1
|
Srinivasan S, Zhu C, McShan AC. Structure, function, and immunomodulation of the CD8 co-receptor. Front Immunol 2024; 15:1412513. [PMID: 39253084 PMCID: PMC11381289 DOI: 10.3389/fimmu.2024.1412513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024] Open
Abstract
Expressed on the surface of CD8+ T cells, the CD8 co-receptor is a key component of the T cells that contributes to antigen recognition, immune cell maturation, and immune cell signaling. While CD8 is widely recognized as a co-stimulatory molecule for conventional CD8+ αβ T cells, recent reports highlight its multifaceted role in both adaptive and innate immune responses. In this review, we discuss the utility of CD8 in relation to its immunomodulatory properties. We outline the unique structure and function of different CD8 domains (ectodomain, hinge, transmembrane, cytoplasmic tail) in the context of the distinct properties of CD8αα homodimers and CD8αβ heterodimers. We discuss CD8 features commonly used to construct chimeric antigen receptors for immunotherapy. We describe the molecular interactions of CD8 with classical MHC-I, non-classical MHCs, and Lck partners involved in T cell signaling. Engineered and naturally occurring CD8 mutations that alter immune responses are discussed. The applications of anti-CD8 monoclonal antibodies (mABs) that target CD8 are summarized. Finally, we examine the unique structure and function of several CD8/mAB complexes. Collectively, these findings reveal the promising immunomodulatory properties of CD8 and CD8 binding partners, not only to uncover basic immune system function, but to advance efforts towards translational research for targeted immunotherapy.
Collapse
Affiliation(s)
- Shreyaa Srinivasan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, United States
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Cheng Zhu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Andrew C. McShan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
2
|
Yao M, Liu X, Qian Z, Fan D, Sun X, Zhong L, Wu P. Research progress of nanovaccine in anti-tumor immunotherapy. Front Oncol 2023; 13:1211262. [PMID: 37692854 PMCID: PMC10484753 DOI: 10.3389/fonc.2023.1211262] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Tumor vaccines aim to activate dormant or unresponsive tumor-specific T lymphocytes by using tumor-specific or tumor-associated antigens, thus enhancing the body's natural defense against cancer. However, the effectiveness of tumor vaccines is limited by the presence of tumor heterogeneity, low immunogenicity, and immune evasion mechanisms. Fortunately, multifunctional nanoparticles offer a unique chance to address these issues. With the advantages of their small size, high stability, efficient drug delivery, and controlled surface chemistry, nanomaterials can precisely target tumor sites, improve the delivery of tumor antigens and immune adjuvants, reshape the immunosuppressive tumor microenvironment, and enhance the body's anti-tumor immune response, resulting in improved efficacy and reduced side effects. Nanovaccine, a type of vaccine that uses nanotechnology to deliver antigens and adjuvants to immune cells, has emerged as a promising strategy for cancer immunotherapy due to its ability to stimulate immune responses and induce tumor-specific immunity. In this review, we discussed the compositions and types of nanovaccine, and the mechanisms behind their anti-tumor effects based on the latest research. We hope that this will provide a more scientific basis for designing tumor vaccines and enhancing the effectiveness of tumor immunotherapy.
Collapse
Affiliation(s)
- Min Yao
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Zhangbo Qian
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Dianfa Fan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Xinjun Sun
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Pan Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
3
|
Souter MN, Awad W, Li S, Pediongco TJ, Meehan BS, Meehan LJ, Tian Z, Zhao Z, Wang H, Nelson A, Le Nours J, Khandokar Y, Praveena T, Wubben J, Lin J, Sullivan LC, Lovrecz GO, Mak JY, Liu L, Kostenko L, Kedzierska K, Corbett AJ, Fairlie DP, Brooks AG, Gherardin NA, Uldrich AP, Chen Z, Rossjohn J, Godfrey DI, McCluskey J, Pellicci DG, Eckle SB. CD8 coreceptor engagement of MR1 enhances antigen responsiveness by human MAIT and other MR1-reactive T cells. J Exp Med 2022; 219:213423. [PMID: 36018322 PMCID: PMC9424912 DOI: 10.1084/jem.20210828] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/24/2022] [Accepted: 07/21/2022] [Indexed: 11/04/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells detect microbial infection via recognition of riboflavin-based antigens presented by the major histocompatibility complex class I (MHC-I)-related protein 1 (MR1). Most MAIT cells in human peripheral blood express CD8αα or CD8αβ coreceptors, and the binding site for CD8 on MHC-I molecules is relatively conserved in MR1. Yet, there is no direct evidence of CD8 interacting with MR1 or the functional consequences thereof. Similarly, the role of CD8αα in lymphocyte function remains ill-defined. Here, using newly developed MR1 tetramers, mutated at the CD8 binding site, and by determining the crystal structure of MR1-CD8αα, we show that CD8 engaged MR1, analogous to how it engages MHC-I molecules. CD8αα and CD8αβ enhanced MR1 binding and cytokine production by MAIT cells. Moreover, the CD8-MR1 interaction was critical for the recognition of folate-derived antigens by other MR1-reactive T cells. Together, our findings suggest that both CD8αα and CD8αβ act as functional coreceptors for MAIT and other MR1-reactive T cells.
Collapse
Affiliation(s)
- Michael N.T. Souter
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Wael Awad
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Shihan Li
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Troi J. Pediongco
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Bronwyn S. Meehan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Lucy J. Meehan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Zehua Tian
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Zhe Zhao
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Huimeng Wang
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Adam Nelson
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jérôme Le Nours
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Yogesh Khandokar
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - T. Praveena
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Jacinta Wubben
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Jie Lin
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Lucy C. Sullivan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - George O. Lovrecz
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Melbourne, Australia
| | - Jeffrey Y.W. Mak
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Ligong Liu
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Lyudmila Kostenko
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Alexandra J. Corbett
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - David P. Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Andrew G. Brooks
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Nicholas A. Gherardin
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Adam P. Uldrich
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Zhenjun Chen
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia,Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Dale I. Godfrey
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Daniel G. Pellicci
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia,Murdoch Children’s Research Institute, Parkville, Melbourne, Australia
| | - Sidonia B.G. Eckle
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
4
|
Arnaiz-Villena A, Suarez-Trujillo F, Juarez I, Rodríguez-Sainz C, Palacio-Gruber J, Vaquero-Yuste C, Molina-Alejandre M, Fernández-Cruz E, Martin-Villa JM. Evolution and molecular interactions of major histocompatibility complex (MHC)-G, -E and -F genes. Cell Mol Life Sci 2022; 79:464. [PMID: 35925520 PMCID: PMC9352621 DOI: 10.1007/s00018-022-04491-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022]
Abstract
Classical HLA (Human Leukocyte Antigen) is the Major Histocompatibility Complex (MHC) in man. HLA genes and disease association has been studied at least since 1967 and no firm pathogenic mechanisms have been established yet. HLA-G immune modulation gene (and also -E and -F) are starting the same arduous way: statistics and allele association are the trending subjects with the same few results obtained by HLA classical genes, i.e., no pathogenesis may be discovered after many years of a great amount of researchers’ effort. Thus, we believe that it is necessary to follow different research methodologies: (1) to approach this problem, based on how evolution has worked maintaining together a cluster of immune-related genes (the MHC) in a relatively short chromosome area since amniotes to human at least, i.e., immune regulatory genes (MHC-G, -E and -F), adaptive immune classical class I and II genes, non-adaptive immune genes like (C2, C4 and Bf) (2); in addition to using new in vitro models which explain pathogenetics of HLA and disease associations. In fact, this evolution may be quite reliably studied during about 40 million years by analyzing the evolution of MHC-G, -E, -F, and their receptors (KIR—killer-cell immunoglobulin-like receptor, NKG2—natural killer group 2-, or TCR-T-cell receptor—among others) in the primate evolutionary lineage, where orthology of these molecules is apparently established, although cladistic studies show that MHC-G and MHC-B genes are the ancestral class I genes, and that New World apes MHC-G is paralogous and not orthologous to all other apes and man MHC-G genes. In the present review, we outline past and possible future research topics: co-evolution of adaptive MHC classical (class I and II), non-adaptive (i.e., complement) and modulation (i.e., non-classical class I) immune genes may imply that the study of full or part of MHC haplotypes involving several loci/alleles instead of single alleles is important for uncovering HLA and disease pathogenesis. It would mainly apply to starting research on HLA-G extended haplotypes and disease association and not only using single HLA-G genetic markers.
Collapse
Affiliation(s)
- Antonio Arnaiz-Villena
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense de Madrid, Pabellón 5, planta 4. Avda. Complutense s/n, 28040, Madrid, Spain.
| | - Fabio Suarez-Trujillo
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense de Madrid, Pabellón 5, planta 4. Avda. Complutense s/n, 28040, Madrid, Spain
| | - Ignacio Juarez
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense de Madrid, Pabellón 5, planta 4. Avda. Complutense s/n, 28040, Madrid, Spain
| | - Carmen Rodríguez-Sainz
- Instituto de Investigaciones Sanitarias Gregorio Marañón, Hospital Gregorio Marañón, Madrid, Spain
| | - José Palacio-Gruber
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense de Madrid, Pabellón 5, planta 4. Avda. Complutense s/n, 28040, Madrid, Spain
| | - Christian Vaquero-Yuste
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense de Madrid, Pabellón 5, planta 4. Avda. Complutense s/n, 28040, Madrid, Spain
| | - Marta Molina-Alejandre
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense de Madrid, Pabellón 5, planta 4. Avda. Complutense s/n, 28040, Madrid, Spain
| | - Eduardo Fernández-Cruz
- Instituto de Investigaciones Sanitarias Gregorio Marañón, Hospital Gregorio Marañón, Madrid, Spain
| | - José Manuel Martin-Villa
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense de Madrid, Pabellón 5, planta 4. Avda. Complutense s/n, 28040, Madrid, Spain
| |
Collapse
|
5
|
Qiu R, Sun YY, Guan CC, Kan YC, Yao LG. Characterization of TCR + and CD8 + head kidney leucocytes in Japanese flounder (Paralichthys olivaceus) with antisera against TCRα and CD8α. JOURNAL OF FISH BIOLOGY 2021; 99:345-353. [PMID: 33751560 DOI: 10.1111/jfb.14722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/25/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
T lymphocytes play an important role in cellular and adaptive immunity in vertebrates. The mechanisms of the fish immune system are little studied because of the lack of population-specific antibodies. This study examined the expression of two T lymphocyte markers, TCRα (PoTCRα) and CD8α (PoCD8α) in the Japanese flounder (Paralichthys olivaceus). The expression of PoTCRα and PoCD8α was mainly detected in immune/mucosal tissues. Recombinant PoTCRα and PoCD8α were expressed in pET32a and pET259, respectively. Then, rabbit anti-PoTCRα serum and rat anti-PoCD8α serum were prepared. Using serum, the characteristics of TCR+ and CD8+ head kidney leucocytes (HKLs) were investigated. The results of laser scanning confocal microscopy (LSCM) demonstrated that TCRα and CD8α were transmembrane proteins localized on the cell surface. The populations of CD8α- , CD8α+ , TCRα- , and TCRα+ were sorted by flow cytometry (FCM) and analysed using qRT-PCR. The results demonstrated that all TCRα+ /TCRα- or CD8α+ /CD8α- HKLs expressed IFN-γ. The CD4-1 and IgM transcripts were detected only in TCRα- and CD8α- cells. Furthermore, HKL mitogenesis was induced with concanavalin A (ConA) stimulation. Taken together, the results from LSCM and FCM analyses showed that mammalian and P. olivaceus TCR+ and CD8+ leucocytes share basic characteristics.
Collapse
Affiliation(s)
- Reng Qiu
- China-UKNYNU-RRes Joint Laboratory of Insect Biology and Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China
- Henan Key Laboratory of Ecological Security for Water Source Region of Mid-Line of South-to-North, Nanyang Normal University, Nanyang, 473061, China
| | - Yuan Y Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Cui C Guan
- Henan Key Laboratory of Ecological Security for Water Source Region of Mid-Line of South-to-North, Nanyang Normal University, Nanyang, 473061, China
| | - Yun C Kan
- China-UKNYNU-RRes Joint Laboratory of Insect Biology and Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China
- Henan Key Laboratory of Ecological Security for Water Source Region of Mid-Line of South-to-North, Nanyang Normal University, Nanyang, 473061, China
- School of Life Sciences, Henan University, Kaifeng, 475000, China
| | - Lun G Yao
- China-UKNYNU-RRes Joint Laboratory of Insect Biology and Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China
- Henan Key Laboratory of Ecological Security for Water Source Region of Mid-Line of South-to-North, Nanyang Normal University, Nanyang, 473061, China
| |
Collapse
|
6
|
Ma J, Ayres CM, Hellman LM, Devlin JR, Baker BM. Dynamic allostery controls the peptide sensitivity of the Ly49C natural killer receptor. J Biol Chem 2021; 296:100686. [PMID: 33891944 PMCID: PMC8138769 DOI: 10.1016/j.jbc.2021.100686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 11/30/2022] Open
Abstract
Using a variety of activating and inhibitory receptors, natural killer (NK) cells protect against disease by eliminating cells that have downregulated class I major histocompatibility complex (MHC) proteins, such as in response to cell transformation or viral infection. The inhibitory murine NK receptor Ly49C specifically recognizes the class I MHC protein H-2Kb. Unusual among NK receptors, Ly49C exhibits a peptide-dependent sensitivity to H-2Kb recognition, which has not been explained despite detailed structural studies. To gain further insight into Ly49C peptide sensitivity, we examined Ly49C recognition biochemically and through the lens of dynamic allostery. We found that the peptide sensitivity of Ly49C arises through small differences in H-2Kb-binding affinity. Although molecular dynamics simulations supported a role for peptide-dependent protein dynamics in producing these differences in binding affinity, calorimetric measurements indicated an enthalpically as opposed to entropically driven process. A quantitative linkage analysis showed that this emerges from peptide-dependent dynamic tuning of electrostatic interactions across the Ly49C–H-2Kb interface. We propose a model whereby different peptides alter the flexibility of H-2Kb, which in turn changes the strength of electrostatic interactions across the protein–protein interface. Our results provide a quantitative assessment of how peptides alter Ly49C-binding affinity, suggest the underlying mechanism, and demonstrate peptide-driven allostery at work in class I MHC proteins. Lastly, our model provides a solution for how dynamic allostery could impact binding of some, but not all, class I MHC partners depending on the structural and chemical composition of the interfaces.
Collapse
Affiliation(s)
- Jiaqi Ma
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - Cory M Ayres
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - Lance M Hellman
- Department of Physical and Life Sciences, Nevada State College, Henderson, Nevada, USA
| | - Jason R Devlin
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - Brian M Baker
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA.
| |
Collapse
|
7
|
Howson LJ, Li J, von Borstel A, Barugahare A, Mak JYW, Fairlie DP, McCluskey J, Turner SJ, Davey MS, Rossjohn J. Mucosal-Associated Invariant T Cell Effector Function Is an Intrinsic Cell Property That Can Be Augmented by the Metabolic Cofactor α-Ketoglutarate. THE JOURNAL OF IMMUNOLOGY 2021; 206:1425-1435. [PMID: 33597151 DOI: 10.4049/jimmunol.2001048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/11/2021] [Indexed: 12/24/2022]
Abstract
Mucosal-associated invariant T (MAIT) cells are an innate-like population of unconventional T cells that respond rapidly to microbial metabolite Ags or cytokine stimulation. Because of this reactivity and surface expression of CD45RO+, CD45RA-, and CD127+, they are described as effector memory cells. Yet, there is heterogeneity in MAIT cell effector response. It is unclear what factors control MAIT cell effector capacity, whether it is fixed or can be modified and if this differs based on whether activation is TCR dependent or independent. To address this, we have taken a systematic approach to examine human MAIT cell effector capacity across healthy individuals in response to ligand and cytokine stimulation. We demonstrate the heterogenous nature of MAIT cell effector capacity and that the ability to produce an effector response is not directly attributable to TCR clonotype or coreceptor expression. Global gene transcription analysis revealed that the MAIT cell effector capacity produced in response to TCR stimulation is associated with increased expression of the epigenetic regulator lysine demethylase 6B (KDM6B). Addition of a KDM6B inhibitor did not alter MAIT cell effector function to Ag or cytokine stimulation. However, addition of the KDM6B cofactor α-ketoglutarate greatly enhanced MAIT cell effector capacity to TCR-dependent stimulation in a partially KDM6B-dependent manner. These results demonstrate that the TCR-dependent effector response of MAIT cells is epigenetically regulated and dependent on the availability of metabolic cofactors.
Collapse
Affiliation(s)
- Lauren J Howson
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia;
| | - Jasmine Li
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Anouk von Borstel
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Adele Barugahare
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Jeffrey Y W Mak
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David P Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3000, Australia
| | - Stephen J Turner
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Martin S Davey
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; .,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia; and.,Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| |
Collapse
|
8
|
Liu Y, Chen R, Liang R, Sun B, Wu Y, Zhang L, Kaufman J, Xia C. The Combination of CD8αα and Peptide-MHC-I in a Face-to-Face Mode Promotes Chicken γδT Cells Response. Front Immunol 2020; 11:605085. [PMID: 33329601 PMCID: PMC7719794 DOI: 10.3389/fimmu.2020.605085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/27/2020] [Indexed: 11/29/2022] Open
Abstract
The CD8αα homodimer is crucial to both thymic T cell selection and the antigen recognition of cytotoxic T cells. The CD8-pMHC-I interaction can enhance CTL immunity via stabilizing the TCR-pMHC-I interaction and optimizing the cross-reactivity and Ag sensitivity of CD8+ T cells at various stages of development. To date, only human and mouse CD8-pMHC-I complexes have been determined. Here, we resolved the pBF2*1501 complex and the cCD8αα/pBF2*1501 and cCD8αα/pBF2*0401 complexes in nonmammals for the first time. Remarkably, cCD8αα/pBF2*1501 and the cCD8αα/pBF2*0401 complex both exhibited two binding modes, including an “antibody-like” mode similar to that of the known mammal CD8/pMHC-I complexes and a “face-to-face” mode that has been observed only in chickens to date. Compared to the “antibody-like” mode, the “face-to-face” binding mode changes the binding orientation of the cCD8αα homodimer to pMHC-I, which might facilitate abundant γδT cells to bind diverse peptides presented by limited BF2 alleles in chicken. Moreover, the forces involving in the interaction of cCD8αα/pBF2*1501 and the cCD8αα/pBF2*0401 are different in this two binding model, which might change the strength of the CD8-pMHC-I interaction, amplifying T cell cross-reactivity in chickens. The coreceptor CD8αα of TCR has evolved two peptide-MHC-I binding patterns in chickens, which might enhance the T cell response to major or emerging pathogens, including chicken-derived pathogens that are relevant to human health, such as high-pathogenicity influenza viruses.
Collapse
Affiliation(s)
- Yanjie Liu
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rong Chen
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ruiying Liang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Beibei Sun
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yanan Wu
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lijie Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jim Kaufman
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom.,Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Chun Xia
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Sajeed R, Sarma K, Sarmah K, Biswas D, Borkakoty B. Computational screening of potential MHC class I restricted cytotoxic T lymphocytes-based common multi-epitopes of major arboviral diseases. Future Virol 2020. [DOI: 10.2217/fvl-2019-0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: Arboviral diseases are a health hazard and Flavivirus and Alphavirus infections are the most common in humans. This study focuses on immunoinformatic approaches to identify potential MHC class I restricted epitopes common for some selected arboviral diseases. Materials & methods: T-cell epitope prediction tool of Immune Epitope Database was employed to identify putative epitopes from the polyproteins of the selected viruses. Further, population coverage, conservancy, antigenic properties and docking analyses were performed to identify potential common epitopes for the selected viruses. Results: Eight common epitopes were screened for the selected viruses based on their population coverage, conservancy, antigenic properties and binding affinity. Conclusion: Considering the in silico potency, identified epitopes may further be subjected for candidate vaccine development against these arboviruses.
Collapse
Affiliation(s)
- Rakshanda Sajeed
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, Telangana, India
| | - Kishore Sarma
- Department of Virology, Indian Council of Medical Research (ICMR), Regional Medical Research Centre for NE Region, Dibrugarh, Assam, India
| | - Kimmi Sarmah
- Department of Virology, Indian Council of Medical Research (ICMR), Regional Medical Research Centre for NE Region, Dibrugarh, Assam, India
| | - Dipankar Biswas
- Department of Virology, Indian Council of Medical Research (ICMR), Regional Medical Research Centre for NE Region, Dibrugarh, Assam, India
| | - Biswajyoti Borkakoty
- Department of Virology, Indian Council of Medical Research (ICMR), Regional Medical Research Centre for NE Region, Dibrugarh, Assam, India
| |
Collapse
|
10
|
Goodall KJ, Nguyen A, McKenzie C, Eckle SBG, Sullivan LC, Andrews DM. The murine CD94/NKG2 ligand, Qa-1 b, is a high-affinity, functional ligand for the CD8αα homodimer. J Biol Chem 2020; 295:3239-3246. [PMID: 31992596 PMCID: PMC7062157 DOI: 10.1074/jbc.ra119.010509] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 01/22/2020] [Indexed: 11/06/2022] Open
Abstract
The immune co-receptor CD8 molecule (CD8) has two subunits, CD8α and CD8β, which can assemble into homo or heterodimers. Nonclassical (class-Ib) major histocompatibility complex (MHC) molecules (MHC-Ibs) have recently been identified as ligands for the CD8αα homodimer. This was demonstrated by the observation that histocompatibility 2, Q region locus 10 (H2-Q10) is a high-affinity ligand for CD8αα which also binds the MHC-Ib molecule H2-TL. This suggests that MHC-Ib proteins may be an extended source of CD8αα ligands. Expression of H2-T3/TL and H2-Q10 is restricted to the small intestine and liver, respectively, yet CD8αα-containing lymphocytes are present more broadly. Therefore, here we sought to determine whether murine CD8αα binds only to tissue-specific MHC-Ib molecules or also to ubiquitously expressed MHC-Ib molecules. Using recombinant proteins and surface plasmon resonance-based binding assays, we show that the MHC-Ib family furnishes multiple binding partners for murine CD8αα, including H2-T22 and the CD94/NKG2-A/B-activating NK receptor (NKG2) ligand Qa-1b We also demonstrate a hierarchy among MHC-Ib proteins with respect to CD8αα binding, in which Qa-1b > H2-Q10 > TL. Finally, we provide evidence that Qa-1b is a functional ligand for CD8αα, distinguishing it from its human homologue MHC class I antigen E (HLA-E). These findings provide additional clues as to how CD8αα-expressing cells are controlled in different tissues. They also highlight an unexpected immunological divergence of Qa-1b/HLA-E function, indicating the need for more robust studies of murine MHC-Ib proteins as models for human disease.
Collapse
Affiliation(s)
- Katharine Jennifer Goodall
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia.
| | - Angela Nguyen
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
| | - Craig McKenzie
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
| | - Sidonia Barbara Guiomar Eckle
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, 3000, Australia
| | - Lucy Catherine Sullivan
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, 3000, Australia
| | - Daniel Mark Andrews
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
| |
Collapse
|
11
|
Liu Y, Cuendet MA, Goffin L, Šachl R, Cebecauer M, Cariolato L, Guillaume P, Reichenbach P, Irving M, Coukos G, Luescher IF. CD8 Binding of MHC-Peptide Complexes in cis or trans Regulates CD8 + T-cell Responses. J Mol Biol 2019; 431:4941-4958. [PMID: 31704286 DOI: 10.1016/j.jmb.2019.10.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 11/19/2022]
Abstract
The coreceptor CD8αβ can greatly promote activation of T cells by strengthening T-cell receptor (TCR) binding to cognate peptide-MHC complexes (pMHC) on antigen presenting cells and by bringing p56Lck to TCR/CD3. Here, we demonstrate that CD8 can also bind to pMHC on the T cell (in cis) and that this inhibits their activation. Using molecular modeling, fluorescence resonance energy transfer experiments on living cells, biochemical and mutational analysis, we show that CD8 binding to pMHC in cis involves a different docking mode and is regulated by posttranslational modifications including a membrane-distal interchain disulfide bond and negatively charged O-linked glycans near positively charged sequences on the CD8β stalk. These modifications distort the stalk, thus favoring CD8 binding to pMHC in cis. Differential binding of CD8 to pMHC in cis or trans is a means to regulate CD8+ T-cell responses and provides new translational opportunities.
Collapse
Affiliation(s)
- Yang Liu
- Ludwig Institute for Cancer Research, University of Lausanne, and Department of Oncology, University Hospital of Lausanne, 1009, Lausanne, Switzerland
| | - Michel A Cuendet
- Ludwig Institute for Cancer Research, University of Lausanne, and Department of Oncology, University Hospital of Lausanne, 1009, Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, USA
| | - Laurence Goffin
- Ludwig Institute for Cancer Research, University of Lausanne, and Department of Oncology, University Hospital of Lausanne, 1009, Lausanne, Switzerland
| | - Radek Šachl
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, 18223 Prague, Czech Republic
| | - Marek Cebecauer
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, 18223 Prague, Czech Republic
| | - Luca Cariolato
- Ludwig Institute for Cancer Research, University of Lausanne, and Department of Oncology, University Hospital of Lausanne, 1009, Lausanne, Switzerland
| | - Philippe Guillaume
- Ludwig Institute for Cancer Research, University of Lausanne, and Department of Oncology, University Hospital of Lausanne, 1009, Lausanne, Switzerland
| | - Patrick Reichenbach
- Ludwig Institute for Cancer Research, University of Lausanne, and Department of Oncology, University Hospital of Lausanne, 1009, Lausanne, Switzerland
| | - Melita Irving
- Ludwig Institute for Cancer Research, University of Lausanne, and Department of Oncology, University Hospital of Lausanne, 1009, Lausanne, Switzerland
| | - George Coukos
- Ludwig Institute for Cancer Research, University of Lausanne, and Department of Oncology, University Hospital of Lausanne, 1009, Lausanne, Switzerland
| | - Immanuel F Luescher
- Ludwig Institute for Cancer Research, University of Lausanne, and Department of Oncology, University Hospital of Lausanne, 1009, Lausanne, Switzerland.
| |
Collapse
|
12
|
Goodall KJ, Nguyen A, Matsumoto A, McMullen JR, Eckle SB, Bertolino P, Sullivan LC, Andrews DM. Multiple receptors converge on H2-Q10 to regulate NK and γδT-cell development. Immunol Cell Biol 2019; 97:326-339. [PMID: 30537346 DOI: 10.1111/imcb.12222] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/03/2018] [Accepted: 12/06/2018] [Indexed: 01/10/2023]
Abstract
Class Ib major histocompatibility complex (MHC) is an extended family of molecules, which demonstrate tissue-specific expression and presentation of monomorphic antigens. These characteristics tend to imbue class Ib MHC with unique functions. H2-Q10 is potentially one such molecule that is overexpressed in the liver but its immunological function is not known. We have previously shown that H2-Q10 is a ligand for the natural killer cell receptor Ly49C and now, using H2-Q10-deficient mice, we demonstrate that H2-Q10 can also stabilize the expression of Qa-1b. In the absence of H2-Q10, the development and maturation of conventional hepatic natural killer cells is disrupted. We also provide evidence that H2-Q10 is a new high affinity ligand for CD8αα and controls the development of liver-resident CD8αα γδT cells. These data demonstrate that H2-Q10 has multiple roles in the development of immune subsets and identify an overlap of recognition within the class Ib MHC that is likely to be relevant to the regulation of immunity.
Collapse
Affiliation(s)
- Katharine J Goodall
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Angela Nguyen
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Aya Matsumoto
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Julie R McMullen
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Medicine, Monash University, Clayton, VIC, Australia.,Department of Physiology, Monash University, Clayton, VIC, Australia
| | - Sidonia B Eckle
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Patrick Bertolino
- Liver Immunology program Centenary Institute, AW Morrow Gastroenterology and Liver Centre and Royal Prince Alfred Hospital, University of Sydney, Sydney, NSW, Australia
| | - Lucy C Sullivan
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Daniel M Andrews
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
13
|
Buckle AM, Borg NA. Integrating Experiment and Theory to Understand TCR-pMHC Dynamics. Front Immunol 2018; 9:2898. [PMID: 30581442 PMCID: PMC6293202 DOI: 10.3389/fimmu.2018.02898] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/26/2018] [Indexed: 11/13/2022] Open
Abstract
The conformational dynamism of proteins is well established. Rather than having a single structure, proteins are more accurately described as a conformational ensemble that exists across a rugged energy landscape, where different conformational sub-states interconvert. The interaction between αβ T cell receptors (TCR) and cognate peptide-MHC (pMHC) is no exception, and is a dynamic process that involves substantial conformational change. This review focuses on technological advances that have begun to establish the role of conformational dynamics and dynamic allostery in TCR recognition of the pMHC and the early stages of signaling. We discuss how the marriage of molecular dynamics (MD) simulations with experimental techniques provides us with new ways to dissect and interpret the process of TCR ligation. Notably, application of simulation techniques lags behind other fields, but is predicted to make substantial contributions. Finally, we highlight integrated approaches that are being used to shed light on some of the key outstanding questions in the early events leading to TCR signaling.
Collapse
Affiliation(s)
- Ashley M Buckle
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Natalie A Borg
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
14
|
Wang J, Zhang N, Wang Z, Yanan W, Zhang L, Xia C. Structural insights into the evolution feature of a bony fish CD8αα homodimer. Mol Immunol 2018; 97:109-116. [PMID: 29626796 DOI: 10.1016/j.molimm.2018.03.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/23/2018] [Accepted: 03/28/2018] [Indexed: 01/11/2023]
Abstract
The CD8αα homodimer structures of endotherms demonstrate that despite distinct diversity at the amino acid sequence level, a few conserved key amino acids ensure common structural features. The structure of CD8αα in ancient ectotherms, such as lower bony fish, remains unclear. In this study, the high-resolution structure of the grass carp (Ctenopharyngodon idella) CD8αα (Ctid-CD8αα) homodimer was determined using the single-wavelength anomalous diffraction (SAD) method. The structure of Ctid-CD8αα shows distinct differences from the known CD8αα structures of endotherms, including a distinct topological structure with shorter back β sheets. The configuration and distribution of the hydrophobic core are different from those in endotherms. Interestingly, mutation of the key amino acid F32S, which is very common in fish and lies in the CDR loop region, leads to the absence of the typical cavity that binds to an epitope-MHC I (p/MHC I) in endotherms, yet Ctid-CD8αα can still specifically bind the grass carp peptide-Ctid-UAA-β2m (p/UAA-β2m). Our results indicate that during the evolutionary process, CD8αα has undergone dramatic changes that affect its dimeric structure and may use a new strategy to interact with p/MHC I.
Collapse
Affiliation(s)
- Junya Wang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, 100094, People's Republic of China
| | - Nianzhi Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, 100094, People's Republic of China
| | - Zhenbao Wang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, 100094, People's Republic of China
| | - Wu Yanan
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, 100094, People's Republic of China
| | - Lijie Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, 100094, People's Republic of China
| | - Chun Xia
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, 100094, People's Republic of China; Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, China Agricultural University, Beijing, People's Republic of China.
| |
Collapse
|
15
|
Dijkstra JM, Yamaguchi T, Grimholt U. Conservation of sequence motifs suggests that the nonclassical MHC class I lineages CD1/PROCR and UT were established before the emergence of tetrapod species. Immunogenetics 2017; 70:459-476. [DOI: 10.1007/s00251-017-1050-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 12/05/2017] [Indexed: 01/09/2023]
|
16
|
Liu Y, Li X, Qi J, Zhang N, Xia C. The structural basis of chicken, swine and bovine CD8αα dimers provides insight into the co-evolution with MHC I in endotherm species. Sci Rep 2016; 6:24788. [PMID: 27122108 PMCID: PMC4848529 DOI: 10.1038/srep24788] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 04/05/2016] [Indexed: 01/05/2023] Open
Abstract
It is unclear how the pivotal molecules of the adaptive immune system (AIS) maintain their inherent characteristics and relationships with their co-receptors over the course of co-evolution. CD8α, a fundamental but simple AIS component with only one immunoglobulin variable (IgV) domain, is a good example with which to explore this question because it can fold correctly to form homodimers (CD8αα) and interact with peptide-MHC I (p/MHC I) with low sequence identities between different species. Hereby, we resolved the crystal structures of chicken, swine and bovine CD8αα. They are typical homodimers consisting of two symmetric IgV domains with distinct species specificities. The CD8αα structures indicated that a few highly conserved residues are important in CD8 dimerization and in interacting with p/MHC I. The dimerization of CD8αα mainly depends on the pivotal residues on the dimer interface; in particular, four aromatic residues provide many intermolecular forces and contact areas. Three residues on the surface of CD8α connecting cavities that formed most of the hydrogen bonds with p/MHC I were also completely conserved. Our data propose that a few key conserved residues are able to ensure the CD8α own structural characteristics despite the great sequence variation that occurs during evolution in endotherms.
Collapse
Affiliation(s)
- Yanjie Liu
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China.,Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture, Institute of Apiculture, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Xin Li
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Nianzhi Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Chun Xia
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China.,The Key Laboratory Zoonosis of Ministry of Agriculture of China, Beijing 100094, China
| |
Collapse
|
17
|
Rashin AA, Jernigan RL. Clusters of Structurally Similar MHC I HLA-A2 Molecules, Found with a New Method, Suggest Mechanisms of T-Cell Receptor Avidity. Biochemistry 2016; 55:167-85. [PMID: 26600404 DOI: 10.1021/acs.biochem.5b01077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Only α1 and α2 domains of the α-chain of the major histocompatibility complex (MHC) directly bind peptide antigens (Ag-s) and the T-cell receptor (TCR). Significant plasticity was found in the TCR but only minor in (α1 + α2). The α3-domain position variation was noted only in connection to its binding the coreceptor CD8. We apply our methods for identifying functional conformational changes in proteins to a systematic study of similarities between 43 X-ray structures of the entire α chains of MHC-I HLA-A2. Out of 903 different αHLA-A2 pairs 203 show similarities within the earlier determined uncertainty threshold and unexpectedly form three similarity clusters (SCs) with all/most structures in a cluster similar within the uncertainty threshold. Pairs from different SCs always differ above the threshold, mainly due to variations in the α3 position/structure. All structures in SC3 cannot bind the CD8 coreceptor. Strong hydrogen bonds between (α1 + α2) and α3 differ between SC1 and SC2 but are nearly invariant within each SC. Small conformational changes in the (α1 + α2), caused by Ag-s differences, act as an α3 "allosteric switch" between SC2 and SC1. Binding of CD8 to SC2-HLA-A2 (Tax-type Ag-s) changes it to SC1-HLA-A2 (HuD-type Ag-s). HuD binding to HLA-A2 is much less stable than Tax binding. CD8-liganded HLA-A2 preference for binding HuD suggests that CD8-HLA-A2 may present a weakly binding peptide for TCR recognition, supporting the hypothesis that CD8 increases TCR avidity to weak Ag-s. Other HLA-A2 functions may involve α3. TCR-A6-liganded-Tax-type-HLA-A2s form two small clusters, similar to either A6-liganded-HuD or A6-liganded-native-Tax HLA-A2s.
Collapse
Affiliation(s)
- Alexander A Rashin
- BioChemComp Inc , 543 Sagamore Avenue, Teaneck, New Jersey 07666, United States
- LH Baker Center for Bioinformatics and Department of Biochemistry, Biophysics and Molecular Biology, 112 Office and Lab Building, Iowa State University , Ames, Iowa 50011-3020, United States
| | - Robert L Jernigan
- LH Baker Center for Bioinformatics and Department of Biochemistry, Biophysics and Molecular Biology, 112 Office and Lab Building, Iowa State University , Ames, Iowa 50011-3020, United States
| |
Collapse
|
18
|
Reinherz EL, Wang JH. Codification of bidentate pMHC interaction with TCR and its co-receptor. Trends Immunol 2015; 36:300-6. [PMID: 25818864 PMCID: PMC4420642 DOI: 10.1016/j.it.2015.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 02/03/2023]
Abstract
A 1983 Immunology Today rostrum hypothesized that each T cell has two recognition units: a T cell receptor (TCR) complex, which binds antigen associated with a polymorphic region of a MHC molecule (pMHC), and a CD4 or CD8 molecule that binds to a conserved region of that same MHC gene product (class II or I, respectively). Structural biology has since precisely revealed those bidentate pMHC interactions. TCRαβ ligates the membrane-distal antigen-binding MHC platform, whereas CD8 clamps a membrane-proximal MHCI α3 domain loop and CD4 docks to a hydrophobic crevice between MHCII α2 and β2 domains. Here, we review how MHC class-restricted binding impacts signaling and lineage commitment, discussing TCR force-driven conformational transitions that may optimally expose the co-receptor docking site on MHC.
Collapse
Affiliation(s)
- Ellis L Reinherz
- Laboratory of Immunobiology and Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| | - Jia-huai Wang
- Laboratory of Immunobiology and Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
19
|
Force-dependent transition in the T-cell receptor β-subunit allosterically regulates peptide discrimination and pMHC bond lifetime. Proc Natl Acad Sci U S A 2015; 112:1517-22. [PMID: 25605925 DOI: 10.1073/pnas.1424829112] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The αβ T-cell receptor (TCR) on each T lymphocyte mediates exquisite specificity for a particular foreign peptide bound to a major histocompatibility complex molecule (pMHC) displayed on the surface of altered cells. This recognition stimulates protection in the mammalian host against intracellular pathogens, including viruses, and involves piconewton forces that accompany pMHC ligation. Physical forces are generated by T-lymphocyte movement during immune surveillance as well as by cytoskeletal rearrangements at the immunological synapse following cessation of cell migration. The mechanistic explanation for how TCRs distinguish between foreign and self-peptides bound to a given MHC molecule is unclear: peptide residues themselves comprise few of the TCR contacts on the pMHC, and pathogen-derived peptides are scant among myriad self-peptides bound to the same MHC class arrayed on infected cells. Using optical tweezers and DNA tether spacer technology that permit piconewton force application and nanometer scale precision, we have determined how bioforces relate to self versus nonself discrimination. Single-molecule analyses involving isolated αβ-heterodimers as well as complete TCR complexes on T lymphocytes reveal that the FG loop in the β-subunit constant domain allosterically controls both the variable domain module's catch bond lifetime and peptide discrimination via force-driven conformational transition. In contrast to integrins, the TCR interrogates its ligand via a strong force-loaded state with release through a weakened, extended state. Our work defines a key element of TCR mechanotransduction, explaining why the FG loop structure evolved for adaptive immunity in αβ but not γδTCRs or immunoglobulins.
Collapse
|
20
|
Liu Y, Chen R, Tariq M, Xia C. Complex assembly, crystallization and preliminary X-ray crystallographic analysis of the chicken CD8αα-BF2*0401 complex. Acta Crystallogr F Struct Biol Commun 2014; 70:1264-7. [PMID: 25195906 PMCID: PMC4157433 DOI: 10.1107/s2053230x14017154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/24/2014] [Indexed: 11/10/2022] Open
Abstract
In the process of antigen presentation, the MHCI-CD8 complex is important for immune signal transduction by the activation of cytotoxic T cells. Here, the expression, purification, crystallization and X-ray analysis of the complex of the chicken MHC class I molecule BF2*0401 and CD8αα (CD8αα-BF2*0401) are reported. This complex was verified by SDS-PAGE analysis of a CD8αα-BF2*0401 crystal, which showed three bands corresponding to the molecular weights of BF2*0401, β2-microglobulin and CD8α, respectively. The crystal of CD8αα-BF2*0401 diffracted to 2.8 Å resolution and belonged to space group P21, with unit-cell parameters a = 90.6, b = 90.8, c = 94.9 Å, β = 98°. The Matthews coefficient and solvent content were calculated to be 2.88 Å(3) Da(-1) and ∼57.3%, respectively.
Collapse
Affiliation(s)
- Yanjie Liu
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People’s Republic of China
| | - Rong Chen
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People’s Republic of China
| | - Mansoor Tariq
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People’s Republic of China
| | - Chun Xia
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People’s Republic of China
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, Beijing, People’s Republic of China
| |
Collapse
|
21
|
Wang Z, Chen R, Tariq M, Jiang B, Chen Z, Xia C. Complex assembly, crystallization and preliminary X-ray crystallographic analysis of the bovine CD8αα-BoLA-2*02201 complex. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2014; 70:742-6. [PMID: 24915083 DOI: 10.1107/s2053230x14008838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/17/2014] [Indexed: 11/10/2022]
Abstract
In order to clarify the structural characteristics of the bovine MHC class I molecule (BoLA-I) complexed with CD8αα (CD8αα-BoLA-I), bovine CD8αα, BoLA-I (BoLA-2*02201) and β2m were expressed and purified, and were then assembled with a peptide derived from Foot-and-mouth disease virus (FMDV-VP1YY9) and crystallized. The crystal diffracted to 1.7 Å resolution and belonged to space group P21, with unit-cell parameters a=53.9, b=103.8, c=61.8 Å, α=γ=90, β=96°. The asymmetric unit contained one complex, with a Matthews coefficient of 2.41 Å3 Da(-1) and a solvent content of 48.9%. The rotation-function Z-score and translation-function Z-score for molecular replacement were 3.4 and 8.9, respectively. In addition, SDS-PAGE analysis of CD8αα-BoLA-I crystals showed three bands corresponding to the molecular weights of BoLA-I heavy chain, β2m and CD8α. The structure of the CD8αα-BoLA-I complex should be helpful in obtaining insight into the interaction between bovine CD8αα and MHC class I molecules. Structure determination of BoLA-2*02201-FMDV-VP1YY9 will be useful in the design of vaccines for foot-and-mouth disease.
Collapse
Affiliation(s)
- Zhenbao Wang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Rong Chen
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Mansoor Tariq
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Bo Jiang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Zhaosan Chen
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Chun Xia
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| |
Collapse
|
22
|
Abstract
Ig superfamily (IgSF) constitutes the largest superfamily in human genome. In particular, Ig-like domains are the most abundant structural module within cell surface receptors, functioning in nervous as well as immune system. Here I describe some key sequence signature of an I-set Ig-like domain from known structures of IgSF members. These signature residues define the I-set Ig-like domain, which should aid structural and functional studies of cell surface receptors.
Collapse
Affiliation(s)
- Jia-Huai Wang
- Dana-Farber Cancer Institute and Department of Pediatrics, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
23
|
Li XL, Teng MK, Reinherz EL, Wang JH. Strict Major Histocompatibility Complex Molecule Class-Specific Binding by Co-Receptors Enforces MHC-Restricted αβ TCR Recognition during T Lineage Subset Commitment. Front Immunol 2013; 4:383. [PMID: 24319443 PMCID: PMC3837227 DOI: 10.3389/fimmu.2013.00383] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/04/2013] [Indexed: 01/22/2023] Open
Abstract
Since the discovery of co-receptor dependent αβTCR recognition, considerable effort has been spent on elucidating the basis of CD4 and CD8 lineage commitment in the thymus. The latter is responsible for generating mature CD4 helper and CD8αβ cytotoxic T cell subsets. Although CD4+ and CD8+ T cell recognition of peptide antigens is known to be MHC class II- and MHC class I-restricted, respectively, the mechanism of single positive (SP) thymocyte lineage commitment from bipotential double-positive (DP) progenitors is not fully elucidated. Classical models to explain thymic CD4 vs. CD8 fate determination have included a stochastic selection model or instructional models. The latter are based either on strength of signal or duration of signal impacting fate. More recently, differential co-receptor gene imprinting has been shown to be involved in expression of transcription factors impacting cytotoxic T cell development. Here, we address commitment from a structural perspective, focusing on the nature of co-receptor binding to MHC molecules. By surveying 58 MHC class II and 224 MHC class I crystal structures in the Protein Data Bank, it becomes clear that CD4 cannot bind to MHC I molecules, nor can CD8αβ or CD8αα bind to MHC II molecules. Given that the co-receptor delivers Lck to phosphorylate exposed CD3 ITAMs within a peptide/MHC (pMHC)-ligated TCR complex to initiate cell signaling, this strict co-receptor recognition fosters MHC class-restricted SP thymocyte lineage commitment at the DP stage even though both co-receptors are expressed on a single cell. In short, the binding preference of an αβTCR for a peptide complexed with an MHC molecule dictates which co-receptor subsequently binds, thereby supporting development of that subset lineage. How function within the lineage is linked further to biopotential fate determination is discussed.
Collapse
Affiliation(s)
- Xiao-Long Li
- School of Life Sciences, University of Science and Technology of China , Hefei , China ; College of Life Sciences, Peking University , Beijing , China
| | | | | | | |
Collapse
|
24
|
Li Y, Yin Y, Mariuzza RA. Structural and biophysical insights into the role of CD4 and CD8 in T cell activation. Front Immunol 2013; 4:206. [PMID: 23885256 PMCID: PMC3717711 DOI: 10.3389/fimmu.2013.00206] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/08/2013] [Indexed: 11/19/2022] Open
Abstract
T cell receptors (TCRs) recognize peptides presented by MHC molecules (pMHC) on an antigen-presenting cell (APC) to discriminate foreign from self-antigens and initiate adaptive immune responses. In addition, T cell activation generally requires binding of this same pMHC to a CD4 or CD8 co-receptor, resulting in assembly of a TCR–pMHC–CD4 or TCR–pMHC–CD8 complex and recruitment of Lck via its association with the co-receptor. Here we review structural and biophysical studies of CD4 and CD8 interactions with MHC molecules and TCR–pMHC complexes. Crystal structures have been determined of CD8αα and CD8αβ in complex with MHC class I, of CD4 bound to MHC class II, and of a complete TCR–pMHC–CD4 ternary complex. Additionally, the binding of these co-receptors to pMHC and TCR–pMHC ligands has been investigated both in solution and in situ at the T cell–APC interface. Together, these studies have provided key insights into the role of CD4 and CD8 in T cell activation, and into how these co-receptors focus TCR on MHC to guide TCR docking on pMHC during thymic T cell selection.
Collapse
Affiliation(s)
- Yili Li
- W. M. Keck Laboratory for Structural Biology, Institute for Bioscience and Biotechnology Research, University of Maryland , Rockville, MD , USA ; Department of Cell Biology and Molecular Genetics, University of Maryland , College Park, MD , USA
| | | | | |
Collapse
|
25
|
|
26
|
Boucherma R, Kridane-Miledi H, Bouziat R, Rasmussen M, Gatard T, Langa-Vives F, Lemercier B, Lim A, Bérard M, Benmohamed L, Buus S, Rooke R, Lemonnier FA. HLA-A*01:03, HLA-A*24:02, HLA-B*08:01, HLA-B*27:05, HLA-B*35:01, HLA-B*44:02, and HLA-C*07:01 monochain transgenic/H-2 class I null mice: novel versatile preclinical models of human T cell responses. THE JOURNAL OF IMMUNOLOGY 2013; 191:583-93. [PMID: 23776170 DOI: 10.4049/jimmunol.1300483] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have generated a panel of transgenic mice expressing HLA-A*01:03, -A*24:02, -B*08:01, -B*27:05, -B*35:01, -B*44:02, or -C*07:01 as chimeric monochain molecules (i.e., appropriate HLA α1α2 H chain domains fused with a mouse α3 domain and covalently linked to human β2-microglobulin). Whereas surface expression of several transgenes was markedly reduced in recipient mice that coexpressed endogenous H-2 class I molecules, substantial surface expression of all human transgenes was observed in mice lacking H-2 class I molecules. In these HLA monochain transgenic/H-2 class I null mice, we observed a quantitative and qualitative restoration of the peripheral CD8(+) T cell repertoire, which exhibited a TCR diversity comparable with C57BL/6 WT mice. Potent epitope-specific, HLA-restricted, IFN-γ-producing CD8(+) T cell responses were generated against known reference T cell epitopes after either peptide or DNA immunization. HLA-wise, these new transgenic strains encompass a large proportion of individuals from all major human races and ethnicities. In combination with the previously created HLA-A*02:01 and -B*07:02 transgenic mice, the novel HLA transgenic mice described in this report should be a versatile preclinical animal model that will speed up the identification and optimization of HLA-restricted CD8(+) T cell epitopes of potential interest in various autoimmune human diseases and in preclinical evaluation of T cell-based vaccines.
Collapse
Affiliation(s)
- Rachid Boucherma
- INSERM U1016, Institut Cochin, Equipe Immunologie du Diabète, Hôpital Saint-Vincent-de-Paul, 75674 Paris, Cedex 14, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Pinto RD, Randelli E, Buonocore F, Pereira PJB, dos Santos NMS. Molecular cloning and characterization of sea bass (Dicentrarchus labrax, L.) MHC class I heavy chain and β2-microglobulin. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 39:234-254. [PMID: 23116964 DOI: 10.1016/j.dci.2012.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 10/10/2012] [Accepted: 10/11/2012] [Indexed: 06/01/2023]
Abstract
In this work, the gene and cDNA of sea bass (Dicentrarchus labrax) β2-microglobulin (Dila-β2m) and several cDNAs of MHC class I heavy chain (Dila-UA) were characterized. While Dila-β2m is single-copy, numerous Dila-UA transcripts were identified per individual with variability at the peptide-binding domain (PBD), but also with unexpected diversity from the connective peptide (CP) through the 3' untranslated region (UTR). Phylogenetic analysis segregates Dila-β2m and Dila-UA into each subfamily cluster, placing them in the fish class and branching Dila-MHC-I with lineage U. The α1 domains resemble those of the recently proposed L1 trans-species lineage. Although no Dila-specific α1, α2 or α3 sub-lineages could be observed, two highly distinct sub-lineages were identified at the CP/TM/CYT regions. The three-dimensional homology model of sea bass MHC-I complex is consistent with other characterized vertebrate structures. Furthermore, basal tissue-specific expression profiles were determined for both molecules, and expression of β2m was evaluated after poly I:C stimulus. Results suggest these molecules are orthologues of other β2m and teleost classical MHC-I and their basic structure is evolutionarily conserved, providing relevant information for further studies on antigen presentation in this fish species.
Collapse
Affiliation(s)
- Rute D Pinto
- Fish Immunology and Vaccinology Group, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, Porto, Portugal.
| | | | | | | | | |
Collapse
|
28
|
Dynamics of free versus complexed β2-microglobulin and the evolution of interfaces in MHC class I molecules. Immunogenetics 2012; 65:157-72. [PMID: 23229474 DOI: 10.1007/s00251-012-0667-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 11/03/2012] [Indexed: 10/27/2022]
Abstract
In major histocompatibility complex (MHC) class I molecules, monomorphic β(2)-microglobulin (β(2)m) is non-covalently bound to a heavy chain (HC) exhibiting a variable degree of polymorphism. β(2)M can stabilize a wide variety of complexes ranging from classical peptide binding to nonclassical lipid presenting MHC class I molecules as well as to MHC class I-like molecules that do not bind small ligands. Here we aim to assess the dynamics of individual regions in free as well as complexed β(2)m and to understand the evolution of the interfaces between β(2)m and different HC. Using human β(2)m and the HLA-B*27:09 complex as a model system, a comparison of free and HC-bound β(2)m by nuclear magnetic resonance spectroscopy was initially carried out. Although some regions retain their flexibility also after complex formation, these studies reveal that most parts of β(2)m gain rigidity upon binding to the HC. Sequence analyses demonstrate that some of the residues exhibiting flexibility participate in evolutionarily conserved β(2)m-HC contacts which are detectable in diverse vertebrate species or characterize a particular group of MHC class I complexes such as peptide- or lipid-binding molecules. Therefore, the spectroscopic experiments and the interface analyses demonstrate that β(2)m fulfills its role of interacting with diverse MHC class I HC as well as effector cell receptors not only by engaging in conserved intermolecular contacts but also by falling back upon key interface residues that exhibit a high degree of flexibility.
Collapse
|
29
|
McCoy WH, Wang X, Yokoyama WM, Hansen TH, Fremont DH. Structural mechanism of ER retrieval of MHC class I by cowpox. PLoS Biol 2012; 10:e1001432. [PMID: 23209377 PMCID: PMC3507924 DOI: 10.1371/journal.pbio.1001432] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 10/17/2012] [Indexed: 01/07/2023] Open
Abstract
One of the hallmarks of viral immune evasion is the capacity to disrupt major histocompatibility complex class I (MHCI) antigen presentation to evade T-cell detection. Cowpox virus encoded protein CPXV203 blocks MHCI surface expression by exploiting the KDEL-receptor recycling pathway, and here we show that CPXV203 directly binds a wide array of fully assembled MHCI proteins, both classical and non-classical. Further, the stability of CPXV203/MHCI complexes is highly pH dependent, with dramatically increased affinities at the lower pH of the Golgi relative to the endoplasmic reticulum (ER). Crystallographic studies reveal that CPXV203 adopts a beta-sandwich fold similar to poxvirus chemokine binding proteins, and binds the same highly conserved MHCI determinants located under the peptide-binding platform that tapasin, CD8, and natural killer (NK)-receptors engage. Mutagenesis of the CPXV203/MHCI interface identified the importance of two CPXV203 His residues that confer low pH stabilization of the complex and are critical to ER retrieval of MHCI. These studies clarify mechanistically how CPXV203 coordinates with other cowpox proteins to thwart antigen presentation.
Collapse
Affiliation(s)
- William H. McCoy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Xiaoli Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Wayne M. Yokoyama
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Ted H. Hansen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Daved H. Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
30
|
Cole DK, Laugel B, Clement M, Price DA, Wooldridge L, Sewell AK. The molecular determinants of CD8 co-receptor function. Immunology 2012; 137:139-48. [PMID: 22804746 DOI: 10.1111/j.1365-2567.2012.03625.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
CD8(+) T cells respond to signals mediated through a specific interaction between the T-cell receptor (TCR) and a composite antigen in the form of an epitopic peptide bound between the polymorphic α1 and α2 helices of an MHC class I (MHCI) molecule. The CD8 glycoprotein 'co-receives' antigen by binding to an invariant region of the MHCI molecule and can enhance ligand recognition by up to 1 million-fold. In recent years, a number of structural and biophysical investigations have shed light on the role of the CD8 co-receptor during T-cell antigen recognition. Here, we provide a collated resource for these data, and discuss how the structural and biophysical parameters governing CD8 co-receptor function further our understanding of T-cell cross-reactivity and the productive engagement of low-affinity antigenic ligands.
Collapse
Affiliation(s)
- David K Cole
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK.
| | | | | | | | | | | |
Collapse
|
31
|
Wang JH, Reinherz EL. The structural basis of αβ T-lineage immune recognition: TCR docking topologies, mechanotransduction, and co-receptor function. Immunol Rev 2012; 250:102-19. [PMID: 23046125 PMCID: PMC3694212 DOI: 10.1111/j.1600-065x.2012.01161.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Self versus non-self discrimination is at the core of T-lymphocyte recognition. To this end, αβ T-cell receptors (TCRs) ligate 'foreign' peptides bound to major histocompatibility complex (MHC) class I or class II molecules (pMHC) arrayed on the surface of antigen-presenting cells (APCs). Since the discovery of TCRs approximately 30 years ago, considerable structural and functional data have detailed the molecular basis of their extraordinary ligand specificity and sensitivity in mediating adaptive T-cell immunity. This review focuses on the structural biology of the Fab-like TCRαβ clonotypic heterodimer and its unique features in conjunction with those of the associated CD3εγ and CD3εδ heterodimeric molecules, which, along with CD3ζζ homodimer, comprise the TCR complex in a stoichiometry of 1:1:1:1. The basis of optimized TCRαβ docking geometry on the pMHC linked to TCR mechanotransduction and required for T-cell signaling as well as CD4 and CD8 co-receptor function is detailed. A model of the TCR ectodomain complex including its connecting peptides suggests how force generated during T-cell immune surveillance and at the immunological synapse results in dynamic TCR quaternary change involving its heterodimeric components. Potential insights from the structural biology relevant to immunity and immunosuppression are revealed.
Collapse
MESH Headings
- Animals
- Antigen-Presenting Cells/cytology
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/metabolism
- Antigens/chemistry
- Antigens/immunology
- Antigens/metabolism
- CD3 Complex/chemistry
- CD3 Complex/immunology
- CD3 Complex/metabolism
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Humans
- Major Histocompatibility Complex/immunology
- Mechanotransduction, Cellular
- Mice
- Models, Molecular
- Peptides/chemistry
- Peptides/immunology
- Peptides/metabolism
- Protein Conformation
- Protein Multimerization
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
Collapse
Affiliation(s)
- Jia-huai Wang
- Laboratory of Immunobiology and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Ellis L. Reinherz
- Laboratory of Immunobiology and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
32
|
Puech PH, Nevoltris D, Robert P, Limozin L, Boyer C, Bongrand P. Force measurements of TCR/pMHC recognition at T cell surface. PLoS One 2011; 6:e22344. [PMID: 21799834 PMCID: PMC3142151 DOI: 10.1371/journal.pone.0022344] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 06/25/2011] [Indexed: 01/07/2023] Open
Abstract
The rupture forces and adhesion frequencies of single recognition complexes between an affinity selected peptide/MHC complex and a TCR at a murine hybridoma surface were measured using Atomic Force Microscopy. When the CD8 coreceptor is absent, the adhesion frequency depends on the nature of the peptide but the rupture force does not. When CD8 is present, no effect of the nature of the peptide is observed. CD8 is proposed to act as a time and distance lock, enabling the shorter TCR molecule to bridge the pMHC and have time to finely read the peptide. Ultimately, such experiments could help the dissection of the sequential steps by which the TCR reads the peptide/MHC complex in order to control T cell activation.
Collapse
Affiliation(s)
- Pierre-Henri Puech
- Laboratoire Adhésion et Inflammation, Parc Scientifique et Technologique de Luminy, Marseille, France.
| | | | | | | | | | | |
Collapse
|
33
|
Shi Y, Qi J, Iwamoto A, Gao GF. Plasticity of human CD8αα binding to peptide-HLA-A*2402. Mol Immunol 2011; 48:2198-202. [PMID: 21645925 DOI: 10.1016/j.molimm.2011.05.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 05/06/2011] [Accepted: 05/09/2011] [Indexed: 02/04/2023]
Abstract
The human CD8 functions as a co-receptor for specific T cell recognition, and only one complex structure of human CD8αα binding to HLA-A*0201 has been solved, revealing the molecular basis of CD8 interacting with its ligand pHLA. Here, we present the complex structures of human CD8αα bound to HLA-A*2402, which demonstrate two opposite α3 domain CD loop shifts (either pull or push) in the HLA heavy chain upon CD8 engagement. Taking the previously reported mouse CD8-pMHC complex structures into account, from the structural view, all of the data indicate the plasticity of CD8 binding to pMHC/HLA, which facilitates its co-receptor function for T cells. The plasticity of CD8 binding appears not to affect the specificity of TCR recognition, as no peptide conformation change extends to the pMHC interface for TCR contacting.
Collapse
Affiliation(s)
- Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | |
Collapse
|
34
|
Zhou B, Chen Q, Mallis RJ, Zhang H, Liu JH, Reinherz EL, Wang JH. A conserved hydrophobic patch on Vβ domains revealed by TCRβ chain crystal structures: Implications for pre-TCR dimerization. Front Immunol 2011; 2:5. [PMID: 22566796 PMCID: PMC3341985 DOI: 10.3389/fimmu.2011.00005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 02/15/2011] [Indexed: 01/21/2023] Open
Abstract
The αβ T cell receptor (TCR) is a multimeric complex whose β chain plays a crucial role in thymocyte development as well as antigen recognition by mature T lymphocytes. We report here crystal structures of individual β subunits, termed N15β (Vβ5.2Dβ2Jβ2.6Cβ2) and N30β (Vβ13Dβ1Jβ1.1Cβ2), derived from two αβ TCRs specific for the immunodominant vesicular stomatitis virus octapeptide (VSV-8) bound to the murine H-2Kb MHC class I molecule. The crystal packing of the N15β structure reveals a homodimer formed through two Vβ domains. The Vβ/Vβ module is topologically very similar to the Vα/Vβ module in the N15αβ heterodimer. By contrast, in the N30β structure, the Vβ domain’s external hydrophobic CFG face is covered by the neighboring molecule’s Cβ domain. In conjunction with systematic investigation of previously published TCR single-subunit structures, we identified several conserved residues forming a concave hydrophobic patch at the center of the CFG outer face of the Vβ and other V-type Ig-like domains. This hydrophobic patch is shielded from solvent exposure in the crystal packing, implying that it is unlikely to be thermodynamically stable if exposed on the thymocyte surface. Accordingly, we propose a dimeric pre-TCR model distinct from those suggested previously by others and discuss its functional and structural implications.
Collapse
Affiliation(s)
- Bo Zhou
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Harvard Medical School Boston, MA, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Xu SW, Wu JY, Hu KS, Ping HL, Duan ZG, Zhang HF. Molecular cloning and expression of orange-spotted grouper (Epinephelus coioides) CD8α and CD8β genes. FISH & SHELLFISH IMMUNOLOGY 2011; 30:600-608. [PMID: 21193050 DOI: 10.1016/j.fsi.2010.12.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2010] [Revised: 10/24/2010] [Accepted: 12/12/2010] [Indexed: 05/30/2023]
Abstract
T-cell surface glycoprotein CD8 consists of two distinguished chains, termed α and β chains, and functions as a co-receptor for the T-cell receptor by binding to MHC class I proteins. In this study we report the cloning and identification of both CD8α and CD8β genes from orange-spotted grouper (Epinephelus coioides). The predicted grouper CD8α and CD8β proteins were structurally similar to other fish especially to those of Pleuronectiformes. Real-time RT-PCR revealed that the CD8 mRNA was much higher in the thymus than in other immune organs, and the expression level were very low in stomach, liver, and brain. During embryonic development of the grouper, the highest CD8 transcripts were detected in the multi-cell stage, followed by muscle burl stage, which suggested that the multi-cell stage may be critical in CD8 transcript synthesis. Moreover, CD8 mRNA levels were examined in lymphocytes at different time treated with lipopolysaccharide (LPS), polyriboinosinic polyribocytidylic acid (PolyI:C), phytohemagglutinin (PHA), and concanavalin A (ConA). The result showed that the CD8 mRNA levels were significantly affected in time-dependent manner by PolyI:C, PHA, and ConA, but not by LPS.
Collapse
Affiliation(s)
- Sheng-wei Xu
- Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, PR China
| | | | | | | | | | | |
Collapse
|
36
|
Jiang N, Huang J, Edwards LJ, Liu B, Zhang Y, Beal CD, Evavold BD, Zhu C. Two-stage cooperative T cell receptor-peptide major histocompatibility complex-CD8 trimolecular interactions amplify antigen discrimination. Immunity 2011; 34:13-23. [PMID: 21256056 DOI: 10.1016/j.immuni.2010.12.017] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 09/22/2010] [Accepted: 12/29/2010] [Indexed: 10/18/2022]
Abstract
The T cell receptor (TCR) and CD8 bind peptide-major histocompatibility complex (pMHC) glycoproteins to initiate adaptive immune responses, yet the trimolecular binding kinetics at the T cell membrane is unknown. By using a micropipette adhesion frequency assay, we show that this kinetics has two stages. The first consists of TCR-dominant binding to agonist pMHC. This triggers a second stage consisting of a step increase in adhesion after a one second delay. The second-stage binding requires Src family kinase activity to initiate CD8 binding to the same pMHC engaged by the TCR. This induced trimeric-cooperative interaction enhances adhesion synergistically to favor potent ligands, which further amplifies discrimination. Our data reveal a TCR-CD8 positive-feedback loop involved in initial signaling steps that is sensitive to a single pMHC is rapid, reversible, synergistic, and peptide discriminative.
Collapse
Affiliation(s)
- Ning Jiang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Bennett MS, Joseph A, Ng HL, Goldstein H, Yang OO. Fine-tuning of T-cell receptor avidity to increase HIV epitope variant recognition by cytotoxic T lymphocytes. AIDS 2010; 24:2619-28. [PMID: 20881472 DOI: 10.1097/qad.0b013e32833f7b22] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE T-cell receptor (TCR) gene therapy is an approach being considered for HIV-1, but epitope mutation is a significant barrier. We assessed whether HIV-specific TCR can be modified to have broader coverage of epitope variants by recombining polymorphisms between public clonotype TCR sequences. DESIGN Public clonotype TCRs recognizing the same epitope often differ by polymorphisms in their third complementarity determining regions (CDR3). We assessed whether novel combinations of such polymorphisms could improve TCR recognition of epitope variation. METHODS A TCR recognizing the HLA A*0201-restricted epitope SLYNTVATL (Gag 77-85, SL9) was engineered to have combinations of four polymorphisms in the CDR3 regions compared to another SL9-specific TCR. These novel TCRs were screened for functional avidities against SL9 epitope variants and abilities to mediate cytotoxic T-lymphocyte suppression of HIV-1 containing the same epitope variants. RESULTS The TCRs varied modestly in functional avidities for SL9 variants, due to alterations in affinity. This translated to differences in antiviral activities against HIV-1 when functional avidity changes crossed the previously defined threshold required for efficient recognition of HIV-1-infected cells. Higher avidity TCR mutants had generally broader recognition of SL9 variants. CONCLUSION These results indicate that rationally targeted increases in functional avidities can be utilized to maximize the antiviral breadth of transgenic TCRs. In contrast to previously reported random mutagenesis to markedly increase functional avidities, tuning through recombining naturally occurring polymorphisms may offer a more physiologic approach that minimizes the risk of deleterious TCR reactivities.
Collapse
|
38
|
Kang YJ, Wang X, Lin SJ, Hsu YM, Chang HC. An active CD8alpha/pMHCI interaction is required for CD8 single positive thymocyte differentiation. Eur J Immunol 2010; 40:836-48. [PMID: 19950178 DOI: 10.1002/eji.200939663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recognition of viral antigenic peptides bound to major histocompatibility complex class I molecules (MHCI) by TCR is critical for initiating the responses of CD8(+) T cells that ultimately lead to elimination of virus-infected cells. This antigen recognition is enhanced by the CD8 coreceptor through its interaction with the peptide-MHCI complexes (pMHCI). Mouse CD8alphabeta can form two different complexes with pMHCI via either the CD8alpha- or CD8beta-dominated interaction. To understand the functional significance of these complexes in vivo, we generated Tg mice carrying a variant CD8alphabeta (CD8alpha(m3)beta) capable of forming only the CD8beta-dominated CD8alphabeta/pMHCI complex. These mice show sub-optimal thymic differentiation with reduced populations of CD8(+) single-positive thymocytes. Tg CD8(+) T cells exhibit a compromised developmental capacity when competing with CD8(+) T cells from B6 mice in mixed bone marrow chimera experiments. However, once these CD8(+) T cells have emigrated to the peripheral lymphoid organs, they exhibit normal effector function against viral infection. Our observations indicate that, in addition to the CD8 activity conferred by CD8beta-dominated CD8alphabeta/pMHCI complexes, full thymocyte differentiation requires additional coreceptor activities conferred by CD8alphaalpha and/or CD8alphabeta with CD8alpha-dominated CD8/pMHCI complexes.
Collapse
Affiliation(s)
- Yoon-Joong Kang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, USA
| | | | | | | | | |
Collapse
|
39
|
Zong L, Chen Y, Yan J, Zhang J. Expression, purification, crystallization and preliminary X-ray diffraction analysis of rhesus macaque CD8alphaalpha homodimer. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:435-8. [PMID: 20383016 DOI: 10.1107/s1744309110005178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2009] [Accepted: 02/09/2010] [Indexed: 11/10/2022]
Abstract
As a T-cell co-receptor, CD8 binds to MHC class I molecules and plays a pivotal role in the activation of cytotoxic T lymphocytes. To date, structures of CD8 have been solved for two different mammals: human and mouse. The infection of rhesus macaques (Macaca mulatta) by simian immunodeficiency virus (SIV) is the best animal model for studying HIV. In this study, the rhesus macaque CD8 (rCD8) alphaalpha homodimer was obtained and rCD8alpha exodomain protein crystals were successfully obtained for further structural analysis. Diffraction data were collected to a resolution of 2.4 A. The crystal belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 46.52, b = 56.28, c = 82.40 A. These data will facilitate further studies on the structural differences between these CD8 structures and the cellular immune responses of rhesus macaque.
Collapse
Affiliation(s)
- Lili Zong
- Department of Obstetrics and Gynaecology, Integrated Traditional Chinese Medicine and Western Medicine Hospital, Nanfang Medical University, Guangzhou 510310, People's Republic of China.
| | | | | | | |
Collapse
|
40
|
Wooldridge L, Clement M, Lissina A, Edwards ESJ, Ladell K, Ekeruche J, Hewitt RE, Laugel B, Gostick E, Cole DK, Debets R, Berrevoets C, Miles JJ, Burrows SR, Price DA, Sewell AK. MHC class I molecules with Superenhanced CD8 binding properties bypass the requirement for cognate TCR recognition and nonspecifically activate CTLs. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:3357-66. [PMID: 20190139 PMCID: PMC3024536 DOI: 10.4049/jimmunol.0902398] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD8(+) CTLs are essential for effective immune defense against intracellular microbes and neoplasia. CTLs recognize short peptide fragments presented in association with MHC class I (MHCI) molecules on the surface of infected or dysregulated cells. Ag recognition involves the binding of both TCR and CD8 coreceptor to a single ligand (peptide MHCI [pMHCI]). The TCR/pMHCI interaction confers Ag specificity, whereas the pMHCI/CD8 interaction mediates enhanced sensitivity to Ag. Striking biophysical differences exist between the TCR/pMHCI and pMHCI/CD8 interactions; indeed, the pMHCI/CD8 interaction can be >100-fold weaker than the cognate TCR/pMHCI interaction. In this study, we show that increasing the strength of the pMHCI/CD8 interaction by approximately 15-fold results in nonspecific, cognate Ag-independent pMHCI tetramer binding at the cell surface. Furthermore, pMHCI molecules with superenhanced affinity for CD8 activate CTLs in the absence of a specific TCR/pMHCI interaction to elicit a full range of effector functions, including cytokine/chemokine release, degranulation and proliferation. Thus, the low solution binding affinity of the pMHCI/CD8 interaction is essential for the maintenance of CTL Ag specificity.
Collapse
Affiliation(s)
- Linda Wooldridge
- Department of Infection, Cardiff University, Cardiff, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Chen H, Kshirsagar S, Jensen I, Lau K, Simonson C, Schluter SF. Characterization of arrangement and expression of the beta-2 microglobulin locus in the sandbar and nurse shark. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:189-195. [PMID: 19782101 DOI: 10.1016/j.dci.2009.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 09/18/2009] [Indexed: 05/28/2023]
Abstract
Beta 2 microglobulin (beta2m) is an essential subunit of major histocompatibility complex (MHC) type I molecules. In this report, beta2m cDNAs were identified and sequenced from sandbar shark spleen cDNA library. Sandbar shark beta2m gene encodes one amino acid less than most teleost beta2m genes, and 3 amino acids less than mammal beta2m genes. Although sandbar shark beta2m protein contains one beta sheet less than that of human in the predicted protein structure, the overall structure of beta2m proteins is conserved during evolution. Germline gene for the beta2m in sandbar and nurse shark is present as a single locus. It contains three exons and two introns. CpG sites are evenly distributed in the shark beta2m loci. Several DNA repeat elements were also identified in the shark beta2m loci. Sequence analysis suggests that the beta2m locus is not linked to the MHC I loci in the shark genome.
Collapse
Affiliation(s)
- Hao Chen
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, AZ 85719, USA
| | | | | | | | | | | |
Collapse
|
42
|
Gascoigne NRJ, Zal T, Yachi PP, Hoerter JAH. Co-receptors and recognition of self at the immunological synapse. Curr Top Microbiol Immunol 2010; 340:171-89. [PMID: 19960314 PMCID: PMC5788015 DOI: 10.1007/978-3-642-03858-7_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The co-receptors CD4 and CD8 are important in the activation of T cells primarily because of their ability to interact with the proteins of the MHC enhancing recognition of the MHC-peptide complex by the T cell receptor (TCR). An antigen-presenting cell presents a small number of antigenic peptides on its MHC molecules, in the presence of a much larger number of endogenous, mostly nonstimulatory, peptides. Recent work has demonstrated that these endogenous MHC-peptide complexes have an important role in modulating the sensitivity of the TCR. But the role of the endogenous nonstimulatory MHC-peptide complexes differs in MHC class I and class II-restricted T cells. This chapter discusses the data on the role of CD4 or CD8 co-receptors in T cell activation at the immunological synapse, and the role of non stimulatory MHC-peptide complexes in aiding antigen recognition.
Collapse
Affiliation(s)
- Nicholas R J Gascoigne
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
43
|
Kim ST, Takeuchi K, Sun ZYJ, Touma M, Castro CE, Fahmy A, Lang MJ, Wagner G, Reinherz EL. The alphabeta T cell receptor is an anisotropic mechanosensor. J Biol Chem 2009; 284:31028-37. [PMID: 19755427 PMCID: PMC2781503 DOI: 10.1074/jbc.m109.052712] [Citation(s) in RCA: 315] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 09/12/2009] [Indexed: 01/06/2023] Open
Abstract
Thymus-derived lymphocytes protect mammalian hosts against virus- or cancer-related cellular alterations through immune surveillance, eliminating diseased cells. In this process, T cell receptors (TCRs) mediate both recognition and T cell activation via their dimeric alphabeta, CD3 epsilon gamma, CD3 epsilon delta, and CD3 zeta zeta subunits using an unknown structural mechanism. Here, site-specific binding topology of anti-CD3 monoclonal antibodies (mAbs) and dynamic TCR quaternary change provide key clues. Agonist mAbs footprint to the membrane distal CD3 epsilon lobe that they approach diagonally, adjacent to the lever-like C beta FG loop that facilitates antigen (pMHC)-triggered activation. In contrast, a non-agonist mAb binds to the cleft between CD3 epsilon and CD3 gamma in a perpendicular mode and is stimulatory only subsequent to an external tangential but not a normal force ( approximately 50 piconewtons) applied via optical tweezers. Specific pMHC but not irrelevant pMHC activates a T cell upon application of a similar force. These findings suggest that the TCR is an anisotropic mechanosensor, converting mechanical energy into a biochemical signal upon specific pMHC ligation during immune surveillance. Activating anti-CD3 mAbs mimic this force via their intrinsic binding mode. A common TCR quaternary change rather than conformational alterations can better facilitate structural signal initiation, given the vast array of TCRs and their specific pMHC ligands.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- CD3 Complex/immunology
- Cell Line
- Mechanotransduction, Cellular
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Molecular Conformation
- Protein Binding
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
Collapse
Affiliation(s)
- Sun Taek Kim
- From the Department of Medical Oncology, Laboratory of Immunobiology, Dana-Farber Cancer Institute and
- Departments of Medicine and
| | - Koh Takeuchi
- Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115 and
| | - Zhen-Yu J. Sun
- Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115 and
| | - Maki Touma
- From the Department of Medical Oncology, Laboratory of Immunobiology, Dana-Farber Cancer Institute and
- Departments of Medicine and
| | | | - Amr Fahmy
- Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115 and
| | - Matthew J. Lang
- the Departments of Mechanical Engineering and
- **Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Gerhard Wagner
- Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115 and
| | - Ellis L. Reinherz
- From the Department of Medical Oncology, Laboratory of Immunobiology, Dana-Farber Cancer Institute and
- Departments of Medicine and
| |
Collapse
|
44
|
Wang R, Natarajan K, Margulies DH. Structural basis of the CD8 alpha beta/MHC class I interaction: focused recognition orients CD8 beta to a T cell proximal position. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:2554-64. [PMID: 19625641 PMCID: PMC2782705 DOI: 10.4049/jimmunol.0901276] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In the immune system, B cells, dendritic cells, NK cells, and T lymphocytes all respond to signals received via ligand binding to receptors and coreceptors. Although the specificity of T cell recognition is determined by the interaction of T cell receptors with MHC/peptide complexes, the development of T cells in the thymus and their sensitivity to Ag are also dependent on coreceptor molecules CD8 (for MHC class I (MHCI)) and CD4 (for MHCII). The CD8alphabeta heterodimer is a potent coreceptor for T cell activation, but efforts to understand its function fully have been hampered by ignorance of the structural details of its interactions with MHCI. In this study we describe the structure of CD8alphabeta in complex with the murine MHCI molecule H-2D(d) at 2.6 A resolution. The focus of the CD8alphabeta interaction is the acidic loop (residues 222-228) of the alpha3 domain of H-2D(d). The beta subunit occupies a T cell membrane proximal position, defining the relative positions of the CD8alpha and CD8beta subunits. Unlike the CD8alphaalpha homodimer, CD8alphabeta does not contact the MHCI alpha(2)- or beta(2)-microglobulin domains. Movements of the CD8alpha CDR2 and CD8beta CDR1 and CDR2 loops as well as the flexibility of the H-2D(d) CD loop facilitate the monovalent interaction. The structure resolves inconclusive data on the topology of the CD8alphabeta/MHCI interaction, indicates that CD8beta is crucial in orienting the CD8alphabeta heterodimer, provides a framework for understanding the mechanistic role of CD8alphabeta in lymphoid cell signaling, and offers a tangible context for design of structurally altered coreceptors for tumor and viral immunotherapy.
Collapse
Affiliation(s)
- Rui Wang
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892
| | - Kannan Natarajan
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892,Address correspondence and reprint requests to Dr. Kannan Natarajan, or Dr. David H. Margulies, Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 10, Room 11N311; 10 Center Drive, Bethesda, MD 20892-1892. and
| | - David H. Margulies
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892,Address correspondence and reprint requests to Dr. Kannan Natarajan, or Dr. David H. Margulies, Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 10, Room 11N311; 10 Center Drive, Bethesda, MD 20892-1892. and
| |
Collapse
|
45
|
Taurog JD, Dorris ML, Satumtira N, Tran TM, Sharma R, Dressel R, van den Brandt J, Reichardt HM. Spondylarthritis in HLA-B27/human β2-microglobulin-transgenic rats is not prevented by lack of CD8. ACTA ACUST UNITED AC 2009; 60:1977-84. [DOI: 10.1002/art.24599] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
46
|
Chervin AS, Stone JD, Holler PD, Bai A, Chen J, Eisen HN, Kranz DM. The impact of TCR-binding properties and antigen presentation format on T cell responsiveness. THE JOURNAL OF IMMUNOLOGY 2009; 183:1166-78. [PMID: 19553539 DOI: 10.4049/jimmunol.0900054] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TCR interactions with cognate peptide-MHC (pepMHC) ligands are generally low affinity. This feature, together with the requirement for CD8/CD4 participation, has made it difficult to dissect relationships between TCR-binding parameters and T cell activation. Interpretations are further complicated when comparing different pepMHC, because these can vary greatly in stability. To examine the relationships between TCR-binding properties and T cell responses, in this study we characterized the interactions and activities mediated by a panel of TCRs that differed widely in their binding to the same pepMHC. Monovalent binding of soluble TCR was characterized by surface plasmon resonance, and T cell hybridomas that expressed these TCR, with or without CD8 coexpression, were tested for their binding of monomeric and oligomeric forms of the pepMHC and for subsequent responses (IL-2 release). The binding threshold for eliciting this response in the absence of CD8 (K(D) = 600 nM) exhibited a relatively sharp cutoff between full activity and no activity, consistent with a switchlike response to pepMHC on APCs. However, when the pepMHC was immobilized (plate bound), T cells with the lowest affinity TCRs (e.g., K(D) = 30 microM) responded, even in the absence of CD8, indicating that these TCR are signaling competent. Surprisingly, even cells that expressed high-affinity (K(D) = 16 nM) TCRs along with CD8 were unresponsive to oligomers in solution. The findings suggest that to drive downstream T cell responses, pepMHC must be presented in a form that supports formation of appropriate supramolecular clusters.
Collapse
Affiliation(s)
- Adam S Chervin
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Chen Y, Shi Y, Cheng H, An YQ, Gao GF. Structural immunology and crystallography help immunologists see the immune system in action: How T and NK cells touch their ligands. IUBMB Life 2009; 61:579-90. [DOI: 10.1002/iub.208] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
48
|
Collins EJ, Riddle DS. TCR-MHC docking orientation: natural selection, or thymic selection? Immunol Res 2009; 41:267-94. [PMID: 18726714 DOI: 10.1007/s12026-008-8040-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
T cell receptors (TCR) dock on their peptide-major histocompatibility complex (pMHC) targets in a conserved orientation. Since amino acid sidechains are the foundation of specific protein-protein interactions, a simple explanation for the conserved docking orientation is that key amino acids encoded by the TCR and MHC genes have been selected and maintained through evolution in order to preserve TCR/pMHC binding. Expectations that follow from the hypothesis that TCR and MHC evolved to interact are discussed in light of the data that both support and refute them. Finally, an alternative and equally simple explanation for the driving force behind the conserved docking orientation is described.
Collapse
Affiliation(s)
- Edward J Collins
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, 804 Mary Ellen Jones Building, Chapel Hill, NC 27510, USA.
| | | |
Collapse
|
49
|
Rettig L, McNeill L, Sarner N, Guillaume P, Luescher I, Tolaini M, Kioussis D, Zamoyska R. An essential role for the stalk region of CD8 beta in the coreceptor function of CD8. THE JOURNAL OF IMMUNOLOGY 2009; 182:121-9. [PMID: 19109142 DOI: 10.4049/jimmunol.182.1.121] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The CD8alphabeta heterodimer is integral to the selection of the class I-restricted lineage in the thymus; however, the contribution of the CD8beta chain to coreceptor function is poorly understood. To understand whether the CD8beta membrane proximal stalk region played a role in coreceptor function, we substituted it with the corresponding sequence from the CD8alpha polypeptide and expressed the hybrid molecule in transgenic mice in place of endogenous CD8beta. Although the stalk-swapped CD8beta was expressed on the cell surface as a disulfide-bonded heterodimer at equivalent levels of expression to an endogenous CD8beta molecule, it failed to restore selection of CD8(+) class I MHC-restricted T cells and it altered the response of peripheral T cells. Thus, the stalk region of the CD8beta polypeptide has an essential role in ensuring functionality of the CD8alphabeta heterodimer and its replacement compromises the interaction of CD8 with peptide-MHC complexes.
Collapse
Affiliation(s)
- Lorna Rettig
- Molecular Immunology, Medical Research Council National Institute for Medical Research, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Varghese JC, Kane KP. TCR complex-activated CD8 adhesion function by human T cells. THE JOURNAL OF IMMUNOLOGY 2009; 181:6002-9. [PMID: 18941189 DOI: 10.4049/jimmunol.181.9.6002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The CD8 receptor plays a central role in the recognition and elimination of virally infected and malignant cells by cytolytic CD8(+) T cells. In conjunction with the TCR, the CD8 coreceptor binds Ag-specific class I MHC (MHC-I) molecules expressed by target cells, initiating signaling events that result in T cell activation. Whether CD8 can further function as an adhesion molecule for non-Ag MHC-I is currently unclear in humans. In this study, we show that in human CD8(+) T cells, TCR complex signaling activates CD8 adhesion molecule function, resulting in a CD8 interaction with MHC-I that is sufficient to maintain firm T cell adhesion under shear conditions. Secondly, we found that while CD8 adhesive function was triggered by TCR complex activation in differentiated cells, including in vitro generated CTL and ex vivo effector/memory phenotype CD8(+) T cells, naive CD8(+) T cells were incapable of activated CD8 adhesion. Lastly, we examine the kinetics of, and signaling for, activated CD8 adhesion in humans and identify notable differences from the equivalent CD8 function in mouse. Activated CD8 adhesion induced by TCR signaling may contribute to the more rapid and robust elimination of pathogen-infected cells by differentiated CD8(+) T cells.
Collapse
Affiliation(s)
- Jay C Varghese
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|