1
|
Gu X, Li SY, DeFalco T. Immune and vascular contributions to organogenesis of the testis and ovary. FEBS J 2021; 289:2386-2408. [PMID: 33774913 PMCID: PMC8476657 DOI: 10.1111/febs.15848] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/07/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023]
Abstract
Gonad development is a highly regulated process that coordinates cell specification and morphogenesis to produce sex-specific organ structures that are required for fertility, such as testicular seminiferous tubules and ovarian follicles. While sex determination occurs within specialized gonadal supporting cells, sexual differentiation is evident throughout the entire organ, including within the interstitial compartment, which contains immune cells and vasculature. While immune and vascular cells have been traditionally appreciated for their supporting roles during tissue growth and homeostasis, an increasing body of evidence supports the idea that these cell types are critical drivers of sexually dimorphic morphogenesis of the gonad. Myeloid immune cells, such as macrophages, are essential for multiple aspects of gonadogenesis and fertility, including for forming and maintaining gonadal vasculature in both sexes at varying stages of life. While vasculature is long known for supporting organ growth and serving as an export mechanism for gonadal sex steroids in utero, it is also an important component of fetal testicular morphogenesis and differentiation; additionally, it is vital for ovarian corpus luteal function and maintenance of pregnancy. These findings point toward a new paradigm in which immune cells and blood vessels are integral components of sexual differentiation and organogenesis. In this review, we discuss the state of the field regarding the diverse roles of immune and vascular cells during organogenesis of the testis and ovary and highlight outstanding questions in the field that could stimulate new research into these previously underappreciated constituents of the gonad.
Collapse
Affiliation(s)
- Xiaowei Gu
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Shu-Yun Li
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Tony DeFalco
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, OH, USA
| |
Collapse
|
2
|
Cumano A, Berthault C, Ramond C, Petit M, Golub R, Bandeira A, Pereira P. New Molecular Insights into Immune Cell Development. Annu Rev Immunol 2020; 37:497-519. [PMID: 31026413 DOI: 10.1146/annurev-immunol-042718-041319] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During development innate lymphoid cells and specialized lymphocyte subsets colonize peripheral tissues, where they contribute to organogenesis and later constitute the first line of protection while maintaining tissue homeostasis. A few of these subsets are produced only during embryonic development and remain in the tissues throughout life. They are generated through a unique developmental program initiated in lympho-myeloid-primed progenitors, which lose myeloid and B cell potential. They either differentiate into innate lymphoid cells or migrate to the thymus to give rise to embryonic T cell receptor-invariant T cells. At later developmental stages, adaptive T lymphocytes are derived from lympho-myeloid progenitors that colonize the thymus, while lymphoid progenitors become specialized in the production of B cells. This sequence of events highlights the requirement for stratification in the establishment of immune functions that determine efficient seeding of peripheral tissues by a limited number of cells.
Collapse
Affiliation(s)
- Ana Cumano
- Unité Lymphopoïèse, Département d'Immunologie, INSERM U1223, Institut Pasteur, 75724 Paris CEDEX 15, France; , , .,Cellule Pasteur, Université Paris Diderot, Sorbonne Paris Cité, 75015 Paris, France
| | - Claire Berthault
- Unité Lymphopoïèse, Département d'Immunologie, INSERM U1223, Institut Pasteur, 75724 Paris CEDEX 15, France; , , .,Cellule Pasteur, Université Paris Diderot, Sorbonne Paris Cité, 75015 Paris, France
| | - Cyrille Ramond
- Unité Lymphopoïèse, Département d'Immunologie, INSERM U1223, Institut Pasteur, 75724 Paris CEDEX 15, France; , ,
| | - Maxime Petit
- Unité Lymphopoïèse, Département d'Immunologie, INSERM U1223, Institut Pasteur, 75724 Paris CEDEX 15, France; , , .,Cellule Pasteur, Université Paris Diderot, Sorbonne Paris Cité, 75015 Paris, France
| | - Rachel Golub
- Unité Lymphopoïèse, Département d'Immunologie, INSERM U1223, Institut Pasteur, 75724 Paris CEDEX 15, France; , , .,Cellule Pasteur, Université Paris Diderot, Sorbonne Paris Cité, 75015 Paris, France
| | - Antonio Bandeira
- Unité Lymphopoïèse, Département d'Immunologie, INSERM U1223, Institut Pasteur, 75724 Paris CEDEX 15, France; , , .,Cellule Pasteur, Université Paris Diderot, Sorbonne Paris Cité, 75015 Paris, France
| | - Pablo Pereira
- Unité Lymphopoïèse, Département d'Immunologie, INSERM U1223, Institut Pasteur, 75724 Paris CEDEX 15, France; , , .,Cellule Pasteur, Université Paris Diderot, Sorbonne Paris Cité, 75015 Paris, France
| |
Collapse
|
3
|
Multipotent RAG1+ progenitors emerge directly from haemogenic endothelium in human pluripotent stem cell-derived haematopoietic organoids. Nat Cell Biol 2020; 22:60-73. [DOI: 10.1038/s41556-019-0445-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 11/27/2019] [Indexed: 01/01/2023]
|
4
|
Doi Y, Yokota T, Satoh Y, Okuzaki D, Tokunaga M, Ishibashi T, Sudo T, Ueda T, Shingai Y, Ichii M, Tanimura A, Ezoe S, Shibayama H, Kohwi-Shigematsu T, Takeda J, Oritani K, Kanakura Y. Variable SATB1 Levels Regulate Hematopoietic Stem Cell Heterogeneity with Distinct Lineage Fate. Cell Rep 2019; 23:3223-3235. [PMID: 29898394 DOI: 10.1016/j.celrep.2018.05.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 04/05/2018] [Accepted: 05/14/2018] [Indexed: 12/18/2022] Open
Abstract
Hematopoietic stem cells (HSCs) comprise a heterogeneous population exhibiting self-renewal and differentiation capabilities; however, the mechanisms involved in maintaining this heterogeneity remain unclear. Here, we show that SATB1 is involved in regulating HSC heterogeneity. Results in conditional Satb1-knockout mice revealed that SATB1 was important for the self-renewal and lymphopoiesis of adult HSCs. Additionally, HSCs from Satb1/Tomato-knockin reporter mice were classified based on SATB1/Tomato intensity, with transplantation experiments revealing stronger differentiation toward the lymphocytic lineage along with high SATB1 levels, whereas SATB1- HSCs followed the myeloid lineage in agreement with genome-wide transcription and cell culture studies. Importantly, SATB1- and SATB1+ HSC populations were interconvertible upon transplantation, with SATB1+ HSCs showing higher reconstituting and lymphopoietic potentials in primary recipients relative to SATB1- HSCs, whereas both HSCs exhibited equally efficient reconstituted lympho-hematopoiesis in secondary recipients. These results suggest that SATB1 levels regulate the maintenance of HSC multipotency, with variations contributing to HSC heterogeneity.
Collapse
Affiliation(s)
- Yukiko Doi
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takafumi Yokota
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan.
| | - Yusuke Satoh
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan; Department of Lifestyle Studies, Kobe Shoin Women's University, Kobe, Japan
| | - Daisuke Okuzaki
- DNA-chip Development Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Masahiro Tokunaga
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tomohiko Ishibashi
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan; Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Takao Sudo
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan; Department of Immunology and Cell Biology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tomoaki Ueda
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yasuhiro Shingai
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Michiko Ichii
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Akira Tanimura
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Sachiko Ezoe
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hirohiko Shibayama
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Terumi Kohwi-Shigematsu
- Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Junji Takeda
- Department of Genome Biology Graduate School of Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kenji Oritani
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuzuru Kanakura
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
5
|
Identification of MS4A3 as a reliable marker for early myeloid differentiation in human hematopoiesis. Biochem Biophys Res Commun 2018; 495:2338-2343. [DOI: 10.1016/j.bbrc.2017.12.117] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 12/20/2017] [Indexed: 12/12/2022]
|
6
|
The non-canonical Wnt receptor Ryk regulates hematopoietic stem cell repopulation in part by controlling proliferation and apoptosis. Cell Death Dis 2016; 7:e2479. [PMID: 27882948 PMCID: PMC5260899 DOI: 10.1038/cddis.2016.380] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 12/27/2022]
Abstract
The development of blood and immune cells requires strict control by various signaling pathways in order to regulate self-renewal, differentiation and apoptosis in stem and progenitor cells. Recent evidence indicates critical roles for the canonical and non-canonical Wnt pathways in hematopoiesis. The non-canonical Wnt pathway is important for establishment of cell polarity and cell migration and regulates apoptosis in the thymus. We here investigate the role of the non-canonical Wnt receptor Ryk in hematopoiesis and lymphoid development. We show that there are dynamic changes in Ryk expression during development and in different hematopoietic tissues. Functionally, Ryk regulates NK cell development in a temporal fashion. Moreover, Ryk-deficient mice show diminished, but not absent self-renewal of hematopoietic stem cells (HSC), via effects on mildly increased proliferation and apoptosis. Thus, Ryk deficiency in HSCs from fetal liver reduces their quiescence, leading to proliferation-induced apoptosis and decreased self-renewal.
Collapse
|
7
|
Fetal Lymphoid Progenitors Become Restricted to B-1 Fates Coincident with IL-7Rα Expression. PLoS One 2016; 11:e0165676. [PMID: 27792746 PMCID: PMC5085042 DOI: 10.1371/journal.pone.0165676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 10/14/2016] [Indexed: 11/19/2022] Open
Abstract
B-1 cells represent a sub-fraction of B lymphocytes that participate in T cell-independent antibody production and contribute to innate immunity. While the production of B-1 cells is favored during the fetal waves of lymphopoiesis, it has been unclear when and how that differentiation option is specified. To clarify this, lymphoid and hematopoietic progenitors of fetal liver (FL) and adult bone marrow (ABM) were examined for the B cell differentiation potential. Mouse common lymphoid progenitors (CLPs) and more primitive KSL fraction of FL and ABM were transferred to SCID mice and donor-derived B cell subsets were analyzed 4 weeks later. CLPs were also cultured on ST2 stromal cells for 6 days prior to transplantation. While Lin- IL-7Rα+ CLPs from ABM differentiated to B-1, B-2 and marginal zone B (MZB) cells, equivalent cells from d15 FL differentiated mostly to B-1a cells. We found that fetal CLPs had less ability to colonize the bone marrow than adult CLPs. However, the fetal/adult difference was already present when progenitors were cultured in an identical condition before transplantation. More primitive KSL fraction of FL could generate the same broad spectrum of B cells typical of adults, including splenic MZB cells. In conclusion, we argue that FL and ABM-CLPs are intrinsically different regarding B-1/B-2 fates and the difference is acquired just before or coincident with the acquisition of IL-7Rα expression.
Collapse
|
8
|
Kong Y, Li Y, Zhang W, Yuan S, Winkler R, Kröhnert U, Han J, Lin T, Zhou Y, Miao P, Wang B, Zhang J, Yu Z, Zhang Y, Kosan C, Zeng H. Sepsis-Induced Thymic Atrophy Is Associated with Defects in Early Lymphopoiesis. Stem Cells 2016; 34:2902-2915. [PMID: 27422171 DOI: 10.1002/stem.2464] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/28/2016] [Accepted: 07/06/2016] [Indexed: 12/24/2022]
Abstract
Impaired T lymphopoiesis is associated with immunosuppression of the adaptive immune response and plays a role in the morbidity and mortality of patients and animal models of sepsis. Although previous studies examined several intrathymic mechanisms that negatively affect T lymphopoiesis, the extrathymic mechanisms remain poorly understood. Here, we report a dramatic decrease in the percentage of early T lineage progenitors (ETPs) in three models of sepsis in mice (cecal ligation and puncture, lipopolysaccharide continuous injection, and poly I:C continuous injection). However, septic mice did not show a decrease in the number of bone marrow (BM) precursor cells. Instead, the BM progenitors for ETPs expressed reduced mRNA levels of CC chemokine receptor (CCR) 7, CCR9 and P-selectin glycoprotein ligand 1, and exhibited impaired homing capacity in vitro and in vivo. Furthermore, RNA-Seq analysis and real-time PCR showed a marked downregulation of several lymphoid-related genes in hematopoietic stem and progenitor cells. Hematopoietic stem and progenitor cells differentiated into myeloid cells but failed to generate T lymphocytes in vitro and in vivo. Our results indicate that the depletion of ETPs in septic mice might be a consequence of an impaired migration of BM progenitors to the thymus, as well as a defect in lymphoid lineage commitment. Stem Cells 2016;34:2902-2915.
Collapse
Affiliation(s)
- Yaxian Kong
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Yajie Li
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Weimei Zhang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Shaoxin Yuan
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - René Winkler
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich-Schiller-University, Jena, Germany
| | - Ulrike Kröhnert
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich-Schiller-University, Jena, Germany
| | - Junyan Han
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Tao Lin
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Yu Zhou
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology (Ministry of Health), Peking University Health Science Center, Beijing, China
| | - Peng Miao
- Department of Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Beibei Wang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Jianping Zhang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Zhengya Yu
- Department of Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yu Zhang
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology (Ministry of Health), Peking University Health Science Center, Beijing, China
| | - Christian Kosan
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich-Schiller-University, Jena, Germany
| | - Hui Zeng
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| |
Collapse
|
9
|
Yokota T, Kanakura Y. Genetic abnormalities associated with acute lymphoblastic leukemia. Cancer Sci 2016; 107:721-5. [PMID: 26991355 PMCID: PMC4968601 DOI: 10.1111/cas.12927] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/07/2016] [Accepted: 03/09/2016] [Indexed: 12/27/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) occurs with high frequency in childhood and is associated with high mortality in adults. Recent technical advances in next‐generation sequencing have shed light on genetic abnormalities in hematopoietic stem/progenitor cells as the precursor to ALL pathogenesis. Based on these genetic abnormalities, ALL is now being reclassified into newly identified subtypes. Philadelphia chromosome‐like B‐lineage ALL is one of the new high‐risk subtypes characterized by genetic alterations that activate various signaling pathways, including those involving cytokine receptors, tyrosine kinases, and epigenetic modifiers. Philadelphia chromosome‐like ALL is essentially heterogeneous; however, deletion mutations in the IKZF1 gene encoding the transcription factor IKAROS underlie many cases as a key factor inducing aggressive phenotypes and poor treatment responses. Whole‐genome sequencing studies of ALL patients and ethnically matched controls also identified inherited genetic variations in lymphoid neoplasm‐related genes, which are likely to increase ALL susceptibility. These findings are directly relevant to clinical hematology, and further studies on this aspect could contribute to accurate diagnosis, effective monitoring of residual disease, and patient‐oriented therapies.
Collapse
Affiliation(s)
- Takafumi Yokota
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuzuru Kanakura
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
10
|
Staal FJT, Wiekmeijer AS, Brugman MH, Pike-Overzet K. The functional relationship between hematopoietic stem cells and developing T lymphocytes. Ann N Y Acad Sci 2016; 1370:36-44. [PMID: 26773328 DOI: 10.1111/nyas.12995] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In contrast to all other blood and immune cells, T lymphocytes do not develop in the bone marrow (BM), but in the specialized microenvironment provided by the thymus. Similar to the other lineages, however, all T cells arise from multipotent hematopoietic stem cells (HSCs) that reside in the BM. Not all HSCs give rise to T cells; but how many and what kind of developmental checkpoints are located along this intricate differentiation path is the subject of intense research. Traditionally, this process has been studied almost exclusively using mouse cells, but recent advances in immunodeficient mouse models, high-speed cell sorting, lentiviral transduction protocols, and deep sequencing techniques have allowed these questions to be addressed using human cells. Here we review the process of thymic seeding by BM-derived cells and T cell commitment in humans, discussing recent insights into the clonal composition of the thymus and the definition of developmental checkpoints, on the basis of insights from human severe combined immunodeficiency patients.
Collapse
Affiliation(s)
- Frank J T Staal
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Anna-Sophia Wiekmeijer
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Martijn H Brugman
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Karin Pike-Overzet
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
11
|
Abstract
Natural killer (NK) cells are innate lymphocytes that survey the environment and protect the host from infected and cancerous cells. As their name implies, NK cells represent an early line of defense during pathogen invasion by directly killing infected cells and secreting inflammatory cytokines. Although the function of NK cells was first described more than four decades ago, the development of this cytotoxic lineage is not well understood. In recent years, we have begun to identify specific transcription factors that control each stage of development and maturation, from ontogeny of the NK cell progenitor to the effector functions of activated NK cells in peripheral organs. This chapter highlights the transcription factors that are unique to NK cells, or shared between NK cells and other hematopoietic cell lineages, but govern the biology of this cytolytic lymphocyte.
Collapse
Affiliation(s)
- Joseph C Sun
- Memorial Sloan Kettering Cancer Center, Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, 408 East 69th Street, ZRC-1402, New York, NY, 10065, USA.
| |
Collapse
|
12
|
Vadillo E, Dorantes-Acosta E, Arriaga-Pizano L, Chavez-Gonzalez A, Reyes-Maldonado E, Garrett KP, Mayani H, Kincade PW, Pelayo R. Adult, but not neonatal, human lymphoid progenitors respond to TLR9 ligation by producing functional NK-like cells. Exp Hematol 2014; 42:562-73.e3. [PMID: 24721609 DOI: 10.1016/j.exphem.2014.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 03/07/2014] [Accepted: 03/27/2014] [Indexed: 12/31/2022]
Abstract
Remarkable progress has been made in characterizing factors controlling lineage fate decisions of primitive progenitors that initiate the lymphoid program in bone marrow. However, the understanding of neonatal/adult differences in environmental signals that influence differentiation pathway stability is still incomplete. Our recent findings suggest that Toll-like receptors provide a mechanism for producing cells of the innate immune system from early stages of lymphoid development in mice. We now show that both human early multilymphoid progenitors and more differentiated lymphoid progenitors from normal adult bone marrow express TLR9. Furthermore, they respond to its ligation by upregulating the expression of IL-15Rβ (CD122) and accelerating the production of functional natural killer (NK)-like cells. Proliferation of the presumed equivalent progenitor cells from umbilical cord blood was stimulated by CpG-containing oligonucleotides or herpes simplex virus, but the already robust NK-cell formation was unchanged. This new information adds to other known differences between neonatal and adult lymphoid progenitors and suggests only the latter replenish innate NK-like cells in response to Toll-like receptor agonists.
Collapse
Affiliation(s)
- Eduardo Vadillo
- Oncology Research Unit, Oncology Hospital, Mexican Institute for Social Security, Mexico City, Mexico; National School of Biological Sciences, National Polytechnic Institute, Mexico City, Mexico
| | - Elisa Dorantes-Acosta
- Oncology Research Unit, Oncology Hospital, Mexican Institute for Social Security, Mexico City, Mexico; Leukemia Clinic, Federico Gómez Children's Hospital, Mexico City, Mexico
| | - Lourdes Arriaga-Pizano
- Immunochemistry Research Unit, Medical Specialties Hospital, Mexican Institute for Social Security, Mexico City, Mexico
| | - Antonieta Chavez-Gonzalez
- Oncology Research Unit, Oncology Hospital, Mexican Institute for Social Security, Mexico City, Mexico
| | - Elba Reyes-Maldonado
- National School of Biological Sciences, National Polytechnic Institute, Mexico City, Mexico
| | - Karla P Garrett
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Héctor Mayani
- Oncology Research Unit, Oncology Hospital, Mexican Institute for Social Security, Mexico City, Mexico
| | - Paul W Kincade
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Rosana Pelayo
- Oncology Research Unit, Oncology Hospital, Mexican Institute for Social Security, Mexico City, Mexico.
| |
Collapse
|
13
|
Yokota T, Sudo T, Ishibashi T, Doi Y, Ichii M, Orirani K, Kanakura Y. Complementary regulation of early B-lymphoid differentiation by genetic and epigenetic mechanisms. Int J Hematol 2013; 98:382-9. [PMID: 23999941 DOI: 10.1007/s12185-013-1424-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/21/2013] [Accepted: 08/23/2013] [Indexed: 02/02/2023]
Abstract
Although B lymphopoiesis is one of the best-defined paradigms in cell differentiation, our knowledge of the regulatory mechanisms underlying its earliest processes, in which hematopoietic stem cells (HSCs) enter the B lineage, is limited. However, recent methodological advances in sorting progenitor cells and monitoring their epigenetic features have increased our understanding of HSC activities. It is now known that even the highly enriched HSC fraction is heterogeneous in terms of lymphopoietic potential. While surface markers and reporter proteins provide information on the sequential differentiation of B-lineage progenitors, complex interactions between transcription factors have also been shown to play a major role in this process. Epigenetic regulation of histones, nucleosomes, and chromatin appears to play a crucial background role in this elaborate transcription network. In this review, we summarize recent findings on the physiological processes of early B-lineage differentiation, which provides a new paradigm for understanding the harmonious action of genetic and epigenetic mechanisms.
Collapse
Affiliation(s)
- Takafumi Yokota
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan,
| | | | | | | | | | | | | |
Collapse
|
14
|
Zhang Q, Esplin BL, Iida R, Garrett KP, Huang ZL, Medina KL, Kincade PW. RAG-1 and Ly6D independently reflect progression in the B lymphoid lineage. PLoS One 2013; 8:e72397. [PMID: 24023617 PMCID: PMC3758291 DOI: 10.1371/journal.pone.0072397] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 06/23/2013] [Indexed: 01/29/2023] Open
Abstract
Common lymphoid progenitors (CLPs) are thought to represent major intermediates in the transition of hematopoietic stem cells (HSCs) to B lineage lymphocytes. However, it has been obvious for some time that CLPs are heterogeneous, and there has been controversy concerning their differentiation potential. We have now resolved four Flt3+ CLP subsets that are relatively homogenous and capable of forming B cells. Differentiation potential and gene expression patterns suggest Flt3+ CLPs lacking both Ly6D and RAG-1 are the least differentiated. In addition to B cells, they generate natural killer (NK) and dendritic cells (DCs). At the other extreme is a subset of the recently described Flt3+ Ly6D+ CLPs that have a history of RAG-1 expression and are B lineage restricted. These relatively abundant and potent CLPs were depleted within 48 hours of acute in vivo estrogen elevation, suggesting they descend from hormone regulated progenitors. This contrasts with the hormone insensitivity of other CLP subsets that include NK lineage progenitors. This progenitor heterogeneity and differentiation complexity may add flexibility in response to environmental changes. Expression of RAG-1 and display of Ly6D are both milestone events, but they are neither synchronized nor dependent on each other.
Collapse
Affiliation(s)
- Qingzhao Zhang
- Immunobiology & Cancer Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Brandt L. Esplin
- Immunobiology & Cancer Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Ryuji Iida
- Immunobiology & Cancer Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Karla P. Garrett
- Immunobiology & Cancer Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Zhixin L. Huang
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Kay L. Medina
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Paul W. Kincade
- Immunobiology & Cancer Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
15
|
Satoh Y, Yokota T, Sudo T, Kondo M, Lai A, Kincade PW, Kouro T, Iida R, Kokame K, Miyata T, Habuchi Y, Matsui K, Tanaka H, Matsumura I, Oritani K, Kohwi-Shigematsu T, Kanakura Y. The Satb1 protein directs hematopoietic stem cell differentiation toward lymphoid lineages. Immunity 2013; 38:1105-15. [PMID: 23791645 DOI: 10.1016/j.immuni.2013.05.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 03/06/2013] [Indexed: 01/09/2023]
Abstract
How hematopoietic stem cells (HSCs) produce particular lineages is insufficiently understood. We searched for key factors that direct HSC to lymphopoiesis. Comparing gene expression profiles for HSCs and early lymphoid progenitors revealed that Satb1, a global chromatin regulator, was markedly induced with lymphoid lineage specification. HSCs from Satb1-deficient mice were defective in lymphopoietic activity in culture and failed to reconstitute T lymphopoiesis in wild-type recipients. Furthermore, Satb1 transduction of HSCs and embryonic stem cells robustly promoted their differentiation toward lymphocytes. Whereas genes that encode Ikaros, E2A, and Notch1 were unaffected, many genes involved in lineage decisions were regulated by Satb1. Satb1 expression was reduced in aged HSCs with compromised lymphopoietic potential, but forced Satb1 expression partly restored that potential. Thus, Satb1 governs the initiating process central to the replenishing of lymphoid lineages. Such activity in lymphoid cell generation may be of clinical importance and useful to overcome immunosenescence.
Collapse
Affiliation(s)
- Yusuke Satoh
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Shimazu T, Iida R, Zhang Q, Welner RS, Medina KL, Alberola-Lla J, Kincade PW. CD86 is expressed on murine hematopoietic stem cells and denotes lymphopoietic potential. Blood 2012; 119:4889-97. [PMID: 22371880 PMCID: PMC3367893 DOI: 10.1182/blood-2011-10-388736] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 02/20/2012] [Indexed: 11/20/2022] Open
Abstract
A unique subset of CD86(-) HSCs was previously discovered in mice that were old or chronically stimulated with lipopolysaccharide. Functionally defective HSCs were also present in those animals, and we now show that CD86(-) CD150(+) CD48(-) HSCs from normal adult mice are particularly poor at restoring the adaptive immune system. Levels of the marker are high on all progenitors with lymphopoietic potential, and progressive loss helps to establish relations between progenitors corresponding to myeloid and erythroid lineages. CD86 represents an important tool for subdividing HSCs in several circumstances, identifying those unlikely to generate a full spectrum of hematopoietic cells.
Collapse
Affiliation(s)
- Tomoyuki Shimazu
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Sun JC, Lanier LL. NK cell development, homeostasis and function: parallels with CD8⁺ T cells. Nat Rev Immunol 2011; 11:645-57. [PMID: 21869816 DOI: 10.1038/nri3044] [Citation(s) in RCA: 488] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Natural killer (NK) cells survey host tissues for signs of infection, transformation or stress and, true to their name, kill target cells that have become useless or are detrimental to the host. For decades, NK cells have been classified as a component of the innate immune system. However, accumulating evidence in mice and humans suggests that, like the B and T cells of the adaptive immune system, NK cells are educated during development, possess antigen-specific receptors, undergo clonal expansion during infection and generate long-lived memory cells. In this Review, we highlight the many stages that an NK cell progresses through during its remarkable lifetime, discussing similarities and differences with its close relative, the cytotoxic CD8(+) T cell.
Collapse
Affiliation(s)
- Joseph C Sun
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | | |
Collapse
|
18
|
Love PE, Bhandoola A. Signal integration and crosstalk during thymocyte migration and emigration. Nat Rev Immunol 2011; 11:469-77. [PMID: 21701522 PMCID: PMC3710714 DOI: 10.1038/nri2989] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The thymus produces self-tolerant functionally competent T cells. This process involves the import of multipotent haematopoietic progenitors that are then signalled to adopt the T cell fate. Expression of T cell-specific genes, including those encoding the T cell receptor (TCR), is followed by positive and negative selection and the eventual export of mature T cells. Significant progress has been made in elucidating the signals that direct progenitor cell trafficking to, within and out of the thymus. These advances are the subject of this Review, with a particular focus on the role of reciprocal cooperative and regulatory interactions between TCR- and chemokine receptor-mediated signalling.
Collapse
Affiliation(s)
- Paul E Love
- Eunice Kennedy Schriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA.
| | | |
Collapse
|
19
|
Ichii M, Shimazu T, Welner RS, Garrett KP, Zhang Q, Esplin BL, Kincade PW. Functional diversity of stem and progenitor cells with B-lymphopoietic potential. Immunol Rev 2010; 237:10-21. [PMID: 20727026 DOI: 10.1111/j.1600-065x.2010.00933.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Technical advances have made it possible to separate hematopoietic tissues such as the bone marrow into ever smaller populations, complicating our understanding of immune system replenishment. Patterns of surface marker expression and transcription profiles as well as results obtained with reporter mice suggest that lymphopoietic cells are not closely synchronized, and there is considerable cell to cell variation. Loss of differentiation options is gradual, and ultimate fate can be established at different stages of lineage progression. For example, individual hematopoietic stem cells can be biased such that some are very poor sources of lymphocytes as contrasted to ones with balanced outputs. Still other hematopoietic stem cells are effective at generating B and T cells but are defective with respect to expansion and difficult to distinguish from early lymphoid progenitors. That diversity carries forward to later events, and similar appearing cells in the immune system can arise from alternate differentiation pathways. In fact, new categories of lymphoid progenitors are still being discovered. Heterogeneity provides adaptability as hematopoiesis can be dramatically altered during infections, influencing numbers and types of cells that are produced.
Collapse
Affiliation(s)
- Michiko Ichii
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Welner RS, Esplin BL, Garrett KP, Pelayo R, Luche H, Fehling HJ, Kincade PW. Asynchronous RAG-1 expression during B lymphopoiesis. THE JOURNAL OF IMMUNOLOGY 2010; 183:7768-77. [PMID: 20007571 DOI: 10.4049/jimmunol.0902333] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Changes in cell surface markers and patterns of gene expression are commonly used to construct sequences of events in hematopoiesis. However, the order may not be as rigid as once thought and it is unclear which changes represent the best milestones of differentiation. We developed a fate-mapping model where cells with a history of RAG-1 expression are permanently marked by red fluorescence. This approach is valuable for appreciating lymphoid-lineage relationships without need for irradiation and transplantation. Hematopoietic stem cells (HSC) as well as myeloid and dendritic cell progenitors were unlabeled. Also as expected, most previously identified RAG-1(+) early lymphoid progenitors in bone marrow and all lymphoid-affiliated cells were marked. Of particular interest, there was heterogeneity among canonical common lymphoid progenitors (CLP) in bone marrow. Labeled CLP expressed slightly higher levels of IL-7Ralpha, displayed somewhat less c-Kit, and generated CD19(+) lymphocytes faster than the unlabeled CLP. Furthermore, CLP with a history of RAG-1 expression were much less likely to generate dendritic and NK cells. The RAG-1-marked CLP were lineage stable even when exposed to LPS, while unlabeled CLP were redirected to become dendritic cells in response to this TLR4 ligand. These findings indicate that essential events in B lymphopoiesis are not tightly synchronized. Some progenitors with increased probability of becoming lymphocytes express RAG-1 while still part of the lineage marker-negative Sca-1(+)c-Kit(high) (LSK) fraction. Other progenitors first activate this locus after c-Kit levels have diminished and cell surface IL-7 receptors are detectable.
Collapse
Affiliation(s)
- Robert S Welner
- Immunobiology & Cancer Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Chambers BJ, Ljunggren H. Unique features of NK cell development during ontogeny revealed in studies of
RAG‐1
‐deficient mice. Immunol Cell Biol 2009; 88:105-6. [DOI: 10.1038/icb.2009.103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Benedict J Chambers
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Stockholm 141 86 Sweden
| | - Hans‐Gustaf Ljunggren
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Stockholm 141 86 Sweden
| |
Collapse
|
22
|
Andrews DM, Smyth MJ. A potential role for RAG-1 in NK cell development revealed by analysis of NK cells during ontogeny. Immunol Cell Biol 2009; 88:107-16. [PMID: 19949422 DOI: 10.1038/icb.2009.94] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Little is known regarding natural killer (NK) cell development in hematopoietic and visceral organs during ontogeny. We sought to determine NK cell accumulation during ontogeny and whether organ-specific niches altered development. Neonatal NK cells in the bone marrow, spleen and lung exist as immature CD27(+)/CD11B(lo) cells. The first appearance of mature CD27(lo)/CD11B(+) cells occurs at 3 weeks of age whereas maturation is complete by 8 weeks. In contrast, maturation of liver NK cells is essentially finished at 2 weeks. A role for RAG-1 (recombination-activating gene-1 product) in NK cell development was suggested as RAG-1-deficient mice accumulated NK cells differently. Surprisingly, bone marrow and spleen NK cells are absent in neonatal RAG-1(-/-) mice and an overrepresentation of a precursor NK cell subset, found normally in the liver, was observed in the bone marrow of RAG-1(-/-) mice. As mice lacking specific adaptive immune elements, including T and/or B cells, have normal NK cell repertoires, a more direct role for RAG during NK cell development cannot be excluded. Liver NK cells may represent an independent pool of cells from those developing out of the bone marrow, and RAG-1 itself may have a significant role in NK cell development.
Collapse
Affiliation(s)
- Daniel M Andrews
- Cancer Immunology Program, Trescowthick Laboratories, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, Victoria, Australia
| | | |
Collapse
|
23
|
Chen X, Welner RS, Kincade PW. A possible contribution of retinoids to regulation of fetal B lymphopoiesis. Eur J Immunol 2009; 39:2515-24. [PMID: 19662635 DOI: 10.1002/eji.200939374] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We recently found that all trans retinoic acid (ATRA) accelerated B lymphocyte formation. In the current study, we address the question whether retinoids account for the rapid lymphopoiesis that is characteristic of fetal progenitors. Surprisingly, addition of ATRA to fetal liver cultures actually reduced B lymphopoiesis. A pan-retinoid receptor antagonist selectively suppressed lymphocyte formation from fetal and adult progenitors, suggesting some normal contribution of retinoids to this process. Consistent with this role, B lymphopoiesis was compromised in the marrow of mice with prolonged vitamin A deficiency. Recently identified B1 progenitors from adult marrow were similar to adult B2 progenitors in that their differentiation was stimulated by ATRA. The inhibitory response observed with fetal cells was seen when adult progenitors were exposed to high doses in culture or when adult mice were treated with ATRA for 2 wk. In addition to explosive lymphocyte generation, fetal progenitors tend to be less IL-7 dependent than their adult counterparts, but ATRA did not make fetal progenitors IL-7 independent. We conclude that all known categories of B lineage progenitors are responsive to retinoids and probably regulated by these compounds under physiological conditions. Retinoids may account in part for rapid differentiation in fetal life, but not all unique features of fetal progenitors.
Collapse
Affiliation(s)
- Xinrong Chen
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | | |
Collapse
|
24
|
Toda T, Kitabatake M, Igarashi H, Sakaguchi N. The immature B-cell subpopulation with low RAG1 expression is increased in the autoimmune New Zealand Black mouse. Eur J Immunol 2009; 39:600-11. [DOI: 10.1002/eji.200838644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
25
|
Yokota T, Oritani K, Garrett KP, Kouro T, Nishida M, Takahashi I, Ichii M, Satoh Y, Kincade PW, Kanakura Y. Soluble frizzled-related protein 1 is estrogen inducible in bone marrow stromal cells and suppresses the earliest events in lymphopoiesis. THE JOURNAL OF IMMUNOLOGY 2009; 181:6061-72. [PMID: 18941195 DOI: 10.4049/jimmunol.181.9.6061] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
It has long been known that lymphopoiesis is transiently suppressed during pregnancy, which can be experimentally simulated by estrogen treatment. We now confirm with Rag1/GFP reporter mice that early lymphoid progenitors in the lineage marker(-) c-kit(high) ScaI(+), hematopoietic stem cell-enriched fraction of bone marrow are particularly depressed in these circumstances. Hematopoietic and environmental cells are both potential hormone targets and, because of this complexity, very little is known regarding mechanisms. We have now identified soluble Frizzled-related protein (sFRP)1 as an estrogen-inducible gene in stromal cells, whose expression corresponded to inability to support lymphopoiesis. Bone-lining stromal cells express sFRP1, and the transcripts were elevated by pregnancy or estrogen injection. Estrogen receptor-alpha was essential for both lymphoid suppression and induction of the sFRP family. SFRP1 has been mainly described as an antagonist for complex Wnt signals. However, we found that sFRP1, like Wnt3a, stabilized beta-catenin and blocked early lymphoid progression. Myeloerythroid progenitors were less affected by sFRP1 in culture, which was similar to estrogen with respect to lineage specificity. Hematopoietic stem cells expressed various Frizzled receptors, which markedly declined as they differentiated to lymphoid lineage. Thus, hormonal control of early lymphopoiesis in adults might partly relate to sFRP1 levels.
Collapse
Affiliation(s)
- Takafumi Yokota
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
The endothelial antigen ESAM marks primitive hematopoietic progenitors throughout life in mice. Blood 2008; 113:2914-23. [PMID: 19096010 DOI: 10.1182/blood-2008-07-167106] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Although recent advances have enabled hematopoietic stem cells (HSCs) to be enriched to near purity, more information about their characteristics will improve our understanding of their development and stage-related functions. Here, using microarray technology, we identified endothelial cell-selective adhesion molecule (ESAM) as a novel marker for murine HSCs in fetal liver. Esam was expressed at high levels within a Rag1(-) c-kit(Hi) Sca1(+) HSC-enriched fraction, but sharply down-regulated with activation of the Rag1 locus, a valid marker for the most primitive lymphoid progenitors in E14.5 liver. The HSC-enriched fraction could be subdivided into 2 on the basis of ESAM levels. Among endothelial antigens on hematopoietic progenitors, ESAM expression showed intimate correlation with HSC activity. The ESAM(Hi) population was highly enriched for multipotent myeloid-erythroid progenitors and primitive progenitors with lymphopoietic activity, and exclusively reconstituted long-term lymphohematopoiesis in lethally irradiated recipients. Tie2(+) c-kit(+) lymphohematopoietic cells in the E9.5-10.5 aorta-gonad-mesonephros region also expressed high levels of ESAM. Furthermore, ESAM was detected on primitive hematopoietic progenitors in adult bone marrow. Interestingly, ESAM expression in the HSC-enriched fraction was up-regulated in aged mice. We conclude that ESAM marks HSC in murine fetal liver and will facilitate studies of hematopoiesis throughout life.
Collapse
|
27
|
Kouro T, Yokota T, Welner R, Kincade PW. Isolation of prolymphocytes from bone marrow and fetal liver. CURRENT PROTOCOLS IN IMMUNOLOGY 2008; Chapter 22:Unit 22F.1. [PMID: 18432948 DOI: 10.1002/0471142735.im22f01s66] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Isolation of the lymphoid progenitors in their earliest stage of development is indispensable for understanding when and how hematopoietic cell lineages are committed. Recently developed immunofluorescent labeling and sorting has made it possible to identify and isolate rare progenitors of lymphocytes. In this unit, protocols for isolating lymphoid progenitors from three different sources are provided. These protocols are based on stepwise purification consisting of magnetic and fluorescence-activated cell sorting techniques, optimized according to the nature of progenitors in each organ. Isolated progenitors may be analyzed in the lymphocyte differentiation cultures described in the following units and are useful for in vivo transfer experiments or microarray assays for gene expression.
Collapse
Affiliation(s)
- Taku Kouro
- Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | | | | | | |
Collapse
|
28
|
Abstract
Many fundamental concepts about immune system development have changed substantially in the past few years, and rapid advances with animal models are presenting prospects for further discovery. However, continued progress requires a clearer understanding of the relationships between haematopoietic stem cells and the progenitors that replenish each type of lymphocyte pool. Blood-cell formation has traditionally been described in terms of discrete developmental branch points, and a single route is given for each major cell type. As we discuss in this Review, recent findings suggest that the process of B-cell formation is much more dynamic.
Collapse
|
29
|
Desanti GE, Cumano A, Golub R. Identification of CD4intprogenitors in mouse fetal spleen, a source of resident lymphoid cells. J Leukoc Biol 2008; 83:1145-54. [DOI: 10.1189/jlb.1107755] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
30
|
Abstract
Multipotent blood progenitor cells enter the thymus and begin a protracted differentiation process in which they gradually acquire T-cell characteristics while shedding their legacy of developmental plasticity. Notch signalling and basic helix-loop-helix E-protein transcription factors collaborate repeatedly to trigger and sustain this process throughout the period leading up to T-cell lineage commitment. Nevertheless, the process is discontinuous with separately regulated steps that demand roles for additional collaborating factors. This Review discusses new evidence on the coordination of specification and commitment in the early T-cell pathway; effects of microenvironmental signals; the inheritance of stem-cell regulatory factors; and the ensemble of transcription factors that modulate the effects of Notch and E proteins, to distinguish individual stages and to polarize T-cell-lineage fate determination.
Collapse
|
31
|
Rothenberg EV. Negotiation of the T lineage fate decision by transcription-factor interplay and microenvironmental signals. Immunity 2007; 26:690-702. [PMID: 17582342 DOI: 10.1016/j.immuni.2007.06.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Notch-Delta signaling of hematopoietic precursors sets in motion a train of events that activates expression of T lineage genes. Even so, through many cell generations the pro-T cells remain uncommitted to the T cell fate, preserving alternative potentials as divergent as monocyte or dendritic cell fates. This plasticity can be explained by the tenacious expression of stem- and progenitor-associated regulatory genes in the cells, and by the combinatorial coding of T cell identity by factors that are not intrinsically T lineage specific in their spectra of activity. T lineage developmental success depends on precise temporal and quantitative regulation of these factors and on the continuing modulating influence of Notch-Delta signals that buffer the cells against mechanisms promoting non-T outcomes. An additional mechanism, still not fully defined, is required just prior to T cell receptor-mediated selection to end plasticity and make T lineage commitment irreversible.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
32
|
Abstract
Blood cells are constantly produced in the bone marrow (BM) of adult mammals. This constant turnover ultimately depends on a rare population of progenitors that displays self-renewal and multilineage differentiation potential, the hematopoietic stem cells (HSCs). It is generally accepted that HSCs are generated during embryonic development and sequentially colonize the fetal liver, the spleen, and finally the BM. Here we discuss the experimental evidence that argues for the extrinsic origin of HSCs and the potential locations where HSC generation might occur. The identification of the cellular components playing a role in the generation process, in these precise locations, will be important in understanding the molecular mechanisms involved in HSC production from undifferentiated mesoderm.
Collapse
Affiliation(s)
- Ana Cumano
- INSERM, U668, Unité de Développement des Lymphocytes, Department of Immunology, Institut Pasteur, 75724 Paris, France.
| | | |
Collapse
|
33
|
Pelayo R, Miyazaki K, Huang J, Garrett KP, Osmond DG, Kincade PW. Cell cycle quiescence of early lymphoid progenitors in adult bone marrow. Stem Cells 2006; 24:2703-13. [PMID: 16931772 PMCID: PMC1849950 DOI: 10.1634/stemcells.2006-0217] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Lymphocyte production in bone marrow (BM) requires substantial cell division, but the relationship between largely quiescent stem cells and dividing lymphoid progenitors is poorly understood. Therefore, the proliferation and cell cycle status of murine hematopoietic progenitors that have just initiated the lymphoid differentiation program represented the focus of this study. Continuous bromo-2'-deoxyuridine (BrdU) incorporation and DNA/RNA analysis by flow cytometry revealed that a surprisingly large fraction of RAG-1(+)c-kit(hi) early lymphoid progenitors (ELPs) and RAG-1(+)c-kit(lo) pro-lymphocytes (Pro-Ls) in adult BM were in cell cycle quiescence. In contrast, their counterparts in 14-day fetal liver actively proliferated. Indeed, the growth fraction (cells in G(1)-S-G(2)-M phases) of fetal ELPs was on average 80% versus only 30% for adult ELPs. After 5-fluorouracil treatment, as many as 60% of the adult ELP-enriched population was in G(1)-S-G(2)-M and 34% incorporated BrdU in 6 hours. Transcripts for Bcl-2, p21Cip1/Waf1, and p27 Kip1 cell cycle regulatory genes correlated inversely well with proliferative activity. Interestingly, adult lymphoid progenitors in rebound had the high potential for B lymphopoiesis in culture typical of their fetal counterparts. Thus, lymphocyte production is sustained during adult life by quiescent primitive progenitors that divide intermittently. Some, but not all, aspects of the fetal differentiation program are reacquired after chemotherapy.
Collapse
Affiliation(s)
- Rosana Pelayo
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA
| | - Kozo Miyazaki
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA
| | - Jiaxue Huang
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA
| | - Karla P. Garrett
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA
| | - Dennis G. Osmond
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | - Paul W. Kincade
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA
| |
Collapse
|
34
|
Anderson G, Jenkinson WE, Jones T, Parnell SM, Kinsella FAM, White AJ, Pongrac'z JE, Rossi SW, Jenkinson EJ. Establishment and functioning of intrathymic microenvironments. Immunol Rev 2006; 209:10-27. [PMID: 16448531 DOI: 10.1111/j.0105-2896.2006.00347.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The thymus supports the production of self-tolerant T cells from immature precursors. Studying the mechanisms regulating the establishment and maintenance of stromal microenvironments within the thymus therefore is essential to our understanding of T-cell production and ultimately immune system functioning. Despite our ability to phenotypically define stromal cell compartments of the thymus, the mechanisms regulating their development and the ways by which they influence T-cell precursors are still unclear. Here, we review recent findings and highlight unresolved issues relating to the development and functioning of thymic stromal cells.
Collapse
Affiliation(s)
- Graham Anderson
- MRC Center for Immune Regulation, Division of Immunity and Infection, Institute For Biomedical Research, Medical School, University of Birmingham, Edgbaston, Birmingham, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Baba Y, Yokota T, Spits H, Garrett KP, Hayashi SI, Kincade PW. Constitutively Active β-Catenin Promotes Expansion of Multipotent Hematopoietic Progenitors in Culture. THE JOURNAL OF IMMUNOLOGY 2006; 177:2294-303. [PMID: 16887990 DOI: 10.4049/jimmunol.177.4.2294] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This study was designed to investigate one component of the Wnt/beta-catenin signaling pathway that has been implicated in stem cell self-renewal. Retroviral-mediated introduction of stable beta-catenin to primitive murine bone marrow cells allowed the expansion of multipotential c-Kit(low)Sca-1(low/-)CD19(-) CD11b/Mac-1(-)Flk-2(-)CD43(+)AA4.1(+)NK1.1(-)CD3(-)CD11c(-)Gr-1(-)CD45R/B220(+) cells in the presence of stromal cells and cytokines. They generated myeloid, T, and B lineage lymphoid cells in culture, but had no T lymphopoietic potential when transplanted. Stem cell factor and IL-6 were found to be minimal requirements for long-term, stromal-free propagation, and a beta-catenin-transduced cell line was maintained for 5 mo with these defined conditions. Although multipotential and responsive to many normal stimuli in culture, it was unable to engraft several types of irradiated recipients. These findings support previous studies that have implicated the canonical Wnt pathway signaling in regulation of multipotent progenitors. In addition, we demonstrate how it may be experimentally manipulated to generate valuable cell lines.
Collapse
Affiliation(s)
- Yoshihiro Baba
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW Hematopoietic stem cells are functionally heterogeneous even when isolated as phenotypically homogenous populations. How this heterogeneity is generated is incompletely understood. Several models have been formulated to explain the generation of diversity. All of these assume the existence of a single type of hematopoietic stem cell that generates heterogeneous daughter stem cells in response to extrinsic or intrinsic (stochastic) signals. This view has encouraged the idea that stem cells can be instructed to adapt their function. Newer data, however, challenge this concept. Here, we summarize these findings and discuss their implication for applications of stem cells. RECENT FINDINGS Hematopoietic stem cells that differ in function have been documented during development and within the adult stem cell compartment. The differences in function are stably inherited to daughter stem cells when these cells proliferate to self-renew. Collectively, the data show that the adult stem cell compartment consists of a limited number of distinct classes of stem cells. SUMMARY The most important stem cell functions, including self-renewal and differentiation capacity, are preprogrammed through epigenetic or genetic mechanisms. Thus, stem cells are much more predictable than previously thought. Changes in the stem cell compartment through disease or aging can be interpreted as shifts in its clonal composition, rather than a modification of individual hematopoietic stem cells.
Collapse
|
37
|
Yokota T, Huang J, Tavian M, Nagai Y, Hirose J, Zúñiga-Pflücker JC, Péault B, Kincade PW. Tracing the first waves of lymphopoiesis in mice. Development 2006; 133:2041-51. [PMID: 16611687 DOI: 10.1242/dev.02349] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
RAG1/GFP knock-in mice were used to precisely chart the emergence and expansion of cells that give rise to the immune system. Lymphopoietic cells detectable in stromal co-cultures arose as early as E8.5, i.e. prior to establishment of the circulation within the paraaortic splanchnopleura (P-Sp). These cells were Tie2+ RAG1- CD34Lo/-Kit+ CD41-. While yolk sac (YS) also contained lymphopoietic cells after E9.5, CD41+ YS cells from ⩽25-somite embryos produced myelo-erythroid cells but no lymphocytes. Notch receptor signaling directed P-Sp cells to T lymphocytes but did not confer lymphopoietic potential on YS cells. Thus, definitive hematopoiesis arises in at least two independent sites that differ in lymphopoietic potential. Expression of RAG1, the earliest known lymphoid event, first occurred around E10.5 within the embryos. RAG1/GFP+ cells appeared in the liver at E11.0 and progenitors with B and/or T lineage potential were enumerated at subsequent developmental stages.
Collapse
Affiliation(s)
- Takafumi Yokota
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Kawamoto H. A close developmental relationship between the lymphoid and myeloid lineages. Trends Immunol 2006; 27:169-75. [PMID: 16515884 DOI: 10.1016/j.it.2006.02.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 01/24/2006] [Accepted: 02/16/2006] [Indexed: 02/03/2023]
Abstract
The classic dichotomy model of hematopoiesis postulates that the first step of differentiation beyond the multipotent hematopoietic stem cell generates the common myelo-erythroid progenitors and common lymphoid progenitors (CLPs). Previous studies in fetal mice showed, however, that myeloid potential persists in the T- and B-cell branches even after these lineages have diverged, indicating that the simple dichotomy model is invalid, at least for fetal hematopoiesis. Nevertheless, CLPs have persisted in models of adult hematopoiesis; results from several groups support the presence of CLPs in bone marrow. Recent evidence challenges the dichotomy model in the adult, and it is proposed here that the alternative myeloid-based model is applicable to both fetal and adult hematopoiesis.
Collapse
Affiliation(s)
- Hiroshi Kawamoto
- Laboratory for Lymphocyte Development, RIKEN Research Center for Allergy and Immunology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| |
Collapse
|
39
|
Abstract
T cells developing in the adult thymus ultimately derive from haematopoietic stem cells in the bone marrow. Here, we summarize research into the identity of the haematopoietic progenitors that leave the bone marrow, migrate through the blood and settle in the thymus to generate T cells. Accumulating data indicate that various different bone-marrow progenitors are T-cell-lineage competent and might contribute to intrathymic T-cell development. Such developmental flexibility implies a mechanism of T-cell-lineage commitment that can operate on a range of T-cell-lineage-competent progenitors, and further indicates that only those T-cell-lineage-competent progenitors able to migrate to, and settle in, the thymus should be considered physiological T-cell progenitors.
Collapse
Affiliation(s)
- Avinash Bhandoola
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, 3400 Spruce Street, Pennsylvania 19104-6160, USA.
| | | |
Collapse
|
40
|
Abstract
Transcriptional regulation of T-cell development involves successive interactions between complexes of transcriptional regulators and their binding sites within the regulatory regions of each gene. The regulatory modules that control expression of T-lineage genes frequently include binding sites for a core set of regulators that set the T-cell-specific background for signal-dependent control, including GATA-3, Notch/CSL, c-myb, TCF-1, Ikaros, HEB/E2A, Ets, and Runx factors. Additional regulators in early thymocytes include PU.1, Id-2, SCL, Spi-B, Erg, Gfi-1, and Gli. Many of these factors are involved in simultaneous regulation of non-T-lineage genes, T-lineage genes, and genes involved in cell cycle control, apoptosis, or survival. Potential and known interactions between early thymic transcription factors such as GATA-3, SCL, PU.1, Erg, and Spi-B are explored. Regulatory modules involved in the expression of several critical T-lineage genes are described, and models are presented for shifting occupancy of the DNA-binding sites in the regulatory modules of pre-Talpha, T-cell receptor beta (TCRbeta), recombinase activating genes 1 and 2 (Rag-1/2), and CD4 during T-cell development. Finally, evidence is presented that c-kit, Erg, Hes-1, and HEBAlt are expressed differently in Rag-2(-/-) thymocytes versus normal early thymocytes, which provide insight into potential regulatory interactions that occur during normal T-cell development.
Collapse
Affiliation(s)
- Michele K Anderson
- Sunnybrook and Women's College Health Sciences Center, Division of Molecular and Cell Biology, University of Toronto, Department of Immunology, Toronto, ON, Canada.
| |
Collapse
|
41
|
Roessler S, Grosschedl R. Role of transcription factors in commitment and differentiation of early B lymphoid cells. Semin Immunol 2006; 18:12-9. [PMID: 16431127 DOI: 10.1016/j.smim.2005.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
B lymphopoiesis is a differentiation process in which hematopoietic stem cells are converted into antibody-producing plasma cells. B cell differentiation involves multiple steps, including cell specification, commitment to the B cell lineage, immunoglobulin rearrangements, maturation of B cells and terminal differentiation into plasma cells. Each of these steps is controlled by signaling pathways and transcription factors that act in synergy, feedback-loops or cross-antagonism to generate complex regulatory networks that allow for plasticity and stability of B cell differentiation.
Collapse
Affiliation(s)
- Stephanie Roessler
- Max-Planck Institute of Immunobiology, Department of Cellular and Molecular Immunology, Stubeweg 51, 79108 Freiburg, Germany
| | | |
Collapse
|
42
|
Huang J, Garrett KP, Pelayo R, Zúñiga-Pflücker JC, Petrie HT, Kincade PW. Propensity of adult lymphoid progenitors to progress to DN2/3 stage thymocytes with Notch receptor ligation. THE JOURNAL OF IMMUNOLOGY 2005; 175:4858-65. [PMID: 16210587 PMCID: PMC1850239 DOI: 10.4049/jimmunol.175.8.4858] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Notch family receptors control critical events in the production and replenishment of specialized cells in the immune system. However, it is unclear whether Notch signaling regulates abrupt binary lineage choices in homogeneous progenitors or has more gradual influence over multiple aspects of the process. A recently developed coculture system with Delta 1-transduced stromal cells is being extensively used to address such fundamental questions. Different from fetal progenitors, multiple types of adult marrow cells expanded indefinitely in murine Delta-like 1-transduced OP9 cell cocultures, progressed to a DN2/DN3 thymocyte stage, and slowly produced TCR(+) and NK cells. Long-term cultured cells of this kind retained some potential for T lymphopoiesis in vivo. Adult marrow progressed through double-positive and single-positive stages only when IL-7 concentrations were low and passages were infrequent. Lin(-)c-Kit(low)GFP(+)IL-7Ralpha(+/-) prolymphocytes were the most efficient of adult bone marrow cells in short-term cultures, but the assay does not necessarily reflect cells normally responsible for replenishing the adult thymus. Although marrow-derived progenitors with Ig D(H)-J(H) rearrangements acquired T lineage characteristics in this model, that was not the case for more B committed cells with V(H)-D(H)J(H) rearrangement products.
Collapse
Affiliation(s)
- Jiaxue Huang
- Immunobiology & Cancer Program, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK 73104, USA
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA
| | - Karla P. Garrett
- Immunobiology & Cancer Program, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK 73104, USA
| | - Rosana Pelayo
- Immunobiology & Cancer Program, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK 73104, USA
| | - Juan Carlos Zúñiga-Pflücker
- Department of Immunology, University of Toronto, Sunnybrook & Women’s Research Institute, Toronto, ON M4N 3M5, Canada
| | - Howard T. Petrie
- Scripps/Florida Research Institute, 5353 Parkside Drive, RF-1, Jupiter, Fl 33458
| | - Paul W. Kincade
- Immunobiology & Cancer Program, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK 73104, USA
- Correspondence:
| |
Collapse
|
43
|
Masuda K, Kubagawa H, Ikawa T, Chen CC, Kakugawa K, Hattori M, Kageyama R, Cooper MD, Minato N, Katsura Y, Kawamoto H. Prethymic T-cell development defined by the expression of paired immunoglobulin-like receptors. EMBO J 2005; 24:4052-60. [PMID: 16292344 PMCID: PMC1356317 DOI: 10.1038/sj.emboj.7600878] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Accepted: 10/25/2005] [Indexed: 12/19/2022] Open
Abstract
T cells are produced in the thymus from progenitors of extrathymic origin. As no specific markers are available, the developmental pathway of progenitors preceding thymic colonization remains unclear. Here we show that progenitors in murine fetal liver and blood, which are capable of giving rise to T cells, NK cells and dendritic cells, but not B cells, can be isolated by their surface expression of paired immunoglobulin-like receptors (PIR). PIR expression is maintained until the earliest intrathymic stage, then downregulated before the onset of CD25 expression. Unlike intrathymic progenitors, generation of prethymic PIR(+) progenitors does not require Hes1-mediated Notch signaling. These findings disclose a prethymic stage of T-cell development programmed for immigration of the thymus, which is genetically separable from intrathymic stages.
Collapse
MESH Headings
- Animals
- Basic Helix-Loop-Helix Transcription Factors/physiology
- Cell Differentiation/immunology
- Cell Lineage/immunology
- Cells, Cultured
- Dendritic Cells/cytology
- Dendritic Cells/immunology
- Homeodomain Proteins/physiology
- Killer Cells, Natural/cytology
- Killer Cells, Natural/immunology
- Liver/cytology
- Liver/embryology
- Liver/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred ICR
- Mice, Transgenic
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Immunologic/biosynthesis
- Receptors, Immunologic/genetics
- Receptors, Notch/physiology
- Signal Transduction/physiology
- Stem Cells/cytology
- Stem Cells/immunology
- Stem Cells/metabolism
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Thymus Gland/cytology
- Thymus Gland/immunology
- Transcription Factor HES-1
Collapse
Affiliation(s)
- Kyoko Masuda
- Department of Immunology and Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Laboratory for Lymphocyte Development, RIKEN Research Center for Allergy and Immunology, Yokohama, Japan
| | - Hiromi Kubagawa
- Department of Pathology, Division of Developmental and Clinical Immunology, University of Alabama, Birmingham, AL, USA
| | - Tomokatsu Ikawa
- Department of Immunology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Ching-Cheng Chen
- Department of Pathology, Division of Developmental and Clinical Immunology, University of Alabama, Birmingham, AL, USA
| | - Kiyokazu Kakugawa
- Laboratory for Lymphocyte Development, RIKEN Research Center for Allergy and Immunology, Yokohama, Japan
| | - Masakazu Hattori
- Department of Immunology and Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Ryoichiro Kageyama
- Laboratory of Growth Regulation, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Max D Cooper
- Department of Pathology, Division of Developmental and Clinical Immunology, University of Alabama, Birmingham, AL, USA
| | - Nagahiro Minato
- Department of Immunology and Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yoshimoto Katsura
- Division of Cell Regeneration and Transplantation, Advanced Medical Research Center, Nihon University School of Medicine, Tokyo, Japan
| | - Hiroshi Kawamoto
- Laboratory for Lymphocyte Development, RIKEN Research Center for Allergy and Immunology, Yokohama, Japan
| |
Collapse
|
44
|
Pelayo R, Welner RS, Nagai Y, Kincade PW. Life before the pre-B cell receptor checkpoint: specification and commitment of primitive lymphoid progenitors in adult bone marrow. Semin Immunol 2005; 18:2-11. [PMID: 16310376 DOI: 10.1016/j.smim.2005.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The production of B cells is a complex process determined by well-timed combinations of intrinsic factors and environmental cues that guide the differentiation of primitive progenitors in the bone marrow. Expression of several key transcription factors and receptor-stromal cell ligand interactions are landmarks of the earliest events in B lymphopoiesis in adult bone marrow. We describe this as a gradual loss of options for other blood cell lineages coincident with gain of essential properties. Experimental, stress or infection-related deregulation may change B cell fate specification, commitment or population dynamics, and consequently the production rate of mature populations.
Collapse
Affiliation(s)
- Rosana Pelayo
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK 73104, USA
| | | | | | | |
Collapse
|
45
|
Abstract
Thymic involution is the hallmark of hematopoietic aging. Because T cell differentiation is a multistep process that occurs non-cell autonomously, aging defects can occur at multiple points along the developmental pathway, both in the T progenitors themselves and in the thymic stromal cells that support their development. Here we review the evidence for age-related thymopoiesis defects at key steps in the production of naïve mature T cells, highlighting the importance of the interaction between stromal aging and progenitor aging.
Collapse
Affiliation(s)
- Valerie P Zediak
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 3620 Hamilton Walk, 264 John Morgan Building, Philadelphia, PA 19104, USA
| | | |
Collapse
|
46
|
Hagman J, Lukin K. Early B-cell factor ‘pioneers’ the way for B-cell development. Trends Immunol 2005; 26:455-61. [PMID: 16027038 DOI: 10.1016/j.it.2005.07.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 06/20/2005] [Accepted: 07/06/2005] [Indexed: 01/14/2023]
Abstract
Early B-cell factor (EBF) is a DNA-binding protein required for B-cell lymphopoiesis. The lack of EBF results in an early developmental blockade, including the lack of functional B cells and Igs. Recent studies have elucidated a central role for EBF in the specification of B-lineage cells. EBF directs progenitor cells to undergo B lymphopoiesis and activates transcription of B cell-specific genes in the absence of upstream regulators. How EBF mediates these effects has yet to be thoroughly explored, however, it initiates epigenetic modifications necessary for gene activation and the function of other transcriptional regulators, including Pax5. Together, these observations suggest a molecular basis for the role of EBF in the hierarchical network of factors that control B lymphopoiesis.
Collapse
Affiliation(s)
- James Hagman
- Integrated Department of Immunology, National Jewish Medical and Research Center, Denver, CO 80206, USA.
| | | |
Collapse
|
47
|
Yao L, Yokota T, Xia L, Kincade PW, McEver RP. Bone marrow dysfunction in mice lacking the cytokine receptor gp130 in endothelial cells. Blood 2005; 106:4093-101. [PMID: 16118327 PMCID: PMC1895244 DOI: 10.1182/blood-2005-02-0671] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In vitro studies suggest that bone marrow endothelial cells contribute to multilineage hematopoiesis, but this function has not been studied in vivo. We used a Cre/loxP-mediated recombination to produce mice that lacked the cytokine receptor subunit gp130 in hematopoietic and endothelial cells. Although normal at birth, the mice developed bone marrow dysfunction that was accompanied by splenomegaly caused by extramedullary hematopoiesis. The hypocellular marrow contained myeloerythroid progenitors and functional repopulating stem cells. However, long-term bone marrow cultures produced few hematopoietic cells despite continued expression of gp130 in most stromal cells. Transplanting gp130-deficient bone marrow into irradiated wild-type mice conferred normal hematopoiesis, whereas transplanting wild-type bone marrow into irradiated gp130-deficient mice did not cure the hematopoietic defects. These data provide evidence that gp130 expression in the bone marrow microenvironment, most likely in endothelial cells, makes an important contribution to hematopoiesis.
Collapse
Affiliation(s)
- Longbiao Yao
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, 825 NE 13th St, Oklahoma City, OK 73104, USA
| | | | | | | | | |
Collapse
|
48
|
Yokota T, Kawakami Y, Nagai Y, Ma JX, Tsai JY, Kincade PW, Sato S. Bone marrow lacks a transplantable progenitor for smooth muscle type alpha-actin-expressing cells. Stem Cells 2005; 24:13-22. [PMID: 16099999 DOI: 10.1634/stemcells.2004-0346] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
While some studies have suggested that hematopoietic stem cells might give rise to other tissue types, others indicate that transdifferentiation would have to be an extremely rare event. We have now exploited smooth muscle type alpha-actin (alphaSMA) promoter-driven green fluorescent protein (GFP) transgenic mice (alphaSMA-GFP mice) for bone marrow transplantation to evaluate their potential to generate donor-type tissues in irradiation chimeras. There was a highly restricted pattern of GFP expression in the transgenic mice, marking bone marrow stromal cells and mesangial cells in the kidney. However, these characteristics were not transferable to wild-type animals given transgenic marrow cells even though hematopoietic cells were largely replaced. Our findings support earlier studies suggesting that the bone marrow microenvironment is difficult to transplant and indicate that hematopoietic stem cells are unlikely to give rise to alphaSMA-expressing progeny.
Collapse
Affiliation(s)
- Takafumi Yokota
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73190-3048, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Pelayo R, Welner R, Perry SS, Huang J, Baba Y, Yokota T, Kincade PW. Lymphoid progenitors and primary routes to becoming cells of the immune system. Curr Opin Immunol 2005; 17:100-7. [PMID: 15766667 DOI: 10.1016/j.coi.2005.01.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Extraordinary progress has been made in charting the maturation of hematopoietic cells. However, these charted processes do not necessarily represent obligate pathways to specialized types of lymphocytes. In fact, there is a degree of plasticity associated with primitive progenitors. Moreover, all lymphocytes of a given kind are not necessarily produced through precisely the same sequence of events. Particularly contentious is the nature of cells that seed the thymus, because different progenitors can generate T cells under experimental circumstances. Non-renewing progenitors with a high density of c-Kit in bone marrow are likely to replenish the thymus under normal circumstances and most closely resemble canonical T cell progenitors.
Collapse
Affiliation(s)
- Rosana Pelayo
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, 825 NE 13(th) Street, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Small M. Isolation of adult murine thymic stromal cells that naturally express Notch ligands. Histochem Cell Biol 2005; 123:513-6. [PMID: 15889269 DOI: 10.1007/s00418-004-0747-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2004] [Indexed: 11/29/2022]
Abstract
This communication summarizes the procedures that enabled isolation of adult murine thymic stromal cell lines that naturally express Notch ligands Jagged-1 or Delta-1. Histochemical characterization of these cell lines, in terms of ligand and cell type, revealed epithelial cells that bear an antigen characteristic of the thymic medulla and express either Jagged-1 or Delta-1. FACS sorting of stromal cells that naturally express these and other ligands is thus feasible, and such cells can be used to investigate the activity of each ligand in Notch-mediated commitment to the T-lymphocyte pathway.
Collapse
Affiliation(s)
- Myra Small
- Deparment of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, 69978, Israel.
| |
Collapse
|