1
|
T. RR, Demerdash ONA, Smith JC. TCR-H: explainable machine learning prediction of T-cell receptor epitope binding on unseen datasets. Front Immunol 2024; 15:1426173. [PMID: 39221256 PMCID: PMC11361934 DOI: 10.3389/fimmu.2024.1426173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Artificial-intelligence and machine-learning (AI/ML) approaches to predicting T-cell receptor (TCR)-epitope specificity achieve high performance metrics on test datasets which include sequences that are also part of the training set but fail to generalize to test sets consisting of epitopes and TCRs that are absent from the training set, i.e., are 'unseen' during training of the ML model. We present TCR-H, a supervised classification Support Vector Machines model using physicochemical features trained on the largest dataset available to date using only experimentally validated non-binders as negative datapoints. TCR-H exhibits an area under the curve of the receiver-operator characteristic (AUC of ROC) of 0.87 for epitope 'hard splitting' (i.e., on test sets with all epitopes unseen during ML training), 0.92 for TCR hard splitting and 0.89 for 'strict splitting' in which neither the epitopes nor the TCRs in the test set are seen in the training data. Furthermore, we employ the SHAP (Shapley additive explanations) eXplainable AI (XAI) method for post hoc interrogation to interpret the models trained with different hard splits, shedding light on the key physiochemical features driving model predictions. TCR-H thus represents a significant step towards general applicability and explainability of epitope:TCR specificity prediction.
Collapse
Affiliation(s)
- Rajitha Rajeshwar T.
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Omar N. A. Demerdash
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Jeremy C. Smith
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| |
Collapse
|
2
|
Pathni A, Wagh K, Rey-Suarez I, Upadhyaya A. Mechanical regulation of lymphocyte activation and function. J Cell Sci 2024; 137:jcs219030. [PMID: 38995113 PMCID: PMC11267459 DOI: 10.1242/jcs.219030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
Mechanosensing, or how cells sense and respond to the physical environment, is crucial for many aspects of biological function, ranging from cell movement during development to cancer metastasis, the immune response and gene expression driving cell fate determination. Relevant physical stimuli include the stiffness of the extracellular matrix, contractile forces, shear flows in blood vessels, complex topography of the cellular microenvironment and membrane protein mobility. Although mechanosensing has been more widely studied in non-immune cells, it has become increasingly clear that physical cues profoundly affect the signaling function of cells of the immune system. In this Review, we summarize recent studies on mechanical regulation of immune cells, specifically lymphocytes, and explore how the force-generating cytoskeletal machinery might mediate mechanosensing. We discuss general principles governing mechanical regulation of lymphocyte function, spanning from the molecular scale of receptor activation to cellular responses to mechanical stimuli.
Collapse
Affiliation(s)
- Aashli Pathni
- Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, USA
| | - Kaustubh Wagh
- Department of Physics, University of Maryland, College Park, MD 20742, USA
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ivan Rey-Suarez
- Insitute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
- Microcore, Universidad de Los Andes, Bogota, DC 111711, USA
| | - Arpita Upadhyaya
- Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, USA
- Department of Physics, University of Maryland, College Park, MD 20742, USA
- Insitute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
- Biophysics Program, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
3
|
Doan TA, Forward TS, Schafer JB, Lucas ED, Fleming I, Uecker-Martin A, Ayala E, Guthmiller JJ, Hesselberth JR, Morrison TE, Tamburini BAJ. Immunization-induced antigen archiving enhances local memory CD8+ T cell responses following an unrelated viral infection. NPJ Vaccines 2024; 9:66. [PMID: 38514656 PMCID: PMC10957963 DOI: 10.1038/s41541-024-00856-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/29/2024] [Indexed: 03/23/2024] Open
Abstract
Antigens from viruses or immunizations can persist or are archived in lymph node stromal cells such as lymphatic endothelial cells (LEC) and fibroblastic reticular cells (FRC). Here, we find that, during the time frame of antigen archiving, LEC apoptosis caused by a second, but unrelated, innate immune stimulus such as vaccina viral infection or CpG DNA administration resulted in cross-presentation of archived antigens and boosted memory CD8 + T cells specific to the archived antigen. In contrast to "bystander" activation associated with unrelated infections, the memory CD8 + T cells specific to the archived antigen from the immunization were significantly higher than memory CD8 + T cells of a different antigen specificity. Finally, the boosted memory CD8 + T cells resulted in increased protection against Listeria monocytogenes expressing the antigen from the immunization, but only for the duration that the antigen was archived. These findings outline an important mechanism by which lymph node stromal cell archived antigens, in addition to bystander activation, can augment memory CD8 + T cell responses during repeated inflammatory insults.
Collapse
Affiliation(s)
- Thu A Doan
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, USA
- Immunology Graduate Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Tadg S Forward
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Johnathon B Schafer
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Erin D Lucas
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, USA
- Immunology Graduate Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ira Fleming
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, USA
- Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Aspen Uecker-Martin
- Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Edgardo Ayala
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jenna J Guthmiller
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jay R Hesselberth
- Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Thomas E Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Beth A Jirón Tamburini
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, USA.
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
4
|
Rogers J, Ma R, Foote A, Hu Y, Salaita K. Force-Induced Site-Specific Enzymatic Cleavage Probes Reveal That Serial Mechanical Engagement Boosts T Cell Activation. J Am Chem Soc 2024; 146:7233-7242. [PMID: 38451498 PMCID: PMC10958510 DOI: 10.1021/jacs.3c08137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 03/08/2024]
Abstract
The T cell membrane is studded with >104 T cell receptors (TCRs) that are used to scan target cells to identify short peptide fragments associated with viral infection or cancerous mutation. These peptides are presented as peptide-major-histocompatibility complexes (pMHCs) on the surface of virtually all nucleated cells. The TCR-pMHC complex forms at cell-cell junctions, is highly transient, and experiences mechanical forces. An important question in this area pertains to the role of the force duration in immune activation. Herein, we report the development of force probes that autonomously terminate tension within a time window following mechanical triggering. Force-induced site-specific enzymatic cleavage (FUSE) probes tune the tension duration by controlling the rate of a force-triggered endonuclease hydrolysis reaction. This new capability provides a method to study how the accumulated force duration contributes to T cell activation. We screened DNA sequences and identified FUSE probes that disrupt mechanical interactions with F > 7.1 piconewtons (pN) between TCRs and pMHCs. This rate of disruption, or force lifetime (τF), is tunable from tens of minutes down to 1.9 min. T cells challenged with FUSE probes with F > 7.1 pN presenting cognate antigens showed up to a 23% decrease in markers of early activation. FUSE probes with F > 17.0 pN showed weaker influence on T cell triggering further showing that TCR-pMHC with F > 17.0 pN are less frequent compared to F > 7.1 pN. Taken together, FUSE probes allow a new strategy to investigate the role of force dynamics in mechanotransduction broadly and specifically suggest a model of serial mechanical engagement boosting TCR activation.
Collapse
Affiliation(s)
- Jhordan Rogers
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Rong Ma
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Alexander Foote
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Yuesong Hu
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Khalid Salaita
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| |
Collapse
|
5
|
Wither MJ, White WL, Pendyala S, Leanza PJ, Fowler DM, Kueh HY. Antigen perception in T cells by long-term Erk and NFAT signaling dynamics. Proc Natl Acad Sci U S A 2023; 120:e2308366120. [PMID: 38113261 PMCID: PMC10756264 DOI: 10.1073/pnas.2308366120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/20/2023] [Indexed: 12/21/2023] Open
Abstract
Immune system threat detection hinges on T cells' ability to perceive varying peptide-major histocompatibility complex (pMHC) antigens. As the Erk and NFAT pathways link T cell receptor engagement to gene regulation, their signaling dynamics may convey information about pMHC inputs. To test this idea, we developed a dual reporter mouse strain and a quantitative imaging assay that, together, enable simultaneous monitoring of Erk and NFAT dynamics in live T cells over day-long timescales as they respond to varying pMHC inputs. Both pathways initially activate uniformly across various pMHC inputs but diverge only over longer (9+ h) timescales, enabling independent encoding of pMHC affinity and dose. These late signaling dynamics are decoded via multiple temporal and combinatorial mechanisms to generate pMHC-specific transcriptional responses. Our findings underscore the importance of long timescale signaling dynamics in antigen perception and establish a framework for understanding T cell responses under diverse contexts.
Collapse
Affiliation(s)
- Matthew J. Wither
- University of Washington, Department of Bioengineering, Seattle, WA98195
| | - William L. White
- University of Washington, Department of Bioengineering, Seattle, WA98195
| | - Sriram Pendyala
- University of Washington, Department of Genome Sciences, Seattle, WA98195
| | - Paul J. Leanza
- University of Washington, Department of Bioengineering, Seattle, WA98195
| | - Douglas M. Fowler
- University of Washington, Department of Genome Sciences, Seattle, WA98195
| | - Hao Yuan Kueh
- University of Washington, Department of Bioengineering, Seattle, WA98195
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA98109
| |
Collapse
|
6
|
Tamburini B, Doan T, Forward T, Lucas E, Fleming I, Uecker-Martin A, Hesselberth J, Morrison T. Vaccine-induced antigen archiving enhances local memory CD8+ T cell responses following an unrelated viral infection. RESEARCH SQUARE 2023:rs.3.rs-3307809. [PMID: 37841845 PMCID: PMC10571600 DOI: 10.21203/rs.3.rs-3307809/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Viral and vaccine antigens persist or are archived in lymph node stromal cells (LNSC) such as lymphatic endothelial cells (LEC) and fibroblastic reticular cells (FRC). Here, we find that, during the time frame of antigen archiving, LEC apoptosis caused by a second, but unrelated, innate immune stimulus such as vaccina viral infection or CpG DNA administration boosted memory CD8+ T cells specific to the archived antigen. In contrast to "bystander" activation associated with unrelated infections, the memory CD8+ T cells specific to the vaccine archived antigen were significantly higher than memory CD8+ T cells of a different antigen specificity. Finally, the boosted memory CD8+ T cells resulted in increased protection against Listeria monocytogenes expressing the vaccine antigen, but only for the duration that the vaccine antigen was archived. These findings outline a novel mechanism by which LNSC archived antigens, in addition to bystander activation, can augment memory CD8+ T cell responses during repeated inflammatory insults.
Collapse
Affiliation(s)
| | - Thu Doan
- University of Colorado Anschutz Medical Campus
| | | | - Erin Lucas
- University of Colorado Anschutz Medical Campus
| | - Ira Fleming
- University of Colorado Anschutz Medical Campus
| | | | | | | |
Collapse
|
7
|
Rogers J, Ma R, Hu Y, Salaita K. Force-induced site-specific enzymatic cleavage probes reveal that serial mechanical engagement boosts T cell activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.07.552310. [PMID: 37609308 PMCID: PMC10441320 DOI: 10.1101/2023.08.07.552310] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The surface of T cells is studded with T cell receptors (TCRs) that are used to scan target cells to identify peptide-major histocompatibility complexes (pMHCs) signatures of viral infection or cancerous mutation. It is now established that the TCR-pMHC complex is highly transient and experiences mechanical forces that augment the fidelity of T cell activation. An important question in this area pertains to the role of force duration in immune activation. Herein, we report the development of force probes that autonomously terminate tension within a time window following mechanical triggering. Force-induced site-specific enzymatic cleavage (FUSE) probes tune tension duration by controlling the rate of a force-triggered endonuclease hydrolysis reaction. This new capability provides a method to study how accumulated force duration contributes to T cell activation. We screened DNA sequences and identified FUSE probes that disrupt mechanical interactions with F >7.1 piconewtons (pN) between TCRs and pMHCs. Force lifetimes (τF) are tunable from tens of min down to 1.9 min. T cells challenged with FUSE probes presenting cognate antigens with τF of 1.9 min demonstrated dampened markers of early activation, thus demonstrating that repeated mechanical sampling boosts TCR activation. Repeated mechanical sampling F >7.1 pN was found to be particularly critical at lower pMHC antigen densities, wherein the T cell activation declined by 23% with τF of 1.9 min. FUSE probes with F >17.0 pN response showed weaker influence on T cell triggering further showing that TCR-pMHC with F >17.0 pN are less frequent compared to F >7.1 pN. Taken together, FUSE probes allow a new strategy to investigate the role of force dynamics in mechanotransduction broadly and specifically suggest a model of serial mechanical engagement in antigen recognition.
Collapse
Affiliation(s)
- Jhordan Rogers
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia, 30322, USA
| | - Rong Ma
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia, 30322, USA
| | - Yuesong Hu
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia, 30322, USA
| | - Khalid Salaita
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia, 30322, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30332, USA
| |
Collapse
|
8
|
Faust MA, Rasé VJ, Lamb TJ, Evavold BD. What's the Catch? The Significance of Catch Bonds in T Cell Activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:333-342. [PMID: 37459191 PMCID: PMC10732538 DOI: 10.4049/jimmunol.2300141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/21/2023] [Indexed: 07/20/2023]
Abstract
One of the main goals in T cell biology has been to investigate how TCR recognition of peptide:MHC (pMHC) determines T cell phenotype and fate. Ag recognition is required to facilitate survival, expansion, and effector function of T cells. Historically, TCR affinity for pMHC has been used as a predictor for T cell fate and responsiveness, but there have now been several examples of nonfunctional high-affinity clones and low-affinity highly functional clones. Recently, more attention has been paid to the TCR being a mechanoreceptor where the key biophysical determinant is TCR bond lifetime under force. As outlined in this review, the fundamental parameters between the TCR and pMHC that control Ag recognition and T cell triggering are affinity, bond lifetime, and the amount of force at which the peak lifetime occurs.
Collapse
Affiliation(s)
- Michael A Faust
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
| | - Viva J Rasé
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
| | - Tracey J Lamb
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
| | - Brian D Evavold
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
| |
Collapse
|
9
|
Wither MJ, White WL, Pendyala S, Leanza PJ, Fowler D, Kueh HY. Antigen perception in T cells by long-term Erk and NFAT signaling dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.01.543260. [PMID: 37333368 PMCID: PMC10274683 DOI: 10.1101/2023.06.01.543260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Immune system threat detection hinges on T cells' ability to perceive varying peptide major-histocompatibility complex (pMHC) antigens. As the Erk and NFAT pathways link T cell receptor engagement to gene regulation, their signaling dynamics may convey information about pMHC inputs. To test this idea, we developed a dual reporter mouse strain and a quantitative imaging assay that, together, enable simultaneous monitoring of Erk and NFAT dynamics in live T cells over day-long timescales as they respond to varying pMHC inputs. Both pathways initially activate uniformly across various pMHC inputs, but diverge only over longer (9+ hrs) timescales, enabling independent encoding of pMHC affinity and dose. These late signaling dynamics are decoded via multiple temporal and combinatorial mechanisms to generate pMHC-specific transcriptional responses. Our findings underscore the importance of long timescale signaling dynamics in antigen perception, and establish a framework for understanding T cell responses under diverse contexts. SIGNIFICANCE STATEMENT To counter diverse pathogens, T cells mount distinct responses to varying peptide-major histocompatibility complex ligands (pMHCs). They perceive the affinity of pMHCs for the T cell receptor (TCR), which reflects its foreignness, as well as pMHC abundance. By tracking signaling responses in single living cells to different pMHCs, we find that T cells can independently perceive pMHC affinity vs dose, and encode this information through the dynamics of Erk and NFAT signaling pathways downstream of the TCR. These dynamics are jointly decoded by gene regulatory mechanisms to produce pMHC-specific activation responses. Our work reveals how T cells can elicit tailored functional responses to diverse threats and how dysregulation of these responses may lead to immune pathologies.
Collapse
|
10
|
Kirby D, Zilman A. Proofreading does not result in more reliable ligand discrimination in receptor signaling due to its inherent stochasticity. Proc Natl Acad Sci U S A 2023; 120:e2212795120. [PMID: 37192165 PMCID: PMC10214210 DOI: 10.1073/pnas.2212795120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 04/05/2023] [Indexed: 05/18/2023] Open
Abstract
Kinetic proofreading (KPR) has been used as a paradigmatic explanation for the high specificity of ligand discrimination by cellular receptors. KPR enhances the difference in the mean receptor occupancy between different ligands compared to a nonproofread receptor, thus potentially enabling better discrimination. On the other hand, proofreading also attenuates the signal and introduces additional stochastic receptor transitions relative to a nonproofreading receptor. This increases the relative magnitude of noise in the downstream signal, which can interfere with reliable ligand discrimination. To understand the effect of noise on ligand discrimination beyond the comparison of the mean signals, we formulate the task of ligand discrimination as a problem of statistical estimation of the receptor affinity of ligands based on the molecular signaling output. Our analysis reveals that proofreading typically worsens ligand resolution compared to a nonproofread receptor. Furthermore, the resolution decreases further with more proofreading steps under most commonly biologically considered conditions. This contrasts with the usual notion that KPR universally improves ligand discrimination with additional proofreading steps. Our results are consistent across a variety of different proofreading schemes and metrics of performance, suggesting that they are inherent to the KPR mechanism itself rather than any particular model of molecular noise. Based on our results, we suggest alternative roles for KPR schemes such as multiplexing and combinatorial encoding in multi-ligand/multi-output pathways.
Collapse
Affiliation(s)
- Duncan Kirby
- Department of Physics, University of Toronto, 60 St George St, Toronto, ONM5S 1A7, Canada
| | - Anton Zilman
- Department of Physics, University of Toronto, 60 St George St, Toronto, ONM5S 1A7, Canada
- Institute for Biomedical Engineering, University of Toronto, 164 college St, Toronto, ONM5S 1A7, Canada
| |
Collapse
|
11
|
Rollins ZA, Faller R, George SC. Using Molecular Dynamics Simulations to Interrogate T Cell Receptor Non-Equilibrium Kinetics. Comput Struct Biotechnol J 2022; 20:2124-2133. [PMID: 35832631 PMCID: PMC9092387 DOI: 10.1016/j.csbj.2022.04.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 11/30/2022] Open
Abstract
Insights into the atomic-scale interaction of the T Cell Receptor with the peptide Major Histocompatibility Complex. Investigation of the physiochemical features that correspond with T Cell Receptor recognition during dynamic dissociation. Implications of force-dependent non-equilibrium kinetics on T Cell Receptor mechanosensing.
An atomic-scale mechanism of T Cell Receptor (TCR) mechanosensing of peptides in the binding groove of the peptide-major histocompatibility complex (pMHC) may inform the design of novel TCRs for immunotherapies. Using steered molecular dynamics simulations, our study demonstrates that mutations to peptides in the binding groove of the pMHC – which are known to discretely alter the T cell response to an antigen – alter the MHC conformation at equilibrium. This subsequently impacts the overall strength (duration and length) of the TCR-pMHC bond under constant load. Moreover, physiochemical features of the TCR-pMHC dynamic bond strength, such as hydrogen bonds and Lennard-Jones contacts, correlate with the immunogenic response elicited by the specific peptide in the MHC groove. Thus, formation of transient TCR-pMHC bonds is characteristic of immunogenic peptides, and steered molecular dynamics simulations can be used in the overall design strategy of TCRs for immunotherapies.
Collapse
Affiliation(s)
- Zachary A. Rollins
- Department of Chemical Engineering, University of California, Davis, 1 Shields Ave, Bainer Hall, Davis, CA 95616, United States
| | - Roland Faller
- Department of Chemical Engineering, University of California, Davis, 1 Shields Ave, Bainer Hall, Davis, CA 95616, United States
| | - Steven C. George
- Department of Biomedical Engineering, University of California, Davis, 451 E. Health Sciences Dr., GBSF 2303, Davis, CA 95616, United States
- Corresponding author at: Department of Biomedical Engineering, 451 E. Health Sciences Drive, Room 2315, University of California, Davis, CA 95616, United States.
| |
Collapse
|
12
|
Sun Y, Li X, Wang T, Li W. Core Fucosylation Regulates the Function of Pre-BCR, BCR and IgG in Humoral Immunity. Front Immunol 2022; 13:844427. [PMID: 35401499 PMCID: PMC8990897 DOI: 10.3389/fimmu.2022.844427] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/25/2022] [Indexed: 11/20/2022] Open
Abstract
Most of the membrane molecules involved in immune response are glycosylated. N-glycans linked to asparagine (Asn) of immune molecules contribute to the protein conformation, surface expression, stability, and antigenicity. Core fucosylation catalyzed by core fucosyltransferase (FUT8) is the most common post-translational modification. Core fucosylation is essential for evoking a proper immune response, which this review aims to communicate. First, FUT8 deficiency suppressed the interaction between μHC and λ5 during pre-BCR assembly is given. Second, we described the effects of core fucosylation in B cell signal transduction via BCR. Third, we investigated the role of core fucosylation in the interaction between helper T (TH) cells and B cells. Finally, we showed the role of FUT8 on the biological function of IgG. In this review, we discussed recent insights into the sites where core fucosylation is critical for humoral immune responses.
Collapse
Affiliation(s)
- Yuhan Sun
- College of Basic Medical Science, Dalian Medical University, Dalian, China
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai, Japan
| | - Xueying Li
- Research Institute for Microbial Diseases and World Premier International Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Tiantong Wang
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Wenzhe Li
- College of Basic Medical Science, Dalian Medical University, Dalian, China
- *Correspondence: Wenzhe Li,
| |
Collapse
|
13
|
Abstract
Anti-PD-1 therapies can activate tumor-specific T cells to destroy tumors. However, whether and how T cells with different antigen specificity and affinity are differentially regulated by PD-1 remain vaguely understood. Upon antigen stimulation, a variety of genes is induced in T cells. Recently, we found that T cell receptor (TCR) signal strength required for the induction of genes varies across different genes and PD-1 preferentially inhibits the induction of genes that require stronger TCR signal. As each T cell has its own response characteristics, inducibility of genes likely differs across different T cells. Accordingly, the inhibitory effects of PD-1 are also expected to differ across different T cells. In the current study, we investigated whether and how factors that modulate T cell responsiveness to antigenic stimuli influence PD-1 function. By analyzing TCRs with different affinities to peptide-MHC complexes (pMHC) and pMHCs with different affinities to TCR, we demonstrated that PD-1 inhibits the expression of TCR-inducible genes efficiently when TCR:pMHC affinity is low. In contrast, affinities of peptides to MHC and MHC expression levels did not affect PD-1 sensitivity of TCR-inducible genes although they markedly altered the dose responsiveness of T cells by changing the efficiency of pMHC formation, suggesting that the strength of individual TCR signal is the key determinant of PD-1 sensitivity. Accordingly, we observed a preferential expansion of T cells with low-affinity to tumor-antigen in PD-1-deficient mice upon inoculation of tumor cells. These results demonstrate that PD-1 imposes qualitative control of T cell responses by preferentially suppressing low-affinity T cells.
Collapse
|
14
|
Frazer GL, Gawden-Bone CM, Dieckmann NMG, Asano Y, Griffiths GM. Signal strength controls the rate of polarization within CTLs during killing. J Cell Biol 2021; 220:212498. [PMID: 34292303 PMCID: PMC8302442 DOI: 10.1083/jcb.202104093] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/03/2021] [Accepted: 06/30/2021] [Indexed: 01/19/2023] Open
Abstract
Cytotoxic T lymphocytes (CTLs) are key effector cells in the immune response against viruses and cancers, killing targets with high precision. Target cell recognition by CTL triggers rapid polarization of intracellular organelles toward the synapse formed with the target cell, delivering cytolytic granules to the immune synapse. Single amino acid changes within peptides binding MHC class I (pMHCs) are sufficient to modulate the degree of killing, but exactly how this impacts the choreography of centrosome polarization and granule delivery to the target cell remains poorly characterized. Here we use 4D imaging and find that the pathways orchestrating killing within CTL are conserved irrespective of the signal strength. However, the rate of initiation along these pathways varies with signal strength. We find that increased strength of signal leads to an increased proportion of CTLs with prolonged dwell times, initial Ca2+ fluxes, centrosome docking, and granule polarization. Hence, TCR signal strength modulates the rate but not organization of effector CTL responses.
Collapse
Affiliation(s)
- Gordon L Frazer
- Cambridge Institute for Medical Research, Biomedical Campus, Cambridge, UK
| | | | - Nele M G Dieckmann
- Cambridge Institute for Medical Research, Biomedical Campus, Cambridge, UK
| | - Yukako Asano
- Cambridge Institute for Medical Research, Biomedical Campus, Cambridge, UK
| | | |
Collapse
|
15
|
Abstract
T cell activation is a critical event in the adaptive immune response, indispensable for cell-mediated and humoral immunity as well as for immune regulation. Recent years have witnessed an emerging trend emphasizing the essential role that physical force and mechanical properties play at the T cell interface. In this review, we integrate current knowledge of T cell antigen recognition and the different models of T cell activation from the perspective of mechanobiology, focusing on the interaction between the T cell receptor (TCR) and the peptide-major histocompatibility complex (pMHC) antigen. We address the shortcomings of TCR affinity alone in explaining T cell functional outcomes and the rising status of force-regulated TCR bond lifetimes, most notably the TCR catch bond. Ultimately, T cell activation and the ensuing physiological responses result from mechanical interaction between TCRs and the pMHC. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Baoyu Liu
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA; , ,
| | - Elizabeth M Kolawole
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA; , ,
| | - Brian D Evavold
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA; , ,
| |
Collapse
|
16
|
Pettmann J, Huhn A, Abu Shah E, Kutuzov MA, Wilson DB, Dustin ML, Davis SJ, van der Merwe PA, Dushek O. The discriminatory power of the T cell receptor. eLife 2021; 10:e67092. [PMID: 34030769 PMCID: PMC8219380 DOI: 10.7554/elife.67092] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/15/2021] [Indexed: 12/20/2022] Open
Abstract
T cells use their T cell receptors (TCRs) to discriminate between lower-affinity self and higher-affinity non-self peptides presented on major histocompatibility complex (pMHC) antigens. Although the discriminatory power of the TCR is widely believed to be near-perfect, technical difficulties have hampered efforts to precisely quantify it. Here, we describe a method for measuring very low TCR/pMHC affinities and use it to measure the discriminatory power of the TCR and the factors affecting it. We find that TCR discrimination, although enhanced compared with conventional cell-surface receptors, is imperfect: primary human T cells can respond to pMHC with affinities as low as KD ∼ 1 mM. The kinetic proofreading mechanism fit our data, providing the first estimates of both the time delay (2.8 s) and number of biochemical steps (2.67) that are consistent with the extraordinary sensitivity of antigen recognition. Our findings explain why self pMHC frequently induce autoimmune diseases and anti-tumour responses, and suggest ways to modify TCR discrimination.
Collapse
Affiliation(s)
- Johannes Pettmann
- Sir William Dunn School of Pathology, University of OxfordOxfordUnited Kingdom
- Radcliffe Department of Medicine, Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of OxfordOxfordUnited Kingdom
| | - Anna Huhn
- Sir William Dunn School of Pathology, University of OxfordOxfordUnited Kingdom
| | - Enas Abu Shah
- Sir William Dunn School of Pathology, University of OxfordOxfordUnited Kingdom
- Kennedy Institute of Rheumatology, University of OxfordOxfordUnited Kingdom
| | - Mikhail A Kutuzov
- Sir William Dunn School of Pathology, University of OxfordOxfordUnited Kingdom
| | - Daniel B Wilson
- Sir William Dunn School of Pathology, University of OxfordOxfordUnited Kingdom
- Boston University, Department of Mathematics and StatisticsBostonUnited States
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, University of OxfordOxfordUnited Kingdom
| | - Simon J Davis
- Radcliffe Department of Medicine, Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of OxfordOxfordUnited Kingdom
| | | | - Omer Dushek
- Sir William Dunn School of Pathology, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
17
|
Chua XY, Salomon A. Ovalbumin Antigen-Specific Activation of Human T Cell Receptor Closely Resembles Soluble Antibody Stimulation as Revealed by BOOST Phosphotyrosine Proteomics. J Proteome Res 2021; 20:3330-3344. [PMID: 34018748 DOI: 10.1021/acs.jproteome.1c00239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Activation of the T cell receptor (TCR) leads to a network of early signaling predominantly orchestrated by tyrosine phosphorylation in T cells. The TCR is commonly activated using soluble anti-TCR antibodies, but this approach is not antigen-specific. Alternatively, activating the TCR using specific antigens of a range of binding affinities in the form of a peptide-major histocompatibility complex (pMHC) is presumed to be more physiological. However, due to the lack of wide-scale phosphotyrosine (pTyr) proteomic studies directly comparing anti-TCR antibodies and pMHC, a comprehensive definition of these activated states remains enigmatic. Elucidation of the tyrosine phosphoproteome using quantitative pTyr proteomics enables a better understanding of the unique features of these activating agents and the role of ligand binding affinity on signaling. Here, we apply the recently established Broad-spectrum Optimization Of Selective Triggering (BOOST) to examine perturbations in tyrosine phosphorylation of human TCR triggered by anti-TCR antibodies and pMHC. Our data reveal that high-affinity ovalbumin (OVA) pMHC activation of the human TCR triggers a largely similar, albeit potentially stronger, pTyr-mediated signaling regulatory axis compared to the anti-TCR antibody. The signaling output resulting from OVA pMHC variants correlates well with their weaker affinities, enabling affinity-tunable control of signaling strength. Collectively, we provide a framework for applying BOOST to compare pTyr-mediated signaling pathways of human T cells activated in an antigen-independent and antigen-specific manner.
Collapse
Affiliation(s)
- Xien Yu Chua
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island 02912, United States
| | - Arthur Salomon
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
18
|
Kolawole EM, Lamb TJ, Evavold BD. Relationship of 2D Affinity to T Cell Functional Outcomes. Int J Mol Sci 2020; 21:E7969. [PMID: 33120989 PMCID: PMC7662510 DOI: 10.3390/ijms21217969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/14/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
T cells are critical for a functioning adaptive immune response and a strong correlation exists between T cell responses and T cell receptor (TCR): peptide-loaded MHC (pMHC) binding. Studies that utilize pMHC tetramer, multimers, and assays of three-dimensional (3D) affinity have provided advancements in our understanding of T cell responses across different diseases. However, these technologies focus on higher affinity and avidity T cells while missing the lower affinity responders. Lower affinity TCRs in expanded polyclonal populations almost always constitute a significant proportion of the response with cells mediating different effector functions associated with variation in the proportion of high and low affinity T cells. Since lower affinity T cells expand and are functional, a fully inclusive view of T cell responses is required to accurately interpret the role of affinity for adaptive T cell immunity. For example, low affinity T cells are capable of inducing autoimmune disease and T cells with an intermediate affinity have been shown to exhibit an optimal anti-tumor response. Here, we focus on how affinity of the TCR may relate to T cell phenotype and provide examples where 2D affinity influences functional outcomes.
Collapse
Affiliation(s)
| | | | - Brian D. Evavold
- Department of Pathology, University of Utah, 15 N Medical Drive, Salt Lake City, UT 84112, USA; (E.M.K.); (T.J.L.)
| |
Collapse
|
19
|
Junghans V, Chouliara M, Santos AM, Hatherley D, Petersen J, Dam T, Svensson LM, Rossjohn J, Davis SJ, Jönsson P. Effects of a local auxiliary protein on the two-dimensional affinity of a TCR-peptide MHC interaction. J Cell Sci 2020; 133:jcs245985. [PMID: 32591485 DOI: 10.1242/jcs.245985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/11/2020] [Indexed: 12/20/2022] Open
Abstract
The affinity of T-cell receptors (TCRs) for major histocompatibility complex molecules (MHCs) presenting cognate antigens likely determines whether T cells initiate immune responses, or not. There exist few measurements of two-dimensional (2D) TCR-MHC interactions, and the effect of auxiliary proteins on binding is unexplored. Here, Jurkat T-cells expressing the MHC molecule HLA-DQ8-glia-α1 and the ligand of an adhesion protein (rat CD2) were allowed to bind supported lipid bilayers (SLBs) presenting fluorescently labelled L3-12 TCR and rat CD2, allowing measurements of binding unconfounded by cell signaling effects or co-receptor binding. The 2D Kd for L3-12 TCR binding to HLA-DQ8-glia-α1, of 14±5 molecules/μm2 (mean±s.d.), was only marginally influenced by including CD2 up to ∼200 bound molecules/μm2 but higher CD2 densities reduced the affinity up to 1.9-fold. Cell-SLB contact size increased steadily with ligand density without affecting binding for contacts at up to ∼20% of total cell area, but beyond this lamellipodia appeared, giving an apparent increase in bound receptors of up to 50%. Our findings show how parameters other than the specific protein-protein interaction can influence binding behavior at cell-cell contacts.
Collapse
Affiliation(s)
| | - Manto Chouliara
- Department of Chemistry, Lund University, 221 00 Lund, Sweden
| | - Ana Mafalda Santos
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford; and Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, OX3 9DS Oxford, UK
| | - Deborah Hatherley
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford; and Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, OX3 9DS Oxford, UK
| | - Jan Petersen
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Tommy Dam
- Department of Chemistry, Lund University, 221 00 Lund, Sweden
| | - Lena M Svensson
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden; and School of Medical Sciences, Örebro University, 701 82 Örebro, Sweden
| | - Jamie Rossjohn
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Simon J Davis
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford; and Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, OX3 9DS Oxford, UK
| | - Peter Jönsson
- Department of Chemistry, Lund University, 221 00 Lund, Sweden
| |
Collapse
|
20
|
Tsitsiklis A, Bangs DJ, Lutes LK, Chan SW, Geiger KM, Modzelewski AJ, Labarta-Bajo L, Wang Y, Zuniga EI, Dai S, Robey EA. An Unusual MHC Molecule Generates Protective CD8+ T Cell Responses to Chronic Infection. Front Immunol 2020; 11:1464. [PMID: 32733483 PMCID: PMC7360836 DOI: 10.3389/fimmu.2020.01464] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/05/2020] [Indexed: 02/01/2023] Open
Abstract
The CD8+ T cell response to the intracellular parasite Toxoplasma gondii varies dramatically between mouse strains, resulting in stark differences in control of the parasite. Protection in BALB/c mice can be attributed to an unusually strong and protective MHC-1 Ld-restricted CD8+ T cell response directed against a peptide derived from the parasite antigen GRA6. The MHC-1 Ld molecule has limited peptide binding compared to conventional MHC molecules such as Kb or Db, which correlates with polymorphisms associated with "elite control" of HIV in humans. To investigate the link between the unusual MHC-1 molecule Ld and the generation of "elite controller" CD8+ T cell responses, we compared the GRA6-Ld specific T cell response to the well-studied OVA-Kb specific response, and demonstrated that GRA6-Ld specific T cells are significantly more protective and resistant to exhaustion in chronic T. gondii infection. To further investigate the connection between limited peptide presentation and robust T cell responses, we used CRISPR/Cas9 to generate mice with a point mutation (W97R) in the peptide-binding groove of Ld that results in broader peptide binding. We investigated the effect of this Ld W97R mutation on another robust Ld-restricted response against the IE1 peptide during Murine Cytomegalovirus (MCMV) infection. This mutation leads to an increase in exhaustion markers in the IE1-Ld specific CD8+ T cell response. Our results indicate that limited peptide binding by MHC-1 Ld correlates with the development of robust and protective CD8+ T cell responses that may avoid exhaustion during chronic infection.
Collapse
Affiliation(s)
- Alexandra Tsitsiklis
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Derek J. Bangs
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Lydia K. Lutes
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Shiao W. Chan
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Kristina M. Geiger
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Andrew J. Modzelewski
- Division of Cell and Developmental Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Lara Labarta-Bajo
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Yang Wang
- Department of Pharmaceutical Sciences, University of Colorado School of Pharmacy, Aurora, CO, United States
| | - Elina I. Zuniga
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Shaodong Dai
- Department of Pharmaceutical Sciences, University of Colorado School of Pharmacy, Aurora, CO, United States
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Ellen A. Robey
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
21
|
Riley TP, Baker BM. The intersection of affinity and specificity in the development and optimization of T cell receptor based therapeutics. Semin Cell Dev Biol 2018; 84:30-41. [DOI: 10.1016/j.semcdb.2017.10.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 10/07/2017] [Accepted: 10/17/2017] [Indexed: 12/29/2022]
|
22
|
Richard AC, Lun ATL, Lau WWY, Göttgens B, Marioni JC, Griffiths GM. T cell cytolytic capacity is independent of initial stimulation strength. Nat Immunol 2018; 19:849-858. [PMID: 30013148 PMCID: PMC6300116 DOI: 10.1038/s41590-018-0160-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/31/2018] [Indexed: 01/15/2023]
Abstract
How cells respond to myriad stimuli with finite signaling machinery is central to immunology. In naive T cells, the inherent effect of ligand strength on activation pathways and endpoints has remained controversial, confounded by environmental fluctuations and intercellular variability within populations. Here we studied how ligand potency affected the activation of CD8+ T cells in vitro, through the use of genome-wide RNA, multi-dimensional protein and functional measurements in single cells. Our data revealed that strong ligands drove more efficient and uniform activation than did weak ligands, but all activated cells were fully cytolytic. Notably, activation followed the same transcriptional pathways regardless of ligand potency. Thus, stimulation strength did not intrinsically dictate the T cell-activation route or phenotype; instead, it controlled how rapidly and simultaneously the cells initiated activation, allowing limited machinery to elicit wide-ranging responses.
Collapse
Affiliation(s)
- Arianne C Richard
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Aaron T L Lun
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Winnie W Y Lau
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
- Department of Haematology, Wellcome - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Berthold Göttgens
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
- Department of Haematology, Wellcome - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - John C Marioni
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Cambridge, UK.
- Wellcome Sanger Institute, Cambridge, UK.
| | - Gillian M Griffiths
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
23
|
Caso F, Costa L, Nucera V, Barilaro G, Masala IF, Talotta R, Caso P, Scarpa R, Sarzi-Puttini P, Atzeni F. From autoinflammation to autoimmunity: old and recent findings. Clin Rheumatol 2018; 37:2305-2321. [PMID: 30014358 DOI: 10.1007/s10067-018-4209-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 12/13/2022]
Abstract
Autoimmune diseases and autoinflammatory diseases have a number of similar etiopathogenetic and clinical characteristics, including genetic predisposition and recurrent systemic inflammatory flares. The first phase of ADs involves innate immunity: by means of TLRs, autoantigen presentation, B and T cell recruitment and autoantibody synthesis. The second phase involves adaptive immunity, a self-sustaining process in which immune complexes containing nucleic acids and autoantibodies activate self-directed inflammation. The link between autoimmunity and autoinflammation is IL-1ß, which is crucial in connecting the innate immune response due to NLR activation and the adaptive immune responses of T and B cells. In conclusion, although ADs are still considered adaptive immunity-mediated disorders, there is increasing evidence that innate immunity and inflammasomes are also involved. The aim of this review is to highlight the link between the innate and adaptive immune mechanisms involved in autoimmune diseases.
Collapse
Affiliation(s)
- Francesco Caso
- Rheumatology Unit, Department of Clinical Medicine and Surgery, University Federico II, Via Sergio Pansini, 5, Naples, Italy
| | - Luisa Costa
- Rheumatology Unit, Department of Clinical Medicine and Surgery, University Federico II, Via Sergio Pansini, 5, Naples, Italy
| | - Valeria Nucera
- Rheumatology Unit, University of Messina, Messina, Italy
| | - Giuseppe Barilaro
- Department of Internal Medicine, IRCCS San Raffaele Pisana, Rome, Italy
| | | | - Rossella Talotta
- Rheumatology Unit, ASST Fatebenefratelli Sacco Buzzi, Milan, Italy
| | - Paolo Caso
- Geriatric Unit, Faculty of Medicine and Psychology, S. Andrea Hospital, "Sapienza" University of Rome, Rome, Italy
| | - Raffaele Scarpa
- Rheumatology Unit, Department of Clinical Medicine and Surgery, University Federico II, Via Sergio Pansini, 5, Naples, Italy.
| | | | - Fabiola Atzeni
- Rheumatology Unit, University of Messina, Messina, Italy
| |
Collapse
|
24
|
Al-Aghbar MA, Chu YS, Chen BM, Roffler SR. High-Affinity Ligands Can Trigger T Cell Receptor Signaling Without CD45 Segregation. Front Immunol 2018; 9:713. [PMID: 29686683 PMCID: PMC5900011 DOI: 10.3389/fimmu.2018.00713] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/22/2018] [Indexed: 11/13/2022] Open
Abstract
How T cell receptors (TCRs) are triggered to start signaling is still not fully understood. It has been proposed that segregation of the large membrane tyrosine phosphatase CD45 from engaged TCRs initiates signaling by favoring phosphorylation of immunoreceptor tyrosine-based activation motifs (ITAMs) in the cytoplasmic domains of CD3 molecules. However, whether CD45 segregation is important to initiate triggering is still uncertain. We examined CD45 segregation from TCRs engaged to anti-CD3 scFv with high or low affinity and with defined molecular lengths on glass-supported lipid bilayers using total internal reflection microscopy. Both short and elongated high-affinity anti-CD3 scFv effectively induced similar calcium mobilization, Zap70 phosphorylation, and cytokine secretion in Jurkat T cells but CD45 segregated from activated TCR microclusters significantly less for elongated versus short anti-CD3 ligands. In addition, at early times, triggering cells with both high and low affinity elongated anti-CD3 scFv resulted in similar degrees of CD3 co-localization with CD45, but only the high-affinity scFv induced T cell activation. The lack of correlation between CD45 segregation and early markers of T cell activation suggests that segregation of CD45 from engaged TCRs is not mandatory for initial triggering of TCR signaling by elongated high-affinity ligands.
Collapse
Affiliation(s)
- Mohammad Ameen Al-Aghbar
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University, Academia Sinica, Taipei, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Yeh-Shiu Chu
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Bing-Mae Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Steve R Roffler
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
25
|
Liang W, Mao S, Sun S, Li M, Li Z, Yu R, Ma T, Gu J, Zhang J, Taniguchi N, Li W. Core Fucosylation of the T Cell Receptor Is Required for T Cell Activation. Front Immunol 2018; 9:78. [PMID: 29434598 PMCID: PMC5796888 DOI: 10.3389/fimmu.2018.00078] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/11/2018] [Indexed: 12/05/2022] Open
Abstract
CD4+ T cell activation promotes the pathogenic process of systemic lupus erythematosus (SLE). T cell receptor (TCR) complex are highly core fucosylated glycoproteins, which play important roles in T cell activation. In this study, we found that the core fucosylation of CD4+ T cells was significantly increased in SLE patients. Loss of core fucosyltransferase (Fut8), the sole enzyme for catalyzing the core fucosylation of N-glycan, significantly reduced CD4+ T cell activation and ameliorated the experimental autoimmune encephalomyelitis-induced syndrome in Fut8−/− mice. T cell activation with OVA323–339 loaded major histocompatibility complex II (pMHC-II) on B cell was dramatically attenuated in Fut8−/−OT-II CD4+ T cells compared with Fut8+/+OT-II CD4+ T cells. Moreover, the phosphorylation of ZAP-70 was significantly reduced in Fut8+/+OT-II CD4+ T cells by the treatment of fucosidase. Our results suggest that core fucosylation is required for efficient TCR–pMHC-II contacts in CD4+ T cell activation, and hyper core fucosylation may serve as a potential novel biomarker in the sera from SLE patients.
Collapse
Affiliation(s)
- Wei Liang
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Shanshan Mao
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Shijie Sun
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Ming Li
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Zhi Li
- Clinical Laboratory, Dalian Municipal Central Hospital, Dalian, China
| | - Rui Yu
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Tonghui Ma
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Jianing Zhang
- School of Life Science and Medicine, Dalian University of Technology, Panjin, China
| | - Naoyuki Taniguchi
- Systems Glycobiology Research Group, Advanced Science Institute, RIKEN, Saitama, Japan
| | - Wenzhe Li
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
26
|
Abstract
Thymocyte selection involves the positive and negative selection of the repertoire of T cell receptors (TCRs) such that the organism does not suffer autoimmunity, yet has the benefit of the ability to recognize any invading pathogen. The signal transduced through the TCR is translated into a number of different signaling cascades that result in transcription factor activity in the nucleus and changes to the cytoskeleton and motility. Negative selection involves inducing apoptosis in thymocytes that express strongly self-reactive TCRs, whereas positive selection must induce survival and differentiation programs in cells that are more weakly self-reactive. The TCR recognition event is analog by nature, but the outcome of signaling is not. A large number of molecules regulate the strength of the TCR-derived signal at various points in the cascades. This review discusses the various factors that can regulate the strength of the TCR signal during thymocyte development.
Collapse
Affiliation(s)
- Nicholas R J Gascoigne
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, and Immunology Program, National University of Singapore, Singapore 11759;
| | - Vasily Rybakin
- Laboratory of Immunobiology, REGA Institute, Department of Microbiology and Immunology, KU Leuven, Leuven 3000, Belgium
| | - Oreste Acuto
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Joanna Brzostek
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, and Immunology Program, National University of Singapore, Singapore 11759;
| |
Collapse
|
27
|
Courtney AH, Lo WL, Weiss A. TCR Signaling: Mechanisms of Initiation and Propagation. Trends Biochem Sci 2017; 43:108-123. [PMID: 29269020 DOI: 10.1016/j.tibs.2017.11.008] [Citation(s) in RCA: 329] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/21/2017] [Accepted: 11/21/2017] [Indexed: 10/18/2022]
Abstract
The mechanisms by which a T cell detects antigen using its T cell antigen receptor (TCR) are crucial to our understanding of immunity and the harnessing of T cells therapeutically. A hallmark of the T cell response is the ability of T cells to quantitatively respond to antigenic ligands derived from pathogens while remaining inert to similar ligands derived from host tissues. Recent studies have revealed exciting properties of the TCR and the behaviors of its signaling effectors that are used to detect and discriminate between antigens. Here we highlight these recent findings, focusing on the proximal TCR signaling molecules Zap70, Lck, and LAT, to provide mechanistic models and insights into the exquisite sensitivity and specificity of the TCR.
Collapse
Affiliation(s)
- Adam H Courtney
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Howard Hughes Medical Institute (HHMI), San Francisco, CA 94143, USA
| | - Wan-Lin Lo
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Howard Hughes Medical Institute (HHMI), San Francisco, CA 94143, USA
| | - Arthur Weiss
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Howard Hughes Medical Institute (HHMI), San Francisco, CA 94143, USA.
| |
Collapse
|
28
|
Takada K, Kondo K, Takahama Y. Generation of Peptides That Promote Positive Selection in the Thymus. THE JOURNAL OF IMMUNOLOGY 2017; 198:2215-2222. [PMID: 28264997 DOI: 10.4049/jimmunol.1601862] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 11/29/2016] [Indexed: 11/19/2022]
Abstract
To establish an immunocompetent TCR repertoire that is useful yet harmless to the body, a de novo thymocyte repertoire generated through the rearrangement of genes that encode TCR is shaped in the thymus through positive and negative selection. The affinity between TCRs and self-peptides associated with MHC molecules determines the fate of developing thymocytes. Low-affinity TCR engagement with self-peptide-MHC complexes mediates positive selection, a process that primarily occurs in the thymic cortex. Massive efforts exerted by many laboratories have led to the characterization of peptides that can induce positive selection. Moreover, it is now evident that protein degradation machineries unique to cortical thymic epithelial cells play a crucial role in the production of MHC-associated self-peptides for inducing positive selection. This review summarizes current knowledge on positive selection-inducing self-peptides and Ag processing machineries in cortical thymic epithelial cells. Recent studies on the role of positive selection in the functional tuning of T cells are also discussed.
Collapse
Affiliation(s)
- Kensuke Takada
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima 770-8503, Japan
| | - Kenta Kondo
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima 770-8503, Japan
| | - Yousuke Takahama
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima 770-8503, Japan
| |
Collapse
|
29
|
Contractile actomyosin arcs promote the activation of primary mouse T cells in a ligand-dependent manner. PLoS One 2017; 12:e0183174. [PMID: 28817635 PMCID: PMC5560663 DOI: 10.1371/journal.pone.0183174] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 07/31/2017] [Indexed: 12/16/2022] Open
Abstract
Mechano-transduction is an emerging but still poorly understood component of T cell activation. Here we investigated the ligand-dependent contribution made by contractile actomyosin arcs populating the peripheral supramolecular activation cluster (pSMAC) region of the immunological synapse (IS) to T cell receptor (TCR) microcluster transport and proximal signaling in primary mouse T cells. Using super resolution microscopy, OT1-CD8+ mouse T cells, and two ovalbumin (OVA) peptides with different affinities for the TCR, we show that the generation of organized actomyosin arcs depends on ligand potency and the ability of myosin 2 to contract actin filaments. While weak ligands induce disorganized actomyosin arcs, strong ligands result in organized actomyosin arcs that correlate well with tension-sensitive CasL phosphorylation and the accumulation of ligands at the IS center. Blocking myosin 2 contractility greatly reduces the difference in the extent of Src and LAT phosphorylation observed between the strong and the weak ligand, arguing that myosin 2-dependent force generation within actin arcs contributes to ligand discrimination. Together, our data are consistent with the idea that actomyosin arcs in the pSMAC region of the IS promote a mechano-chemical feedback mechanism that amplifies the accumulation of critical signaling molecules at the IS.
Collapse
|
30
|
Chen BM, Al-Aghbar MA, Lee CH, Chang TC, Su YC, Li YC, Chang SE, Chen CC, Chung TH, Liao YC, Lee CH, Roffler SR. The Affinity of Elongated Membrane-Tethered Ligands Determines Potency of T Cell Receptor Triggering. Front Immunol 2017; 8:793. [PMID: 28740495 PMCID: PMC5502409 DOI: 10.3389/fimmu.2017.00793] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/22/2017] [Indexed: 01/17/2023] Open
Abstract
T lymphocytes are important mediators of adoptive immunity but the mechanism of T cell receptor (TCR) triggering remains uncertain. The interspatial distance between engaged T cells and antigen-presenting cells (APCs) is believed to be important for topological rearrangement of membrane tyrosine phosphatases and initiation of TCR signaling. We investigated the relationship between ligand topology and affinity by generating a series of artificial APCs that express membrane-tethered anti-CD3 scFv with different affinities (OKT3, BC3, and 2C11) in addition to recombinant class I and II pMHC molecules. The dimensions of membrane-tethered anti-CD3 and pMHC molecules were progressively increased by insertion of different extracellular domains. In agreement with previous studies, elongation of pMHC molecules or low-affinity anti-CD3 scFv caused progressive loss of T cell activation. However, elongation of high-affinity ligands (BC3 and OKT3 scFv) did not abolish TCR phosphorylation and T cell activation. Mutation of key amino acids in OKT3 to reduce binding affinity to CD3 resulted in restoration of topological dependence on T cell activation. Our results show that high-affinity TCR ligands can effectively induce TCR triggering even at large interspatial distances between T cells and APCs.
Collapse
Affiliation(s)
- Bing-Mae Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Mohammad Ameen Al-Aghbar
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Chien-Hsin Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Tien-Ching Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Cheng Su
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ya-Chen Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shih-En Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chin-Chuan Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Tsai-Hua Chung
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yuan-Chun Liao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chau-Hwang Lee
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan.,Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan.,Department of Physics, National Taiwan University, Taipei, Taiwan
| | - Steve R Roffler
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
31
|
Cruz Tleugabulova M, Escalante NK, Deng S, Fieve S, Ereño-Orbea J, Savage PB, Julien JP, Mallevaey T. Discrete TCR Binding Kinetics Control Invariant NKT Cell Selection and Central Priming. THE JOURNAL OF IMMUNOLOGY 2016; 197:3959-3969. [PMID: 27798168 DOI: 10.4049/jimmunol.1601382] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 09/15/2016] [Indexed: 12/21/2022]
Abstract
Invariant NKT (iNKT) cells develop and differentiate in the thymus, segregating into iNKT1/2/17 subsets akin to Th1/2/17 classical CD4+ T cells; however, iNKT TCRs recognize Ags in a fundamentally different way. How the biophysical parameters of iNKT TCRs influence signal strength in vivo and how such signals affect the development and differentiation of these cells are unknown. In this study, we manipulated TCRs in vivo to generate clonotypic iNKT cells using TCR retrogenic chimeras. We report that the biophysical properties of CD1d-lipid-TCR interactions differentially impacted the development and effector differentiation of iNKT cells. Whereas selection efficiency strongly correlated with TCR avidity, TCR signaling, cell-cell conjugate formation, and iNKT effector differentiation correlated with the half-life of CD1d-lipid-TCR interactions. TCR binding properties, however, did not modulate Ag-induced iNKT cytokine production. Our work establishes that discrete TCR interaction kinetics influence iNKT cell development and central priming.
Collapse
Affiliation(s)
| | - Nichole K Escalante
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Shenglou Deng
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Stephanie Fieve
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - June Ereño-Orbea
- The Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada; and
| | - Paul B Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Jean-Philippe Julien
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,The Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada; and.,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Thierry Mallevaey
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada;
| |
Collapse
|
32
|
Hebeisen M, Allard M, Gannon PO, Schmidt J, Speiser DE, Rufer N. Identifying Individual T Cell Receptors of Optimal Avidity for Tumor Antigens. Front Immunol 2015; 6:582. [PMID: 26635796 PMCID: PMC4649060 DOI: 10.3389/fimmu.2015.00582] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/30/2015] [Indexed: 02/02/2023] Open
Abstract
Cytotoxic T cells recognize, via their T cell receptors (TCRs), small antigenic peptides presented by the major histocompatibility complex (pMHC) on the surface of professional antigen-presenting cells and infected or malignant cells. The efficiency of T cell triggering critically depends on TCR binding to cognate pMHC, i.e., the TCR–pMHC structural avidity. The binding and kinetic attributes of this interaction are key parameters for protective T cell-mediated immunity, with stronger TCR–pMHC interactions conferring superior T cell activation and responsiveness than weaker ones. However, high-avidity TCRs are not always available, particularly among self/tumor antigen-specific T cells, most of which are eliminated by central and peripheral deletion mechanisms. Consequently, systematic assessment of T cell avidity can greatly help distinguishing protective from non-protective T cells. Here, we review novel strategies to assess TCR–pMHC interaction kinetics, enabling the identification of the functionally most-relevant T cells. We also discuss the significance of these technologies in determining which cells within a naturally occurring polyclonal tumor-specific T cell response would offer the best clinical benefit for use in adoptive therapies, with or without T cell engineering.
Collapse
Affiliation(s)
- Michael Hebeisen
- Department of Oncology, Lausanne University Hospital Center (CHUV), University of Lausanne , Epalinges , Switzerland
| | - Mathilde Allard
- Department of Oncology, Lausanne University Hospital Center (CHUV), University of Lausanne , Epalinges , Switzerland
| | - Philippe O Gannon
- Department of Oncology, Lausanne University Hospital Center (CHUV), University of Lausanne , Epalinges , Switzerland
| | - Julien Schmidt
- Ludwig Center for Cancer Research, University of Lausanne , Epalinges , Switzerland ; TCMetrix Sàrl , Epalinges , Switzerland
| | - Daniel E Speiser
- Department of Oncology, Lausanne University Hospital Center (CHUV), University of Lausanne , Epalinges , Switzerland ; Ludwig Center for Cancer Research, University of Lausanne , Epalinges , Switzerland
| | - Nathalie Rufer
- Department of Oncology, Lausanne University Hospital Center (CHUV), University of Lausanne , Epalinges , Switzerland ; Ludwig Center for Cancer Research, University of Lausanne , Epalinges , Switzerland
| |
Collapse
|
33
|
Attaf M, Huseby E, Sewell AK. αβ T cell receptors as predictors of health and disease. Cell Mol Immunol 2015; 12:391-9. [PMID: 25619506 PMCID: PMC4496535 DOI: 10.1038/cmi.2014.134] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 12/17/2014] [Indexed: 02/08/2023] Open
Abstract
The diversity of antigen receptors and the specificity it underlies are the hallmarks of the cellular arm of the adaptive immune system. T and B lymphocytes are indeed truly unique in their ability to generate receptors capable of recognizing virtually any pathogen. It has been known for several decades that T lymphocytes recognize short peptides derived from degraded proteins presented by major histocompatibility complex (MHC) molecules at the cell surface. Interaction between peptide-MHC (pMHC) and the T cell receptor (TCR) is central to both thymic selection and peripheral antigen recognition. It is widely assumed that TCR diversity is required, or at least highly desirable, to provide sufficient immune coverage. However, a number of immune responses are associated with the selection of predictable, narrow, or skewed repertoires and public TCR chains. Here, we summarize the current knowledge on the formation of the TCR repertoire and its maintenance in health and disease. We also outline the various molecular mechanisms that govern the composition of the pre-selection, naive and antigen-specific TCR repertoires. Finally, we suggest that with the development of high-throughput sequencing, common TCR 'signatures' raised against specific antigens could provide important diagnostic biomarkers and surrogate predictors of disease onset, progression and outcome.
Collapse
Affiliation(s)
- Meriem Attaf
- Cardiff University School of Medicine, Cardiff, UK
| | - Eric Huseby
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | | |
Collapse
|
34
|
Liu B, Chen W, Natarajan K, Li Z, Margulies DH, Zhu C. The cellular environment regulates in situ kinetics of T-cell receptor interaction with peptide major histocompatibility complex. Eur J Immunol 2015; 45:2099-110. [PMID: 25944482 DOI: 10.1002/eji.201445358] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/17/2015] [Accepted: 04/30/2015] [Indexed: 11/12/2022]
Abstract
T cells recognize antigens at the two-dimensional (2D) interface with antigen-presenting cells (APCs), which trigger T-cell effector functions. T-cell functional outcomes correlate with 2D kinetics of membrane-embedded T-cell receptors (TCRs) binding to surface-tethered peptide-major histocompatibility complex molecules (pMHCs). However, most studies have measured TCR-pMHC kinetics for recombinant TCRs in 3D by surface plasmon resonance, which differs drastically from 2D measurements. Here, we compared pMHC dissociation from native TCR on the T-cell surface to recombinant TCR immobilized on glass surface or in solution. Force on TCR-pMHC bonds regulated their lifetimes differently for native than recombinant TCRs. Perturbing the cellular environment suppressed 2D on-rates but had no effect on 2D off-rate regardless of whether force was applied. In contrast, for the TCR interacting with its monoclonal antibody, the 2D on-rate was insensitive to cellular perturbations and the force-dependent off-rates were indistinguishable for native and recombinant TCRs. These data present novel features of TCR-pMHC kinetics that are regulated by the cellular environment, underscoring the limitations of 3D kinetics in predicting T-cell functions and calling for further elucidation of the underlying molecular and cellular mechanisms that regulate 2D kinetics in physiological settings.
Collapse
Affiliation(s)
- Baoyu Liu
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Wei Chen
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kannan Natarajan
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, USA
| | - Zhenhai Li
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - David H Margulies
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, USA
| | - Cheng Zhu
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.,Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.,Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
35
|
Tiwari PB, Wang X, He J, Darici Y. Analyzing surface plasmon resonance data: choosing a correct biphasic model for interpretation. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2015; 86:035001. [PMID: 25832266 DOI: 10.1063/1.4914027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Surface plasmon resonance (SPR) has been widely used as a label-free biophysical technique to quantitatively study biochemical processes. For the SPR data fitting using a single exponential function, the procedure to extract the rate constants is straightforward. However, there is no simple procedure for SPR data fitting with double exponential functions. A highly non-linear fitting procedure is, therefore, used to fit the biphasic SPR data with numerical solutions of the rate equations. This procedure requires some prior knowledge of the underlying interaction mechanism, and the extracted rate constants often have large uncertainties. In this report, we propose a new method of analyzing the biphasic SPR data using the three commonly employed biphasic models. Our method is based on a general analytical solution of the biphasic rate equations, which is much more transparent and straightforward than the highly non-linear numerical integration approach. Our method can be used to determine the underlying biphasic interaction mechanism from the analysis of the SPR data and to extract the rate constants with high confidence levels. We have illustrated the procedures with examples of the data analysis on simulated SPR profiles, and the results are discussed.
Collapse
Affiliation(s)
| | - Xuewen Wang
- Department of Physics, Florida International University, Miami, Florida 33199, USA
| | - Jin He
- Department of Physics, Florida International University, Miami, Florida 33199, USA
| | - Yesim Darici
- Department of Physics, Florida International University, Miami, Florida 33199, USA
| |
Collapse
|
36
|
Depoil D, Dustin ML. Force and affinity in ligand discrimination by the TCR. Trends Immunol 2014; 35:597-603. [PMID: 25466309 DOI: 10.1016/j.it.2014.10.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/24/2014] [Accepted: 10/24/2014] [Indexed: 01/30/2023]
Abstract
T cell recognition of antigen is a physical process that requires formation of a cell-cell junction that is rich in active force generation. Recently a biomolecular force probe was used to examine how the T cell receptor (TCR)-pMHC interaction responds to force and the consequences of force-dependent interactions for T cell activation. While adhesion and costimulatory molecules in the immunological synapse impact upon the overall force of the interaction, these results suggest that the TCR uses a force-dependent bond - a catch bond - and that it may therefore be important to consider the TCR-pMHC interaction in isolation in the early phases of the decision process. We discuss here these findings in the context of other work on the impact of forces on the TCR and the quantification of interaction in interfaces.
Collapse
Affiliation(s)
- David Depoil
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics and Musculosceletal Sciences, The University of Oxford, Roosevelt Drive, Headington, OX3 7FY, United Kingdom; Helene and Martin Kimmel Center for Biology and Medicine of the Skirball Institute of Biomolecular Medicine, Department of Pathology, New York University School of Medicine, 540 First Avenue, New York, NY 10012, USA
| | - Michael L Dustin
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics and Musculosceletal Sciences, The University of Oxford, Roosevelt Drive, Headington, OX3 7FY, United Kingdom; Helene and Martin Kimmel Center for Biology and Medicine of the Skirball Institute of Biomolecular Medicine, Department of Pathology, New York University School of Medicine, 540 First Avenue, New York, NY 10012, USA.
| |
Collapse
|
37
|
Stepanek O, Prabhakar AS, Osswald C, King CG, Bulek A, Naeher D, Beaufils-Hugot M, Abanto ML, Galati V, Hausmann B, Lang R, Cole DK, Huseby ES, Sewell AK, Chakraborty AK, Palmer E. Coreceptor scanning by the T cell receptor provides a mechanism for T cell tolerance. Cell 2014; 159:333-45. [PMID: 25284152 PMCID: PMC4304671 DOI: 10.1016/j.cell.2014.08.042] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/14/2014] [Accepted: 08/29/2014] [Indexed: 12/11/2022]
Abstract
In the thymus, high-affinity, self-reactive thymocytes are eliminated from the pool of developing T cells, generating central tolerance. Here, we investigate how developing T cells measure self-antigen affinity. We show that very few CD4 or CD8 coreceptor molecules are coupled with the signal-initiating kinase, Lck. To initiate signaling, an antigen-engaged T cell receptor (TCR) scans multiple coreceptor molecules to find one that is coupled to Lck; this is the first and rate-limiting step in a kinetic proofreading chain of events that eventually leads to TCR triggering and negative selection. MHCII-restricted TCRs require a shorter antigen dwell time (0.2 s) to initiate negative selection compared to MHCI-restricted TCRs (0.9 s) because more CD4 coreceptors are Lck-loaded compared to CD8. We generated a model (Lck come&stay/signal duration) that accurately predicts the observed differences in antigen dwell-time thresholds used by MHCI- and MHCII-restricted thymocytes to initiate negative selection and generate self-tolerance.
Collapse
Affiliation(s)
- Ondrej Stepanek
- Departments of Biomedicine and Nephrology, University Hospital Basel and University of Basel, 4031 Basel, Switzerland.
| | - Arvind S Prabhakar
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Celine Osswald
- Departments of Biomedicine and Nephrology, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
| | - Carolyn G King
- Departments of Biomedicine and Nephrology, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
| | - Anna Bulek
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Dieter Naeher
- Departments of Biomedicine and Nephrology, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
| | - Marina Beaufils-Hugot
- Departments of Biomedicine and Nephrology, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
| | - Michael L Abanto
- Departments of Biomedicine and Nephrology, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
| | - Virginie Galati
- Departments of Biomedicine and Nephrology, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
| | - Barbara Hausmann
- Departments of Biomedicine and Nephrology, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
| | - Rosemarie Lang
- Departments of Biomedicine and Nephrology, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
| | - David K Cole
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Eric S Huseby
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Andrew K Sewell
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Arup K Chakraborty
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Institute for Medical Engineering and Science, Departments of Physics, Chemistry, and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, 400 Technology Square, Cambridge, MA 02139, USA
| | - Ed Palmer
- Departments of Biomedicine and Nephrology, University Hospital Basel and University of Basel, 4031 Basel, Switzerland.
| |
Collapse
|
38
|
Smith TRF, Verdeil G, Marquardt K, Sherman LA. Contribution of TCR signaling strength to CD8+ T cell peripheral tolerance mechanisms. THE JOURNAL OF IMMUNOLOGY 2014; 193:3409-16. [PMID: 25156361 DOI: 10.4049/jimmunol.1401194] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Peripheral tolerance mechanisms are in place to prevent T cells from mediating aberrant immune responses directed against self and environmental Ags. Mechanisms involved in the induction of peripheral tolerance include T cell-intrinsic pathways, such as anergy or deletion, or exogenous tolerance mediated by regulatory T cells. We have previously shown that the density of peptide-MHC class I recognized by the TCR determines whether CD8(+) T cells undergo anergy or deletion. Specifically, using a TCR-transgenic CD8(+) T cell model, we demonstrated that persistent peripheral exposure to low- or high-dose peptides in the absence of inflammatory signals resulted in clonal deletion or anergy of the T cell, respectively. In this study, by altering the affinity of the peptide-MHC tolerogen for TCR, we have confirmed that this mechanism is dependent on the level of TCR signaling that the CD8(+) T cell receives. Using altered peptide ligands (APLs) displaying high TCR affinities, we show that increasing the TCR signaling favors anergy induction. Conversely, using APLs displaying a decreased TCR affinity tilted our system in the direction of deletional tolerance. We demonstrate how differential peripheral CD8(+) T cell tolerance mechanisms are controlled by both the potency and density of MHC class I-peptide tolerogen.
Collapse
Affiliation(s)
- Trevor R F Smith
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, La Jolla, CA 92037
| | - Gregory Verdeil
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, La Jolla, CA 92037
| | - Kristi Marquardt
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, La Jolla, CA 92037
| | - Linda A Sherman
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
39
|
Nauerth M, Weissbrich B, Busch DH. The clinical potential for koff-rate measurement in adoptive immunotherapy. Expert Rev Clin Immunol 2014; 9:1151-3. [PMID: 24215403 DOI: 10.1586/1744666x.2013.855609] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Magdalena Nauerth
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, 81675 Munich, Germany
| | | | | |
Collapse
|
40
|
Osuna CE, Gonzalez AM, Chang HH, Hung AS, Ehlinger E, Anasti K, Alam SM, Letvin NL. TCR affinity associated with functional differences between dominant and subdominant SIV epitope-specific CD8+ T cells in Mamu-A*01+ rhesus monkeys. PLoS Pathog 2014; 10:e1004069. [PMID: 24743648 PMCID: PMC3990730 DOI: 10.1371/journal.ppat.1004069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 02/28/2014] [Indexed: 01/18/2023] Open
Abstract
Many of the factors that contribute to CD8+ T cell immunodominance hierarchies during viral infection are known. However, the functional differences that exist between dominant and subdominant epitope-specific CD8+ T cells remain poorly understood. In this study, we characterized the phenotypic and functional differences between dominant and subdominant simian immunodeficiency virus (SIV) epitope-specific CD8+ T cells restricted by the major histocompatibility complex (MHC) class I allele Mamu-A*01 during acute and chronic SIV infection. Whole genome expression analyses during acute infection revealed that dominant SIV epitope-specific CD8+ T cells had a gene expression profile consistent with greater maturity and higher cytotoxic potential than subdominant epitope-specific CD8+ T cells. Flow-cytometric measurements of protein expression and anti-viral functionality during chronic infection confirmed these phenotypic and functional differences. Expression analyses of exhaustion-associated genes indicated that LAG-3 and CTLA-4 were more highly expressed in the dominant epitope-specific cells during acute SIV infection. Interestingly, only LAG-3 expression remained high during chronic infection in dominant epitope-specific cells. We also explored the binding interaction between peptide:MHC (pMHC) complexes and their cognate TCRs to determine their role in the establishment of immunodominance hierarchies. We found that epitope dominance was associated with higher TCR:pMHC affinity. These studies demonstrate that significant functional differences exist between dominant and subdominant epitope-specific CD8+ T cells within MHC-restricted immunodominance hierarchies and suggest that TCR:pMHC affinity may play an important role in determining the frequency and functionality of these cell populations. These findings advance our understanding of the regulation of T cell immunodominance and will aid HIV vaccine design.
Collapse
Affiliation(s)
- Christa E. Osuna
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America
- * E-mail:
| | - Ana Maria Gonzalez
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hsun-Hsien Chang
- Children's Hospital Informatics Program, Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Amy Shi Hung
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Elizabeth Ehlinger
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kara Anasti
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - S. Munir Alam
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Pathology, Duke University of Medicine, Durham, North Carolina, United States of America
| | - Norman L. Letvin
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
41
|
Fu G, Casas J, Rigaud S, Rybakin V, Lambolez F, Brzostek J, Hoerter JAH, Paster W, Acuto O, Cheroutre H, Sauer K, Gascoigne NRJ. Themis sets the signal threshold for positive and negative selection in T-cell development. Nature 2013; 504:441-5. [PMID: 24226767 PMCID: PMC3977001 DOI: 10.1038/nature12718] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 09/26/2013] [Indexed: 12/31/2022]
Abstract
Development of a self-tolerant T-cell receptor (TCR) repertoire with the potential to recognize the universe of infectious agents depends on proper regulation of TCR signalling. The repertoire is whittled down during T-cell development in the thymus by the ability of quasi-randomly generated TCRs to interact with self-peptides presented by major histocompatibility complex (MHC) proteins. Low-affinity TCR interactions with self-MHC proteins generate weak signals that initiate 'positive selection', causing maturation of CD4- or CD8αβ-expressing 'single-positive' thymocytes from CD4(+)CD8αβ(+) 'double-positive' precursors. These develop into mature naive T cells of the secondary lymphoid organs. TCR interaction with high-affinity agonist self-ligands results in 'negative selection' by activation-induced apoptosis or 'agonist selection' of functionally differentiated self-antigen-experienced T cells. Here we show that positive selection is enabled by the ability of the T-cell-specific protein Themis to specifically attenuate TCR signal strength via SHP1 recruitment and activation in response to low- but not high-affinity TCR engagement. Themis acts as an analog-to-digital converter translating graded TCR affinity into clear-cut selection outcome. By dampening mild TCR signals Themis increases the affinity threshold for activation, enabling positive selection of T cells with a naive phenotype in response to low-affinity self-antigens.
Collapse
Affiliation(s)
- Guo Fu
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Javier Casas
- 1] Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA [2] Department of Microbiology, Yong Loo Lin School of Medicine and Immunology Programme, National University of Singapore, 5 Science Drive 2, Singapore 117545 [3]
| | - Stephanie Rigaud
- 1] Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA [2]
| | - Vasily Rybakin
- 1] Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA [2] Department of Microbiology, Yong Loo Lin School of Medicine and Immunology Programme, National University of Singapore, 5 Science Drive 2, Singapore 117545 [3]
| | - Florence Lambolez
- Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, California 92037, USA
| | - Joanna Brzostek
- 1] Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA [2] Department of Microbiology, Yong Loo Lin School of Medicine and Immunology Programme, National University of Singapore, 5 Science Drive 2, Singapore 117545
| | - John A H Hoerter
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Wolfgang Paster
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Oreste Acuto
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Hilde Cheroutre
- Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, California 92037, USA
| | - Karsten Sauer
- 1] Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA [2] Department of Cell and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Nicholas R J Gascoigne
- 1] Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA [2] Department of Microbiology, Yong Loo Lin School of Medicine and Immunology Programme, National University of Singapore, 5 Science Drive 2, Singapore 117545
| |
Collapse
|
42
|
Role of caspase-8 in thymus function. Cell Death Differ 2013; 21:226-33. [PMID: 24270406 DOI: 10.1038/cdd.2013.166] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 08/20/2013] [Accepted: 09/12/2013] [Indexed: 01/07/2023] Open
Abstract
The thymus is the primary organ responsible for de novo generation of immunocompetent T cells that have a diverse repertoire of antigen recognition. During the developmental process, 98% of thymocytes die by apoptosis. Thus apoptosis is a dominant process in the thymus and occurs through either death by neglect or negative selection or through induction by stress/aging. Caspase activation is an essential part of the general apoptosis mechanism, and data suggest that caspases may have a role in negative selection; however, it seems more probable that caspase-8 activation is involved in death by neglect, particularly in glucocorticoid-induced thymocyte apoptosis. Caspase-8 is active in double-positive (DP) thymocytes in vivo and can be activated in vitro in DP thymocytes by T-cell receptor (TCR) crosslinking to induce apoptosis. Caspase-8 is a proapoptotic member of the caspase family and is considered an initiator caspase, which is activated upon stimulation of a death receptor (e.g., Fas), recruitment of the adaptor molecule FADD, and recruitment and subsequent processing of procaspase-8. The main role of caspase-8 seems to be pro-apoptotic and, in this review, we will discuss about the involvement of caspase-8 in (1) TCR-triggered thymic apoptosis; (2) death receptor-mediated thymic apoptosis; and (3) glucocorticoid-induced thymic apoptosis. Regarding TCR triggering, caspase-8 is active in medullary, semi-mature heat-stable antigen(hi) (HAS(hi) SP) thymocytes as a consequence of strong TCR stimulation. The death receptors Fas, FADD, and FLIP are involved upstream of caspase-8 activation in apoptosis; whereas, Bid and HDAC7 are involved downstream of caspase-8. Finally, caspase-8 is involved in glucocortocoid-induced thymocyte apoptosis through an activation loop with the protein GILZ. GILZ activates caspase-8, promoting GILZ sumoylation and its protection from proteasomal degradation.
Collapse
|
43
|
Yu Y, Smoligovets AA, Groves JT. Modulation of T cell signaling by the actin cytoskeleton. J Cell Sci 2013; 126:1049-58. [PMID: 23620508 DOI: 10.1242/jcs.098210] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The actin cytoskeleton provides a dynamic framework to support membrane organization and cellular signaling events. The importance of actin in T cell function has long been recognized to go well beyond the maintenance of cell morphology and transport of proteins. Over the past several years, our understanding of actin in T cell activation has expanded tremendously, in part owing to the development of methods and techniques to probe the complex interplay between actin and T cell signaling. On the one hand, biochemical methods have led to the identification of many key cytoskeleton regulators and new signaling pathways, whereas, on the other, the combination of advanced imaging techniques and physical characterization tools has allowed the spatiotemporal investigation of actin in T cell signaling. All those studies have made a profound impact on our understanding of the actin cytoskeleton in T cell activation. Many previous reviews have focused on the biochemical aspects of the actin cytoskeleton. However, here we will summarize recent studies from a biophysical perspective to explain the mechanistic role of actin in modulating T cell activation. We will discuss how actin modulates T cell activation on multiple time and length scales. Specifically, we will reveal the distinct roles of the actin filaments in facilitating TCR triggering, orchestrating 'signalosome' assembly and transport, and establishing protein spatial organization in the immunological synapse.
Collapse
Affiliation(s)
- Yan Yu
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA.
| | | | | |
Collapse
|
44
|
Hoerter JAH, Brzostek J, Artyomov MN, Abel SM, Casas J, Rybakin V, Ampudia J, Lotz C, Connolly JM, Chakraborty AK, Gould KG, Gascoigne NRJ. Coreceptor affinity for MHC defines peptide specificity requirements for TCR interaction with coagonist peptide-MHC. ACTA ACUST UNITED AC 2013; 210:1807-21. [PMID: 23940257 PMCID: PMC3754861 DOI: 10.1084/jem.20122528] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The requirement for the TCR to interact with coagonists, endogenous MHC–peptide complexes which do not themselves activate the T cell, decreases as the strength of the CD8–class I interaction increases. Recent work has demonstrated that nonstimulatory endogenous peptides can enhance T cell recognition of antigen, but MHCI- and MHCII-restricted systems have generated very different results. MHCII-restricted TCRs need to interact with the nonstimulatory peptide–MHC (pMHC), showing peptide specificity for activation enhancers or coagonists. In contrast, the MHCI-restricted cells studied to date show no such peptide specificity for coagonists, suggesting that CD8 binding to noncognate MHCI is more important. Here we show how this dichotomy can be resolved by varying CD8 and TCR binding to agonist and coagonists coupled with computer simulations, and we identify two distinct mechanisms by which CD8 influences the peptide specificity of coagonism. Mechanism 1 identifies the requirement of CD8 binding to noncognate ligand and suggests a direct relationship between the magnitude of coagonism and CD8 affinity for coagonist pMHCI. Mechanism 2 describes how the affinity of CD8 for agonist pMHCI changes the requirement for specific coagonist peptides. MHCs that bind CD8 strongly were tolerant of all or most peptides as coagonists, but weaker CD8-binding MHCs required stronger TCR binding to coagonist, limiting the potential coagonist peptides. These findings in MHCI systems also explain peptide-specific coagonism in MHCII-restricted cells, as CD4–MHCII interaction is generally weaker than CD8–MHCI.
Collapse
Affiliation(s)
- John A H Hoerter
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Blanchfield JL, Shorter SK, Evavold BD. Monitoring the Dynamics of T Cell Clonal Diversity Using Recombinant Peptide:MHC Technology. Front Immunol 2013; 4:170. [PMID: 23840195 PMCID: PMC3699728 DOI: 10.3389/fimmu.2013.00170] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 06/14/2013] [Indexed: 12/31/2022] Open
Abstract
The capacity to probe antigen specific T cells within the polyclonal repertoire has been revolutionized by the advent of recombinant peptide:MHC (pMHC) technology. Monomers and multimers of pMHC molecules can enrich for and identify antigen specific T cells to elucidate the contributions of T cell frequency, localization, and T cell receptor (TCR) affinity during immune responses. Two-dimensional (2D) measurements of TCR–pMHC interactions are at the forefront of this field because the biological topography is replicated such that TCR and pMHC are membrane anchored on opposing cells, allowing for biologically pertinent measures of TCR antigen specificity and diversity. 2D measurements of TCR-pMHC kinetics have also demonstrated increased fidelity compared to three-dimensional surface plasmon resonance data and are capable of detecting T cell affinities that are below the detection level of most pMHC multimers. Importantly, 2D techniques provide a platform to evaluate T cell affinity and antigen specificity against multiple protein epitopes within the polyclonal repertoire directly ex vivo from sites of ongoing immune responses. This review will discuss how antigen specific pMHC molecules, with a focus on 2D technologies, can be used as effective tools to evaluate the range of TCR affinities that comprise an immune response and more importantly how the breadth of affinities determine functional outcome against a given exposure to antigen.
Collapse
Affiliation(s)
- J Lori Blanchfield
- Department of Microbiology and Immunology, Emory University, Atlanta, GA , USA
| | | | | |
Collapse
|
46
|
Wang JH, Reinherz EL. Revisiting the putative TCR Cα dimerization model through structural analysis. Front Immunol 2013; 4:16. [PMID: 23386853 PMCID: PMC3558723 DOI: 10.3389/fimmu.2013.00016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 01/08/2013] [Indexed: 12/18/2022] Open
Abstract
Despite major advances in T cell receptor (TCR) biology and structure, how peptide-MHC complex (pMHC) ligands trigger αβ TCR activation remains unresolved. Two views exist. One model postulates that monomeric TCR-pMHC ligation events are sufficient while a second proposes that TCR-TCR dimerization in cis via Cα domain interaction plus pMHC binding is critical. We scrutinized 22 known TCR/pMHC complex crystal structures, and did not find any predicted molecular Cα-Cα contacts in these crystals that would allow for physiological TCR dimerization. Moreover, the presence of conserved glycan adducts on the outer face of the Cα domain preclude the hypothesized TCR dimerization through the Cα domain. Observed functional consequences of Cα mutations are likely indirect, with TCR microclusters at the immunological synapse driven by TCR transmembrane/cytoplasmic interactions via signaling molecules, scaffold proteins, and/or cytoskeletal elements.
Collapse
Affiliation(s)
- Jia-Huai Wang
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical SchoolBoston, MA, USA
- Department of Pediatrics, Harvard Medical SchoolBoston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical SchoolBoston, MA, USA
| | - Ellis L. Reinherz
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical SchoolBoston, MA, USA
- Department of Medicine, Harvard Medical SchoolBoston, MA, USA
| |
Collapse
|
47
|
Rybakin V, Gascoigne NRJ. Negative selection assay based on stimulation of T cell receptor transgenic thymocytes with peptide-MHC tetramers. PLoS One 2012; 7:e43191. [PMID: 22900100 PMCID: PMC3416795 DOI: 10.1371/journal.pone.0043191] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 07/20/2012] [Indexed: 02/04/2023] Open
Abstract
Thymocyte negative selection is a requirement for the development of self tolerance. Although it is possible to assay the induction of cell death in thymocytes in vitro using antibody cross-linking, this stimulus is much stronger than the normal range of T cell receptor ligands that could be encountered during normal development. Signaling in thymocytes is finely balanced between positive and negative selection stimuli, where a negative selecting ligand can be only marginally higher affinity than a positive selecting ligand. We have therefore developed an assay for the induction of negative selection that can distinguish such cases, and that is amenable to high-throughput analysis. The assay is based on the induction of activated caspase 3 in thymocytes expressing a defined T cell receptor, after stimulation with MHC-peptide tetramers in vitro for 24 hours or less.
Collapse
Affiliation(s)
- Vasily Rybakin
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail: (VR); (NRJG)
| | - Nicholas R. J. Gascoigne
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail: (VR); (NRJG)
| |
Collapse
|
48
|
Zarnitsyna V, Zhu C. T cell triggering: insights from 2D kinetics analysis of molecular interactions. Phys Biol 2012; 9:045005. [PMID: 22871794 DOI: 10.1088/1478-3975/9/4/045005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Interaction of the T cell receptor (TCR) with pathogen-derived peptide presented by the major histocompatibility complex (pMHC) molecule is central to adaptive immunity as it initiates intracellular signaling to trigger T cell response to infection. Kinetic parameters of this interaction have been under intensive investigation for more than two decades using soluble pMHCs and/or TCRs with at least one of them in the solution (three-dimensional (3D) methods). Recently, several techniques have been developed to enable kinetic analysis on live T cells with pMHCs presented by surrogate antigen presenting cells (APCs) or supported planar lipid bilayers (two-dimensional (2D) methods). Comparison of 2D versus 3D parameters reveals drastic differences with broader ranges of 2D affinities and on-rates and orders of magnitude faster 2D off-rates for functionally distinct pMHCs. Here we review new 2D data and discuss how it may impact previously developed models of T cell discrimination between pMHCs of different potencies.
Collapse
Affiliation(s)
- Veronika Zarnitsyna
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.
| | | |
Collapse
|
49
|
Kuhns MS, Davis MM. TCR Signaling Emerges from the Sum of Many Parts. Front Immunol 2012; 3:159. [PMID: 22737151 PMCID: PMC3381686 DOI: 10.3389/fimmu.2012.00159] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Accepted: 05/27/2012] [Indexed: 11/30/2022] Open
Abstract
“How does T cell receptor signaling begin?” Answering this question requires an understanding of how the parts of the molecular machinery that mediates this process fit and work together. Ultimately this molecular architecture must (i) trigger the relay of information from the TCR-pMHC interface to the signaling substrates of the CD3 molecules and (ii) bring the kinases that modify these substrates in close proximity to interact, initiate, and sustain signaling. In this contribution we will discuss advances of the last decade that have increased our understanding of the complex machinery and interactions that underlie this type of signaling.
Collapse
Affiliation(s)
- Michael S Kuhns
- Department of Immunobiology, The University of Arizona College of Medicine Tucson, AZ, USA
| | | |
Collapse
|
50
|
Ozawa T, Horii M, Kobayashi E, Jin A, Kishi H, Muraguchi A. The binding affinity of a soluble TCR-Fc fusion protein is significantly improved by crosslinkage with an anti-Cβ antibody. Biochem Biophys Res Commun 2012; 422:245-9. [PMID: 22575452 DOI: 10.1016/j.bbrc.2012.04.134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 04/24/2012] [Indexed: 11/24/2022]
Abstract
The identification and cloning of tumor antigen-specific T cell receptors (TCRs) and the production of the soluble form of the TCR (sTCR) contributed to the development of diagnostic and therapeutic tools for cancer. Recently, several groups have reported the development of technologies for the production of sTCRs. The native sTCR has a very low binding affinity for the antigenic peptide/MHC (p/MHC) complex. In this study, we established a technology to produce high affinity, functional sTCRs. We generated a novel sTCR-Fc fusion protein composed of the TCR V and C regions of the TCR linked to the immunoglobulin (Ig) Fc region. A Western blot analysis revealed that the molecular weight of the fusion protein was approximately 60 kDa under reducing conditions and approximately 100-200 kDa under non-reducing conditions. ELISAs using various antibodies showed that the structure of each domain of the TCR-Fc protein was intact. The TCR-Fc protein immobilized by an anti-Cβ antibody effectively bound to a p/MHC tetramer. An SPR analysis showed that the TCR-Fc protein had a low binding affinity (KD; 1.1 × 10(-5)M) to the p/MHC monomer. Interestingly, when the TCR-Fc protein was pre-incubated with an anti-Cβ antibody, its binding affinity for p/MHC increased by 5-fold (2.2 × 10(-6)M). We demonstrated a novel method for constructing a functional soluble TCR using the Ig Fc region and showed that the binding affinity of the functional sTCR-Fc was markedly increased by an anti-Cβ antibody, which is probably due to the stabilization of the Vα/Vβ region of the TCR. These findings provide new insights into the binding of sTCRs to p/MHCs and will hopefully be instrumental in establishing functional sTCR as a diagnostic and therapeutic tool for cancer.
Collapse
Affiliation(s)
- Tatsuhiko Ozawa
- Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | | | | | | | | | | |
Collapse
|