigbers
- Heinrich-Heine-Universität Düsseldorf, Institut für Pharmazeutische Biologie und Biotechnologie, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | | |
Collapse
|
22
|
Vendrell M, Angulo E, Casadó V, Lluis C, Franco R, Albericio F, Royo M. Novel ergopeptides as dual ligands for adenosine and dopamine receptors. J Med Chem 2007; 50:3062-9. [PMID: 17539620 DOI: 10.1021/jm060947x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
Abstract
Multivalent ligands are promising pharmacological tools that may be more efficacious for several diseases than highly selective single-target drugs. A combined therapy using dopaminergic agonists and adenosinergic antagonists is currently being evaluated for the treatment of Parkinson's disease. [(a) Kanda, T.; et al. Exp. Neurol. 2000, 162, 321-327. (b) Jenner, P. Expert Opin. Invest. Drugs 2005, 14, 729-738. (c) Kase, H.; et al. Neurology 2003, 61 (Suppl 6), S97-S100.] Here we prepared dual ligands acting on adenosine and dopamine receptors by applying a combinatorial approach based on the ergolene privileged structure. The potency and efficacy of these novel compounds were determined by radioligand binding studies and intracellular cAMP production assays in cells expressing adenosine and dopamine receptors. Selected compounds displayed dual dopamine agonist and adenosine antagonist activity. Molecules with this pharmacological profile are potentially useful for studying dopamine-adenosine cross-talk in the central nervous system and for testing the therapeutic potential of multivalent drugs for Parkinson's disease.
Collapse
Affiliation(s)
- Marc Vendrell
- Combinatorial Chemistry Unit, Barcelona Science Park, Department of Biochemistry and Molecular Biology, Molecular Neurobiology Unit, IDIBAPS, Institut d'Investigacions Biomèdiques August Pi i Sunyer, IRB Barcelona, Barcelona Science Park, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
23
|
Fleetwood DJ, Scott B, Lane GA, Tanaka A, Johnson RD. A complex ergovaline gene cluster in epichloe endophytes of grasses. Appl Environ Microbiol 2007; 73:2571-9. [PMID: 17308187 PMCID: PMC1855613 DOI: 10.1128/aem.00257-07] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
Clavicipitaceous fungal endophytes of the genera Epichloë and Neotyphodium form symbioses with grasses of the subfamily Pooideae, in which they can synthesize an array of bioprotective alkaloids. Some strains produce the ergopeptine alkaloid ergovaline, which is implicated in livestock toxicoses caused by ingestion of endophyte-infected grasses. Cloning and analysis of a nonribosomal peptide synthetase (NRPS) gene from Neotyphodium lolii revealed a putative gene cluster for ergovaline biosynthesis containing a single-module NRPS gene, lpsB, and other genes orthologous to genes in the ergopeptine gene cluster of Claviceps purpurea and the clavine cluster of Aspergillus fumigatus. Despite conservation of gene sequence, gene order is substantially different between the N. lolii, C. purpurea, and A. fumigatus ergot alkaloid gene clusters. Southern analysis indicated that the N. lolii cluster was linked with previously identified ergovaline biosynthetic genes dmaW and lpsA. The ergovaline genes are closely associated with transposon relics, including retrotransposons and autonomous and nonautonomous DNA transposons. All genes in the cluster were highly expressed in planta, but expression was very low or undetectable in mycelia from axenic culture. This work provides a genetic foundation for elucidating biochemical steps in the ergovaline pathway, the ecological role of individual ergot alkaloid compounds, and the regulation of their synthesis in planta.
Collapse
Affiliation(s)
- Damien J Fleetwood
- AgResearch, Grasslands Research Centre, Private Bag 11008, Palmerston North, New Zealand
| | | | | | | | | |
Collapse
|
24
|
Haarmann T, Ortel I, Tudzynski P, Keller U. Identification of the cytochrome P450 monooxygenase that bridges the clavine and ergoline alkaloid pathways. Chembiochem 2006; 7:645-52. [PMID: 16538694 DOI: 10.1002/cbic.200500487] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/07/2022]
Abstract
Clavines and D-lysergic acid-derived alkaloid amides and alkaloid peptides are two different families of compounds that have the indole-derived tetracyclic metergoline ring system in common. Previous work has shown that D-lysergic acid is biosynthetically derived from clavine alkaloids. Recent cloning and analysis of the ergot alkaloid biosynthesis gene cluster from the D-lysergic acid peptide (ergopeptines)-producing Claviceps purpurea, has shown that it most probably contains all genes necessary for D-lysergic acid synthesis as well as those that encode the assembly of D-lysergic acid peptides, such as ergotamine. To address the role of the oxygenase genes of alkaloid-gene clusters, the only cytochrome P450 monooxygenase gene of this cluster was inactivated by disruption. The resultant mutant accumulated agroclavine, elymoclavine, and chanoclavine in substantial amounts but not ergopeptines. Feeding the mutant with D-lysergic acid restored ergopeptine synthesis; this suggests a block in the conversion of elymoclavine to D-lysergic acid. The gene was designated cloA (for encoding a clavine oxidase, CLOA). Retransformation of the mutant with the intact cloA gene also restored ergopeptine synthesis. These data show that CLOA catalyses the conversion of clavines to D-lysergic acid, it acts as a critical enzyme in the ergot alkaloid gene cluster, and bridges the biosynthesis of the two different families of alkaloids.
Collapse
Affiliation(s)
- Thomas Haarmann
- Institut für Botanik, Westfälische Wilhelms-Universität Münster, Schlossgarten 3, 48149 Münster, Germany
| | | | | | | |
Collapse
|
25
|
Lombó F, Velasco A, Castro A, de la Calle F, Braña AF, Sánchez-Puelles JM, Méndez C, Salas JA. Deciphering the biosynthesis pathway of the antitumor thiocoraline from a marine actinomycete and its expression in two streptomyces species. Chembiochem 2006; 7:366-76. [PMID: 16408310 DOI: 10.1002/cbic.200500325] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022]
Abstract
Thiocoraline is a thiodepsipeptide antitumor compound produced by two actinomycetes Micromonospora sp. ACM2-092 and Micromonospora sp. ML1, isolated from two marine invertebrates (a soft coral and a mollusc) found of the Indian Ocean coast of Mozambique. By using oligoprimers derived from nonribosomal peptide synthetase (NRPS) consensus sequences, six PCR fragments containing putative NRPS adenylation domains were amplified from the chromosome of Micromonospora sp. ML1. Insertional inactivation of each adenylation domain showed that two of them generated nonproducing mutants, thereby indicating that these domains were involved in thiocoraline biosynthesis. Sequencing of a 64.6 kbp DNA region revealed the presence of 36 complete open reading frames (ORFs) and two incomplete ones. Heterologous expression of a region of about 53 kbp, containing 26 of the ORFs, in Streptomyces albus and S. lividans led to the production of thiocoraline in these streptomycetes. Surprisingly, the identified gene cluster contains more NRPS modules than expected on the basis of the number of amino acids of thiocoraline. TioR and TioS would most probably constitute the NRPS involved in the biosynthesis of the thiocoraline backbone, according to the colinearity of the respective modules. It is proposed that two other NRPSs, TioY and TioZ, could be responsible for the biosynthesis of a small peptide molecule which could be involved in regulation of the biosynthesis of thicoraline in Micromonospora sp. ML1. In addition, a pathway is proposed for the biosynthesis of the unusual starter unit, 3-hydroxy-quinaldic acid.
Collapse
Affiliation(s)
- Felipe Lombó
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Panaccione DG. Origins and significance of ergot alkaloid diversity in fungi. FEMS Microbiol Lett 2006; 251:9-17. [PMID: 16112823 DOI: 10.1016/j.femsle.2005.07.039] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/07/2005] [Accepted: 07/27/2005] [Indexed: 11/17/2022] Open
Abstract
Ergot alkaloids are a diverse family of indole-derived mycotoxins that collectively have activities against a variety of organisms including bacteria, nematodes, insects, and mammals. Different fungi accumulate different, often characteristic, profiles of ergot alkaloids rather than a single pathway end product. These ergot alkaloid profiles result from inefficiency in the pathway leading to accumulation of certain intermediates or diversion of intermediates into shunts along the pathway. The inefficiency generating these ergot alkaloid profiles may have been selected for as a means of accumulating a diversity of ergot alkaloids, potentially contributing in different ways to benefit the producing fungus.
Collapse
Affiliation(s)
- Daniel G Panaccione
- Division of Plant and Soil Sciences, West Virginia University, P.O. Box 6058, Morgantown, WV 26506-6058, USA.
| |
Collapse
|
27
|
Coyle CM, Panaccione DG. An ergot alkaloid biosynthesis gene and clustered hypothetical genes from Aspergillus fumigatus. Appl Environ Microbiol 2005; 71:3112-8. [PMID: 15933009 PMCID: PMC1151871 DOI: 10.1128/aem.71.6.3112-3118.2005] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/07/2023] Open
Abstract
The ergot alkaloids are a family of indole-derived mycotoxins with a variety of significant biological activities. Aspergillus fumigatus, a common airborne fungus and opportunistic human pathogen, and several fungi in the relatively distant taxon Clavicipitaceae (clavicipitaceous fungi) produce different sets of ergot alkaloids. The ergot alkaloids of these divergent fungi share a four-member ergoline ring but differ in the number, type, and position of the side chains. Several genes required for ergot alkaloid production are known in the clavicipitaceous fungi, and these genes are clustered in the genome of the ergot fungus Claviceps purpurea. We investigated whether the ergot alkaloids of A. fumigatus have a common biosynthetic and genetic origin with those of the clavicipitaceous fungi. A homolog of dmaW, the gene controlling the determinant step in the ergot alkaloid pathway of clavicipitaceous fungi, was identified in the A. fumigatus genome. Knockout of dmaW eliminated all known ergot alkaloids from A. fumigatus, and complementation of the mutation restored ergot alkaloid production. Clustered with dmaW in the A. fumigatus genome are sequences corresponding to five genes previously proposed to encode steps in the ergot alkaloid pathway of C. purpurea, as well as additional sequences whose deduced protein products are consistent with their involvement in the ergot alkaloid pathway. The corresponding genes have similarities in their nucleotide sequences, but the orientations and positions within the cluster of several of these genes differ. The data indicate that the ergot alkaloid biosynthetic capabilities in A. fumigatus and the clavicipitaceous fungi had a common origin.
Collapse
Affiliation(s)
- Christine M Coyle
- Division of Plant & Soil Sciences, Genetics & Developmental Biology Program, 401 Brooks Hall, West Virginia University, Morgantown, West Virginia 26506-6058, USA
| | | |
Collapse
|
28
|
Hahn M, Stachelhaus T. Selective interaction between nonribosomal peptide synthetases is facilitated by short communication-mediating domains. Proc Natl Acad Sci U S A 2004; 101:15585-90. [PMID: 15498872 PMCID: PMC524835 DOI: 10.1073/pnas.0404932101] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022] Open
Abstract
Nonribosomal peptide synthetases (NRPSs) catalyze the formation of structurally diverse and biologically important peptides. Given their modular organization, NRPSs provide an enormous potential for biocombinatorial approaches to generate novel bioactive compounds. Crucial for the exploitation of this potential is a profound knowledge of the intermolecular communication between partner NRPSs. The overall goal of this study was to understand the basis of protein-protein communication that facilitates the selective interaction in these multienzyme complexes. On this account, we studied the relevance of short regions at the termini of the NRPSs tyrocidine (Tyc) synthetases TycA, TycB, and TycC, constituting the Tyc biosynthetic template. In vitro and in vivo investigations of C-terminal deletion mutants of the initiation module TycA provided evidence for the existence and impact of short communication-mediating (COM) domains. Their decisive role in protein-protein recognition was subsequently proven by means of COM domain-swapping experiments. Substitution of the terminal COM domains between the donor modules TycA and TycB3, as well as between the acceptor modules TycB1 and TycC1, clearly demonstrated that matching pairs of COM domains are both necessary and sufficient for the establishment of communication between partner NRPSs in trans. These results corroborated the generality of COM domains, which were subsequently exploited to induce crosstalk, even between NRPSs derived from different biosynthetic systems. In conclusion, COM domains represent interesting tools for biocombinatorial approaches, which, for example, could be used for the generation of innovative natural product derivatives.
Collapse
Affiliation(s)
- Martin Hahn
- Department of Chemistry/Biochemistry, Philipps University of Marburg, Hans-Meerwein-Strasse, D-35032 Marburg, Germany
| | | |
Collapse
|
29
|
Correia T, Grammel N, Ortel I, Keller U, Tudzynski P. Molecular Cloning and Analysis of the Ergopeptine Assembly System in the Ergot Fungus Claviceps purpurea. ACTA ACUST UNITED AC 2003; 10:1281-92. [PMID: 14700635 DOI: 10.1016/j.chembiol.2003.11.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/26/2022]
Abstract
Claviceps purpurea produces the pharmacological important ergopeptines, a class of cyclol-structured alkaloid peptides containing D-lysergic acid. These compounds are assembled from D-lysergic acid and three different amino acids by the nonribosomal peptide synthetase enzymes LPS1 and LPS2. Cloning of alkaloid biosynthesis genes from C. purpurea has revealed a gene cluster including two NRPS genes, cpps 1 and cpps 2. Protein sequence data had assigned earlier cpps1 to encode the trimodular LPS1 assembling the tripeptide portion of ergopeptines. Here, we show by transcriptional analysis, targeted inactivation, analysis of disruption mutants, and heterologous expression that cpps 2 encodes the monomodular LPS2 responsible for D-lysergic acid activation and incorporation into the ergopeptine backbone. The presence of two distinct NRPS subunits catalyzing formation of ergot peptides is the first example of a fungal NRPS system consisting of different NRPS subunits.
Collapse
Affiliation(s)
- Telmo Correia
- Institut für Botanik, Westfälische Wilhelms-Universität, Schlossgarten 3, D-48149 Münster, Germany
| | | | | | | | | |
Collapse
|
30
|
Panaccione DG, Tapper BA, Lane GA, Davies E, Fraser K. Biochemical outcome of blocking the ergot alkaloid pathway of a grass endophyte. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2003; 51:6429-6437. [PMID: 14558758 DOI: 10.1021/jf0346859] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/24/2023]
Abstract
Neotyphodium sp. Lp1, an endophytic fungus from perennial ryegrass (Lolium perenne), produces the mycotoxin ergovaline in infected grasses, whereas a mutant in which a particular peptide synthetase gene is knocked out does not. We examined the impact of this knockout on other constituents of the ergot alkaloid pathway. Two simple lysergic acid amides, ergine and a previously undescribed amide, were eliminated by the knockout. Lysergic acid accumulated in the knockout endophyte, but quantities were only 13% of the total lysergic acid derivatives accumulated in the wild type. Concentrations of several clavines were not substantially affected. However, a novel clavine accumulated to higher concentrations in perennial ryegrass containing the knockout strain. The results indicate that production of simple lysergic acid amides requires the activity or products of the ergovaline-associated peptide synthetase and that the regulation of ergot alkaloid production is modified in response to the relatively late block in the pathway.
Collapse
Affiliation(s)
- Daniel G Panaccione
- Division of Plant & Soil Sciences, 401 Brooks Hall, P.O. Box 6058, West Virginia University, Morgantown, WV 26506-6058, USA.
| | | | | | | | | |
Collapse
|
31
|
Rathbone DA, Lister DL, Bruce NC. Biotransformation of alkaloids. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2003; 58:1-82. [PMID: 12534248 DOI: 10.1016/s0099-9598(02)58002-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022]
Abstract
Biotransformations of alkaloids over the last decade have continued to encompass a wide variety of substrates and enzymes. The elucidation of novel alkaloid biosynthetic and catabolic pathways will continue to furnish new biocatalysts for the synthetic organic chemist. Furthermore, an improved understanding of the genetic and biochemical basis of metabolic pathways will also permit the engineering of pathways in plants and other heterologous hosts for the production of therapeutically important alkaloids. The combination of increasing commercial interest and advances in molecular biology will facilitate the availability of robust biocatalysts which are a prerequsite to achieve economically feasible processes for the production of alkaloid-based therapeutics.
Collapse
Affiliation(s)
- Deborah A Rathbone
- Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT, United Kingdom
| | | | | |
Collapse
|
32
|
Velkov T, Lawen A. Non-ribosomal peptide synthetases as technological platforms for the synthesis of highly modified peptide bioeffectors – Cyclosporin synthetase as a complex example. BIOTECHNOLOGY ANNUAL REVIEW 2003; 9:151-97. [PMID: 14650927 DOI: 10.1016/s1387-2656(03)09002-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 02/03/2023]
Abstract
Many microbial peptide secondary metabolites possess important medicinal properties, of which the immunosuppressant cyclosporin A is an example. The enormous structural and functional diversity of these low-molecular weight peptides is attributable to their mode of biosynthesis. Peptide secondary metabolites are assembled non-ribosomally by multi-functional enzymes, termed non-ribosomal peptide synthetases. These systems consist of a multi-modular arrangement of the functional domains responsible for the catalysis of the partial reactions of peptide assembly. The extensive homology shared among NRPS systems allows for the generalisation of the knowledge garnered from studies of systems of diverse origins. In this review we shall focus the contemporary knowledge of non-ribosomal peptide biosynthesis on the structure and function of the cyclosporin biosynthetic system, with some emphasis on the re-direction of the biosynthetic potential of this system by combinatorial approaches.
Collapse
Affiliation(s)
- Tony Velkov
- Monash University, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, P.O. Box 13D, Melbourne, Victoria 3800, Australia
| | | |
Collapse
|
33
|
Lautru S, Gondry M, Genet R, Pernodet JL. The albonoursin gene Cluster of S noursei biosynthesis of diketopiperazine metabolites independent of nonribosomal peptide synthetases. CHEMISTRY & BIOLOGY 2002; 9:1355-64. [PMID: 12498889 DOI: 10.1016/s1074-5521(02)00285-5] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/01/2022]
Abstract
Albonoursin [cyclo(deltaPhe-DeltaLeu)], an antibacterial peptide produced by Streptomyces noursei, is one of the simplest representatives of the large diketopiperazine (DKP) family. Formation of alpha,beta unsaturations was previously shown to occur on cyclo(L-Phe-L-Leu), catalyzed by the cyclic dipeptide oxidase (CDO). We used CDO peptide sequence information to isolate a 3.8 kb S. noursei DNA fragment that directs albonoursin biosynthesis in Streptomyces lividans. This fragment encompasses four complete genes: albA and albB, necessary for CDO activity; albC, sufficient for cyclic dipeptide precursor formation, although displaying no similarity to non ribosomal peptide synthetase (NRPS) genes; and albD, encoding a putative membrane protein. This first isolated DKP biosynthetic gene cluster should help to elucidate the mechanism of DKP formation, totally independent of NRPS, and to characterize novel DKP biosynthetic pathways that could be engineered to increase the molecular diversity of DKP derivatives.
Collapse
Affiliation(s)
- Sylvie Lautru
- CEA/Saclay, Département d'Ingénierie et d'Etudes des Protéines, F91191 Gif-sur-Yvette Cedex, France
| | | | | | | |
Collapse
|
34
|
Abstract
Biotransformations of alkaloids over the last decade have continued to encompass a wide variety of substrates and enzymes. The elucidation of novel alkaloid biosynthetic and catabolic pathways will continue to furnish new biocatalysts for the synthetic organic chemist. Furthermore, an improved understanding of the genetic and biochemical basis of metabolic pathways will also permit the engineering of pathways in plants and other heterologous hosts for the production of therapeutically important alkaloids. The combination of increasing commercial interest and advances in molecular biology will facilitate the availability of robust biocatalysts which are a prerequsite to achieve economically feasible processes for the production of alkaloid-based therapeutics.
Collapse
Affiliation(s)
- D A Rathbone
- Institute of Biotechnology, University of Cambridge, Cambridge, CB2 1QT, United Kingdom
| | | | | |
Collapse
|
35
|
Keller U, Schauwecker F. Nonribosomal biosynthesis of microbial chromopeptides. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2002; 70:233-89. [PMID: 11642364 DOI: 10.1016/s0079-6603(01)70019-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 02/22/2023]
Abstract
Nonribosomal chromopeptides and mixed chromopeptide-polyketides contain aromatic or heteroaromatic side groups which are important recognition elements for interaction with cellular targets such as DNA and proteins, resulting in the biological activities of these natural products. In the chromopeptide lactones and arylpeptide-siderophores from bacteria, the chromophore moiety--an aryl carboxylate amidated to the peptide chain--constitutes the formal amino terminus and is the starter residue of peptide assembly. Common to many arylpeptide systems is the activation by stand-alone adenylation domains and loading of the starter to discrete aryl carrier proteins (ArCPs) or ArCP domains which interact with the modules of the respective nonribosomal peptide synthetase (NRPS), assembling the next residues of the chain. Chain modification is another mechanism of nonribosomal chromopeptide synthesis where heteroaromatic rings such as thiazoles and oxazoles in peptides and polyketides are generated by heterocylizations of acyl- or peptidyl-cysteinyl or -serinyl/threonyl intermediates in each elongation step. In this review the basic mechanisms of chromophore acquisition in nonribosomal chromopeptide synthesis and mixed peptide/polyketide synthesis are illustrated by comparing the biosynthesis systems of various chromopeptides and chromopeptidic polyketide compounds.
Collapse
Affiliation(s)
- U Keller
- Max-Volmer-Institut für Biophysikalische Chemie und Biochemie, Technische Universität Berlin, Germany
| | | |
Collapse
|
36
|
Panaccione DG, Johnson RD, Wang J, Young CA, Damrongkool P, Scott B, Schardl CL. Elimination of ergovaline from a grass-Neotyphodium endophyte symbiosis by genetic modification of the endophyte. Proc Natl Acad Sci U S A 2001; 98:12820-5. [PMID: 11592979 PMCID: PMC60137 DOI: 10.1073/pnas.221198698] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/23/2001] [Indexed: 11/18/2022] Open
Abstract
The fungal endophytes Neotyphodium lolii and Neotyphodium sp. Lp1 from perennial ryegrass (Lolium perenne), and related endophytes in other grasses, produce the ergopeptine toxin ergovaline, among other alkaloids, while also increasing plant fitness and resistance to biotic and abiotic stress. In the related fungus, Claviceps purpurea, the biosynthesis of ergopeptines requires the activities of two peptide synthetases, LPS1 and LPS2. A peptide synthetase gene hypothesized to be important for ergopeptine biosynthesis was identified in C. purpurea by its clustering with another ergot alkaloid biosynthetic gene, dmaW. Sequence analysis conducted independently of the research presented here indicates that this gene encodes LPS1 [Tudzynski, P., Holter, K., Correia, T., Arntz, C., Grammel, N. & Keller, U. (1999) Mol. Gen. Genet. 261, 133-141]. We have cloned a similar peptide synthetase gene from Neotyphodium lolii and inactivated it by gene knockout in Neotyphodium sp. Lp1. The resulting strain retained full compatibility with its perennial ryegrass host plant as assessed by immunoblotting of tillers and quantitative PCR. However, grass-endophyte associations containing the knockout strain did not produce detectable quantities of ergovaline as analyzed by HPLC with fluorescence detection. Disruption of this gene provides a means to manipulate the accumulation of ergovaline in endophyte-infected grasses for the purpose of determining the roles of ergovaline in endophyte-associated traits and, potentially, for ameliorating toxicoses in livestock.
Collapse
Affiliation(s)
- D G Panaccione
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Schwarzer D, Mootz HD, Marahiel MA. Exploring the impact of different thioesterase domains for the design of hybrid peptide synthetases. CHEMISTRY & BIOLOGY 2001; 8:997-1010. [PMID: 11590023 DOI: 10.1016/s1074-5521(01)00068-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND A large number of pharmacologically important peptides are synthesized by multifunctional enzymes, the nonribosomal peptide synthetases (NRPSs). The thioesterase (Te) domain at the C-terminus of the last NRPS catalyzes product cleavage by hydrolysis or complex macrocyclization. Recent studies with excised Te domains and peptidyl-S-N-acetyl cysteamine substrate substitutes led to substantial insights in terms of cyclization activity and substrate tolerance of these enzymes. Their use in engineered hybrid NRPSs is an interesting but yet only little explored target for approaches to achieve new structural diversity and designed products. RESULTS To study the capability of various Te domains to function in hybrid NRPSs, six different Te domains that catalyze different modes of termination in their natural systems were fused to a bimodular model NRPS system, consisting of the first two modules of tyrocidine NRPS, TycA and ProCAT. All Te domains were active in hydrolyzing the enzymatically generated dipeptide substrate D-Phe-Abu from the NRPS template with, however, greatly varying turnover rates. Two Te domains were also capable of hydrolyzing the substrate D-Phe-Pro and partially cyclized the D-Phe-Abu dipeptide, indicating that in an artificial context Te domains may display hydrolytic and cyclization activities that are not easily predictable. CONCLUSIONS Te domains from heterologous NRPSs can be utilized for the construction of hybrid NRPSs. This is the first comparative study to explore their influence on the product pattern. The inherent specificity and regioselectivity of Te domains should allow control of the desired product cleavage, but can also lead to other modes of termination potentially useful for generating structural diversity. Our results provide the first data for choosing the proper Te domain for a particular termination reaction.
Collapse
Affiliation(s)
- D Schwarzer
- Philipps-Universität Marburg, Fachbereich Chemie/Biochemie, Hans-Meerwein-Str., D-35032 Marburg, Germany
| | | | | |
Collapse
|
38
|
Mukherjee J, Menge M. Progress and prospects of ergot alkaloid research. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2001; 68:1-20. [PMID: 11036684 DOI: 10.1007/3-540-45564-7_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 02/18/2023]
Abstract
Ergot alkaloids, produced by the plant parasitic fungi Claviceps purpurea are important pharmaceuticals. The chemistry, biosynthesis, bioconversions, physiological controls, and biochemistry have been extensively reviewed by earlier authors. We present here the research done on the organic synthesis of the ergot alkaloids during the past two decades. Our aim is to apply this knowledge to the synthesis of novel synthons and thus obtain new molecules by directed biosynthesis. The synthesis of clavine alkaloids, lysergic acid derivatives, the use of tryptophan as the starting material, the chemistry of 1,3,4,5-tetrahydrobenzo[cd]indoles, and the structure activity relationships for ergot alkaloids have been discussed. Recent advances in the molecular biology and enzymology of the fungus are also mentioned. Application of oxygen vectors and mathematical modeling in the large scale production of the alkaloids are also discussed. Finally, the review gives an overview of the use of modern analytical methods such as capillary electrophoresis and two-dimensional fluorescence spectroscopy.
Collapse
Affiliation(s)
- J Mukherjee
- Institut für Technische Chemie, Universität Hannover, Germany.
| | | |
Collapse
|
39
|
Keating TA, Ehmann DE, Kohli RM, Marshall CG, Trauger JW, Walsh CT. Chain termination steps in nonribosomal peptide synthetase assembly lines: directed acyl-S-enzyme breakdown in antibiotic and siderophore biosynthesis. Chembiochem 2001; 2:99-107. [PMID: 11828432 DOI: 10.1002/1439-7633(20010202)2:2<99::aid-cbic99>3.0.co;2-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/11/2022]
Affiliation(s)
- T A Keating
- Harvard Medical School, Department of Biological Chemistry and Molecular Pharmacology, 240 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
40
|
Pazoutová S, Olsovská J, Linka M, Kolínská R, Flieger M. Chemoraces and habitat specialization of Claviceps purpurea populations. Appl Environ Microbiol 2000; 66:5419-25. [PMID: 11097923 PMCID: PMC92477 DOI: 10.1128/aem.66.12.5419-5425.2000] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
We studied genetic variability of 100 isolates of Claviceps purpurea by using randomly amplified polymorphic DNA (RAPD), an EcoRI restriction site polymorphism in the 5.8S ribosomal DNA (rDNA), the alkaloids produced, and conidial morphology. We identified three groups: (i) group G1 from fields and open meadows (57 isolates), (ii) group G2 from shady or wet habitats (41 isolates), and (iii) group G3 from Spartina anglica from salt marshes (2 isolates). The sclerotia of G1 isolates contained ergotamines and ergotoxines; G2 isolates produced ergosine and ergocristine along with small amounts of ergocryptine; and G3 isolates produced ergocristine and ergocryptine. The conidia of G1 isolates were 5 to 8 microm long, the conidia of G2 isolates were 7 to 10 microm long, and the conidia of G3 isolates were 10 to 12 microm long. Sclerotia of the G2 and G3 isolates floated on water. In the 5.8S rDNA analysis, an EcoRI site was found in G1 and G3 isolates but not in G2 isolates. The host preferences of the groups were not absolute, and there were host genera that were common to both G1 and G2; the presence of members of different groups in the same locality was rare. Without the use of RAPD or rDNA polymorphism, it was not possible to distinguish the three groups solely on the basis of phenotype, host, or habitat. In general, populations of C. purpurea are not host specialized, as previously assumed, but they are habitat specialized, and collecting strategies and toxin risk assessments should be changed to reflect this paradigm shift.
Collapse
Affiliation(s)
- S Pazoutová
- Institute of Microbiology, Czech Academy of Sciences, 142 20 Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
41
|
Mootz HD, Schwarzer D, Marahiel MA. Construction of hybrid peptide synthetases by module and domain fusions. Proc Natl Acad Sci U S A 2000; 97:5848-53. [PMID: 10811885 PMCID: PMC18522 DOI: 10.1073/pnas.100075897] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022] Open
Abstract
Nonribosomal peptide synthetases are modular enzymes that assemble peptides of diverse structures and important biological activities. Their modular organization provides a great potential for the rational design of novel compounds by recombination of the biosynthetic genes. Here we describe the extension of a dimodular system to trimodular ones based on whole-module fusion. The recombinant hybrid enzymes were purified to monitor product assembly in vitro. We started from the first two modules of tyrocidine synthetase, which catalyze the formation of the dipeptide dPhe-Pro, to construct such hybrid systems. Fusion of the second, proline-specific module with the ninth and tenth modules of the tyrocidine synthetases, specific for ornithine and leucine, respectively, resulted in dimodular hybrid enzymes exhibiting the combined substrate specificities. The thioesterase domain was fused to the terminal module. Upon incubation of these dimodular enzymes with the first tyrocidine module, TycA, incorporating dPhe, the predicted tripeptides dPhe-Pro-Orn and dPhe-Pro-Leu were obtained at rates of 0.15 min(-1) and 2.1 min(-1). The internal thioesterase domain was necessary and sufficient to release the products from the hybrid enzymes and thereby facilitate a catalytic turnover. Our approach of whole-module fusion is based on an improved definition of the fusion sites and overcomes the recently discovered editing function of the intrinsic condensation domains. The stepwise construction of hybrid peptide synthetases from catalytic subunits reinforces the inherent potential for the synthesis of novel, designed peptides.
Collapse
Affiliation(s)
- H D Mootz
- Philipps-Universität Marburg, Fachbereich Chemie/Biochemie, Hans-Meerwein-Str., 35032 Marburg, Germany
| | | | | |
Collapse
|
42
|
Keating TA, Walsh CT. Initiation, elongation, and termination strategies in polyketide and polypeptide antibiotic biosynthesis. Curr Opin Chem Biol 1999; 3:598-606. [PMID: 10508662 DOI: 10.1016/s1367-5931(99)00015-0] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Abstract
Progress in sequence analysis of biosynthetic gene clusters encoding polyketides and nonribosomal peptides and in the reconstitution of in vitro activities continues to reveal new insights into the growth of these natural products' acyl chains, which have been revealed as a series of elongating, covalent, acyl enzyme intermediates on their multimodular scaffolds. Studies that focus on the three stages of natural product biosynthesis - initiation, elongation, and termination - have yielded crucial information on monomer substrate specificity, domain and module portability, and product release mechanisms, all of which are important not only for an understanding of this exquisite enzymatic machinery, but also for the rational construction of new, functional synthetases and synthases that are a goal of combinatorial biosynthesis.
Collapse
Affiliation(s)
- T A Keating
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
43
|
Shaw-Reid CA, Kelleher NL, Losey HC, Gehring AM, Berg C, Walsh CT. Assembly line enzymology by multimodular nonribosomal peptide synthetases: the thioesterase domain of E. coli EntF catalyzes both elongation and cyclolactonization. CHEMISTRY & BIOLOGY 1999; 6:385-400. [PMID: 10375542 DOI: 10.1016/s1074-5521(99)80050-7] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND EntF is a 142 kDa four domain (condensation-adenylation-peptidyl carrier protein-thioesterase) nonribosomal peptide synthetase (NRPS) enzyme that assembles the Escherichia coli N-acyl-serine trilactone siderophore enterobactin from serine, dihydroxybenzoate (DHB) and ATP with three other enzymes (EntB, EntD and EntE). To assess how EntF forms three ester linkages and cyclotrimerizes the covalent acyl enzyme DHB-Ser-S-PCP (peptidyl carrier protein) intermediate, we mutated residues of the proposed catalytic Ser-His-Asp triad of the thioesterase (TE) domain. RESULTS The Ser1138-->Cys mutant (kcat decreased 1000-fold compared with wild-type EntF) releases both enterobactin (75%) and linear (DHB-Ser)2 dimer (25%) as products. The His 1271-->Ala mutant (kcat decreased 10,000-fold compared with wild-type EntF) releases only enterobactin, but accumulates both DHB-Ser-O-TE and (DHB-Ser)2-O-TE acyl enzyme intermediates. Electrospray ionization and Fourier transform mass spectrometry of proteolytic digests were used to analyze the intermediates. CONCLUSIONS These results establish that the TE domain of EntF is both a cyclotrimerizing lactone synthetase and an elongation catalyst for ester-bond formation between covalently tethered DHB-Ser moieties, a new function for chain-termination TE domains found at the carboxyl termini of multimodular NRPSs and polyketide synthases.
Collapse
Affiliation(s)
- C A Shaw-Reid
- Department of Biological Chemistry and Molecular Pharmacology, 240 Longwood Avenue, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
Modular peptide synthetases, which act as the protein templates for the synthesis of a large number of peptide antibiotics and siderophores, hold great potential for the development of novel compounds. Recently, significant progress has been made towards understanding their molecular architecture and substrate specificity. The first crystal structure of a peptide synthetase has been solved, and the enzymes responsible for post-translational modification of peptide synthetases have recently been discovered. These will allow addressing important yet poorly understood mechanistic aspects.
Collapse
Affiliation(s)
- H D Mootz
- Philipps-Universität Marburg, Fachbereich Chemie/Biochemie, Hans-Meerwein-Strasse 35032, Marburg, Germany
| | | |
Collapse
|
45
|
Affiliation(s)
- Hans von Döhren
- Section Biochemistry and Molecular Biology, Max-Volmer-Institute of Biophysical Chemistry and Biochemistry, Technical University Berlin, Franklinstrasse 29, D-10587 Berlin, Germany
| | | | | | | |
Collapse
|