1
|
Coulombe P, Tomellini E, Chagraoui J, Mayotte N, Sauvageau G. Deciphering the effect of UM171 on human hematopoietic progenitor cell fate through clonal analysis. Nat Commun 2025; 16:195. [PMID: 39747844 PMCID: PMC11696577 DOI: 10.1038/s41467-024-55225-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 12/05/2024] [Indexed: 01/04/2025] Open
Abstract
Ex vivo expansion of hematopoietic stem cells (HSC) requires the maintenance of a stemness state while cells are proliferating. This can be achieved via exposure to UM171 which leads to the degradation of chromatin modifiers and prevents the loss of key epigenetic marks. However, the chromatin landscape varies across populations within the hematopoietic system and the effect of UM171 on self-renewal and differentiation potential of different hematopoietic progenitor cells is less characterized. To address this, we use the CellTag barcoding approach to track the fate of individual stem and progenitor cells during in vitro expansion. We show that, in addition to its HSC self-renewing property, UM171 specifically modulates cell fate of a precursor common to erythroid, megakaryocytic, and mast cells in favor of self-renewal and a mast-bias differentiation trajectory. This differentiation bias can be driven by pro-inflammatory signaling pathways that are activated downstream of UM171 and results in an abundant mast cell population that can be transplanted as part of the graft to populate mice tissues in xenotransplantation studies.
Collapse
Affiliation(s)
- Patrick Coulombe
- Molecular Genetics of Stem Cells Laboratory, Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada
| | - Elisa Tomellini
- Molecular Genetics of Stem Cells Laboratory, Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada
| | - Jalila Chagraoui
- Molecular Genetics of Stem Cells Laboratory, Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada
| | - Nadine Mayotte
- Molecular Genetics of Stem Cells Laboratory, Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada
| | - Guy Sauvageau
- Molecular Genetics of Stem Cells Laboratory, Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada.
- Division of Hematology, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada.
- Department of Medicine, Faculty of Medicine, University de Montreal, Montreal, QC, Canada.
| |
Collapse
|
2
|
Tojima R, Nagata K, Ito N, Ishii K, Arai T, Ito T, Kasakura K, Nishiyama C. Transcriptional regulation of basophil-specific protease genes by C/EBPα, GATA2, TGF-β signaling, and epigenetic mechanisms. FEBS Lett 2024. [PMID: 39660487 DOI: 10.1002/1873-3468.15069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 12/12/2024]
Abstract
Basophils and mast cells (MCs) play an important role in immune responses against allergens and parasitic infection. To elucidate the mechanisms that determine the commitment between basophils and mast cell (MCs), transcription factors and epigenetic modifications regulating the gene expression of basophil-specific enzymes, Mcpt8 and Mcpt11, were analyzed using bone marrow-derived (BM) cells containing basophils and MCs. Knockdown (KD) and overexpression experiments revealed that the transcription factor C/EBPα positively regulated the gene expression of Mcpt8 and Prss34 (encoding Mcpt11). Cebpa, Mcpt8, and Prss34 mRNAs levels were upregulated by histone deacetylases and downregulated by DNA methyltransferases. Gata2 KD significantly reduced the mRNA levels of Mcpt8 and Prss34, while TGF-β treatment increased those of Mcpt8 and Prss34. These results show that basophil-specific protease genes were transactivated by C/EBPα, GATA2, and TGF-β signaling and modified with epigenetic regulation.
Collapse
Affiliation(s)
- Ryotaro Tojima
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Kazuki Nagata
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Naoto Ito
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Kenta Ishii
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Takahiro Arai
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Tomoka Ito
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Kazumi Kasakura
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Chiharu Nishiyama
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
3
|
Herrera J, Bensussen A, García-Gómez ML, Garay-Arroyo A, Álvarez-Buylla ER. A system-level model reveals that transcriptional stochasticity is required for hematopoietic stem cell differentiation. NPJ Syst Biol Appl 2024; 10:145. [PMID: 39639033 PMCID: PMC11621455 DOI: 10.1038/s41540-024-00469-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024] Open
Abstract
HSCs differentiation has been difficult to study experimentally due to the high number of components and interactions involved, as well as the impact of diverse physiological conditions. From a 200-node network, that was grounded on experimental data, we derived a 21-node regulatory network by collapsing linear pathways and retaining the functional feedback loops. This regulatory network core integrates key nodes and interactions underlying HSCs differentiation, including transcription factors, metabolic, and redox signaling pathways. We used Boolean, continuous, and stochastic dynamic models to simulate the hypoxic conditions of the HSCs niche, as well as the patterns and temporal sequences of HSCs transitions and differentiation. Our findings indicate that HSCs differentiation is a plastic process in which cell fates can transdifferentiate among themselves. Additionally, we found that cell heterogeneity is fundamental for HSCs differentiation. Lastly, we found that oxygen activates ROS production, inhibiting quiescence and promoting growth and differentiation pathways of HSCs.
Collapse
Affiliation(s)
- Joel Herrera
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Antonio Bensussen
- Departamento de Control Automático, Cinvestav-IPN, Ciudad de México, México
| | - Mónica L García-Gómez
- Theoretical Biology, Institute of Biodynamics and Biocomplexity; Experimental and Computational Plant Development, Institute of Environmental Biology, Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Adriana Garay-Arroyo
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Elena R Álvarez-Buylla
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México.
| |
Collapse
|
4
|
G C B, Hoyt LJ, Dovat S, Dong F. Upregulation of nuclear protein Hemgn by transcriptional repressor Gfi1 through repressing PU.1 contributes to the anti-apoptotic activity of Gfi1. J Biol Chem 2024; 300:107860. [PMID: 39374784 PMCID: PMC11550643 DOI: 10.1016/j.jbc.2024.107860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/20/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024] Open
Abstract
Gfi1 is a transcriptional repressor that plays a critical role in hematopoiesis. The repressive activity of Gfi1 is mediated mainly by its SNAG domain that interacts with and thereby recruits the histone demethylase LSD1 to its target genes. An important function of Gfi1 is to protect hematopoietic cells against stress-induced apoptosis, which has been attributed to its participation in the posttranscriptional modifications of p53 protein, leading to suppression of p53 activity. In this study, we show that Gfi1 upregulated the expression of Hemgn, a nuclear protein, through a 16-bp promoter region spanning from +47 to +63 bp relative to the transcription start site (TSS), which was dependent on its interaction with LSD1. We further demonstrate that Gfi1, Ikaros, and PU.1 are bound to this 16-bp region. However, while Ikaros activated Hemgn and collaborated with Gfi1 to augment Hemgn expression, it was not required for Gfi1-mediated Hemgn upregulation. In contrast, PU.1 repressed Hemgn and inhibited Hemgn upregulation by Gfi1. Notably, PU.1 knockdown and deficiency, while augmenting Hemgn expression, abolished Hemgn upregulation by Gfi1. PU.1 (Spi-1) is repressed by Gfi1. We show here that PU.1 repression by Gfi1 preceded and correlated well with Hemgn upregulation. Thus, our data strongly suggest that Gfi1 upregulates Hemgn by repressing PU.1. In addition, we demonstrate that Hemgn upregulation contributed to the anti-apoptotic activity of Gfi1 in a p53-independent manner.
Collapse
Affiliation(s)
- Binod G C
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA
| | - Laney Jia Hoyt
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA
| | - Sinisa Dovat
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Fan Dong
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA.
| |
Collapse
|
5
|
Chen M, Suwannaphoom K, Sanaiha Y, Luo Y, Benharash P, Fishbein MC, Sevag Packard RR. Electrochemical impedance spectroscopy unmasks high-risk atherosclerotic features in human coronary artery disease. FASEB J 2024; 38:e70069. [PMID: 39315853 PMCID: PMC11728480 DOI: 10.1096/fj.202401200r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/23/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024]
Abstract
Coronary plaque rupture remains the prominent mechanism of myocardial infarction. Accurate identification of rupture-prone plaque may improve clinical management. This study assessed the discriminatory performance of electrochemical impedance spectroscopy (EIS) in human cardiac explants to detect high-risk atherosclerotic features that portend rupture risk. In this single-center, prospective study, n = 26 cardiac explants were collected for EIS interrogation of the three major coronary arteries. Vessels in which advancement of the EIS catheter without iatrogenic plaque disruption was rendered impossible were not assessed. N = 61 vessels underwent EIS measurement and histological analyses. Plaques were dichotomized according to previously established high rupture-risk parameter thresholds. Diagnostic performance was determined via receiver operating characteristic areas-under-the-curve (AUC). Necrotic cores were identified in n = 19 vessels (median area 1.53 mm2) with a median fibrous cap thickness of 62 μm. Impedance was significantly greater in plaques with necrotic core area ≥1.75 mm2 versus <1.75 mm2 (19.8 ± 4.4 kΩ vs. 7.2 ± 1.0 kΩ, p = .019), fibrous cap thickness ≤65 μm versus >65 μm (19.1 ± 3.5 kΩ vs. 6.5 ± 0.9 kΩ, p = .004), and ≥20 macrophages per 0.3 mm-diameter high-power field (HPF) versus <20 macrophages per HPF (19.8 ± 4.1 kΩ vs. 10.2 ± 0.9 kΩ, p = .002). Impedance identified necrotic core area ≥1.75 mm2, fibrous cap thickness ≤65 μm, and ≥20 macrophages per HPF with AUCs of 0.889 (95% CI: 0.716-1.000) (p = .013), 0.852 (0.646-1.000) (p = .025), and 0.835 (0.577-1.000) (p = .028), respectively. Further, phase delay discriminated severe stenosis (≥70%) with an AUC of 0.767 (0.573-0.962) (p = .035). EIS discriminates high-risk atherosclerotic features that portend plaque rupture in human coronary artery disease and may serve as a complementary modality for angiography-guided atherosclerosis evaluation.
Collapse
Affiliation(s)
- Michael Chen
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Krit Suwannaphoom
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Yas Sanaiha
- Cardiovascular Outcomes Research Laboratories, University of California, Los Angeles, CA, USA
- Division of Cardiac Surgery, Department of Surgery, David Geffen School of Medicine at University of California-Las Angeles, CA, USA
| | - Yuan Luo
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Peyman Benharash
- Cardiovascular Outcomes Research Laboratories, University of California, Los Angeles, CA, USA
- Division of Cardiac Surgery, Department of Surgery, David Geffen School of Medicine at University of California-Las Angeles, CA, USA
| | - Michael C. Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - René R. Sevag Packard
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Ronald Reagan UCLA Medical Center, Los Angeles, CA, USA
- West Los Angeles Veterans Affairs Medical Center, Los Angeles, CA, USA
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
6
|
Yang Y, Han X, Sun L, Shao F, Yin Y, Zhang W. ETS Transcription Factors in Immune Cells and Immune-Related Diseases. Int J Mol Sci 2024; 25:10004. [PMID: 39337492 PMCID: PMC11432452 DOI: 10.3390/ijms251810004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
The development, differentiation, and function of immune cells are precisely regulated by transcription factors. The E26 transformation-specific (ETS) transcription factor family is involved in various physiological and pathological processes by regulating cell proliferation, differentiation, and apoptosis. Emerging evidence has suggested that ETS family proteins are intimately involved in the development and function of immune cells. This review summarizes the role of the ETS family in immune cells and immune-related disorders. Seven transcription factors within the ETS family, including PU.1, ETV5, ETV6, ETS1/2, ELK3, and ELF1, play essential roles in the development and function of T cells, B cells, macrophages, neutrophils, and dendritic cells. Furthermore, they are involved in the occurrence and development of immune-related diseases, including tumors, allergies, autoimmune diseases, and arteriosclerosis. This review is conducive to a comprehensive overview of the role of the ETS family in immune cells, and thus is informative for the development of novel therapeutic strategies targeting the ETS family for immune-related diseases.
Collapse
Affiliation(s)
- Yaxu Yang
- Department of Physiology and Pathophysiology, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Y.); (L.S.)
| | - Xue Han
- Department of Pharmacology, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (X.H.); (F.S.)
| | - Lijun Sun
- Department of Physiology and Pathophysiology, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Y.); (L.S.)
| | - Fangyu Shao
- Department of Pharmacology, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (X.H.); (F.S.)
| | - Yue Yin
- Department of Pharmacology, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (X.H.); (F.S.)
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Y.); (L.S.)
| |
Collapse
|
7
|
Karpurapu M, Kakarala KK, Chung S, Nie Y, Koley A, Dougherty P, Christman JW. Epigallocatechin gallate regulates the myeloid-specific transcription factor PU.1 in macrophages. PLoS One 2024; 19:e0301904. [PMID: 38662666 PMCID: PMC11045095 DOI: 10.1371/journal.pone.0301904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Our previous research demonstrated that PU.1 regulates expression of the genes involved in inflammation in macrophages. Selective knockdown of PU.1 in macrophages ameliorated LPS-induced acute lung injury (ALI) in bone marrow chimera mice. Inhibitors that block the transcriptional activity of PU.1 in macrophages have the potential to mitigate the pathophysiology of LPS-induced ALI. However, complete inactivation of PU.1 gene disrupts normal myelopoiesis. Although the green tea polyphenol Epigallocatechin gallate (EGCG) has been shown to regulate inflammatory genes in various cell types, it is not known if EGCG alters the transcriptional activity of PU.1 protein. Using Schrodinger Glide docking, we have identified that EGCG binds with PU.1 protein, altering its DNA-binding and self-dimerization activity. In silico analysis shows that EGCG forms Hydrogen bonds with Glutamic Acid 209, Leucine 250 in DNA binding and Lysine 196, Tryptophan 193, and Leucine 182 in the self-dimerization domain of the PU.1 protein. Experimental validation using mouse bone marrow-derived macrophages (BMDM) confirmed that EGCG inhibits both DNA binding by PU.1 and self-dimerization. Importantly, EGCG had no impact on expression of the total PU.1 protein levels but significantly reduced expression of various inflammatory genes and generation of ROS. In summary, we report that EGCG acts as an inhibitor of the PU.1 transcription factor in macrophages.
Collapse
Affiliation(s)
- Manjula Karpurapu
- Division of Pulmonary, Davis Heart and Lung Research Institute, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Columbus, OH, United States of America
| | | | - Sangwoon Chung
- Division of Pulmonary, Davis Heart and Lung Research Institute, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Columbus, OH, United States of America
| | - Yunjuan Nie
- Division of Pulmonary, Davis Heart and Lung Research Institute, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Columbus, OH, United States of America
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, P.R. China
| | - Amritendu Koley
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, United States of America
| | - Patrick Dougherty
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, United States of America
| | - John W. Christman
- Division of Pulmonary, Davis Heart and Lung Research Institute, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Columbus, OH, United States of America
| |
Collapse
|
8
|
Long T, Bhattacharyya T, Repele A, Naylor M, Nooti S, Krueger S, Manu. The contributions of DNA accessibility and transcription factor occupancy to enhancer activity during cellular differentiation. G3 (BETHESDA, MD.) 2024; 14:jkad269. [PMID: 38124496 PMCID: PMC11090500 DOI: 10.1093/g3journal/jkad269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/01/2023] [Indexed: 12/23/2023]
Abstract
During gene regulation, DNA accessibility is thought to limit the availability of transcription factor (TF) binding sites, while TFs can increase DNA accessibility to recruit additional factors that upregulate gene expression. Given this interplay, the causative regulatory events in the modulation of gene expression remain unknown for the vast majority of genes. We utilized deeply sequenced ATAC-Seq data and site-specific knock-in reporter genes to investigate the relationship between the binding-site resolution dynamics of DNA accessibility and the expression dynamics of the enhancers of Cebpa during macrophage-neutrophil differentiation. While the enhancers upregulate reporter expression during the earliest stages of differentiation, there is little corresponding increase in their total accessibility. Conversely, total accessibility peaks during the last stages of differentiation without any increase in enhancer activity. The accessibility of positions neighboring C/EBP-family TF binding sites, which indicates TF occupancy, does increase significantly during early differentiation, showing that the early upregulation of enhancer activity is driven by TF binding. These results imply that a generalized increase in DNA accessibility is not sufficient, and binding by enhancer-specific TFs is necessary, for the upregulation of gene expression. Additionally, high-coverage ATAC-Seq combined with time-series expression data can infer the sequence of regulatory events at binding-site resolution.
Collapse
Affiliation(s)
- Trevor Long
- Department of Biology, University of North Dakota, Grand Forks, ND 58202-9019, USA
| | - Tapas Bhattacharyya
- Department of Biology, University of North Dakota, Grand Forks, ND 58202-9019, USA
| | - Andrea Repele
- Department of Biology, University of North Dakota, Grand Forks, ND 58202-9019, USA
| | - Madison Naylor
- Department of Biology, University of North Dakota, Grand Forks, ND 58202-9019, USA
| | - Sunil Nooti
- Department of Biology, University of North Dakota, Grand Forks, ND 58202-9019, USA
| | - Shawn Krueger
- Department of Biology, University of North Dakota, Grand Forks, ND 58202-9019, USA
| | - Manu
- Department of Biology, University of North Dakota, Grand Forks, ND 58202-9019, USA
| |
Collapse
|
9
|
Peters IJA, de Pater E, Zhang W. The role of GATA2 in adult hematopoiesis and cell fate determination. Front Cell Dev Biol 2023; 11:1250827. [PMID: 38033856 PMCID: PMC10682726 DOI: 10.3389/fcell.2023.1250827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
The correct maintenance and differentiation of hematopoietic stem cells (HSC) in bone marrow is vital for the maintenance and operation of the human blood system. GATA2 plays a critical role in the maintenance of HSCs and the specification of HSCs into the different hematopoietic lineages, highlighted by the various defects observed in patients with heterozygous mutations in GATA2, resulting in cytopenias, bone marrow failure and increased chance of myeloid malignancy, termed GATA2 deficiency syndrome. Despite this, the mechanisms underlying GATA2 deficiency syndrome remain to be elucidated. The detailed description of how GATA2 regulates HSC maintenance and blood lineage determination is crucial to unravel the pathogenesis of GATA2 deficiency syndrome. In this review, we summarize current advances in elucidating the role of GATA2 in hematopoietic cell fate determination and discuss the challenges of modeling GATA2 deficiency syndrome.
Collapse
Affiliation(s)
| | | | - Wei Zhang
- *Correspondence: Wei Zhang, ; Emma de Pater,
| |
Collapse
|
10
|
Aktar A, Heit B. Role of the pioneer transcription factor GATA2 in health and disease. J Mol Med (Berl) 2023; 101:1191-1208. [PMID: 37624387 DOI: 10.1007/s00109-023-02359-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
The transcription factor GATA2 is involved in human diseases ranging from hematopoietic disorders, to cancer, to infectious diseases. GATA2 is one of six GATA-family transcription factors that act as pioneering transcription factors which facilitate the opening of heterochromatin and the subsequent binding of other transcription factors to induce gene expression from previously inaccessible regions of the genome. Although GATA2 is essential for hematopoiesis and lymphangiogenesis, it is also expressed in other tissues such as the lung, prostate gland, gastrointestinal tract, central nervous system, placenta, fetal liver, and fetal heart. Gene or transcriptional abnormalities of GATA2 causes or predisposes patients to several diseases including the hematological cancers acute myeloid leukemia and acute lymphoblastic leukemia, the primary immunodeficiency MonoMAC syndrome, and to cancers of the lung, prostate, uterus, kidney, breast, gastric tract, and ovaries. Recent data has also linked GATA2 expression and mutations to responses to infectious diseases including SARS-CoV-2 and Pneumocystis carinii pneumonia, and to inflammatory disorders such as atherosclerosis. In this article we review the role of GATA2 in the etiology and progression of these various diseases.
Collapse
Affiliation(s)
- Amena Aktar
- Department of Microbiology and Immunology; the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Bryan Heit
- Department of Microbiology and Immunology; the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, ON, N6A 5C1, Canada.
- Robarts Research Institute, London, ON, N6A 3K7, Canada.
| |
Collapse
|
11
|
Johnson KD, Jung MM, Tran VL, Bresnick EH. Interferon regulatory factor-8-dependent innate immune alarm senses GATA2 deficiency to alter hematopoietic differentiation and function. Curr Opin Hematol 2023; 30:117-123. [PMID: 37254854 PMCID: PMC10236032 DOI: 10.1097/moh.0000000000000763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
PURPOSE OF REVIEW Recent discoveries have provided evidence for mechanistic links between the master regulator of hematopoiesis GATA2 and the key component of interferon and innate immunity signaling pathways, interferon-regulatory factor-8 (IRF8). These links have important implications for the control of myeloid differentiation in physiological and pathological states. RECENT FINDINGS GATA2 deficiency resulting from loss of the Gata2 -77 enhancer in progenitors triggers an alarm that instigates the transcriptional induction of innate immune signaling and distorts a myeloid differentiation program. This pathological alteration renders progenitors hyperresponsive to interferon γ, toll-like receptor and interleukin-6 signaling and impaired in granulocyte-macrophage colony-stimulating factor signaling. IRF8 upregulation in -77-/- progenitors promotes monocyte and dendritic cell differentiation while suppressing granulocytic differentiation. As PU.1 promotes transcription of Irf8 and other myeloid and B-lineage genes, GATA2-mediated repression of these genes opposes the PU.1-dependent activating mechanism. SUMMARY As GATA2 deficiency syndrome is an immunodeficiency disorder often involving myelodysplastic syndromes and acute myeloid leukemia, elucidating how GATA2 commissions and decommissions genome activity and developmental regulatory programs will unveil mechanisms that go awry when GATA2 levels and/or activities are disrupted.
Collapse
Affiliation(s)
- Kirby D Johnson
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | | | | | | |
Collapse
|
12
|
Chavez JS, Rabe JL, Niño KE, Wells HH, Gessner RL, Mills TS, Hernandez G, Pietras EM. PU.1 is required to restrain myelopoiesis during chronic inflammatory stress. Front Cell Dev Biol 2023; 11:1204160. [PMID: 37497478 PMCID: PMC10368259 DOI: 10.3389/fcell.2023.1204160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023] Open
Abstract
Chronic inflammation is a common feature of aging and numerous diseases such as diabetes, obesity, and autoimmune syndromes and has been linked to the development of hematological malignancy. Blood-forming hematopoietic stem cells (HSC) can contribute to these diseases via the production of tissue-damaging myeloid cells and/or the acquisition of mutations in epigenetic and transcriptional regulators that initiate evolution toward leukemogenesis. We previously showed that the myeloid "master regulator" transcription factor PU.1 is robustly induced in HSC by pro-inflammatory cytokines such as interleukin (IL)-1β and limits their proliferative activity. Here, we used a PU.1-deficient mouse model to investigate the broader role of PU.1 in regulating hematopoietic activity in response to chronic inflammatory challenges. We found that PU.1 is critical in restraining inflammatory myelopoiesis via suppression of cell cycle and self-renewal gene programs in myeloid-biased multipotent progenitor (MPP) cells. Our data show that while PU.1 functions as a key driver of myeloid differentiation, it plays an equally critical role in tailoring hematopoietic responses to inflammatory stimuli while limiting expansion and self-renewal gene expression in MPPs. These data identify PU.1 as a key regulator of "emergency" myelopoiesis relevant to inflammatory disease and leukemogenesis.
Collapse
Affiliation(s)
- James S. Chavez
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jennifer L. Rabe
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Katia E. Niño
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Harrison H. Wells
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Rachel L. Gessner
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Taylor S. Mills
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Giovanny Hernandez
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Eric M. Pietras
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
13
|
Long T, Bhattacharyya T, Repele A, Naylor M, Nooti S, Krueger S, Manu. The contributions of DNA accessibility and transcription factor occupancy to enhancer activity during cellular differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.22.529579. [PMID: 37090616 PMCID: PMC10120690 DOI: 10.1101/2023.02.22.529579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The upregulation of gene expression by enhancers depends upon the interplay between the binding of sequence-specific transcription factors (TFs) and DNA accessibility. DNA accessibility is thought to limit the ability of TFs to bind to their sites, while TFs can increase accessibility to recruit additional factors that upregulate gene expression. Given this interplay, the causative regulatory events underlying the modulation of gene expression during cellular differentiation remain unknown for the vast majority of genes. We investigated the binding-site resolution dynamics of DNA accessibility and the expression dynamics of the enhancers of an important neutrophil gene, Cebpa, during macrophage-neutrophil differentiation. Reporter genes were integrated in a site-specific manner in PUER cells, which are progenitors that can be differentiated into neutrophils or macrophages in vitro by activating the pan-leukocyte TF PU.1. Time series data show that two enhancers upregulate reporter expression during the first 48 hours of neutrophil differentiation. Surprisingly, there is little or no increase in the total accessibility, measured by ATAC-Seq, of the enhancers during the same time period. Conversely, total accessibility peaks 96 hrs after PU.1 activation-consistent with its role as a pioneer-but the enhancers do not upregulate gene expression. Combining deeply sequenced ATAC-Seq data with a new bias-correction method allowed the profiling of accessibility at single-nucleotide resolution and revealed protected regions in the enhancers that match all previously characterized TF binding sites and ChIP-Seq data. Although the accessibility of most positions does not change during early differentiation, that of positions neighboring TF binding sites, an indicator of TF occupancy, did increase significantly. The localized accessibility changes are limited to nucleotides neighboring C/EBP-family TF binding sites, showing that the upregulation of enhancer activity during early differentiation is driven by C/EBP-family TF binding. These results show that increasing the total accessibility of enhancers is not sufficient for upregulating their activity and other events such as TF binding are necessary for upregulation. Also, TF binding can cause upregulation without a perceptible increase in total accessibility. Finally, this study demonstrates the feasibility of comprehensively mapping individual TF binding sites as footprints using high coverage ATAC-Seq and inferring the sequence of events in gene regulation by combining with time-series gene expression data.
Collapse
Affiliation(s)
- Trevor Long
- Department of Biology, University of North Dakota, Grand Forks, 58202-9019 ND, USA
| | - Tapas Bhattacharyya
- Department of Biology, University of North Dakota, Grand Forks, 58202-9019 ND, USA
| | - Andrea Repele
- Department of Biology, University of North Dakota, Grand Forks, 58202-9019 ND, USA
| | - Madison Naylor
- Department of Biology, University of North Dakota, Grand Forks, 58202-9019 ND, USA
| | - Sunil Nooti
- Department of Biology, University of North Dakota, Grand Forks, 58202-9019 ND, USA
| | - Shawn Krueger
- Department of Biology, University of North Dakota, Grand Forks, 58202-9019 ND, USA
| | - Manu
- Department of Biology, University of North Dakota, Grand Forks, 58202-9019 ND, USA
| |
Collapse
|
14
|
Jung MM, Shen S, Botten GA, Olender T, Katsumura KR, Johnson KD, Soukup AA, Liu P, Zhang Q, Jensvold ZD, Lewis PW, Beagrie RA, Low JK, Yang L, Mackay JP, Godley LA, Brand M, Xu J, Keles S, Bresnick EH. Pathogenic human variant that dislocates GATA2 zinc fingers disrupts hematopoietic gene expression and signaling networks. J Clin Invest 2023; 133:e162685. [PMID: 36809258 PMCID: PMC10065080 DOI: 10.1172/jci162685] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Although certain human genetic variants are conspicuously loss of function, decoding the impact of many variants is challenging. Previously, we described a patient with leukemia predisposition syndrome (GATA2 deficiency) with a germline GATA2 variant that inserts 9 amino acids between the 2 zinc fingers (9aa-Ins). Here, we conducted mechanistic analyses using genomic technologies and a genetic rescue system with Gata2 enhancer-mutant hematopoietic progenitor cells to compare how GATA2 and 9aa-Ins function genome-wide. Despite nuclear localization, 9aa-Ins was severely defective in occupying and remodeling chromatin and regulating transcription. Variation of the inter-zinc finger spacer length revealed that insertions were more deleterious to activation than repression. GATA2 deficiency generated a lineage-diverting gene expression program and a hematopoiesis-disrupting signaling network in progenitors with reduced granulocyte-macrophage colony-stimulating factor (GM-CSF) and elevated IL-6 signaling. As insufficient GM-CSF signaling caused pulmonary alveolar proteinosis and excessive IL-6 signaling promoted bone marrow failure and GATA2 deficiency patient phenotypes, these results provide insight into mechanisms underlying GATA2-linked pathologies.
Collapse
Affiliation(s)
- Mabel Minji Jung
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, and
| | - Siqi Shen
- Department of Biostatistics and Biomedical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Giovanni A. Botten
- Children’s Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Thomas Olender
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute–General Hospital, Ottawa, Ontario, Canada
| | - Koichi R. Katsumura
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, and
| | - Kirby D. Johnson
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, and
| | - Alexandra A. Soukup
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, and
| | - Peng Liu
- Department of Biostatistics and Biomedical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Qingzhou Zhang
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute–General Hospital, Ottawa, Ontario, Canada
| | - Zena D. Jensvold
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Peter W. Lewis
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Robert A. Beagrie
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jason K.K. Low
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Lihua Yang
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Joel P. Mackay
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Lucy A. Godley
- Section of Hematology/Oncology, The University of Chicago, Chicago, Illinois, USA
| | - Marjorie Brand
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Jian Xu
- Children’s Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sunduz Keles
- Department of Biostatistics and Biomedical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Emery H. Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, and
| |
Collapse
|
15
|
Zhao X, Bartholdy B, Yamamoto Y, Evans EK, Alberich-Jordà M, Staber PB, Benoukraf T, Zhang P, Zhang J, Trinh BQ, Crispino JD, Hoang T, Bassal MA, Tenen DG. PU.1-c-Jun interaction is crucial for PU.1 function in myeloid development. Commun Biol 2022; 5:961. [PMID: 36104445 PMCID: PMC9474506 DOI: 10.1038/s42003-022-03888-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/25/2022] [Indexed: 11/09/2022] Open
Abstract
The Ets transcription factor PU.1 is essential for inducing the differentiation of monocytes, macrophages, and B cells in fetal liver and adult bone marrow. PU.1 controls hematopoietic differentiation through physical interactions with other transcription factors, such as C/EBPα and the AP-1 family member c-Jun. We found that PU.1 recruits c-Jun to promoters without the AP-1 binding sites. To address the functional importance of this interaction, we generated PU.1 point mutants that do not bind c-Jun while maintaining normal DNA binding affinity. These mutants lost the ability to transactivate a target reporter that requires a physical PU.1-c-Jun interaction, and did not induce monocyte/macrophage differentiation of PU.1-deficient cells. Knock-in mice carrying these point mutations displayed an almost complete block in hematopoiesis and perinatal lethality. While the PU.1 mutants were expressed in hematopoietic stem and early progenitor cells, myeloid differentiation was severely blocked, leading to an almost complete loss of mature hematopoietic cells. Differentiation into mature macrophages could be restored by expressing PU.1 mutant fused to c-Jun, demonstrating that a physical PU.1-c-Jun interaction is crucial for the transactivation of PU.1 target genes required for myeloid commitment and normal PU.1 function in vivo during macrophage differentiation.
Collapse
Affiliation(s)
- Xinhui Zhao
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Boris Bartholdy
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
- Albert Einstein College of Medicine, New York, NY, USA
| | - Yukiya Yamamoto
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Aichi, Japan
| | - Erica K Evans
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
- MOMA Therapeutics, Cambridge, MA, USA
| | - Meritxell Alberich-Jordà
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
- Department of Hematology-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská, Prague, Czech Republic
- Childhood Leukemia Investigation Prague, Department of Pediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague, University Hospital Motol, Videnska, Czech Republic
| | - Philipp B Staber
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Touati Benoukraf
- Cancer Science Institute of Singapore, Singapore, Singapore
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Pu Zhang
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Junyan Zhang
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Bon Q Trinh
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - John D Crispino
- Department of Medicine, Northwestern University, Chicago, IL, USA
| | - Trang Hoang
- Institute for Research in Immunology and Cancer (IRIC), Department of Pharmacology and Physiology, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Mahmoud A Bassal
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA.
- Cancer Science Institute of Singapore, Singapore, Singapore.
| | - Daniel G Tenen
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA.
- Cancer Science Institute of Singapore, Singapore, Singapore.
| |
Collapse
|
16
|
Ohmori S, Takai J, Uemura S, Otsuki A, Mori T, Ohneda K, Moriguchi T. The Il6 -39 kb enhancer containing clustered GATA2- and PU.1-binding sites is essential for Il6 expression in murine mast cells. iScience 2022; 25:104942. [PMID: 36072552 PMCID: PMC9442365 DOI: 10.1016/j.isci.2022.104942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/17/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Mast cells serve as a first-line defense of innate immunity. Interleukin-6 (IL-6) induced by bacterial lipopolysaccharide (LPS) in mast cells plays a crucial role in antibacterial protection. The zinc finger transcription factor GATA2 cooperatively functions with the ETS family transcription factor PU.1 in multiple mast cell activities. However, the regulatory landscape directed by GATA2 and PU.1 under inflammation remains elusive. We herein showed that a large proportion of GATA2-binding peaks were closely located with PU.1-binding peaks in distal cis-regulatory regions of inflammatory cytokine genes in mast cells. Notably, GATA2 and PU.1 played crucial roles in promoting LPS-mediated inflammatory cytokine production. Genetic ablation of GATA2-PU.1-clustered binding sites at the Il6 -39 kb region revealed its central role in LPS-induced Il6 expression in mast cells. We demonstrate a novel collaborative activity of GATA2 and PU.1 in cytokine induction upon inflammatory stimuli via the GATA2-PU.1 overlapping sites in the distal cis-regulatory regions. GATA2- and PU.1-binding peaks are closely located in distal enhancers of cytokine genes GATA2 and PU.1 play crucial roles in promoting LPS-mediated cytokine induction The Il6 -39 kb enhancer containing GATA2 and PU.1 motifs are crucial for Il6 induction GATA2 inhibitor exerts anti-inflammatory effects via reducing cytokine induction
Collapse
|
17
|
Handzlik JE. Data-driven modeling predicts gene regulatory network dynamics during the differentiation of multipotential hematopoietic progenitors. PLoS Comput Biol 2022; 18:e1009779. [PMID: 35030198 PMCID: PMC8794271 DOI: 10.1371/journal.pcbi.1009779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 01/27/2022] [Accepted: 12/21/2021] [Indexed: 01/05/2023] Open
Abstract
Cellular differentiation during hematopoiesis is guided by gene regulatory networks (GRNs) comprising transcription factors (TFs) and the effectors of cytokine signaling. Based largely on analyses conducted at steady state, these GRNs are thought to be organized as a hierarchy of bistable switches, with antagonism between Gata1 and PU.1 driving red- and white-blood cell differentiation. Here, we utilize transient gene expression patterns to infer the genetic architecture—the type and strength of regulatory interconnections—and dynamics of a twelve-gene GRN including key TFs and cytokine receptors. We trained gene circuits, dynamical models that learn genetic architecture, on high temporal-resolution gene-expression data from the differentiation of an inducible cell line into erythrocytes and neutrophils. The model is able to predict the consequences of gene knockout, knockdown, and overexpression experiments and the inferred interconnections are largely consistent with prior empirical evidence. The inferred genetic architecture is densely interconnected rather than hierarchical, featuring extensive cross-antagonism between genes from alternative lineages and positive feedback from cytokine receptors. The analysis of the dynamics of gene regulation in the model reveals that PU.1 is one of the last genes to be upregulated in neutrophil conditions and that the upregulation of PU.1 and other neutrophil genes is driven by Cebpa and Gfi1 instead. This model inference is confirmed in an independent single-cell RNA-Seq dataset from mouse bone marrow in which Cebpa and Gfi1 expression precedes the neutrophil-specific upregulation of PU.1 during differentiation. These results demonstrate that full PU.1 upregulation during neutrophil development involves regulatory influences extrinsic to the Gata1-PU.1 bistable switch. Furthermore, although there is extensive cross-antagonism between erythroid and neutrophil genes, it does not have a hierarchical structure. More generally, we show that the combination of high-resolution time series data and data-driven dynamical modeling can uncover the dynamics and causality of developmental events that might otherwise be obscured. The supply of blood cells is replenished by the maturation of hematopoietic progenitor cells into different cell types. Which cell type a progenitor cell develops into is determined by a complex network of genes whose protein products directly or indirectly regulate each others’ expression and that of downstream genes characteristic of the cell type. We inferred the nature and causality of the regulatory connections in a 12-gene network known to affect the decision between erythrocyte and neutrophil cell fates using a predictive machine-learning approach. Our analysis showed that the overall architecture of the network is densely interconnected and not hierarchical. Furthermore, the model inferred that PU.1, considered a master regulator of all white-blood cell lineages, is upregulated during neutrophil development by two other proteins, Cebpa and Gfi1. We validated this prediction by showing that Cebpa and Gfi1 expression precedes that of PU.1 in single-cell gene expression data from mouse bone marrow. These results revise the architecture of the gene network and the causality of regulatory events guiding hematopoiesis. The results also show that combining machine learning approaches with time course data can help resolve causality during development.
Collapse
Affiliation(s)
- Joanna E Handzlik
- Department of Biology, University of North Dakota, Grand Forks, North Dakota, United States of America
| |
Collapse
|
18
|
Chiaranunt P, Tai SL, Ngai L, Mortha A. Beyond Immunity: Underappreciated Functions of Intestinal Macrophages. Front Immunol 2021; 12:749708. [PMID: 34650568 PMCID: PMC8506163 DOI: 10.3389/fimmu.2021.749708] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal tract hosts the largest compartment of macrophages in the body, where they serve as mediators of host defense and immunity. Seeded in the complex tissue-environment of the gut, an array of both hematopoietic and non-hematopoietic cells forms their immediate neighborhood. Emerging data demonstrate that the functional diversity of intestinal macrophages reaches beyond classical immunity and includes underappreciated non-immune functions. In this review, we discuss recent advances in research on intestinal macrophage heterogeneity, with a particular focus on how non-immune functions of macrophages impact tissue homeostasis and function. We delve into the strategic localization of distinct gut macrophage populations, describe the potential factors that regulate their identity and functional heterogeneity within these locations, and provide open questions that we hope will inspire research dedicated to elucidating a holistic view on macrophage-tissue cell interactions in the body's largest mucosal organ.
Collapse
Affiliation(s)
- Pailin Chiaranunt
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Siu Ling Tai
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Louis Ngai
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Arthur Mortha
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
19
|
Shoger KE, Cheemalavagu N, Cao YM, Michalides BA, Chaudhri VK, Cohen JA, Singh H, Gottschalk RA. CISH attenuates homeostatic cytokine signaling to promote lung-specific macrophage programming and function. Sci Signal 2021; 14:eabe5137. [PMID: 34516753 DOI: 10.1126/scisignal.abe5137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Karsen E Shoger
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.,Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA
| | - Neha Cheemalavagu
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.,Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Department Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Yuqi M Cao
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.,Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Brandon A Michalides
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.,Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Virendra K Chaudhri
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.,Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jonathan A Cohen
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Harinder Singh
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.,Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Rachel A Gottschalk
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.,Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
20
|
Srivastava M, Kaplan MH. Transcription Factors in the Development and Pro-Allergic Function of Mast Cells. FRONTIERS IN ALLERGY 2021; 2:679121. [PMID: 35387064 PMCID: PMC8974754 DOI: 10.3389/falgy.2021.679121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
Mast cells (MCs) are innate immune cells of hematopoietic origin localized in the mucosal tissues of the body and are broadly implicated in the pathogenesis of allergic inflammation. Transcription factors have a pivotal role in the development and differentiation of mast cells in response to various microenvironmental signals encountered in the resident tissues. Understanding the regulation of mast cells by transcription factors is therefore vital for mechanistic insights into allergic diseases. In this review we summarize advances in defining the transcription factors that impact the development of mast cells throughout the body and in specific tissues, and factors that are involved in responding to the extracellular milieu. We will further describe the complex networks of transcription factors that impact mast cell physiology and expansion during allergic inflammation and functions from degranulation to cytokine secretion. As our understanding of the heterogeneity of mast cells becomes more detailed, the contribution of specific transcription factors in mast cell-dependent functions will potentially offer new pathways for therapeutic targeting.
Collapse
Affiliation(s)
- Mansi Srivastava
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University-Purdue University, Indianapolis, IN, United States
| | - Mark H. Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
- *Correspondence: Mark H. Kaplan
| |
Collapse
|
21
|
Nagel S, Pommerenke C, Meyer C, Drexler HG. NKL Homeobox Gene VENTX Is Part of a Regulatory Network in Human Conventional Dendritic Cells. Int J Mol Sci 2021; 22:ijms22115902. [PMID: 34072771 PMCID: PMC8198381 DOI: 10.3390/ijms22115902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/10/2021] [Accepted: 05/27/2021] [Indexed: 01/09/2023] Open
Abstract
Recently, we documented a hematopoietic NKL-code mapping physiological expression patterns of NKL homeobox genes in human myelopoiesis including monocytes and their derived dendritic cells (DCs). Here, we enlarge this map to include normal NKL homeobox gene expressions in progenitor-derived DCs. Analysis of public gene expression profiling and RNA-seq datasets containing plasmacytoid and conventional dendritic cells (pDC and cDC) demonstrated HHEX activity in both entities while cDCs additionally expressed VENTX. The consequent aim of our study was to examine regulation and function of VENTX in DCs. We compared profiling data of VENTX-positive cDC and monocytes with VENTX-negative pDC and common myeloid progenitor entities and revealed several differentially expressed genes encoding transcription factors and pathway components, representing potential VENTX regulators. Screening of RNA-seq data for 100 leukemia/lymphoma cell lines identified prominent VENTX expression in an acute myelomonocytic leukemia cell line, MUTZ-3 containing inv(3)(q21q26) and t(12;22)(p13;q11) and representing a model for DC differentiation studies. Furthermore, extended gene analyses indicated that MUTZ-3 is associated with the subtype cDC2. In addition to analysis of public chromatin immune-precipitation data, subsequent knockdown experiments and modulations of signaling pathways in MUTZ-3 and control cell lines confirmed identified candidate transcription factors CEBPB, ETV6, EVI1, GATA2, IRF2, MN1, SPIB, and SPI1 and the CSF-, NOTCH-, and TNFa-pathways as VENTX regulators. Live-cell imaging analyses of MUTZ-3 cells treated for VENTX knockdown excluded impacts on apoptosis or induced alteration of differentiation-associated cell morphology. In contrast, target gene analysis performed by expression profiling of knockdown-treated MUTZ-3 cells revealed VENTX-mediated activation of several cDC-specific genes including CSFR1, EGR2, and MIR10A and inhibition of pDC-specific genes like RUNX2. Taken together, we added NKL homeobox gene activities for progenitor-derived DCs to the NKL-code, showing that VENTX is expressed in cDCs but not in pDCs and forms part of a cDC-specific gene regulatory network operating in DC differentiation and function.
Collapse
|
22
|
Cildir G, Yip KH, Pant H, Tergaonkar V, Lopez AF, Tumes DJ. Understanding mast cell heterogeneity at single cell resolution. Trends Immunol 2021; 42:523-535. [PMID: 33962887 DOI: 10.1016/j.it.2021.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023]
Abstract
Mast cells (MC)s are evolutionarily conserved, tissue-resident immune cells with diverse roles in allergy, cancer, and protection from infection by helminths and microorganisms. The significant diversity in MC development and tissue-specific functional characteristics has recently begun to be understood. Exciting developments in single-cell-based RNA, protein, and chromatin profiling technologies offer new opportunities to characterize MC heterogeneity and to uncover novel MC functions and subtypes; these developments might lead to new and clinically effective therapies for certain pathologies. In this review, we provide an overview of the current understanding of MC development and heterogeneity and discuss new insights gained from single-cell-based studies that may lead to future research directions and therapeutic opportunities.
Collapse
Affiliation(s)
- Gökhan Cildir
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA 5000, Australia.
| | - Kwok Ho Yip
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA 5000, Australia
| | - Harshita Pant
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA 5000, Australia; School of Medicine, University of Adelaide, Adelaide, SA 5000, Australia
| | - Vinay Tergaonkar
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA 5000, Australia; Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), Proteos, Singapore 138673, Singapore; Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
| | - Angel F Lopez
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA 5000, Australia; School of Medicine, University of Adelaide, Adelaide, SA 5000, Australia
| | - Damon J Tumes
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA 5000, Australia; South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia.
| |
Collapse
|
23
|
Cardillo F, Bonfim M, da Silva Vasconcelos Sousa P, Mengel J, Ribeiro Castello-Branco LR, Pinho RT. Bacillus Calmette-Guérin Immunotherapy for Cancer. Vaccines (Basel) 2021; 9:vaccines9050439. [PMID: 34062708 PMCID: PMC8147207 DOI: 10.3390/vaccines9050439] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/22/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Bacillus Calmette–Guérin (BCG), an attenuated vaccine from Mycobacterium bovis, was initially developed as an agent for vaccination against tuberculosis. BCG proved to be the first successful immunotherapy against established human bladder cancer and other neoplasms. The use of BCG has been shown to induce a long-lasting antitumor response over all other forms of treatment against intermediate, non-invasive muscle bladder cancer Several types of tumors may now be treated by releasing the immune response through the blockade of checkpoint inhibitory molecules, such as CTLA-4 and PD-1. In addition, Toll-Like Receptor (TLR) agonists and BCG are used to potentiate the immune response against tumors. Studies concerning TLR-ligands combined with BCG to treat melanoma have demonstrated efficacy in treating mice and patients This review addresses several interventions using BCG on neoplasms, such as Leukemia, Bladder Cancer, Lung Cancer, and Melanoma, describing treatments and antitumor responses promoted by this attenuated bacillus. Of essential importance, BCG is described recently to participate in an adequate microbiome, establishing an effective response during cell-target therapy when combined with anti-PD-1 antibody, which stimulates T cell responses against the melanoma. Finally, trained immunity is discussed, and reprogramming events to shape innate immune responses are addressed.
Collapse
Affiliation(s)
- Fabíola Cardillo
- Laboratory of Molecular and Structural Pathology, Gonçalo Moniz Institute, FIOCRUZ, Salvador, BA 40296-710, Brazil;
- Correspondence:
| | - Maiara Bonfim
- Laboratory of Molecular and Structural Pathology, Gonçalo Moniz Institute, FIOCRUZ, Salvador, BA 40296-710, Brazil;
| | - Periela da Silva Vasconcelos Sousa
- Laboratory of Clinical Immunology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ 21040-900, Brazil; (P.d.S.V.S.); (J.M.); (R.T.P.)
- Laboratory of Molecular Virology and Marine Biotechnology, Fluminense Federal University, Niteroi, RJ 24220-008, Brazil
| | - José Mengel
- Laboratory of Clinical Immunology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ 21040-900, Brazil; (P.d.S.V.S.); (J.M.); (R.T.P.)
- Faculty of Medicine of Petropolis, UNIFASE, Petropolis, RJ 25680-120, Brazil
| | | | - Rosa Teixeira Pinho
- Laboratory of Clinical Immunology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ 21040-900, Brazil; (P.d.S.V.S.); (J.M.); (R.T.P.)
| |
Collapse
|
24
|
Chavez JS, Rabe JL, Loeffler D, Higa KC, Hernandez G, Mills TS, Ahmed N, Gessner RL, Ke Z, Idler BM, Niño KE, Kim H, Myers JR, Stevens BM, Davizon-Castillo P, Jordan CT, Nakajima H, Ashton J, Welner RS, Schroeder T, DeGregori J, Pietras EM. PU.1 enforces quiescence and limits hematopoietic stem cell expansion during inflammatory stress. J Exp Med 2021; 218:211996. [PMID: 33857288 PMCID: PMC8056754 DOI: 10.1084/jem.20201169] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 02/01/2021] [Accepted: 03/17/2021] [Indexed: 12/27/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are capable of entering the cell cycle to replenish the blood system in response to inflammatory cues; however, excessive proliferation in response to chronic inflammation can lead to either HSC attrition or expansion. The mechanism(s) that limit HSC proliferation and expansion triggered by inflammatory signals are poorly defined. Here, we show that long-term HSCs (HSCLT) rapidly repress protein synthesis and cell cycle genes following treatment with the proinflammatory cytokine interleukin (IL)-1. This gene program is associated with activation of the transcription factor PU.1 and direct PU.1 binding at repressed target genes. Notably, PU.1 is required to repress cell cycle and protein synthesis genes, and IL-1 exposure triggers aberrant protein synthesis and cell cycle activity in PU.1-deficient HSCs. These features are associated with expansion of phenotypic PU.1-deficient HSCs. Thus, we identify a PU.1-dependent mechanism triggered by innate immune stimulation that limits HSC proliferation and pool size. These findings provide insight into how HSCs maintain homeostasis during inflammatory stress.
Collapse
Affiliation(s)
- James S Chavez
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Jennifer L Rabe
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Dirk Loeffler
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| | - Kelly C Higa
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Giovanny Hernandez
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Taylor S Mills
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Nouraiz Ahmed
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| | - Rachel L Gessner
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Zhonghe Ke
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Beau M Idler
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Katia E Niño
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Hyunmin Kim
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Jason R Myers
- Genomics Research Center, University of Rochester, Rochester, NY
| | - Brett M Stevens
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | | | - Craig T Jordan
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Hideaki Nakajima
- Department of Stem Cell and Immune Regulation, Yokohama City University School of Medicine, Yokohama, Japan
| | - John Ashton
- Genomics Research Center, University of Rochester, Rochester, NY
| | - Robert S Welner
- Division of Hematology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| | - James DeGregori
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO.,Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO.,Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Eric M Pietras
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
25
|
Rothenberg EV. Logic and lineage impacts on functional transcription factor deployment for T-cell fate commitment. Biophys J 2021; 120:4162-4181. [PMID: 33838137 PMCID: PMC8516641 DOI: 10.1016/j.bpj.2021.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/22/2021] [Accepted: 04/02/2021] [Indexed: 11/19/2022] Open
Abstract
Transcription factors are the major agents that read the regulatory sequence information in the genome to initiate changes in expression of specific genes, both in development and in physiological activation responses. Their actions depend on site-specific DNA binding and are largely guided by their individual DNA target sequence specificities. However, their action is far more conditional in a real developmental context than would be expected for simple reading of local genomic DNA sequence, which is common to all cells in the organism. They are constrained by slow-changing chromatin states and by interactions with other transcription factors, which affect their occupancy patterns of potential sites across the genome. These mechanisms lead to emergent discontinuities in function even for transcription factors with minimally changing expression. This is well revealed by diverse lineages of blood cells developing throughout life from hematopoietic stem cells, which use overlapping combinations of transcription factors to drive strongly divergent gene regulation programs. Here, using development of T lymphocytes from hematopoietic multipotent progenitor cells as a focus, recent evidence is reviewed on how binding specificity and dynamics, transcription factor cooperativity, and chromatin state changes impact the effective regulatory functions of key transcription factors including PU.1, Runx1, Notch-RBPJ, and Bcl11b.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California.
| |
Collapse
|
26
|
Johnson KD, Conn DJ, Shishkova E, Katsumura KR, Liu P, Shen S, Ranheim EA, Kraus SG, Wang W, Calvo KR, Hsu AP, Holland SM, Coon JJ, Keles S, Bresnick EH. Constructing and deconstructing GATA2-regulated cell fate programs to establish developmental trajectories. J Exp Med 2021; 217:151996. [PMID: 32736380 PMCID: PMC7596813 DOI: 10.1084/jem.20191526] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 02/08/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
Stem and progenitor cell fate transitions constitute key decision points in organismal development that enable access to a developmental path or actively preclude others. Using the hematopoietic system, we analyzed the relative importance of cell fate–promoting mechanisms versus negating fate-suppressing mechanisms to engineer progenitor cells with multilineage differentiation potential. Deletion of the murine Gata2−77 enhancer, with a human equivalent that causes leukemia, downregulates the transcription factor GATA2 and blocks progenitor differentiation into erythrocytes, megakaryocytes, basophils, and granulocytes, but not macrophages. Using multiomics and single-cell analyses, we demonstrated that the enhancer orchestrates a balance between pro- and anti-fate circuitry in single cells. By increasing GATA2 expression, the enhancer instigates a fate-promoting mechanism while abrogating an innate immunity–linked, fate-suppressing mechanism. During embryogenesis, the suppressing mechanism dominated in enhancer mutant progenitors, thus yielding progenitors with a predominant monocytic differentiation potential. Coordinating fate-promoting and -suppressing circuits therefore averts deconstruction of a multifate system into a monopotent system and maintains critical progenitor heterogeneity and functionality.
Collapse
Affiliation(s)
- Kirby D Johnson
- University of Wisconsin-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Daniel J Conn
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Evgenia Shishkova
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Koichi R Katsumura
- University of Wisconsin-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Peng Liu
- University of Wisconsin Carbone Cancer Center, Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Siqi Shen
- Department of Statistics, University of Wisconsin, Madison, WI
| | - Erik A Ranheim
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Sean G Kraus
- University of Wisconsin-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Weixin Wang
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Katherine R Calvo
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Amy P Hsu
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Joshua J Coon
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Sunduz Keles
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Emery H Bresnick
- University of Wisconsin-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI
| |
Collapse
|
27
|
Robinson A, Han CZ, Glass CK, Pollard JW. Monocyte Regulation in Homeostasis and Malignancy. Trends Immunol 2021; 42:104-119. [PMID: 33446416 PMCID: PMC7877795 DOI: 10.1016/j.it.2020.12.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/27/2020] [Accepted: 12/05/2020] [Indexed: 12/14/2022]
Abstract
Monocytes are progenitors to macrophages and a subclass of dendritic cells (monocyte-derived dendritic cells, MoDCs), but they also act as circulating sensors that respond to environmental changes and disease. Technological advances have defined the production of classical monocytes in the bone marrow through the identification of lineage-determining transcription factors (LDTFs) and have proposed alternative routes of differentiation. Monocytes released into the circulation can be recruited to tissues by specific chemoattractants where they respond to sequential niche-specific signals that determine their differentiation into terminal effector cells. New aspects of monocyte biology in the circulation are being revealed, exemplified by the influence of cancer on the systemic alteration of monocyte subset abundance and transcriptional profiles. These changes can act to enhance the metastatic spread of primary cancers and may offer therapeutic opportunities.
Collapse
Affiliation(s)
- Amy Robinson
- Medical Research Council (MRC) Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Claudia Z Han
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Jeffrey W Pollard
- Medical Research Council (MRC) Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
28
|
Li Y, Gao J, Kamran M, Harmacek L, Danhorn T, Leach SM, O'Connor BP, Hagman JR, Huang H. GATA2 regulates mast cell identity and responsiveness to antigenic stimulation by promoting chromatin remodeling at super-enhancers. Nat Commun 2021; 12:494. [PMID: 33479210 PMCID: PMC7820599 DOI: 10.1038/s41467-020-20766-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 12/14/2020] [Indexed: 01/29/2023] Open
Abstract
Mast cells are critical effectors of allergic inflammation and protection against parasitic infections. We previously demonstrated that transcription factors GATA2 and MITF are the mast cell lineage-determining factors. However, it is unclear whether these lineage-determining factors regulate chromatin accessibility at mast cell enhancer regions. In this study, we demonstrate that GATA2 promotes chromatin accessibility at the super-enhancers of mast cell identity genes and primes both typical and super-enhancers at genes that respond to antigenic stimulation. We find that the number and densities of GATA2- but not MITF-bound sites at the super-enhancers are several folds higher than that at the typical enhancers. Our studies reveal that GATA2 promotes robust gene transcription to maintain mast cell identity and respond to antigenic stimulation by binding to super-enhancer regions with dense GATA2 binding sites available at key mast cell genes.
Collapse
Affiliation(s)
- Yapeng Li
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Junfeng Gao
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Mohammad Kamran
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Laura Harmacek
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, 80206, USA
| | - Thomas Danhorn
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, 80206, USA
| | - Sonia M Leach
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, 80206, USA
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, 80206, USA
| | - Brian P O'Connor
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, 80206, USA
| | - James R Hagman
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, 80206, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Hua Huang
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, 80206, USA.
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
29
|
Chronic lymphocytic leukemia B-cell-derived TNFα impairs bone marrow myelopoiesis. iScience 2020; 24:101994. [PMID: 33458625 PMCID: PMC7797930 DOI: 10.1016/j.isci.2020.101994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/15/2020] [Accepted: 12/22/2020] [Indexed: 12/22/2022] Open
Abstract
TNFα is implicated in chronic lymphocytic leukemia (CLL) immunosuppression and disease progression. TNFα is constitutively produced by CLL B cells and is a negative regulator of bone marrow (BM) myelopoiesis. Here, we show that co-culture of CLL B cells with purified normal human hematopoietic stem and progenitor cells (HSPCs) directly altered protein levels of the myeloid and erythroid cell fate determinants PU.1 and GATA-2 at the single-cell level within transitional HSPC subsets, mimicking ex vivo expression patterns. Physical separation of CLL cells from control HSPCs or neutralizing TNFα abrogated upregulation of PU.1, yet restoration of GATA-2 required TNFα neutralization, suggesting both cell contact and soluble-factor-mediated regulation. We further show that CLL patient BM myeloid progenitors are diminished in frequency and function, an effect recapitulated by chronic exposure of control HSPCs to low-dose TNFα. These findings implicate CLL B-cell-derived TNFα in impaired BM myelopoiesis. CLL patient BM HSPCs exhibit aberrant molecular and functional characteristics CLL B-cell-derived TNFα upregulates PU.1 and GATA-2 in BM HSPCs The effects of CLL B-cell-derived TNFα are reversible upon TNFα neutralization Chronic TNFα exposure in vitro recapitulates ex vivo HSPC functional deficiencies
Collapse
|
30
|
Shah R, Del Vecchio D. Reprogramming multistable monotone systems with application to cell fate control. IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 2020; 7:2940-2951. [PMID: 33437845 PMCID: PMC7799369 DOI: 10.1109/tnse.2020.3008135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Multistability is a key property of dynamical systems modeling cellular regulatory networks implicated in cell fate decisions, where, different stable steady states usually represent distinct cell phenotypes. Monotone network motifs are highly represented in these regulatory networks. In this paper, we leverage the properties of monotone dynamical systems to provide theoretical results that guide the selection of inputs that trigger a transition, i.e., reprogram the network, to a desired stable steady state. We first show that monotone dynamical systems with bounded trajectories admit a minimum and a maximum stable steady state. Then, we provide input choices that are guaranteed to reprogram the system to these extreme steady states. For intermediate states, we provide an input space that is guaranteed to contain an input that reprograms the system to the desired state. We then provide implementation guidelines for finite-time procedures that search this space for such an input, along with rules to prune parts of the space during search. We demonstrate these results on simulations of two recurrent regulatory network motifs: self-activation within mutual antagonism and self-activation within mutual cooperation. Our results depend uniquely on the structure of the network and are independent of specific parameter values.
Collapse
Affiliation(s)
- Rushina Shah
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Domitilla Del Vecchio
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
31
|
Blood disease-causing and -suppressing transcriptional enhancers: general principles and GATA2 mechanisms. Blood Adv 2020; 3:2045-2056. [PMID: 31289032 DOI: 10.1182/bloodadvances.2019000378] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 05/29/2019] [Indexed: 12/16/2022] Open
Abstract
Intensive scrutiny of human genomes has unveiled considerable genetic variation in coding and noncoding regions. In cancers, including those of the hematopoietic system, genomic instability amplifies the complexity and functional consequences of variation. Although elucidating how variation impacts the protein-coding sequence is highly tractable, deciphering the functional consequences of variation in noncoding regions (genome reading), including potential transcriptional-regulatory sequences, remains challenging. A crux of this problem is the sheer abundance of gene-regulatory sequence motifs (cis elements) mediating protein-DNA interactions that are intermixed in the genome with thousands of look-alike sequences lacking the capacity to mediate functional interactions with proteins in vivo. Furthermore, transcriptional enhancers harbor clustered cis elements, and how altering a single cis element within a cluster impacts enhancer function is unpredictable. Strategies to discover functional enhancers have been innovated, and human genetics can provide vital clues to achieve this goal. Germline or acquired mutations in functionally critical (essential) enhancers, for example at the GATA2 locus encoding a master regulator of hematopoiesis, have been linked to human pathologies. Given the human interindividual genetic variation and complex genetic landscapes of hematologic malignancies, enhancer corruption, creation, and expropriation by new genes may not be exceedingly rare mechanisms underlying disease predisposition and etiology. Paradigms arising from dissecting essential enhancer mechanisms can guide genome-reading strategies to advance fundamental knowledge and precision medicine applications. In this review, we provide our perspective of general principles governing the function of blood disease-linked enhancers and GATA2-centric mechanisms.
Collapse
|
32
|
A Novel GATA2 Protein Reporter Mouse Reveals Hematopoietic Progenitor Cell Types. Stem Cell Reports 2020; 15:326-339. [PMID: 32649900 PMCID: PMC7419669 DOI: 10.1016/j.stemcr.2020.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 01/05/2023] Open
Abstract
The transcription factor (TF) GATA2 plays a key role in organ development and cell fate control in the central nervous, urogenital, respiratory, and reproductive systems, and in primitive and definitive hematopoiesis. Here, we generate a knockin protein reporter mouse line expressing a GATA2VENUS fusion from the endogenous Gata2 genomic locus, with correct expression and localization of GATA2VENUS in different organs. GATA2VENUS expression is heterogeneous in different hematopoietic stem and progenitor cell populations (HSPCs), identifies functionally distinct subsets, and suggests a novel monocyte and mast cell lineage bifurcation point. GATA2 levels further correlate with proliferation and lineage outcome of hematopoietic progenitors. The GATA2VENUS mouse line improves the identification of specific live cell types during embryonic and adult development and will be crucial for analyzing GATA2 protein dynamics in TF networks. A novel GATA2VENUS fusion mouse line to report GATA2 protein expression VENUS fusion does not alter GATA2 expression or disturb development or homeostasis GATA2 expression identifies functionally distinct HSPC subpopulations GATA2 expression unveils an earlier monocyte-mast cell lineage bifurcation point
Collapse
|
33
|
Mak ACY, Sajuthi S, Joo J, Xiao S, Sleiman PM, White MJ, Lee EY, Saef B, Hu D, Gui H, Keys KL, Lurmann F, Jain D, Abecasis G, Kang HM, Nickerson DA, Germer S, Zody MC, Winterkorn L, Reeves C, Huntsman S, Eng C, Salazar S, Oh SS, Gilliland FD, Chen Z, Kumar R, Martínez FD, Wu AC, Ziv E, Hakonarson H, Himes BE, Williams LK, Seibold MA, Burchard EG. Lung Function in African American Children with Asthma Is Associated with Novel Regulatory Variants of the KIT Ligand KITLG/SCF and Gene-By-Air-Pollution Interaction. Genetics 2020; 215:869-886. [PMID: 32327564 PMCID: PMC7337089 DOI: 10.1534/genetics.120.303231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/22/2020] [Indexed: 01/12/2023] Open
Abstract
Baseline lung function, quantified as forced expiratory volume in the first second of exhalation (FEV1), is a standard diagnostic criterion used by clinicians to identify and classify lung diseases. Using whole-genome sequencing data from the National Heart, Lung, and Blood Institute Trans-Omics for Precision Medicine project, we identified a novel genetic association with FEV1 on chromosome 12 in 867 African American children with asthma (P = 1.26 × 10-8, β = 0.302). Conditional analysis within 1 Mb of the tag signal (rs73429450) yielded one major and two other weaker independent signals within this peak. We explored statistical and functional evidence for all variants in linkage disequilibrium with the three independent signals and yielded nine variants as the most likely candidates responsible for the association with FEV1 Hi-C data and expression QTL analysis demonstrated that these variants physically interacted with KITLG (KIT ligand, also known as SCF), and their minor alleles were associated with increased expression of the KITLG gene in nasal epithelial cells. Gene-by-air-pollution interaction analysis found that the candidate variant rs58475486 interacted with past-year ambient sulfur dioxide exposure (P = 0.003, β = 0.32). This study identified a novel protective genetic association with FEV1, possibly mediated through KITLG, in African American children with asthma. This is the first study that has identified a genetic association between lung function and KITLG, which has established a role in orchestrating allergic inflammation in asthma.
Collapse
Affiliation(s)
- Angel C Y Mak
- Department of Medicine, University of California, San Francisco, California 94143
| | - Satria Sajuthi
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado 80206
| | - Jaehyun Joo
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Shujie Xiao
- Center for Individualized and Genomic Medicine Research, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan 48202
| | - Patrick M Sleiman
- Center for Applied Genomics, Children's Hospital of Philadelphia, Pennsylvania, 19104
- Division of Human Genetics, Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Marquitta J White
- Department of Medicine, University of California, San Francisco, California 94143
| | - Eunice Y Lee
- Department of Medicine, University of California, San Francisco, California 94143
| | - Benjamin Saef
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Donglei Hu
- Department of Medicine, University of California, San Francisco, California 94143
| | - Hongsheng Gui
- Center for Individualized and Genomic Medicine Research, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan 48202
| | - Kevin L Keys
- Department of Medicine, University of California, San Francisco, California 94143
- Berkeley Institute for Data Science, University of California, Berkeley, California 94720
| | | | - Deepti Jain
- Department of Biostatistics, University of Washington, Seattle, Washington 98195
| | - Gonçalo Abecasis
- Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan 48109
| | - Hyun Min Kang
- Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan 48109
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195
- Northwest Genomics Center, Seattle, Washington, 98195
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, 98195
| | | | | | | | | | - Scott Huntsman
- Department of Medicine, University of California, San Francisco, California 94143
| | - Celeste Eng
- Department of Medicine, University of California, San Francisco, California 94143
| | - Sandra Salazar
- Department of Medicine, University of California, San Francisco, California 94143
| | - Sam S Oh
- Department of Medicine, University of California, San Francisco, California 94143
| | - Frank D Gilliland
- Department of Preventive Medicine, Division of Environmental Health, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Zhanghua Chen
- Department of Preventive Medicine, Division of Environmental Health, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Rajesh Kumar
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois 60611
| | - Fernando D Martínez
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Arizona 85721
| | - Ann Chen Wu
- Precision Medicine Translational Research (PRoMoTeR) Center, Department of Population Medicine, Harvard Medical School and Pilgrim Health Care Institute, Boston, Massachusetts 02215
| | - Elad Ziv
- Department of Medicine, University of California, San Francisco, California 94143
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Pennsylvania, 19104
- Division of Human Genetics, Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Blanca E Himes
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - L Keoki Williams
- Center for Individualized and Genomic Medicine Research, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan 48202
| | - Max A Seibold
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Esteban G Burchard
- Department of Medicine, University of California, San Francisco, California 94143
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94143
| |
Collapse
|
34
|
Jia Y, Wei Y. Modulators of MicroRNA Function in the Immune System. Int J Mol Sci 2020; 21:E2357. [PMID: 32235299 PMCID: PMC7177468 DOI: 10.3390/ijms21072357] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/23/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) play a key role in fine-tuning host immune homeostasis and responses through the negative regulation of mRNA stability and translation. The pathways regulated by miRNAs are well characterized, but the precise mechanisms that control the miRNA-mediated regulation of gene expression during immune cell-development and immune responses to invading pathogens are incompletely understood. Context-specific interactions of miRNAs with other RNA species or proteins may modulate the function of a given miRNA. Dysregulation of miRNA function is associated with various human diseases, such as cardiovascular diseases and cancers. Here, we review the potential modulators of miRNA function in the immune system, including the transcription regulators of miRNA genes, miRNA-processing enzymes, factors affecting miRNA targeting, and intercellular communication.
Collapse
Affiliation(s)
- Yunhui Jia
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yuanyuan Wei
- Department of Immunology, Shanghai Key laboratory of Bioactive Small Molecules, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
35
|
Bento LC, Bacal NS, Rocha FA, Severino P, Marti LC. Bone Marrow Monocytes and Derived Dendritic Cells from Myelodysplastic Patients Have Functional Abnormalities Associated with Defective Response to Bacterial Infection. THE JOURNAL OF IMMUNOLOGY 2020; 204:2098-2109. [PMID: 32179638 DOI: 10.4049/jimmunol.1900328] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 02/06/2020] [Indexed: 01/14/2023]
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of hematopoietic stem cell diseases characterized by dysplasia of one or more hematologic lineages and a high risk of developing into acute myeloid leukemia. MDS patients have recurrent bacterial infections and abnormal expression of CD56 by monocytes. We investigated MDS patients' bone marrow CD56+/CD56- monocytes and their in vitro-derived dendritic cell populations in comparison with cells obtained from disease-free subjects. We found that monocytes from MDS patients, irrespective of CD56 expression, have reduced phagocytosis activity and low expression of genes involved in triggering immune responses, regulation of immune and inflammatory response signaling pathways, and in the response to LPS. Dendritic cells derived in vitro from MDS monocytes failed to develop dendritic projections and had reduced expression of HLA-DR and CD86, suggesting that Ag processing and T cell activation capabilities are impaired. In conclusion, we identified, in both CD56+ and CD56- monocytes from MDS patients, several abnormalities that may be related to the increased susceptibility to infections observed in these patients.
Collapse
Affiliation(s)
- Laiz C Bento
- Clinical Pathology Laboratory, Hospital Israelita Albert Einstein, São Paulo 05652 000, Brazil; and
| | - Nydia S Bacal
- Clinical Pathology Laboratory, Hospital Israelita Albert Einstein, São Paulo 05652 000, Brazil; and
| | - Fernanda A Rocha
- Experimental Research Laboratory, Hospital Israelita Albert Einstein, São Paulo 05652 000, Brazil
| | - Patricia Severino
- Experimental Research Laboratory, Hospital Israelita Albert Einstein, São Paulo 05652 000, Brazil
| | - Luciana C Marti
- Experimental Research Laboratory, Hospital Israelita Albert Einstein, São Paulo 05652 000, Brazil
| |
Collapse
|
36
|
Li C, Zhu F, Xu C, Xiao P, Wen J, Zhang X, Wu B. Dangguibuxue decoction abolishes abnormal accumulation of erythroid progenitor cells induced by melanoma. JOURNAL OF ETHNOPHARMACOLOGY 2019; 242:112035. [PMID: 31226383 DOI: 10.1016/j.jep.2019.112035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGIC RELEVANCE Dangguibuxue decoction (DGBX), is a well-known traditional Chinese medicine that contains two types of materials used to treat anemia. In this study, we aimed to explore the effect and mechanism of DGBX on abolishing erythroid progenitor cell (Ter119+CD71+) accumulation induced by melanoma. MATERIALS AND METHODS B16/F10 melanoma cells were used to establish transplanted and metastatic melanoma models. DGBX or normal saline were administered intragastrically daily after the models were established. Tumor sizes and metastatic nodules were observed after tumor cell inoculation. To further test the function of DGBX on erythroid progenitor cell (EPC) accumulation and immunosuppressive abilities, the percentage of EPCs in the blood, and spleen were quantified with flow cytometry. The proportion of CD8+ T cells and related functional mediators, IFN-γ and TNF-α,were also quantified with flow cytometry. To further strengthen our in vivo observations, DGBX serum was prepared from the rats three days after DGBX was administered. Liquid chromatography-mass spectrometry was carried out to control the quality of the experiments. B16/F10 melanomacells were cultured with DGBX serum, and proliferation and apoptosis were observed with the CCK8 assay and AnnexinV/7AAD staining, respectively. EPCs were isolated from B16/F10-bearing mice and cultured under erythroid differentiation conditions. EPCs were treated with DGBX serum, and mature red cell proportions and cell denucleations were tested with flow cytometry and Giemsa staining of the cultured EPCs. Flow cytometry and qPCR were used to analyze the effects of DGBX on the expression of key molecules involved in erythroid development and to explore the mechanism by which DGBX relieves abnormal EPC accumulation. RESULTS DGBX treatments significantly reduced B16 melanoma tumor sizes and metastatic nodules. Most importantly, our study strongly suggested that DGBX could alleviate anemia, and systematically enhance anti-tumor immune responses by reducing abnormal EPC accumulation. Moreover, DGBX serum treatments had no direct effect on tumor cell proliferation and apoptosis, but could promote EPCs to differentiate into mature red blood cells, in vitro. Mechanistically, at least in part, DGBX relieved abnormal EPC accumulation by altering the "master switch" transcription factors, Pu.1 and Gata-1. CONCLUSIONS DGBX significantly alleviates abnormal tumor-induced EPC accumulation, inhibits B16 melanoma progression, and enhances anti-tumor immune responses.
Collapse
Affiliation(s)
- Chengyin Li
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China; No.4 Clinical Medicine School of Chengdu University of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Fenglin Zhu
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China; No.4 Clinical Medicine School of Chengdu University of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Chong Xu
- No.4 Clinical Medicine School of Chengdu University of Traditional Chinese Medicine, Chongqing, 400021, China; Pharmacy Department, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Ping Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, 210023, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Junsong Wen
- No.4 Clinical Medicine School of Chengdu University of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Xia Zhang
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Bin Wu
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China; No.4 Clinical Medicine School of Chengdu University of Traditional Chinese Medicine, Chongqing, 400021, China.
| |
Collapse
|
37
|
Repele A. Robust Normalization of Luciferase Reporter Data. Methods Protoc 2019; 2:mps2030062. [PMID: 31349610 PMCID: PMC6789503 DOI: 10.3390/mps2030062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/14/2019] [Accepted: 07/22/2019] [Indexed: 11/26/2022] Open
Abstract
Transient Luciferase reporter assays are widely used in the study of gene regulation and intracellular cell signaling. In order to control for sample-to-sample variation in luminescence arising from variability in transfection efficiency and other sources, an internal control reporter is co-transfected with the experimental reporter. The luminescence of the experimental reporter is normalized against the control by taking the ratio of the two. Here we show that this method of normalization, “ratiometric”, performs poorly when the transfection efficiency is low and leads to biased estimates of relative activity. We propose an alternative methodology based on linear regression that is much better suited for the normalization of reporter data, especially when transfection efficiency is low. We compare the ratiometric method against three regression methods on both simulated and empirical data. Our results suggest that robust errors-in-variables (REIV) regression performs the best in normalizing Luciferase reporter data. We have made the R code for Luciferase data normalization using REIV available on GitHub.
Collapse
Affiliation(s)
- Andrea Repele
- Department of Biology, University of North Dakota, Grand Forks, ND 58202, USA
| |
Collapse
|
38
|
Repele A, Krueger S, Bhattacharyya T, Tuineau MY. The regulatory control of Cebpa enhancers and silencers in the myeloid and red-blood cell lineages. PLoS One 2019; 14:e0217580. [PMID: 31181110 PMCID: PMC6557489 DOI: 10.1371/journal.pone.0217580] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/14/2019] [Indexed: 12/31/2022] Open
Abstract
Cebpa encodes a transcription factor (TF) that plays an instructive role in the development of multiple myeloid lineages. The expression of Cebpa itself is finely modulated, as Cebpa is expressed at high and intermediate levels in neutrophils and macrophages respectively and downregulated in non-myeloid lineages. The cis-regulatory logic underlying the lineage-specific modulation of Cebpa's expression level is yet to be fully characterized. Previously, we had identified 6 new cis-regulatory modules (CRMs) in a 78kb region surrounding Cebpa. We had also inferred the TFs that regulate each CRM by fitting a sequence-based thermodynamic model to a comprehensive reporter activity dataset. Here, we report the cis-regulatory logic of Cebpa CRMs at the resolution of individual binding sites. We tested the binding sites and functional roles of inferred TFs by designing and constructing mutated CRMs and comparing theoretical predictions of their activity against empirical measurements in a myeloid cell line. The enhancers were confirmed to be activated by combinations of PU.1, C/EBP family TFs, Egr1, and Gfi1 as predicted by the model. We show that silencers repress the activity of the proximal promoter in a dominant manner in G1ME cells, which are derived from the red-blood cell lineage. Dominant repression in G1ME cells can be traced to binding sites for GATA and Myb, a motif shared by all of the silencers. Finally, we demonstrate that GATA and Myb act redundantly to silence the proximal promoter. These results indicate that dominant repression is a novel mechanism for resolving hematopoietic lineages. Furthermore, Cebpa has a fail-safe cis-regulatory architecture, featuring several functionally similar CRMs, each of which contains redundant binding sites for multiple TFs. Lastly, by experimentally demonstrating the predictive ability of our sequence-based thermodynamic model, this work highlights the utility of this computational approach for understanding mammalian gene regulation.
Collapse
Affiliation(s)
- Andrea Repele
- Department of Biology, University of North Dakota, Grand Forks, ND, United States of America
| | - Shawn Krueger
- Department of Biology, University of North Dakota, Grand Forks, ND, United States of America
| | - Tapas Bhattacharyya
- Department of Biology, University of North Dakota, Grand Forks, ND, United States of America
| | - Michelle Y Tuineau
- Department of Biology, University of North Dakota, Grand Forks, ND, United States of America
| |
Collapse
|
39
|
Desai A, Sowerwine K, Liu Y, Lawrence MG, Chovanec J, Hsu AP, O'Connell MP, Kim J, Boris L, Jones N, Wisch L, Eisch RR, Carter MC, Komarow HD, Zerbe C, Milner JD, Maric I, Sun X, Lee CCR, Tunc I, Pirooznia M, Stone KD, Holland SM, Metcalfe DD, Lyons JJ. GATA-2-deficient mast cells limit IgE-mediated immediate hypersensitivity reactions in human subjects. J Allergy Clin Immunol 2019; 144:613-617.e14. [PMID: 31102699 DOI: 10.1016/j.jaci.2019.05.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/08/2019] [Accepted: 05/06/2019] [Indexed: 01/26/2023]
Affiliation(s)
- Avanti Desai
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Kathryn Sowerwine
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Yihui Liu
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Monica G Lawrence
- Division of Asthma, Allergy and Immunology, Department of Medicine, University of Virginia, Charlottesville, Va
| | - Jack Chovanec
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Amy P Hsu
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Michael P O'Connell
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Jiwon Kim
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Lisa Boris
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Nina Jones
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Md
| | - Laura Wisch
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Robin R Eisch
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Melody C Carter
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Hirsh D Komarow
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Christa Zerbe
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Joshua D Milner
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Irina Maric
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Md
| | - Xiaoping Sun
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Md
| | - Chyi-Chia R Lee
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Md
| | - Ilker Tunc
- Bioinformatics and Computational Biology Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Mehdi Pirooznia
- Bioinformatics and Computational Biology Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Kelly D Stone
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Dean D Metcalfe
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Jonathan J Lyons
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| |
Collapse
|
40
|
Rothenberg EV. Causal Gene Regulatory Network Modeling and Genomics: Second-Generation Challenges. J Comput Biol 2019; 26:703-718. [PMID: 31063008 DOI: 10.1089/cmb.2019.0098] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Gene regulatory network modeling has played a major role in advancing the understanding of developmental systems, by crystallizing structures of relevant extant information, by formally posing hypothetical functional relationships between network elements, and by offering clear predictive tests to improve understanding of the mechanisms driving developmental progression. Both ordinary differential equation (ODE)-based and Boolean models have also been highly successful in explaining dynamics within subcircuits of more complex processes. In a very small number of cases, gene regulatory network models of much more global scope have been proposed that successfully predict the dynamics of the processes establishing most of an embryonic body plan. Can such successes be expanded to very different developmental systems, including post-embryonic mammalian systems? This perspective discusses several problems that must be solved in more quantitative and predictive theoretical terms, to make this possible. These problems include: the effects of cellular history on chromatin state and how these affect gene accessibility; the dose dependence of activities of many transcription factors (a problem for Boolean models); stochasticity of some transcriptional outputs (a problem for simple ODE models); response timing delays due to epigenetic remodeling requirements; functionally different kinds of repression; and the regulatory syntax that governs responses of genes with multiple enhancers.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
| |
Collapse
|
41
|
Rothenberg EV, Hosokawa H, Ungerbäck J. Mechanisms of Action of Hematopoietic Transcription Factor PU.1 in Initiation of T-Cell Development. Front Immunol 2019; 10:228. [PMID: 30842770 PMCID: PMC6391351 DOI: 10.3389/fimmu.2019.00228] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/28/2019] [Indexed: 12/20/2022] Open
Abstract
PU.1 is an ETS-family transcription factor that plays a broad range of roles in hematopoiesis. A direct regulator of myeloid, dendritic-cell, and B cell functional programs, and a well-known antagonist of terminal erythroid cell differentiation, it is also expressed in the earliest stages of T-cell development of each cohort of intrathymic pro-T cells. Its expression in this context appears to give T-cell precursors initial, transient access to myeloid and dendritic cell developmental competence and therefore to represent a source of antagonism or delay of T-cell lineage commitment. However, it has remained uncertain until recently why T-cell development is also intensely dependent upon PU.1. Here, we review recent work that sheds light on the molecular biology of PU.1 action across the genome in pro-T cells and identifies the genes that depend on PU.1 for their correct regulation. This work indicates modes of chromatin engagement, pioneering, and cofactor recruitment (“coregulator theft”) by PU.1 as well as gene network interactions that not only affect specific target genes but also have system-wide regulatory consequences, amplifying the impact of PU.1 beyond its own direct binding targets. The genes directly regulated by PU.1 also suggest a far-reaching transformation of cell biology and signaling potential between the early stages of T-cell development when PU.1 is expressed and when it is silenced. These cell-biological functions can be important to distinguish fetal from adult T-cell development and have the potential to illuminate aspects of thymic function that have so far remained the most mysterious.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Hiroyuki Hosokawa
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Jonas Ungerbäck
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
42
|
EVI1 overexpression reprograms hematopoiesis via upregulation of Spi1 transcription. Nat Commun 2018; 9:4239. [PMID: 30315161 PMCID: PMC6185954 DOI: 10.1038/s41467-018-06208-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 08/21/2018] [Indexed: 01/19/2023] Open
Abstract
Inv(3q26) and t(3:3)(q21;q26) are specific to poor-prognosis myeloid malignancies, and result in marked overexpression of EVI1, a zinc-finger transcription factor and myeloid-specific oncoprotein. Despite extensive study, the mechanism by which EVI1 contributes to myeloid malignancy remains unclear. Here we describe a new mouse model that mimics the transcriptional effects of 3q26 rearrangement. We show that EVI1 overexpression causes global distortion of hematopoiesis, with suppression of erythropoiesis and lymphopoiesis, and marked premalignant expansion of myelopoiesis that eventually results in leukemic transformation. We show that myeloid skewing is dependent on DNA binding by EVI1, which upregulates Spi1, encoding master myeloid regulator PU.1. We show that EVI1 binds to the -14 kb upstream regulatory element (-14kbURE) at Spi1; knockdown of Spi1 dampens the myeloid skewing. Furthermore, deletion of the -14kbURE at Spi1 abrogates the effects of EVI1 on hematopoietic stem cells. These findings support a novel mechanism of leukemogenesis through EVI1 overexpression.
Collapse
|
43
|
Manso BA, Zhang H, Mikkelson MG, Gwin KA, Secreto CR, Ding W, Parikh SA, Kay NE, Medina KL. Bone marrow hematopoietic dysfunction in untreated chronic lymphocytic leukemia patients. Leukemia 2018; 33:638-652. [PMID: 30291337 DOI: 10.1038/s41375-018-0280-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 08/17/2018] [Accepted: 09/12/2018] [Indexed: 12/16/2022]
Abstract
The consequences of immune dysfunction in B-chronic lymphocytic leukemia (CLL) likely relate to the incidence of serious recurrent infections and second malignancies that plague CLL patients. The well-described immune abnormalities are not able to consistently explain these complications. Here, we report bone marrow (BM) hematopoietic dysfunction in early and late stage untreated CLL patients. Numbers of CD34+ BM hematopoietic progenitors responsive in standard colony-forming unit (CFU) assays, including CFU-GM/GEMM and CFU-E, were significantly reduced. Flow cytometry revealed corresponding reductions in frequencies of all hematopoietic stem and progenitor cell (HSPC) subsets assessed in CLL patient marrow. Consistent with the reduction in HSPCs, BM resident monocytes and natural killer cells were reduced, a deficiency recapitulated in blood. Finally, we report increases in protein levels of the transcriptional regulators HIF-1α, GATA-1, PU.1, and GATA-2 in CLL patient BM, providing molecular insight into the basis of HSPC dysfunction. Importantly, PU.1 and GATA-2 were rapidly increased when healthy HSPCs were exposed in vitro to TNFα, a cytokine constitutively produced by CLL B cells. Together, these findings reveal BM hematopoietic dysfunction in untreated CLL patients that provides new insight into the etiology of the complex immunodeficiency state in CLL.
Collapse
Affiliation(s)
- Bryce A Manso
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, 55905, USA
| | - Henan Zhang
- Division of Hematology, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Kimberly A Gwin
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Wei Ding
- Division of Hematology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Sameer A Parikh
- Division of Hematology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Neil E Kay
- Division of Hematology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kay L Medina
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
44
|
Gu X, Ebrahem Q, Mahfouz RZ, Hasipek M, Enane F, Radivoyevitch T, Rapin N, Przychodzen B, Hu Z, Balusu R, Cotta CV, Wald D, Argueta C, Landesman Y, Martelli MP, Falini B, Carraway H, Porse BT, Maciejewski J, Jha BK, Saunthararajah Y. Leukemogenic nucleophosmin mutation disrupts the transcription factor hub that regulates granulomonocytic fates. J Clin Invest 2018; 128:4260-4279. [PMID: 30015632 PMCID: PMC6159976 DOI: 10.1172/jci97117] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 07/10/2018] [Indexed: 12/23/2022] Open
Abstract
Nucleophosmin (NPM1) is among the most frequently mutated genes in acute myeloid leukemia (AML). It is not known, however, how the resulting oncoprotein mutant NPM1 is leukemogenic. To reveal the cellular machinery in which NPM1 participates in myeloid cells, we analyzed the endogenous NPM1 protein interactome by mass spectrometry and discovered abundant amounts of the master transcription factor driver of monocyte lineage differentiation PU.1 (also known as SPI1). Mutant NPM1, which aberrantly accumulates in cytoplasm, dislocated PU.1 into cytoplasm with it. CEBPA and RUNX1, the master transcription factors that collaborate with PU.1 to activate granulomonocytic lineage fates, remained nuclear; but without PU.1, their coregulator interactions were toggled from coactivators to corepressors, repressing instead of activating more than 500 granulocyte and monocyte terminal differentiation genes. An inhibitor of nuclear export, selinexor, by locking mutant NPM1/PU.1 in the nucleus, activated terminal monocytic fates. Direct depletion of the corepressor DNA methyltransferase 1 (DNMT1) from the CEBPA/RUNX1 protein interactome using the clinical drug decitabine activated terminal granulocytic fates. Together, these noncytotoxic treatments extended survival by more than 160 days versus vehicle in a patient-derived xenotransplant model of NPM1/FLT3-mutated AML. In sum, mutant NPM1 represses monocyte and granulocyte terminal differentiation by disrupting PU.1/CEBPA/RUNX1 collaboration, a transforming action that can be reversed by pharmacodynamically directed dosing of clinical small molecules.
Collapse
Affiliation(s)
- Xiaorong Gu
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Quteba Ebrahem
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Reda Z. Mahfouz
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Metis Hasipek
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Francis Enane
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Tomas Radivoyevitch
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nicolas Rapin
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, and Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bartlomiej Przychodzen
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Zhenbo Hu
- Department of Hematology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ramesh Balusu
- Department of Internal Medicine, Division of Hematologic Malignancies and Cellular Therapeutics, University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Claudiu V. Cotta
- Department of Clinical Pathology, Tomsich Pathology Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - David Wald
- Department of Clinical Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | - Maria Paola Martelli
- Institute of Hematology, Center for Research in Hematology-Oncology (CREO), University of Perugia, Perugia, Italy
| | - Brunangelo Falini
- Institute of Hematology, Center for Research in Hematology-Oncology (CREO), University of Perugia, Perugia, Italy
| | - Hetty Carraway
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Bo T. Porse
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, and Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jaroslaw Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Babal K. Jha
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Yogen Saunthararajah
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
45
|
Travelli C, Colombo G, Mola S, Genazzani AA, Porta C. NAMPT: A pleiotropic modulator of monocytes and macrophages. Pharmacol Res 2018; 135:25-36. [PMID: 30031171 DOI: 10.1016/j.phrs.2018.06.022] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 06/20/2018] [Indexed: 12/11/2022]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is the bottleneck enzyme of the NAD salvage pathway and thereby is a controller of intracellular NAD concentrations. It has been long known that the same enzyme can be secreted by a number of cell types and acts as a cytokine, although its receptor is at present unknown. Investigational compounds have been developed that target the enzymatic activity as well as the extracellular action (i.e. neutralizing antibodies). The present contribution reviews the evidence that links intracellular and extracellular NAMPT to myeloid biology, for example governing monocyte/macrophage differentiation, polarization and migration. Furthermore, it reviews the evidence that links this protein to some disorders in which myeloid cells have a prominent role (acute infarct, inflammatory bowel disease, acute lung injury and rheumatoid arthritis) and the data showing that inhibition of the enzymatic activity or the neutralization of the cytokine is beneficial in preclinical animal models.
Collapse
Affiliation(s)
- Cristina Travelli
- Department of Pharmacological Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Giorgia Colombo
- Department of Pharmacological Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Silvia Mola
- Department of Pharmacological Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Armando A Genazzani
- Department of Pharmacological Sciences, Università del Piemonte Orientale, Novara, Italy.
| | - Chiara Porta
- Department of Pharmacological Sciences, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
46
|
Chow PW, Rajab NF, Chua KH, Chan KM, Abd Hamid Z. Differential responses of lineages-committed hematopoietic progenitors and altered expression of self-renewal and differentiation-related genes in 1,4-benzoquinone (1,4-BQ) exposure. Toxicol In Vitro 2018; 46:122-128. [DOI: 10.1016/j.tiv.2017.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 04/12/2017] [Accepted: 10/02/2017] [Indexed: 01/10/2023]
|
47
|
Ohashi K, Fujiwara T, Onodera K, Saito Y, Ichikawa S, Kobayashi M, Okitsu Y, Fukuhara N, Onishi Y, Harigae H. Establishment of a Screening System to Identify Novel GATA-2 Transcriptional Regulators. TOHOKU J EXP MED 2018; 244:41-52. [PMID: 29343653 DOI: 10.1620/tjem.244.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Hematopoietic stem cells can self-renew and differentiate into all blood cell types. The transcription factor GATA-2 is expressed in hematopoietic stem and progenitor cells and is essential for cell proliferation and differentiation. Heterozygous germline GATA2 mutations induce GATA-2 deficiency syndrome, characterized by monocytopenia, a predisposition to myelodysplasia and acute myeloid leukemia, and a profoundly reduced dendritic cell (DC) population, which is associated with increased susceptibility to viral infections. Because patients with GATA-2 deficiency syndrome could retain a wild-type copy of GATA-2, boosting residual wild-type GATA-2 activity may represent a novel therapeutic strategy for the disease. Here, we sought to establish a screening system to identify GATA-2 activators using human U937 monocytic cells as a potential model of the DC progenitor. Enforced GATA-2 expression in U937 cells induces CD205 expression, a marker of DC differentiation, indicating U937 cells as a surrogate of human primary DC progenitors. Transient luciferase reporter assays in U937 cells reveals a high promoter activity of the -0.5 kb GATA-2 hematopoietic-specific promoter (1S promoter) fused with two tandemly connected GATA-2 +9.9 kb intronic enhancers. We thus established U937-derived cell lines stably expressing tandem +9.9 kb/-0.5 kb 1S-luciferase. Importantly, forced GATA-1 expression, a repressor for GATA-2 expression, in the stable clones caused significant decreases in the luciferase activities. In conclusion, our system represents a potential tool for identifying novel regulators of GATA-2, thereby contributing to the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Keiichi Ohashi
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine
| | - Tohru Fujiwara
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine
| | - Koichi Onodera
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine
| | - Yo Saito
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine
| | - Satoshi Ichikawa
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine
| | - Masahiro Kobayashi
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine
| | - Yoko Okitsu
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine
| | - Noriko Fukuhara
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine
| | - Yasushi Onishi
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine
| | - Hideo Harigae
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine
| |
Collapse
|
48
|
Fulkerson PC. Transcription Factors in Eosinophil Development and As Therapeutic Targets. Front Med (Lausanne) 2017; 4:115. [PMID: 28791289 PMCID: PMC5522844 DOI: 10.3389/fmed.2017.00115] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/06/2017] [Indexed: 12/11/2022] Open
Abstract
Dynamic gene expression is a major regulatory mechanism that directs hematopoietic cell fate and differentiation, including eosinophil lineage commitment and eosinophil differentiation. Though GATA-1 is well established as a critical transcription factor (TF) for eosinophil development, delineating the transcriptional networks that regulate eosinophil development at homeostasis and in inflammatory states is not complete. Yet, recent advances in molecular experimental tools using purified eosinophil developmental stages have led to identifying new regulators of gene expression during eosinophil development. Herein, recent studies that have provided new insight into the mechanisms of gene regulation during eosinophil lineage commitment and eosinophil differentiation are reviewed. A model is described wherein distinct classes of TFs work together via collaborative and hierarchical interactions to direct eosinophil development. In addition, the therapeutic potential for targeting TFs to regulate eosinophil production is discussed. Understanding how specific signals direct distinct patterns of gene expression required for the specialized functions of eosinophils will likely lead to new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Patricia C Fulkerson
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
49
|
The role of monocytes in models of infection by protozoan parasites. Mol Immunol 2017; 88:174-184. [PMID: 28704704 DOI: 10.1016/j.molimm.2017.06.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 05/29/2017] [Accepted: 06/04/2017] [Indexed: 02/07/2023]
Abstract
The confirmation of developmental differences between tissue macrophages and peripheral monocytes has changed our view of the functions and dynamics of these two important components of the innate immune system. It has been demonstrated conclusively that homeostasis of tissue resident macrophages is maintained by a low proliferative turn over. During an inflammatory response, bone marrow derived monocytes enter the tissue in large numbers and take part in the defense against the pathogens. After the destruction of invading pathogens, these cells disappear and tissue resident macrophages can be detected again. This new appreciation of the innate immune response has not only answered many outstanding questions regarding the role of the different myeloid cell types in inflammation, but also opened up new areas of research relating to the tissue- and pathogen-specific fate of the inflammatory macrophages or dendritic cells (DCs), and the transfer of this knowledge from mouse models to the human immune system. Nevertheless, there is still confusion in infection models, and especially in studies of human infections, as to what extent these recent observations and findings influence previous interpretations of data. This review will focus on insights from mouse models, summarize the literature on the ontogeny of macrophages and monocytes, explain the role of frequently used monocyte markers and effector molecules, and finally, discuss the role of inflammatory monocytes/macrophages/DCs in two experimental parasitic diseases.
Collapse
|
50
|
Monticelli S, Natoli G. Transcriptional determination and functional specificity of myeloid cells: making sense of diversity. Nat Rev Immunol 2017; 17:595-607. [DOI: 10.1038/nri.2017.51] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|