1
|
Song Y, Wang Y, Zhang H, Saddique MAB, Luo X, Ren M. The TOR signalling pathway in fungal phytopathogens: A target for plant disease control. MOLECULAR PLANT PATHOLOGY 2024; 25:e70024. [PMID: 39508186 PMCID: PMC11541241 DOI: 10.1111/mpp.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/10/2024] [Accepted: 10/18/2024] [Indexed: 11/08/2024]
Abstract
Plant diseases caused by fungal phytopathogens have led to significant economic losses in agriculture worldwide. The management of fungal diseases is mainly dependent on the application of fungicides, which are not suitable for sustainable agriculture, human health, and environmental safety. Thus, it is necessary to develop novel targets and green strategies to mitigate the losses caused by these pathogens. The target of rapamycin (TOR) complexes and key components of the TOR signalling pathway are evolutionally conserved in pathogens and closely related to the vegetative growth and pathogenicity. As indicated in recent systems, chemical, genetic, and genomic studies on the TOR signalling pathway, phytopathogens with TOR dysfunctions show severe growth defects and nonpathogenicity, which makes the TOR signalling pathway to be developed into an ideal candidate target for controlling plant disease. In this review, we comprehensively discuss the current knowledge on components of the TOR signalling pathway in microorganisms and the diverse roles of various plant TOR in response to plant pathogens. Furthermore, we analyse a range of disease management strategies that rely on the TOR signalling pathway, including genetic modification technologies and chemical controls. In the future, disease control strategies based on the TOR signalling network are expected to become a highly effective weapon for crop protection.
Collapse
Affiliation(s)
- Yun Song
- College of Agriculture and BiologyLiaocheng UniversityLiaochengChina
| | - Yaru Wang
- College of Agriculture and BiologyLiaocheng UniversityLiaochengChina
| | - Huafang Zhang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences; Chengdu Agricultural Science and Technology CenterChengduChina
| | - Muhammad Abu Bakar Saddique
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences; Chengdu Agricultural Science and Technology CenterChengduChina
| | - Xiumei Luo
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences; Chengdu Agricultural Science and Technology CenterChengduChina
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences; Chengdu Agricultural Science and Technology CenterChengduChina
| |
Collapse
|
2
|
Nielsen MR, Sørensen T, Pedersen TB, Westphal KR, Díaz Fernández De Quincoces L, Sondergaard TE, Wimmer R, Brown DW, Sørensen JL. Final piece to the Fusarium pigmentation puzzle - Unraveling of the phenalenone biosynthetic pathway responsible for perithecial pigmentation in the Fusarium solani species complex. Fungal Genet Biol 2024; 174:103912. [PMID: 39004163 DOI: 10.1016/j.fgb.2024.103912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024]
Abstract
The Fusarium solani species complex (FSSC) is comprised of important pathogens of plants and humans. A distinctive feature of FSSC species is perithecial pigmentation. While the dark perithecial pigments of other Fusarium species are derived from fusarubins synthesized by polyketide synthase 3 (PKS3), the perithecial pigments of FSSC are derived from an unknown metabolite synthesized by PKS35. Here, we confirm in FSSC species Fusarium vanettenii that PKS35 (fsnI) is required for perithecial pigment synthesis by deletion analysis and that fsnI is closely related to phnA from Penicillium herquei, as well as duxI from Talaromyces stipentatus, which produce prephenalenone as an early intermediate in herqueinone and duclauxin synthesis respectively. The production of prephenalenone by expression of fsnI in Saccharomyces cerevisiae indicates that it is also an early intermediate in perithecial pigment synthesis. We next identified a conserved cluster of 10 genes flanking fsnI in F. vanettenii that when expressed in F. graminearum led to the production of a novel corymbiferan lactone F as a likely end product of the phenalenone biosynthetic pathway in FSSC.
Collapse
Affiliation(s)
- Mikkel Rank Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Niels Bohrs Vej 8A, 6700 Esbjerg, Denmark
| | - Trine Sørensen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Tobias Bruun Pedersen
- Department of Chemistry and Bioscience, Aalborg University, Niels Bohrs Vej 8A, 6700 Esbjerg, Denmark
| | - Klaus Ringsborg Westphal
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | | | - Teis Esben Sondergaard
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Reinhard Wimmer
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Daren W Brown
- National Center for Agricultural Utilization Research, U.S. Department of Agriculture, 1815 N University St. Peoria IL 61604, United States of America
| | - Jens Laurids Sørensen
- Department of Chemistry and Bioscience, Aalborg University, Niels Bohrs Vej 8A, 6700 Esbjerg, Denmark.
| |
Collapse
|
3
|
Garg S, Nain P, Kumar A, Joshi S, Punetha H, Sharma PK, Siddiqui S, Alshaharni MO, Algopishi UB, Mittal A. Next generation plant biostimulants & genome sequencing strategies for sustainable agriculture development. Front Microbiol 2024; 15:1439561. [PMID: 39104588 PMCID: PMC11299335 DOI: 10.3389/fmicb.2024.1439561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/25/2024] [Indexed: 08/07/2024] Open
Abstract
The best environment for plant growth and development contains certain essential metabolites. A broad category of metabolites known as "plant biostimulants" (PBs) includes biomolecules such as proteins, carbohydrates, lipids, and other secondary metabolites related to groups of terpenes, specific nitrogen-containing compounds, and benzene ring-conjugated compounds. The formation of biomolecules depends on both biotic and abiotic factors, such as the release of PB by plants, animals, and microorganisms, or it can result from the control of temperature, humidity, and pressure in the atmosphere, in the case of humic substances (HSs). Understanding the genomic outputs of the concerned organism (may be plants or others than them) becomes crucial for identifying the underlying behaviors that lead to the synthesis of these complex compounds. For the purposes of achieving the objectives of sustainable agriculture, detailed research on PBs is essential because they aid in increasing yield and other growth patterns of agro-economic crops. The regulation of homeostasis in the plant-soil-microbe system for the survival of humans and other animals is mediated by the action of plant biostimulants, as considered essential for the growth of plants. The genomic size and gene operons for functional and regulation control have so far been revealed through technological implementations, but important gene annotations are still lacking, causing a delay in revealing the information. Next-generation sequencing techniques, such as nanopore, nanoball, and Illumina, are essential in troubleshooting the information gaps. These technical advancements have greatly expanded the candidate gene openings. The secondary metabolites being important precursors need to be studied in a much wider scale for accurate calculations of biochemical reactions, taking place inside and outside the synthesized living cell. The present review highlights the sequencing techniques to provide a foundation of opportunity generation for agricultural sustainability.
Collapse
Affiliation(s)
- Shivanshu Garg
- Department of Biochemistry, CBSH-GBPUA&T, Pantnagar, India
| | - Pooja Nain
- Department of Soil Science, College of Agriculture, GBPUA&T, Pantnagar, India
| | - Ashish Kumar
- Department of Microbiology, CBSH-GBPUA&T, Pantnagar, India
| | - Samiksha Joshi
- School of Agriculture, Graphic Era Hill University, Bhimtal, India
| | | | - Pradeep Kumar Sharma
- Department of Environment Science, Graphic Era Deemed to be University, Dehradun, India
| | - Sazada Siddiqui
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | | | | | - Amit Mittal
- School of Allied Sciences, Graphic Era Hill University, Bhimtal, India
| |
Collapse
|
4
|
Atanasoff-Kardjalieff AK, Berger H, Steinert K, Janevska S, Ponts N, Humpf HU, Kalinina S, Studt-Reinhold L. Incorporation of the histone variant H2A.Z counteracts gene silencing mediated by H3K27 trimethylation in Fusarium fujikuroi. Epigenetics Chromatin 2024; 17:7. [PMID: 38509556 PMCID: PMC10953111 DOI: 10.1186/s13072-024-00532-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/15/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Fusarium fujikuroi is a pathogen of rice causing diverse disease symptoms such as 'bakanae' or stunting, most likely due to the production of various natural products (NPs) during infection. Fusaria have the genetic potential to synthesize a plethora of these compounds with often diverse bioactivity. The capability to synthesize NPs exceeds the number of those being produced by far, implying a gene regulatory network decisive to induce production. One such regulatory layer is the chromatin structure and chromatin-based modifications associated with it. One prominent example is the exchange of histones against histone variants such as the H2A variant H2A.Z. Though H2A.Z already is well studied in several model organisms, its regulatory functions are not well understood. Here, we used F. fujikuroi as a model to explore the role of the prominent histone variant FfH2A.Z in gene expression within euchromatin and facultative heterochromatin. RESULTS Through the combination of diverse '-omics' methods, we show the global distribution of FfH2A.Z and analyze putative crosstalks between the histone variant and two prominent histone marks, i.e., H3K4me3 and H3K27me3, important for active gene transcription and silencing, respectively. We demonstrate that, if FfH2A.Z is positioned at the + 1-nucleosome, it poises chromatin for gene transcription, also within facultative heterochromatin. Lastly, functional characterization of FfH2A.Z overexpression and depletion mutants revealed that FfH2A.Z is important for wild type-like fungal development and secondary metabolism. CONCLUSION In this study, we show that the histone variant FfH2A.Z is a mark of positive gene transcription and acts independently of the chromatin state most likely through the stabilization of the + 1-nucleosome. Furthermore, we demonstrate that FfH2A.Z depletion does not influence the establishment of both H3K27me3 and H3K4me3, thus indicating no crosstalk between FfH2A.Z and both histone marks. These results highlight the manifold functions of the histone variant FfH2A.Z in the phytopathogen F. fujikuroi, which are distinct regarding gene transcription and crosstalk with the two prominent histone marks H3K27me3 and H3K4me3, as proposed for other model organisms.
Collapse
Affiliation(s)
- Anna K Atanasoff-Kardjalieff
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz Strasse 24, Tulln an der Donau, 3430, Austria
| | - Harald Berger
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz Strasse 24, Tulln an der Donau, 3430, Austria
| | - Katharina Steinert
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Münster, Germany
| | - Slavica Janevska
- (Epi-)Genetic Regulation of Fungal Virulence, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, 07745, Jena, Germany
| | - Nadia Ponts
- INRAE, UR1264 Mycology and Food Safety (MycSA), Villenave d'Ornon, 33882, France
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Münster, Germany
| | - Svetlana Kalinina
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Münster, Germany
| | - Lena Studt-Reinhold
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz Strasse 24, Tulln an der Donau, 3430, Austria.
| |
Collapse
|
5
|
Humicolopsis cephalosporioides synthesizes DHN-melanin in its chlamydospores. Mycol Prog 2023. [DOI: 10.1007/s11557-022-01853-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Gao M, Gu X, Satterlee T, Duke MV, Scheffler BE, Gold SE, Glenn AE. Transcriptomic Responses of Fusarium verticillioides to Lactam and Lactone Xenobiotics. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:923112. [PMID: 37746160 PMCID: PMC10512309 DOI: 10.3389/ffunb.2022.923112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/12/2022] [Indexed: 09/26/2023]
Abstract
The important cereal crops of maize, rye, and wheat constitutively produce precursors to 2-benzoxazolinone, a phytochemical having antifungal effects towards many Fusarium species. However, Fusarium verticillioides can tolerate 2-benzoxazolinone by converting it into non-toxic metabolites through the synergism of two previously identified gene clusters, FDB1 and FDB2. Inspired by the induction of these two clusters upon exposure to 2-benzoxazolinone, RNA sequencing experiments were carried out by challenging F. verticillioides individually with 2-benzoxazolinone and three related chemical compounds, 2-oxindole, 2-coumaranone, and chlorzoxazone. These compounds all contain lactam and/or lactone moieties, and transcriptional analysis provided inferences regarding the degradation of such lactams and lactones. Besides induction of FDB1 and FDB2 gene clusters, four additional clusters were identified as induced by 2-benzoxazolinone exposure, including a cluster thought to be responsible for biosynthesis of pyridoxine (vitamin B6), a known antioxidant providing tolerance to reactive oxygen species. Three putative gene clusters were identified as induced by challenging F. verticillioides with 2-oxindole, two with 2-coumaranone, and two with chlorzoxazone. Interestingly, 2-benzoxazolinone and 2-oxindole each induced two specific gene clusters with similar composition of enzymatic functions. Exposure to 2-coumranone elicited the expression of the fusaric acid biosynthetic gene cluster. Another gene cluster that may encode enzymes responsible for degrading intermediate catabolic metabolites with carboxylic ester bonds was induced by 2-benzoxazolinone, 2-oxindole, and chlorzoxazone. Also, the induction of a dehalogenase encoding gene during chlorzoxazone exposure suggested its role in the removal of the chlorine atom. Together, this work identifies genes and putative gene clusters responsive to the 2-benzoxazolinone-like compounds with metabolic inferences. Potential targets for future functional analyses are discussed.
Collapse
Affiliation(s)
- Minglu Gao
- Department of Plant Pathology, University of Georgia, Athens, GA, United States
| | - Xi Gu
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States
| | - Timothy Satterlee
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. National Poultry Research Center, Toxicology & Mycotoxin Research Unit, Athens, GA, United States
| | - Mary V. Duke
- United States Department of Agriculture (USDA), Agricultural Research Service, Genomics and Bioinformatics Research Unit, Stoneville, MS, United States
| | - Brian E. Scheffler
- United States Department of Agriculture (USDA), Agricultural Research Service, Genomics and Bioinformatics Research Unit, Stoneville, MS, United States
| | - Scott E. Gold
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. National Poultry Research Center, Toxicology & Mycotoxin Research Unit, Athens, GA, United States
| | - Anthony E. Glenn
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. National Poultry Research Center, Toxicology & Mycotoxin Research Unit, Athens, GA, United States
| |
Collapse
|
7
|
Atanasoff-Kardjalieff AK, Studt L. Secondary Metabolite Gene Regulation in Mycotoxigenic Fusarium Species: A Focus on Chromatin. Toxins (Basel) 2022; 14:96. [PMID: 35202124 PMCID: PMC8880415 DOI: 10.3390/toxins14020096] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/31/2022] Open
Abstract
Fusarium is a species-rich group of mycotoxigenic plant pathogens that ranks as one of the most economically important fungal genera in the world. During growth and infection, they are able to produce a vast spectrum of low-molecular-weight compounds, so-called secondary metabolites (SMs). SMs often comprise toxic compounds (i.e., mycotoxins) that contaminate precious food and feed sources and cause adverse health effects in humans and livestock. In this context, understanding the regulation of their biosynthesis is crucial for the development of cropping strategies that aim at minimizing mycotoxin contamination in the field. Nevertheless, currently, only a fraction of SMs have been identified, and even fewer are considered for regular monitoring by regulatory authorities. Limitations to exploit their full chemical potential arise from the fact that the genes involved in their biosynthesis are often silent under standard laboratory conditions and only induced upon specific stimuli mimicking natural conditions in which biosynthesis of the respective SM becomes advantageous for the producer. This implies a complex regulatory network. Several components of these gene networks have been studied in the past, thereby greatly advancing the understanding of SM gene regulation and mycotoxin biosynthesis in general. This review aims at summarizing the latest advances in SM research in these notorious plant pathogens with a focus on chromatin structure.
Collapse
Affiliation(s)
| | - Lena Studt
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), 3430 Tulln an der Donau, Austria;
| |
Collapse
|
8
|
Recovery and purification of bikaverin produced by Fusarium oxysporum CCT7620. FOOD CHEMISTRY-X 2021; 12:100136. [PMID: 34661094 PMCID: PMC8503626 DOI: 10.1016/j.fochx.2021.100136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/04/2022]
Abstract
Ethyl acetate extraction resulted in the highest bikaverin yield. Kinetic study revealed a saturation of bikaverin extraction after 256 min. Three sequential ethyl acetate extractions was the most economical to recover bikaverin. Open column chromatography or nanofiltration were not suitable to purify bikaverin. Bikaverin was successfully purified on semi-preparative HPLC.
Microbial pigments have a distinguished potential for applications in food and pharmaceutical industries, stimulating the research in this field. The present study evaluated the ideal conditions for extracting bikaverin (red pigment) from the biomass of Fusarium oxysporum CCT7620. Among the solvents tested, ethyl acetate extraction resulted in the highest bikaverin concentration and the kinetic study revealed a saturation in bikaverin concentration from 256 min on. Based on a preliminary economic study, three sequential extractions with ethyl acetate was considered the ideal protocol to recover bikaverin. After extraction, chromatographic methods were tested to purify bikaverin. The use of silica gel or Sephadex (open column) could not successfully purify bikaverin, but the semi-preparative HPLC resulted in a bikaverin-enriched fraction with a purity degree equivalent to the commercial analytical standard. This work provides relevant information regarding the extraction and purification of bikaverin, which may be useful for other downstraming processes.
Collapse
|
9
|
Phasha MM, Wingfield BD, Wingfield MJ, Coetzee MPA, Hammerbacher A, Steenkamp ET. Deciphering the effect of FUB1 disruption on fusaric acid production and pathogenicity in Fusarium circinatum. Fungal Biol 2021; 125:1036-1047. [PMID: 34776231 DOI: 10.1016/j.funbio.2021.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
Fusarium circinatum is an important pathogen of pine trees. However, little is known regarding the molecular processes underlying its pathogenesis. We explored the potential role of the phytotoxin fusaric acid (FA) in the pathogenicity of the fungus. FA is produced by products of the FUB biosynthesis gene cluster, containing FUB1-12. Of these, FUB1 encodes the core polyketide synthase, which we disrupted. We used the resulting mutant strain to investigate whether FUB1 and FA production play a role in the virulence of F. circinatum on pine. Our results showed that FA production was abolished both in vitro and in planta. However, bikaverin production was increased in the knockout mutant. FUB1 disruption also corresponded with downregulation of a F. circinatum homologue of LaeA, a master transcriptional regulator of secondary metabolism. Lesion lengths produced by the FUB1 knockout mutant on inoculated Pinus patula seedlings were significantly smaller than those produced by the wild type strain. Collectively, these results show that FUB1 plays a role in FA production in F. circinatum, and that this gene contributes to the aggressiveness of F. circinatum on P. patula. This study will contribute to the limited knowledge we have about the molecular basis of pathogenicity in this fungus.
Collapse
Affiliation(s)
- M M Phasha
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa.
| | - B D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa.
| | - M J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa.
| | - M P A Coetzee
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa.
| | - A Hammerbacher
- Department of Zoology and Entomology, FABI, Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa.
| | - E T Steenkamp
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa.
| |
Collapse
|
10
|
Expression of bik cluster and production of bikaverin by Fusarium oxysporum f. sp. lycopersici grown using two alternate nitrogen sources. Int Microbiol 2021; 25:153-164. [PMID: 34455510 DOI: 10.1007/s10123-021-00206-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/12/2021] [Accepted: 08/23/2021] [Indexed: 10/20/2022]
Abstract
The genus Fusarium can be utilized to produce a great variety of secondary metabolites under specific culture conditions, including pigments of increasing biotechnological interest, such as bikaverin. Such pigments are important due to the biological properties they possess, including antitumor and antibiotic activities, among others. In Fusarium fujikuroi, bik1-bik6 have been identified as the genes that are responsible for the synthesis of bikaverin. Therefore, in this study, we screened for the presence of bik genes and examined changes in mRNA levels of the bik genes under the influence of NH4NO3 (0.024, 0.048, 0.50, 1.0, and 4.60 g L-1) and NH4Cl (0.50 and 1.0 g L-1) as nitrogen sources for the phytopathogen Fusarium oxysporum f. sp. lycopersici. Our results indicated the presence of at least six bik (bik1-bik6) genes and showed increased mRNA levels for bik4, bik5, and bik6 in conditions where NH4NO3 was used at pH 3.0. The characteristic coloration of bikaverin was obtained in 10 out of 16 culture conditions, except when the fungus was grown with higher concentrations of NH4NO3 (1.0 and 4.60 g L-1). The pigment was chloroform-extracted from the culture conditions of NH4NO3 (0.024, 0.048, and 0.50 g L-1) and NH4Cl (0.50 and 1.0 g L-1) with 3 and 9 days of incubation. Analysis via visible spectroscopy and matrix-assisted laser desorption ionization-time of flight mass spectrometry were used for the identification of bikaverin.
Collapse
|
11
|
Song T, Shen Y, Jin Q, Feng W, Fan L, Cai W. Comparative phosphoproteome analysis to identify candidate phosphoproteins involved in blue light-induced brown film formation in Lentinula edodes. PeerJ 2020; 8:e9859. [PMID: 33384895 PMCID: PMC7751435 DOI: 10.7717/peerj.9859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/12/2020] [Indexed: 01/30/2023] Open
Abstract
Light plays an important role in the growth and differentiation of Lentinula edodes mycelia, and mycelial morphology is influenced by light wavelengths. The blue light-induced formation of brown film on the vegetative mycelial tissues of L. edodes is an important process. However, the mechanisms of L. edodes' brown film formation, as induced by blue light, are still unclear. Using a high-resolution liquid chromatography-tandem mass spectrometry integrated with a highly sensitive immune-affinity antibody method, phosphoproteomes of L. edodes mycelia under red- and blue-light conditions were analyzed. A total of 11,224 phosphorylation sites were identified on 2,786 proteins, of which 9,243 sites on 2,579 proteins contained quantitative information. In total, 475 sites were up-regulated and 349 sites were down-regulated in the blue vs red group. To characterize the differentially phosphorylated proteins, systematic bioinformatics analyses, including gene ontology annotations, domain annotations, subcellular localizations, and Kyoto Encyclopedia of Genes and Genomes pathway annotations, were performed. These differentially phosphorylated proteins were correlated with light signal transduction, cell wall degradation, and melanogenesis, suggesting that these processes are involved in the formation of the brown film. Our study provides new insights into the molecular mechanisms of the blue light-induced brown film formation at the post-translational modification level.
Collapse
Affiliation(s)
- Tingting Song
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yingyue Shen
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qunli Jin
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Weilin Feng
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lijun Fan
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Weiming Cai
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
12
|
Santos MCD, Bicas JL. Natural blue pigments and bikaverin. Microbiol Res 2020; 244:126653. [PMID: 33302226 DOI: 10.1016/j.micres.2020.126653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/26/2020] [Accepted: 11/13/2020] [Indexed: 10/22/2022]
Abstract
In last years, the main studied microbial sources of natural blue pigments have been the eukaryotic algae, Rhodophytes and Cryptophytes, and the cyanobacterium Arthrospira (Spirulina) platensis, responsible for the production of phycocyanin, one of the most important blue compounds approved for food and cosmetic use. Recent research also includes the indigoidine pigment from the bacteria Erwinia, Streptomyces and Photorhabdus. Despite these advances, there are still few options of microbial blue pigments reported so far, but the interest in these products is high due to the lack of stable natural blue pigments in nature. Filamentous fungi are particularly attractive for their ability to produce pigments with a wide range of colors. Bikaverin is a red metabolite present mainly in species of the genus Fusarium. Although originally red, the biomass containing bikaverin changes its color to blue after heat treatment, through a mechanism still unknown. In addition to the special behavior of color change by thermal treatment, bikaverin has beneficial biological properties, such as antimicrobial and antiproliferative activities, which can expand its use for the pharmaceutical and medical sectors. The present review addresses the production natural blue pigments and focuses on the properties of bikaverin, which can be an important source of blue pigment with potential applications in the food industry and in other industrial sectors.
Collapse
|
13
|
Szabó Z, Pákozdi K, Murvai K, Pusztahelyi T, Kecskeméti Á, Gáspár A, Logrieco AF, Emri T, Ádám AL, Leiter É, Hornok L, Pócsi I. FvatfA regulates growth, stress tolerance as well as mycotoxin and pigment productions in Fusarium verticillioides. Appl Microbiol Biotechnol 2020; 104:7879-7899. [PMID: 32719911 PMCID: PMC7447684 DOI: 10.1007/s00253-020-10717-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/22/2020] [Accepted: 06/01/2020] [Indexed: 01/22/2023]
Abstract
FvatfA from the maize pathogen Fusarium verticillioides putatively encodes the Aspergillus nidulans AtfA and Schizasaccharomyces pombe Atf1 orthologous bZIP-type transcription factor, FvAtfA. In this study, a ΔFvatfA deletion mutant was constructed and then genetically complemented with the fully functional FvatfA gene. Comparing phenotypic features of the wild-type parental, the deletion mutant and the restored strains shed light on the versatile regulatory functions played by FvAtfA in (i) the maintenance of vegetative growth on Czapek-Dox and Potato Dextrose agars and invasive growth on unwounded tomato fruits, (ii) the preservation of conidiospore yield and size, (iii) the orchestration of oxidative (H2O2, menadione sodium bisulphite) and cell wall integrity (Congo Red) stress defences and (iv) the regulation of mycotoxin (fumonisins) and pigment (bikaverin, carotenoid) productions. Expression of selected biosynthetic genes both in the fumonisin (fum1, fum8) and the carotenoid (carRA, carB) pathways were down-regulated in the ΔFvatfA strain resulting in defected fumonisin production and considerably decreased carotenoid yields. The expression of bik1, encoding the polyketide synthase needed in bikaverin biosynthesis, was not up-regulated by the deletion of FvatfA meanwhile the ΔFvatfA strain produced approximately ten times more bikaverin than the wild-type or the genetically complemented strains. The abolishment of fumonisin production of the ΔFvatfA strain may lead to the development of new-type, biology-based mycotoxin control strategies. The novel information gained on the regulation of pigment production by this fungus can be interesting for experts working on new, Fusarium-based biomass and pigment production technologies.Key points • FvatfA regulates vegetative and invasive growths of F. verticillioides. • FvatfA also orchestrates oxidative and cell wall integrity stress defenses. • The ΔFvatfA mutant was deficient in fumonisin production. • FvatfA deletion resulted in decreased carotenoid and increased bikaverin yields. |
Collapse
Affiliation(s)
- Zsuzsa Szabó
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary.,Doctoral School of Biological Sciences, Faculty of Agricultural and Environmental Sciences, Szent István University, Gödöllő, Hungary
| | - Klaudia Pákozdi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary.,Doctoral School of Nutrition and Food Sciences, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Katalin Murvai
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Tünde Pusztahelyi
- Central Laboratory of Agricultural and Food Products, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Ádám Kecskeméti
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Attila Gáspár
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | | | - Tamás Emri
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Attila L Ádám
- Plant Protection Institute, Centre for Agricultural Research, Budapest, Hungary
| | - Éva Leiter
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - László Hornok
- Faculty of Agricultural and Environmental Sciences, Szent István University, Gödöllő, Hungary
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
14
|
Santos MCD, Mendonça MDL, Bicas JL. Modeling bikaverin production by Fusarium oxysporum CCT7620 in shake flask cultures. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-020-0301-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
AbstractBikaverin is a fungal red pigment that presents antimicrobial and antitumor activities. Therefore, this substance could be used as an alternative additive in the food and pharmaceutical industries. The aim of this work was to use response surface methodology to optimize the fermentation conditions and maximize the production of bikaverin in shake flasks. The variables investigated were agitation speed (71–289 rpm), temperature (21–35 °C), and substrate (rice) concentration in the culture medium (16.4–83.6 g/L). The agitation speed had a positive effect on red pigment production, while substrate concentration and temperature had the opposite effect. Maximum bikaverin production was predicted to occur using 289 rpm, 24.3 °C, and 16.4 g/L rice concentration. Experimental validation using 289 rpm, 28 °C, and 20 g/L rice concentration was 6.2% higher than predicted by the model. The present investigation was important for defining the best conditions for the production of bikaverin.
Collapse
|
15
|
Lebeau J, Petit T, Dufossé L, Caro Y. Putative metabolic pathway for the bioproduction of bikaverin and intermediates thereof in the wild Fusarium oxysporum LCP531 strain. AMB Express 2019; 9:186. [PMID: 31748828 PMCID: PMC6868082 DOI: 10.1186/s13568-019-0912-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/04/2019] [Indexed: 12/03/2022] Open
Abstract
Fungal naphthoquinones, like red bikaverin, are of interest due to their growing applications in designing pharmaceutical products. Though considerable work has been done on the elucidation of bikaverin biosynthesis pathway in Fusarium fujikuroi, very few reports are available regarding its bioproduction in F. oxysporum. We are hereby proposing a putative metabolic pathway for bikaverin bioproduction in a wild F. oxysporum strain by cross-linking the pigment profiles we obtained under two different fermentation conditions with literature. Naphthoquinone pigments were extracted with a pressurized liquid extraction method, and characterized by HPLC–DAD and UHPLC-HRMS. The results led to the conclusions that the F. oxysporum LCP531 strain was able to produce bikaverin and its various intermediates, e.g., pre-bikaverin, oxo-pre-bikaverin, dinor-bikaverin, me-oxo-pre-bikaverin, and nor-bikaverin, in submerged cultures in various proportions. To our knowledge, this is the first report of the isolation of these five bikaverin intermediates from F. oxysporum cultures, providing us with steady clues for confirming a bikaverin metabolic pathway as well as some of its regulatory patterns in the F. oxysporum LCP531 strain, based on the previously reported model in F. fujikuroi. Interestingly, norbikaverin accumulated along with bikaverin in mycelial cells when the strain grew on simple carbon and nitrogen sources and additional cofactors. Along bikaverin production, we were able to describe the excretion of the toxin beauvericin as main extrolite exclusively in liquid medium containing complex nitrogen and carbon sources, as well as the isolation of ergosterol derivate in mycelial extracts, which have potential for pharmaceutical uses. Therefore, culture conditions were also concluded to trigger some specific biosynthetic route favoring various metabolites of interest. Such observation is of great significance for selective production of pigments and/or prevention of occurrence of others (aka mycotoxins).
Collapse
|
16
|
Reus E, Nielsen MR, Frandsen RJN. Metabolic and regulatory insights from the experimental horizontal gene transfer of the aurofusarin and bikaverin gene clusters to
Aspergillus nidulans. Mol Microbiol 2019; 112:1684-1700. [DOI: 10.1111/mmi.14376] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Elise Reus
- Department of Biotechnology and Bioengineering Technical University of Denmark Kongens Lyngby Denmark
| | | | | |
Collapse
|
17
|
Zhu J, Sun Z, Shi D, Song S, Lian L, Shi L, Ren A, Yu H, Zhao M. Dual functions of AreA, a GATA transcription factor, on influencing ganoderic acid biosynthesis in Ganoderma lucidum. Environ Microbiol 2019; 21:4166-4179. [PMID: 31381838 DOI: 10.1111/1462-2920.14769] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 08/02/2019] [Indexed: 12/31/2022]
Abstract
Nitrogen metabolism repression (NMR) has been well studied in filamentous fungi, but the molecular mechanism of its effects on fungal secondary metabolism has been generally unexplored. Ganoderic acid (GA) biosynthesis in Ganoderma lucidum differs between ammonia and nitrate nitrogen sources. To explain the functions of NMR in secondary metabolism, AreA, which is a core transcription factor of NMR, was characterized in G. lucidum. The transcription level of AreA was dramatically increased (approximately 4.5-folds), with the nitrate as the sole nitrogen source, compared with that with ammonia as the source. In addition, the expression of related genes involved in NMR was changed (upregulated of MeaB and downregulated of Nmr and GlnA) when AreA was knockdown. Yeast one-hybrid and electrophoretic mobility shift assay results showed that AreA could directly bind to the promoter of fps (encoding farnesyl-diphosphate synthase) to activate its expression. However, GA biosynthesis was increased (27% in the ammonia source and 77% in the nitrate source) in AreAi mutant strains versus that in control strains. These results showed that another important factor must participate in regulating GA biosynthesis other than the direct activation of AreA. Furthermore, we found that the content of nitric oxide (NO) was increased approximately 2.7-folds in the nitrate source compared with that in the ammonia. By adding the NO donor (SNP) or scavenger (cPTIO) and using NR-silenced or NR-overexpressed strains, we found that there was a negative correlation between the NO contents and GA biosynthesis. NO generated by nitrate reductase (NR) during the nitrogen utilization burst and could negatively influence GA biosynthesis. As a global transcription factor, AreA could also regulate the expression of NR. Our studies provide novel insight into the dual functions of AreA in GA biosynthesis during nitrogen assimilation.
Collapse
Affiliation(s)
- Jing Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Zehua Sun
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Dengke Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Shuqi Song
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Lingdan Lian
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Liang Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Ang Ren
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Hanshou Yu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Mingwen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| |
Collapse
|
18
|
Nielsen MR, Sondergaard TE, Giese H, Sørensen JL. Advances in linking polyketides and non-ribosomal peptides to their biosynthetic gene clusters in Fusarium. Curr Genet 2019; 65:1263-1280. [DOI: 10.1007/s00294-019-00998-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 11/24/2022]
|
19
|
Stange S, Steudler S, Delenk H, Werner A, Walther T, Wagenführ A. Influence of the Nutrients on the Biomass and Pigment Production of Chlorociboria aeruginascens. J Fungi (Basel) 2019; 5:jof5020040. [PMID: 31100858 PMCID: PMC6617353 DOI: 10.3390/jof5020040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 11/16/2022] Open
Abstract
The blue-green pigment xylindein, produced by the soft rot fungus Chlorociboria aeruginascens, is of considerable interest for various applications such as the veneer industry or organic semiconductors. The studies presented were performed in order to understand the fungal growth as well as the pigment production of C. aeruginascens. Therefore, various nutrient compositions were investigated. As a result, observations of the formation of xylindein through C. aeruginascens decoupling from growth were made. In the primary metabolism the uncolored biomass is formed. Various carbohydrates were determined as nutrients for the fungus and as a nitrogen source it was observed that the fungus prefers the complex organic nitrogen source, that being yeast extract. Furthermore, it was discovered that the ratio between carbohydrate and nitrogen sources encourages the switch of the metabolism and therewith the production of the blue-green pigment xylindein.
Collapse
Affiliation(s)
- Stephanie Stange
- Faculty of Mechanical Science and Engineering, Institute of Natural Materials Technology, Technische Universität Dresden, Chair of Wood Technology and Fibre Materials Technology, 01069 Dresden, Germany.
| | - Susanne Steudler
- Faculty of Mechanical Science and Engineering, Institute of Natural Materials Technology, Technische Universität Dresden, Chair of Bioprocess Engineering, 01069 Dresden, Germany.
| | - Hubertus Delenk
- Faculty of Mechanical Science and Engineering, Institute of Natural Materials Technology, Technische Universität Dresden, Chair of Wood Technology and Fibre Materials Technology, 01069 Dresden, Germany.
| | - Anett Werner
- Faculty of Mechanical Science and Engineering, Institute of Natural Materials Technology, Technische Universität Dresden, Chair of Bioprocess Engineering, 01069 Dresden, Germany.
| | - Thomas Walther
- Faculty of Mechanical Science and Engineering, Institute of Natural Materials Technology, Technische Universität Dresden, Chair of Bioprocess Engineering, 01069 Dresden, Germany.
| | - André Wagenführ
- Faculty of Mechanical Science and Engineering, Institute of Natural Materials Technology, Technische Universität Dresden, Chair of Wood Technology and Fibre Materials Technology, 01069 Dresden, Germany.
| |
Collapse
|
20
|
Li Y, Wang M, Liu Z, Zhang K, Cui F, Sun W. Towards understanding the biosynthetic pathway for ustilaginoidin mycotoxins in Ustilaginoidea virens. Environ Microbiol 2019; 21:2629-2643. [PMID: 30807673 DOI: 10.1111/1462-2920.14572] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 02/21/2019] [Accepted: 02/23/2019] [Indexed: 12/01/2022]
Abstract
Ustilaginoidins, toxic to plants, animals and human, are one of major types of mycotoxins produced by Ustilaginoidea virens. In this study, a gene cluster containing the polyketide synthase gene UvPKS1 was analysed via gene replacement and biochemical studies to determine ustilaginoidin biosynthetic pathway in U. virens. UvPKS1 was first proven to be responsible for the first step of ustilaginoidin biosynthesis, since neither ustilaginoidin derivatives nor intermediates were produced when UvPKS1 was deleted. Replacement of ugsO greatly reduced ustilaginoidin production but increased the ratios of dehydrogenated/hydrogenated ustilagioidin derivatives. The enhanced growth rate of the ΔugsO mutant indicates that accumulation of certain ustilaginoidin derivatives may adversely affect mycelial growth in U. virens. Deletion of ugsT encoding a putative MFS transporter disrupted the ability to generate ustilaginoidins. The ustilaginoidin derivatives produced in the ΔugsJ mutant all lack C3-methyl, indicating that UgsJ is responsible for C3-methylation. Only monomeric intermediates, such as 3-methyl-dihydro-nor-rubrofusarin, but no ustilaginoidin derivatives were generated in the ΔugsL mutant, indicating that UgsL is responsible for the dimerization of nor-rubrofusarin derivatives to produce ustilaginoidins. However, ugsR2 deletion had no dramatic effect on ustilaginoidin biosynthesis. Together, biochemical analyses with bioinformatics and chemoinformatics uncover a multiple-step enzyme-catalysed pathway for ustilaginoidin biosynthesis in U. virens.
Collapse
Affiliation(s)
- Yuejiao Li
- Department of Plant Pathology, College of Plant Protection and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Ming Wang
- Department of Plant Pathology, College of Plant Protection and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Zhaohui Liu
- Department of Plant Pathology, College of Plant Protection and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Kang Zhang
- Department of Plant Pathology, College of Plant Protection and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Fuhao Cui
- Department of Plant Pathology, College of Plant Protection and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Wenxian Sun
- Department of Plant Pathology, College of Plant Protection and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China.,Department of Plant Pathology, College of Plant Protection, Jilin Agricultural University, Changchun, 130118, Jilin, China
| |
Collapse
|
21
|
Fatema U, Broberg A, Jensen DF, Karlsson M, Dubey M. Functional analysis of polyketide synthase genes in the biocontrol fungus Clonostachys rosea. Sci Rep 2018; 8:15009. [PMID: 30301915 PMCID: PMC6177402 DOI: 10.1038/s41598-018-33391-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/27/2018] [Indexed: 01/07/2023] Open
Abstract
Clonostachys rosea is a mycoparasitic fungus used for biological control of plant diseases. Its genome contains 31 genes putatively encoding for polyketide synthases (PKSs), 75% of which are arranged in biosynthetic gene clusters. Gene expression analysis during C. rosea interactions with the fungal plant pathogens Botrytis cinerea and Fusarium graminearum showed common and species-specific induction of PKS genes. Our data showed a culture media dependent correlation between PKS gene expression and degree of antagonism in C. rosea. The pks22 and pks29 genes were highly induced during fungal-fungal interactions but not during pigmentation, and gene deletion studies revealed that PKS29 was required for full antagonism against B. cinerea, and for biocontrol of fusarium foot rot on barley. Metabolite analysis revealed that Δpks29 strains has a 50% reduced production (P = 0.001) of an unknown polyketide with molecular formula C15H28O3, while Δpks22 strains lost the ability to produce four previously unknown polyketides named Clonorosein A-D. Clonorosein A and B were purified, their structures determined, and showed strong antifungal activity against B. cinerea and F. graminearum. These results show that PKS22 is required for production of antifungal polyketide Clonorosein A-D, and demonstrate the role of PKS29 in antagonism and biocontrol of fungal plant diseases.
Collapse
Affiliation(s)
- Umma Fatema
- Department of Forest Mycology and Plant Pathology, Uppsala Biocenter, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-75007, Uppsala, Sweden.,Department of Plant and Soil Sciences, 412 Plant Science Building 1405 Veterans Drive, University of Kentucky, Lexington, KY, 40546-0312, USA
| | - Anders Broberg
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7015, SE-75007, Uppsala, Sweden
| | - Dan Funck Jensen
- Department of Forest Mycology and Plant Pathology, Uppsala Biocenter, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-75007, Uppsala, Sweden
| | - Magnus Karlsson
- Department of Forest Mycology and Plant Pathology, Uppsala Biocenter, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-75007, Uppsala, Sweden
| | - Mukesh Dubey
- Department of Forest Mycology and Plant Pathology, Uppsala Biocenter, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-75007, Uppsala, Sweden.
| |
Collapse
|
22
|
Abstract
Small-molecule signaling is one major mode of communication within the polymicrobial consortium of soil and rhizosphere. While microbial secondary metabolite (SM) production and responses of individual species have been studied extensively, little is known about potentially conserved roles of SM signals in multilayered symbiotic or antagonistic relationships. Here, we characterize the SM-mediated interaction between the plant-pathogenic bacterium Ralstonia solanacearum and the two plant-pathogenic fungi Fusarium fujikuroi and Botrytis cinerea We show that cellular differentiation and SM biosynthesis in F. fujikuroi are induced by the bacterially produced lipopeptide ralsolamycin (synonym ralstonin A). In particular, fungal bikaverin production is induced and preferentially accumulates in fungal survival spores (chlamydospores) only when exposed to supernatants of ralsolamycin-producing strains of R. solanacearum Although inactivation of bikaverin biosynthesis moderately increases chlamydospore invasion by R. solanacearum, we show that other metabolites such as beauvericin are also induced by ralsolamycin and contribute to suppression of R. solanacearum growth in vitro Based on our findings that bikaverin antagonizes R. solanacearum and that ralsolamycin induces bikaverin biosynthesis in F. fujikuroi, we asked whether other bikaverin-producing fungi show similar responses to ralsolamycin. Examining a strain of B. cinerea that horizontally acquired the bikaverin gene cluster from Fusarium, we found that ralsolamycin induced bikaverin biosynthesis in this fungus. Our results suggest that conservation of microbial SM responses across distantly related fungi may arise from horizontal transfer of protective gene clusters that are activated by conserved regulatory cues, e.g., a bacterial lipopeptide, providing consistent fitness advantages in dynamic polymicrobial networks.IMPORTANCE Bacteria and fungi are ubiquitous neighbors in many environments, including the rhizosphere. Many of these organisms are notorious as economically devastating plant pathogens, but little is known about how they communicate chemically with each other. Here, we uncover a conserved antagonistic communication between the widespread bacterial wilt pathogen Ralstonia solanacearum and plant-pathogenic fungi from disparate genera, Fusarium and Botrytis Exposure of Fusarium fujikuroi to the bacterial lipopeptide ralsolamycin resulted in production of the antibacterial metabolite bikaverin specifically in fungal tissues invaded by Ralstonia Remarkably, ralsolamycin induction of bikaverin was conserved in a Botrytis cinerea isolate carrying a horizontally transferred bikaverin gene cluster. These results indicate that horizontally transferred gene clusters may carry regulatory prompts that contribute to conserved fitness functions in polymicrobial environments.
Collapse
|
23
|
Janevska S, Tudzynski B. Secondary metabolism in Fusarium fujikuroi: strategies to unravel the function of biosynthetic pathways. Appl Microbiol Biotechnol 2017; 102:615-630. [PMID: 29204899 DOI: 10.1007/s00253-017-8679-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/24/2017] [Accepted: 11/24/2017] [Indexed: 01/16/2023]
Abstract
The fungus Fusarium fujikuroi causes bakanae disease of rice due to its ability to produce the plant hormones, the gibberellins. The fungus is also known for producing harmful mycotoxins (e.g., fusaric acid and fusarins) and pigments (e.g., bikaverin and fusarubins). However, for a long time, most of these well-known products could not be linked to biosynthetic gene clusters. Recent genome sequencing has revealed altogether 47 putative gene clusters. Most of them were orphan clusters for which the encoded natural product(s) were unknown. In this review, we describe the current status of our research on identification and functional characterizations of novel secondary metabolite gene clusters. We present several examples where linking known metabolites to the respective biosynthetic genes has been achieved and describe recent strategies and methods to access new natural products, e.g., by genetic manipulation of pathway-specific or global transcritption factors. In addition, we demonstrate that deletion and over-expression of histone-modifying genes is a powerful tool to activate silent gene clusters and to discover their products.
Collapse
Affiliation(s)
- Slavica Janevska
- Institute of Biology and Biotechnology of Plants, University Münster, Schlossplatz 8, 48143, Munster, Germany
| | - Bettina Tudzynski
- Institute of Biology and Biotechnology of Plants, University Münster, Schlossplatz 8, 48143, Munster, Germany.
| |
Collapse
|
24
|
Liu L, Zhang Z, Shao CL, Wang CY. Analysis of the Sequences, Structures, and Functions of Product-Releasing Enzyme Domains in Fungal Polyketide Synthases. Front Microbiol 2017; 8:1685. [PMID: 28928723 PMCID: PMC5591372 DOI: 10.3389/fmicb.2017.01685] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 08/21/2017] [Indexed: 11/14/2022] Open
Abstract
Product-releasing enzyme (PRE) domains in fungal non-reducing polyketide synthases (NR-PKSs) play a crucial role in catalysis and editing during polyketide biosynthesis, especially accelerating final biosynthetic reactions accompanied with product offloading. However, up to date, the systematic knowledge about PRE domains is deficient. In the present study, the relationships between sequences, structures, and functions of PRE domains were analyzed with 574 NR-PKSs of eight groups (I–VIII). It was found that the PRE domains in NR-PKSs could be mainly classified into three types, thioesterase (TE), reductase (R), and metallo-β-lactamase-type TE (MβL-TE). The widely distributed TE or TE-like domains were involved in NR-PKSs of groups I–IV, VI, and VIII. The R domains appeared in NR-PKSs of groups IV and VII, while the physically discrete MβL-TE domains were employed by most NR-PKSs of group V. The changes of catalytic sites and structural characteristics resulted in PRE functional differentiations. The phylogeny revealed that the evolution of TE domains was accompanied by complex functional divergence. The diverse sequence lengths of TE lid-loops affected substrate specificity with different chain lengths. The volume diversification of TE catalytic pockets contributed to catalytic mechanisms with functional differentiations. The above findings may help to understand the crucial catalysis of fungal aromatic polyketide biosyntheses and govern recombination of NR-PKSs to obtain unnatural target products.
Collapse
Affiliation(s)
- Lu Liu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of ChinaQingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China
| | - Zheng Zhang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong UniversityJinan, China
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of ChinaQingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of ChinaQingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China.,Institute of Evolution and Marine Biodiversity, Ocean University of ChinaQingdao, China
| |
Collapse
|
25
|
Lale GJ, Gadre RV. Production of bikaverin by a Fusarium fujikuroi mutant in submerged cultures. AMB Express 2016; 6:34. [PMID: 27142994 PMCID: PMC4854849 DOI: 10.1186/s13568-016-0205-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 04/26/2016] [Indexed: 11/10/2022] Open
Abstract
A variety of mutants having different colony characteristics, morphology and soluble pigmentation were generated from Fusarium fujikuroi by exposure to UV radiation. Mutants were selected that formed dry, compact, small colonies with reddish-violet pigment on regeneration agar plates. The production of bikaverin by Mut-4 was examined in shake flasks in media with different nitrogen and carbon sources. The optimal C: N ratio for the maximal bikaverin production by Mut-4 was 150:1. It produced still higher bikaverin (6.3 g l(-1)) in a medium containing defatted cottonseed meal as nitrogen source, in combination with glucose. Bikaverin produced was extracted, purified and characterized by UV-visible and NMR spectroscopy. Bikaverin production in the present investigation was substantially higher than that reported by earlier investigators in submerged and solid-state fermentations.
Collapse
Affiliation(s)
- G. J. Lale
- Biochemical and Biological Engineering Group, Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, 411008 India
| | - R. V. Gadre
- Biochemical and Biological Engineering Group, Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, 411008 India
| |
Collapse
|
26
|
Effect of Fusarium-Derived Metabolites on the Barrier Integrity of Differentiated Intestinal Porcine Epithelial Cells (IPEC-J2). Toxins (Basel) 2016; 8:toxins8110345. [PMID: 27869761 PMCID: PMC5127141 DOI: 10.3390/toxins8110345] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/20/2016] [Accepted: 11/15/2016] [Indexed: 12/20/2022] Open
Abstract
The human, animal and plant pathogen Fusarium, which contaminates agricultural commodities worldwide, produces numerous secondary metabolites. An example is the thoroughly-investigated deoxynivalenol (DON), which severely impairs gastrointestinal barrier integrity. However, to date, the toxicological profile of other Fusarium-derived metabolites, such as enniatins, beauvericin, moniliformin, apicidin, aurofusarin, rubrofusarin, equisetin and bikaverin, are poorly characterized. Thus we examined their effects—as metabolites alone and as metabolites in combination with DON—on the intestinal barrier function of differentiated intestinal porcine epithelial cells (IPEC-J2) over 72 h. Transepithelial electrical resistance (TEER) was measured at 24-h intervals, followed by evaluation of cell viability using neutral red (NR) assay. Enniatins A, A1, B and B1, apicidin, aurofusarin and beauvericin significantly reduced TEER. Moniliformin, equisetin, bikaverin and rubrofusarin had no effect on TEER. In the case of apicidin, aurofusarin and beauvericin, TEER reductions were further substantiated by the addition of otherwise no-effect DON concentrations. In all cases, viability was unaffected, confirming that TEER reductions were not due to compromised viability. Considering the prevalence of mycotoxin contamination and the diseases associated with intestinal barrier disruption, consumption of contaminated food or feed may have substantial health implications.
Collapse
|
27
|
Lv H, Li J, Wu Y, Garyali S, Wang Y. Transporter and its engineering for secondary metabolites. Appl Microbiol Biotechnol 2016; 100:6119-6130. [PMID: 27209041 DOI: 10.1007/s00253-016-7605-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/28/2016] [Accepted: 05/02/2016] [Indexed: 01/26/2023]
Abstract
Secondary metabolites possess a lot of biological activities, and to achieve their functions, transmembrane transportation is crucial. Elucidation of their transport mechanisms in the cell is critical for discovering ways to improve the production. Here, we have summarized the recent progresses for representative secondary metabolite transporters and also the strategies for uncovering the transporter systems in plants and microbes. We have also discussed the transporter engineering strategies being utilized for improving the heterologous natural product production, which exhibits promising future under the guide of synthetic biology.
Collapse
Affiliation(s)
- Huajun Lv
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jianhua Li
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yingying Wu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Sanjog Garyali
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yong Wang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
28
|
Bhetariya PJ, Prajapati M, Bhaduri A, Mandal RS, Varma A, Madan T, Singh Y, Sarma PU. Phylogenetic and Structural Analysis of Polyketide Synthases in Aspergilli. Evol Bioinform Online 2016; 12:109-19. [PMID: 27199544 PMCID: PMC4863872 DOI: 10.4137/ebo.s32694] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 12/09/2015] [Accepted: 12/13/2015] [Indexed: 12/15/2022] Open
Abstract
Polyketide synthases (PKSs) of Aspergillus species are multidomain and multifunctional megaenzymes that play an important role in the synthesis of diverse polyketide compounds. Putative PKS protein sequences from Aspergillus species representing medically, agriculturally, and industrially important Aspergillus species were chosen and screened for in silico studies. Six candidate Aspergillus species, Aspergillus fumigatus Af293, Aspergillus flavus NRRL3357, Aspergillus niger CBS 513.88, Aspergillus terreus NIH2624, Aspergillus oryzae RIB40, and Aspergillus clavatus NRRL1, were selected to study the PKS phylogeny. Full-length PKS proteins and only ketosynthase (KS) domain sequence were retrieved for independent phylogenetic analysis from the aforementioned species, and phylogenetic analysis was performed with characterized fungal PKS. This resulted into grouping of Aspergilli PKSs into nonreducing (NR), partially reducing (PR), and highly reducing (HR) PKS enzymes. Eight distinct clades with unique domain arrangements were classified based on homology with functionally characterized PKS enzymes. Conserved motif signatures corresponding to each type of PKS were observed. Three proteins from Protein Data Bank corresponding to NR, PR, and HR type of PKS (XP_002384329.1, XP_753141.2, and XP_001402408.2, respectively) were selected for mapping of conserved motifs on three-dimensional structures of KS domain. Structural variations were found at the active sites on modeled NR, PR, and HR enzymes of Aspergillus. It was observed that the number of iteration cycles was dependent on the size of the cavity in the active site of the PKS enzyme correlating with a type with reducing or NR products, such as pigment, 6MSA, and lovastatin. The current study reports the grouping and classification of PKS proteins of Aspergilli for possible exploration of novel polyketides based on sequence homology; this information can be useful for selection of PKS for polyketide exploration and specific detection of Aspergilli.
Collapse
Affiliation(s)
- Preetida J Bhetariya
- Division of Plant Pathology, Indian Agricultural Research Institute, Pusa Campus, New Delhi, India
| | - Madhvi Prajapati
- Division of Plant Pathology, Indian Agricultural Research Institute, Pusa Campus, New Delhi, India
| | - Asani Bhaduri
- Cluster innovation Centre, University of Delhi, Delhi, India
| | - Rahul Shubhra Mandal
- Biomedical Informatics Center, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Anupam Varma
- Division of Plant Pathology, Indian Agricultural Research Institute, Pusa Campus, New Delhi, India
| | - Taruna Madan
- National Institute for Research in Reproductive Health (ICMR), Mumbai, India
| | - Yogendra Singh
- Department of Zoology, University of Delhi, New Delhi, India
| | - P Usha Sarma
- Division of Plant Pathology, Indian Agricultural Research Institute, Pusa Campus, New Delhi, India
| |
Collapse
|
29
|
Insights into natural products biosynthesis from analysis of 490 polyketide synthases from Fusarium. Fungal Genet Biol 2016; 89:37-51. [PMID: 26826610 DOI: 10.1016/j.fgb.2016.01.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/14/2016] [Accepted: 01/16/2016] [Indexed: 01/02/2023]
Abstract
Species of the fungus Fusarium collectively cause disease on almost all crop plants and produce numerous natural products (NPs), including some of the mycotoxins of greatest concern to agriculture. Many Fusarium NPs are derived from polyketide synthases (PKSs), large multi-domain enzymes that catalyze sequential condensation of simple carboxylic acids to form polyketides. To gain insight into the biosynthesis of polyketide-derived NPs in Fusarium, we retrieved 488 PKS gene sequences from genome sequences of 31 species of the fungus. In addition to these apparently functional PKS genes, the genomes collectively included 81 pseudogenized PKS genes. Phylogenetic analysis resolved the PKS genes into 67 clades, and based on multiple lines of evidence, we propose that homologs in each clade are responsible for synthesis of a polyketide that is distinct from those synthesized by PKSs in other clades. The presence and absence of PKS genes among the species examined indicated marked differences in distribution of PKS homologs. Comparisons of Fusarium PKS genes and genes flanking them to those from other Ascomycetes provided evidence that Fusarium has the genetic potential to synthesize multiple NPs that are the same or similar to those reported in other fungi, but that have not yet been reported in Fusarium. The results also highlight ways in which such analyses can help guide identification of novel Fusarium NPs and differences in NP biosynthetic capabilities that exist among fungi.
Collapse
|
30
|
Arndt B, Studt L, Wiemann P, Osmanov H, Kleigrewe K, Köhler J, Krug I, Tudzynski B, Humpf HU. Genetic engineering, high resolution mass spectrometry and nuclear magnetic resonance spectroscopy elucidate the bikaverin biosynthetic pathway in Fusarium fujikuroi. Fungal Genet Biol 2015; 84:26-36. [DOI: 10.1016/j.fgb.2015.09.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/09/2015] [Accepted: 09/14/2015] [Indexed: 01/17/2023]
|
31
|
Chiara M, Fanelli F, Mulè G, Logrieco AF, Pesole G, Leslie JF, Horner DS, Toomajian C. Genome Sequencing of Multiple Isolates Highlights Subtelomeric Genomic Diversity within Fusarium fujikuroi. Genome Biol Evol 2015; 7:3062-9. [PMID: 26475319 PMCID: PMC5635591 DOI: 10.1093/gbe/evv198] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Comparisons of draft genome sequences of three geographically distinct isolates of Fusarium fujikuroi with two recently published genome sequences from the same species suggest diverse profiles of secondary metabolite production within F. fujikuroi. Species- and lineage-specific genes, many of which appear to exhibit expression profiles that are consistent with roles in host–pathogen interactions and adaptation to environmental changes, are concentrated in subtelomeric regions. These genomic compartments also exhibit distinct gene densities and compositional characteristics with respect to other genomic partitions, and likely play a role in the generation of molecular diversity. Our data provide additional evidence that gene duplication, divergence, and differential loss play important roles in F. fujikuroi genome evolution and suggest that hundreds of lineage-specific genes might have been acquired through horizontal gene transfer.
Collapse
Affiliation(s)
- Matteo Chiara
- Department of Biosciences, University of Milan, Italy Institute of Biomembranes and Bioenergetics, National Research Council, Bari, Italy
| | - Francesca Fanelli
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| | - Giuseppina Mulè
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| | - Antonio F Logrieco
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| | - Graziano Pesole
- Institute of Biomembranes and Bioenergetics, National Research Council, Bari, Italy Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Italy National Institute of Biostructures and Biosystems (INBB), Rome, Italy Center of Excellence in Comparative Genomics, University of Bari, Italy
| | - John F Leslie
- Department of Plant Pathology, Kansas State University, Manhattan
| | | | | |
Collapse
|
32
|
Pradeep FS, Palaniswamy M, Ravi S, Thangamani A, Pradeep B. Larvicidal activity of a novel isoquinoline type pigment from Fusarium moniliforme KUMBF1201 against Aedes aegypti and Anopheles stephensi. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.05.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Yang S, Xie J, Hu N, Liu Y, Zhang J, Ye X, Liu Z. Bioconversion of Gibberellin Fermentation Residue into Feed Supplement and Organic Fertilizer Employing Housefly (Musca domestica L.) Assisted by Corynebacterium variabile. PLoS One 2015; 10:e0110809. [PMID: 25992605 PMCID: PMC4439168 DOI: 10.1371/journal.pone.0110809] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 09/23/2014] [Indexed: 11/25/2022] Open
Abstract
The accumulation of a considerable quantity of gibberellin fermentation residue (GFR) during gibberellic acid A3 (GA3) production not only results in the waste of many resources, but also poses a potential hazard to the environment, indicating that the safe treatment of GFR has become an urgent issue for GA3 industry. The key to recycle GFR is converting it into an available resource and removing the GA3 residue. To this end, we established a co-bioconversion process in this study using house fly larvae (HFL) and microbes (Corynebacterium variabile) to convert GFR into insect biomass and organic fertilizer. About 85.5% GA3 in the GFR was removed under the following optimized solid-state fermentation conditions: 60% GFR, 40% rice straw powder, pH 8.5 and 6 days at 26°C. A total of 371g housefly larvae meal and 2,064g digested residue were bio-converted from 3,500g raw GFR mixture contaning1, 400g rice straw in the unit of (calculated) dry matter. HFL meal derived from GFR contained 56.4% protein, 21.6% fat, and several essential amino acids, suggesting that it is a potential alternative animal feed protein source. Additionally, the digested GFR could be utilized as an organic fertilizer with a content of 3.2% total nitrogen, 2.0% inorganic phosphorus, 1.3% potassium and 91.5% organic matter. This novel GFR bio-conversion method can mitigate potential environmental pollution and recycle the waste resources.
Collapse
Affiliation(s)
- Sen Yang
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, P. R. China
| | - Jiufeng Xie
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, P. R. China
| | - Nan Hu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, P. R. China
| | - Yixiong Liu
- Jiang Xi New Reyphon Biochemical Co., LTD, Ji An City, JiangXi, P. R. China
| | - Jiner Zhang
- Jiang Xi New Reyphon Biochemical Co., LTD, Ji An City, JiangXi, P. R. China
| | - Xiaobin Ye
- Jiang Xi New Reyphon Biochemical Co., LTD, Ji An City, JiangXi, P. R. China
| | - Ziduo Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
- * E-mail:
| |
Collapse
|
34
|
Cacho RA, Tang Y, Chooi YH. Next-generation sequencing approach for connecting secondary metabolites to biosynthetic gene clusters in fungi. Front Microbiol 2015; 5:774. [PMID: 25642215 PMCID: PMC4294208 DOI: 10.3389/fmicb.2014.00774] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 12/17/2014] [Indexed: 12/20/2022] Open
Abstract
Genomics has revolutionized the research on fungal secondary metabolite (SM) biosynthesis. To elucidate the molecular and enzymatic mechanisms underlying the biosynthesis of a specific SM compound, the important first step is often to find the genes that responsible for its synthesis. The accessibility to fungal genome sequences allows the bypass of the cumbersome traditional library construction and screening approach. The advance in next-generation sequencing (NGS) technologies have further improved the speed and reduced the cost of microbial genome sequencing in the past few years, which has accelerated the research in this field. Here, we will present an example work flow for identifying the gene cluster encoding the biosynthesis of SMs of interest using an NGS approach. We will also review the different strategies that can be employed to pinpoint the targeted gene clusters rapidly by giving several examples stemming from our work.
Collapse
Affiliation(s)
- Ralph A Cacho
- Chemical and Biomolecular Engineering Department, University of California Los Angeles, Los Angeles, CA, USA
| | - Yi Tang
- Chemical and Biomolecular Engineering Department, University of California Los Angeles, Los Angeles, CA, USA ; Chemistry and Biochemistry Department, University of California Los Angeles, Los Angeles, CA, USA
| | - Yit-Heng Chooi
- Plant Sciences Division, Research School of Biology, The Australian National University Canberra, ACT, Australia
| |
Collapse
|
35
|
Tudzynski B. Nitrogen regulation of fungal secondary metabolism in fungi. Front Microbiol 2014; 5:656. [PMID: 25506342 PMCID: PMC4246892 DOI: 10.3389/fmicb.2014.00656] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 11/13/2014] [Indexed: 11/13/2022] Open
Abstract
Fungi occupy diverse environments where they are constantly challenged by stressors such as extreme pH, temperature, UV exposure, and nutrient deprivation. Nitrogen is an essential requirement for growth, and the ability to metabolize a wide variety of nitrogen sources enables fungi to colonize different environmental niches and survive nutrient limitations. Favored nitrogen sources, particularly ammonium and glutamine, are used preferentially, while the expression of genes required for the use of various secondary nitrogen sources is subject to a regulatory mechanism called nitrogen metabolite repression. Studies on gene regulation in response to nitrogen availability were carried out first in Saccharomyces cerevisiae, Aspergillus nidulans, and Neurospora crassa. These studies revealed that fungi respond to changes in nitrogen availability with physiological and morphological alterations and activation of differentiation processes. In all fungal species studied, the major GATA transcription factor AreA and its co-repressor Nmr are central players of the nitrogen regulatory network. In addition to growth and development, the quality and quantity of nitrogen also affects the formation of a broad range of secondary metabolites (SMs). Recent studies, mainly on species of the genus Fusarium, revealed that AreA does not only regulate a large set of nitrogen catabolic genes, but can also be involved in regulating production of SMs. Furthermore, several other regulators, e.g., a second GATA transcription factor, AreB, that was proposed to negatively control nitrogen catabolic genes by competing with AreA for binding to GATA elements, was shown to act as activator of some nitrogen-repressed as well as nitrogen-induced SM gene clusters. This review highlights our latest understanding of canonical (AreA-dependent) and non-canonical nitrogen regulation mechanisms by which fungi may regulate biosynthesis of certain SMs in response to nitrogen availability.
Collapse
Affiliation(s)
- Bettina Tudzynski
- Institute of Biology and Biotechnology of Plants, Westfaelische Wilhelms-University Muenster Muenster, Germany
| |
Collapse
|
36
|
Kosa NM, Pham KM, Burkart MD. Chemoenzymatic exchange of phosphopantetheine on protein and peptide. Chem Sci 2014; 5:1179-1186. [PMID: 26998215 PMCID: PMC4795179 DOI: 10.1039/c3sc53154f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Evaluation of new acyl carrier protein hydrolase (AcpH, EC 3.1.4.14) homologs from proteobacteria and cyanobacteria reveals significant variation in substrate selectivity and kinetic parameters for phosphopantetheine hydrolysis from carrier proteins. Evaluation with carrier proteins from both primary and secondary metabolic pathways reveals an overall preference for acyl carrier protein (ACP) substrates from type II fatty acid synthases, as well as variable activity for polyketide synthase ACPs and peptidyl carrier proteins (PCP) from non-ribosomal peptide synthases. We also demonstrate the kinetic parameters of these homologs for AcpP and the 11-mer peptide substrate YbbR. These findings enable the fully reversible labeling of all three classes of natural product synthase carrier proteins as well as full and minimal fusion protein constructs.
Collapse
Affiliation(s)
- Nicolas M. Kosa
- Department of Chemistry and Biochemistry, University of California, San Diego (UCSD), La Jolla, California, USA
| | - Kevin M. Pham
- Department of Chemistry and Biochemistry, University of California, San Diego (UCSD), La Jolla, California, USA
| | - Michael D. Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego (UCSD), La Jolla, California, USA
| |
Collapse
|
37
|
|
38
|
The effects of different yeast extracts on secondary metabolite production in Fusarium. Int J Food Microbiol 2014; 170:55-60. [DOI: 10.1016/j.ijfoodmicro.2013.10.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/22/2013] [Accepted: 10/28/2013] [Indexed: 01/13/2023]
|
39
|
Van Nguyen T, Kröger C, Bönnighausen J, Schäfer W, Bormann J. The ATF/CREB transcription factor Atf1 is essential for full virulence, deoxynivalenol production, and stress tolerance in the cereal pathogen Fusarium graminearum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1378-1394. [PMID: 23945004 DOI: 10.1094/mpmi-04-13-0125-r] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Fusarium graminearum is a necrotrophic plant pathogen of cereals that produces mycotoxins such as deoxynivalenol (DON) and zearalenone (ZEA) in grains. The stress-activated mitogen-activated protein kinase FgOS-2 is a central regulator in F. graminearum and controls, among others, virulence and DON and ZEA production. Here, we characterized the ATF/CREB-activating transcription factor FgAtf1, a regulator that functions downstream of FgOS-2. We created deletion and overexpression mutants of Fgatf1, the latter being also in an FgOS-2 deletion mutant. FgAtf1 localizes to the nucleus and appears to interact with FgOS-2 under osmotic stress conditions. Deletion mutants in Fgatf1 (ΔFgatf1) are more sensitive to osmotic stress and less sensitive to oxidative stress compared with the wild type. Furthermore, sexual reproduction is delayed. ΔFgatf1 strains produced higher amounts of DON under in vitro induction conditions than that of the wild type. However, during wheat infection, DON production by ΔFgatf1 is strongly reduced. The ΔFgatf1 strains displayed strongly reduced virulence to wheat and maize. Interestingly, constitutive expression of Fgatf1 in the wild type led to hypervirulence on wheat, maize, and Brachypodium distachyon. Moreover, constitutive expression of Fgatf1 in the ΔFgOS-2 mutant background almost complements ΔFgOS-2-phenotypes. These data suggest that FgAtf1 may be the most important transcription factor regulated by FgOS-2.
Collapse
|
40
|
Two histone deacetylases, FfHda1 and FfHda2, are important for Fusarium fujikuroi secondary metabolism and virulence. Appl Environ Microbiol 2013; 79:7719-34. [PMID: 24096420 PMCID: PMC3837819 DOI: 10.1128/aem.01557-13] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Histone modifications are crucial for the regulation of secondary metabolism in various filamentous fungi. Here we studied the involvement of histone deacetylases (HDACs) in secondary metabolism in the phytopathogenic fungus Fusarium fujikuroi, a known producer of several secondary metabolites, including phytohormones, pigments, and mycotoxins. Deletion of three Zn(2+)-dependent HDAC-encoding genes, ffhda1, ffhda2, and ffhda4, indicated that FfHda1 and FfHda2 regulate secondary metabolism, whereas FfHda4 is involved in developmental processes but is dispensable for secondary-metabolite production in F. fujikuroi. Single deletions of ffhda1 and ffhda2 resulted not only in an increase or decrease but also in derepression of metabolite biosynthesis under normally repressing conditions. Moreover, double deletion of both the ffhda1 and ffhda2 genes showed additive but also distinct phenotypes with regard to secondary-metabolite biosynthesis, and both genes are required for gibberellic acid (GA)-induced bakanae disease on the preferred host plant rice, as Δffhda1 Δffhda2 mutants resemble the uninfected control plant. Microarray analysis with a Δffhda1 mutant that has lost the major HDAC revealed differential expression of secondary-metabolite gene clusters, which was subsequently verified by a combination of chemical and biological approaches. These results indicate that HDACs are involved not only in gene silencing but also in the activation of some genes. Chromatin immunoprecipitation with the Δffhda1 mutant revealed significant alterations in the acetylation state of secondary-metabolite gene clusters compared to the wild type, thereby providing insights into the regulatory mechanism at the chromatin level. Altogether, manipulation of HDAC-encoding genes constitutes a powerful tool to control secondary metabolism in filamentous fungi.
Collapse
|
41
|
Giese H, Sondergaard TE, Sørensen JL. The AreA transcription factor in Fusarium graminearum regulates the use of some nonpreferred nitrogen sources and secondary metabolite production. Fungal Biol 2013; 117:814-21. [DOI: 10.1016/j.funbio.2013.10.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 09/26/2013] [Accepted: 10/18/2013] [Indexed: 01/06/2023]
|
42
|
Influence of carbohydrates on secondary metabolism in Fusarium avenaceum. Toxins (Basel) 2013; 5:1655-63. [PMID: 24064720 PMCID: PMC3798878 DOI: 10.3390/toxins5091655] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 09/16/2013] [Accepted: 09/16/2013] [Indexed: 01/07/2023] Open
Abstract
Fusarium avenaceum is a widespread pathogen of important crops in the temperate climate zones that can produce many bioactive secondary metabolites, including moniliformin, fusarin C, antibiotic Y, 2-amino-14,16-dimethyloctadecan-3-ol (2-AOD-3-ol), chlamydosporol, aurofusarin and enniatins. Here, we examine the production of these secondary metabolites in response to cultivation on different carbon sources in order to gain insight into the regulation and production of secondary metabolites in F. avenaceum. Seven monosaccharides (arabinose, xylose, fructose, sorbose, galactose, mannose, glucose), five disaccharides (cellobiose, lactose, maltose, sucrose and trehalose) and three polysaccharides (dextrin, inulin and xylan) were used as substrates. Three F. avenaceum strains were used in the experiments. These were all able to grow and produce aurofusarin on the tested carbon sources. Moniliformin and enniatins were produced on all carbon types, except on lactose, which suggest a common conserved regulation mechanism. Differences in the strains was observed for production of fusarin C, 2-AOD-3-ol, chlamydosporol and antibiotic Y, which suggests that carbon source plays a role in the regulation of their biosynthesis.
Collapse
|
43
|
The polyketide synthase gene pks4 of Trichoderma reesei provides pigmentation and stress resistance. EUKARYOTIC CELL 2013; 12:1499-508. [PMID: 24036343 DOI: 10.1128/ec.00103-13] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Species of the fungal genus Trichoderma (Hypocreales, Ascomycota) are well-known for their production of various secondary metabolites. Nonribosomal peptides and polyketides represent a major portion of these products. In a recent phylogenomic investigation of Trichoderma polyketide synthase (PKS)-encoding genes, the pks4 from T. reesei was shown to be an orthologue of pigment-forming PKSs involved in synthesis of aurofusarin and bikaverin in Fusarium spp. In this study, we show that deletion of this gene in T. reesei results in loss of green conidial pigmentation and in pigmentation alteration of teleomorph structures. It also has an impact on conidial cell wall stability and the antagonistic abilities of T. reesei against other fungi, including formation of inhibitory metabolites. In addition, deletion of pks4 significantly influences the expression of other PKS-encoding genes of T. reesei. To our knowledge, this is the first indication that a low-molecular-weight pigment-forming PKS is involved in defense, mechanical stability, and stress resistance in fungi.
Collapse
|
44
|
Probing the selectivity and protein·protein interactions of a nonreducing fungal polyketide synthase using mechanism-based crosslinkers. ACTA ACUST UNITED AC 2013; 20:1135-46. [PMID: 23993461 DOI: 10.1016/j.chembiol.2013.07.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 06/28/2013] [Accepted: 07/07/2013] [Indexed: 01/05/2023]
Abstract
Protein·protein interactions, which often involve interactions among an acyl carrier protein (ACP) and ACP partner enzymes, are important for coordinating polyketide biosynthesis. However, the nature of such interactions is not well understood, especially in the fungal nonreducing polyketide synthases (NR-PKSs) that biosynthesize toxic and pharmaceutically important polyketides. Here, we employ mechanism-based crosslinkers to successfully probe ACP and ketosynthase (KS) domain interactions in NR-PKSs. We found that crosslinking efficiency is closely correlated with the strength of ACP·KS interactions and that KS demonstrates strong starter unit selectivity. We further identified positively charged surface residues by KS mutagenesis, which mediates key interactions with the negatively charged ACP surface. Such complementary/matching contact pairs can serve as "adapter surfaces" for future efforts to generate new polyketides using NR-PKSs.
Collapse
|
45
|
Wiemann P, Sieber CMK, von Bargen KW, Studt L, Niehaus EM, Espino JJ, Huß K, Michielse CB, Albermann S, Wagner D, Bergner SV, Connolly LR, Fischer A, Reuter G, Kleigrewe K, Bald T, Wingfield BD, Ophir R, Freeman S, Hippler M, Smith KM, Brown DW, Proctor RH, Münsterkötter M, Freitag M, Humpf HU, Güldener U, Tudzynski B. Deciphering the cryptic genome: genome-wide analyses of the rice pathogen Fusarium fujikuroi reveal complex regulation of secondary metabolism and novel metabolites. PLoS Pathog 2013; 9:e1003475. [PMID: 23825955 PMCID: PMC3694855 DOI: 10.1371/journal.ppat.1003475] [Citation(s) in RCA: 321] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 05/18/2013] [Indexed: 12/17/2022] Open
Abstract
The fungus Fusarium fujikuroi causes "bakanae" disease of rice due to its ability to produce gibberellins (GAs), but it is also known for producing harmful mycotoxins. However, the genetic capacity for the whole arsenal of natural compounds and their role in the fungus' interaction with rice remained unknown. Here, we present a high-quality genome sequence of F. fujikuroi that was assembled into 12 scaffolds corresponding to the 12 chromosomes described for the fungus. We used the genome sequence along with ChIP-seq, transcriptome, proteome, and HPLC-FTMS-based metabolome analyses to identify the potential secondary metabolite biosynthetic gene clusters and to examine their regulation in response to nitrogen availability and plant signals. The results indicate that expression of most but not all gene clusters correlate with proteome and ChIP-seq data. Comparison of the F. fujikuroi genome to those of six other fusaria revealed that only a small number of gene clusters are conserved among these species, thus providing new insights into the divergence of secondary metabolism in the genus Fusarium. Noteworthy, GA biosynthetic genes are present in some related species, but GA biosynthesis is limited to F. fujikuroi, suggesting that this provides a selective advantage during infection of the preferred host plant rice. Among the genome sequences analyzed, one cluster that includes a polyketide synthase gene (PKS19) and another that includes a non-ribosomal peptide synthetase gene (NRPS31) are unique to F. fujikuroi. The metabolites derived from these clusters were identified by HPLC-FTMS-based analyses of engineered F. fujikuroi strains overexpressing cluster genes. In planta expression studies suggest a specific role for the PKS19-derived product during rice infection. Thus, our results indicate that combined comparative genomics and genome-wide experimental analyses identified novel genes and secondary metabolites that contribute to the evolutionary success of F. fujikuroi as a rice pathogen.
Collapse
Affiliation(s)
- Philipp Wiemann
- Institut für Biologie und Biotechnologie der Pflanzen, Molecular Biology and Biotechnology of Fungi, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Christian M. K. Sieber
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Katharina W. von Bargen
- Institute for Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, Münster, Germany
| | - Lena Studt
- Institut für Biologie und Biotechnologie der Pflanzen, Molecular Biology and Biotechnology of Fungi, Westfälische Wilhelms-Universität Münster, Münster, Germany
- Institute for Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, Münster, Germany
| | - Eva-Maria Niehaus
- Institut für Biologie und Biotechnologie der Pflanzen, Molecular Biology and Biotechnology of Fungi, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Jose J. Espino
- Institut für Biologie und Biotechnologie der Pflanzen, Molecular Biology and Biotechnology of Fungi, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Kathleen Huß
- Institut für Biologie und Biotechnologie der Pflanzen, Molecular Biology and Biotechnology of Fungi, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Caroline B. Michielse
- Institut für Biologie und Biotechnologie der Pflanzen, Molecular Biology and Biotechnology of Fungi, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Sabine Albermann
- Institut für Biologie und Biotechnologie der Pflanzen, Molecular Biology and Biotechnology of Fungi, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Dominik Wagner
- Institut für Biologie und Biotechnologie der Pflanzen, Molecular Biology and Biotechnology of Fungi, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Sonja V. Bergner
- Institut für Biologie und Biotechnologie der Pflanzen, Plant Biochemistry and Biotechnology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Lanelle R. Connolly
- Department of Biochemistry and Biophysics, Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America
| | - Andreas Fischer
- Institut of Genetics/Developmental Genetics, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Gunter Reuter
- Institut of Genetics/Developmental Genetics, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Karin Kleigrewe
- Institute for Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, Münster, Germany
| | - Till Bald
- Institut für Biologie und Biotechnologie der Pflanzen, Plant Biochemistry and Biotechnology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Brenda D. Wingfield
- Department of Genetics, University of Pretoria, Hatfield, Pretoria, South Africa
| | - Ron Ophir
- Institute of Plant Sciences, Genomics, Agricultural Research Organization (ARO), The Volcani Center, Bet-Dagan, Israel
| | - Stanley Freeman
- Department of Plant Pathology, Agricultural Research Organization (ARO), The Volcani Center, Bet-Dagan, Israel
| | - Michael Hippler
- Institut für Biologie und Biotechnologie der Pflanzen, Plant Biochemistry and Biotechnology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Kristina M. Smith
- Department of Biochemistry and Biophysics, Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America
| | - Daren W. Brown
- National Center for Agricultural Utilization Research, United States Department of Agriculture, Peoria, Illinois, United States of America
| | - Robert H. Proctor
- National Center for Agricultural Utilization Research, United States Department of Agriculture, Peoria, Illinois, United States of America
| | - Martin Münsterkötter
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America
| | - Hans-Ulrich Humpf
- Institute for Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, Münster, Germany
| | - Ulrich Güldener
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Bettina Tudzynski
- Institut für Biologie und Biotechnologie der Pflanzen, Molecular Biology and Biotechnology of Fungi, Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
46
|
Albermann S, Elter T, Teubner A, Krischke W, Hirth T, Tudzynski B. Characterization of novel mutants with an altered gibberellin spectrum in comparison to different wild-type strains of Fusarium fujikuroi. Appl Microbiol Biotechnol 2013; 97:7779-90. [PMID: 23636694 DOI: 10.1007/s00253-013-4917-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/04/2013] [Accepted: 04/08/2013] [Indexed: 11/30/2022]
Abstract
The rice pathogen Fusarium fujikuroi is known for producing a wide range of secondary metabolites such as pigments, mycotoxins, and a group of phytohormones, the gibberellic acids (GAs). Bioactive forms of these diterpenes are responsible for hyperelongation of rice stems, yellowish chlorotic leaves, and reduced grain formation during the bakanae disease leading to severely decreased crop yields. GAs are also successfully applied in agriculture and horticulture as plant growth regulators to enhance crop yields, fruit size, and to induce earlier flowering. In this study, six F. fujikuroi wild-type and mutant strains differing in GA yields and the spectrum of produced GAs were cultivated in high-quality lab fermenters for optimal temperature and pH control and compared regarding their growth, GA production, and GA gene expression levels. Comparative analysis of the six strains revealed that strain 6314/ΔDES/ΔPPT1, holding mutations in two GA biosynthetic genes and an additional deletion of the 4'-phosphopantetheinyl transferase gene PPT1, exhibits the highest total GA amount. Expression studies of two GA biosynthesis genes, CPS/KS and DES, showed a constantly high expression level for both genes under production conditions (nitrogen limitation) in all strains. By cultivating these genetically engineered mutant strains, we were able to produce not only mixtures of different bioactive GAs (GA3, GA4, and GA7) but also pure GA4 or GA7. In addition, we show that the GA yields are not only determined by different production rates, but also by different decomposition rates of the end products GA3, GA4, and GA7 explaining the varying GA levels of genetically almost identical mutant strains.
Collapse
Affiliation(s)
- Sabine Albermann
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms Universiät Münster, Schlossplatz 8, 48143, Münster, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Transcriptome analysis of candidate genes and signaling pathways associated with light-induced brown film formation in Lentinula edodes. Appl Microbiol Biotechnol 2013; 97:4977-89. [DOI: 10.1007/s00253-013-4832-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 02/27/2013] [Accepted: 03/03/2013] [Indexed: 01/10/2023]
|
48
|
Studt L, Humpf HU, Tudzynski B. Signaling governed by G proteins and cAMP is crucial for growth, secondary metabolism and sexual development in Fusarium fujikuroi. PLoS One 2013; 8:e58185. [PMID: 23469152 PMCID: PMC3585259 DOI: 10.1371/journal.pone.0058185] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 01/31/2013] [Indexed: 11/18/2022] Open
Abstract
The plant-pathogenic fungus Fusarium fujikuroi is a notorious rice pathogen causing hyper-elongation of infected plants due to the production of gibberellic acids (GAs). In addition to GAs, F. fujikuroi produces a wide range of other secondary metabolites, such as fusarins, fusaric acid or the red polyketides bikaverins and fusarubins. The recent availability of the fungal genome sequence for this species has revealed the potential of many more putative secondary metabolite gene clusters whose products remain to be identified. However, the complex regulation of secondary metabolism is far from being understood. Here we studied the impact of the heterotrimeric G protein and the cAMP-mediated signaling network, including the regulatory subunits of the cAMP-dependent protein kinase (PKA), to study their effect on colony morphology, sexual development and regulation of bikaverins, fusarubins and GAs. We demonstrated that fusarubin biosynthesis is negatively regulated by at least two Gα subunits, FfG1 and FfG3, which both function as stimulators of the adenylyl cyclase FfAC. Surprisingly, the primary downstream target of the adenylyl cyclase, the PKA, is not involved in the regulation of fusarubins, suggesting that additional, yet unidentified, cAMP-binding protein(s) exist. In contrast, bikaverin biosynthesis is significantly reduced in ffg1 and ffg3 deletion mutants and positively regulated by FfAC and FfPKA1, while GA biosynthesis depends on the active FfAC and FfPKA2 in an FfG1- and FfG3-independent manner. In addition, we provide evidence that G Protein-mediated/cAMP signaling is important for growth in F. fujikuroi because deletion of ffg3, ffac and ffpka1 resulted in impaired growth on minimal and rich media. Finally, sexual crosses of ffg1 mutants showed the importance of a functional FfG1 protein for development of perithecia in the mating strain that carries the MAT1-1 idiomorph.
Collapse
Affiliation(s)
- Lena Studt
- Institut für Lebensmittelchemie, Westfälische Wilhelms-Universität, Münster, Germany
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität, Münster, Germany
| | - Hans-Ulrich Humpf
- Institut für Lebensmittelchemie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Bettina Tudzynski
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität, Münster, Germany
- * E-mail:
| |
Collapse
|
49
|
Light-dependent functions of the Fusarium fujikuroi CryD DASH cryptochrome in development and secondary metabolism. Appl Environ Microbiol 2013; 79:2777-88. [PMID: 23417004 DOI: 10.1128/aem.03110-12] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
DASH (Drosophila, Arabidopsis, Synechocystis, human) cryptochromes (cry-DASHs) constitute a subgroup of the photolyase cryptochrome family with diverse light-sensing roles, found in most taxonomical groups. The genome of Fusarium fujikuroi, a phytopathogenic fungus with a rich secondary metabolism, contains a gene encoding a putative cry-DASH, named CryD. The expression of the cryD gene is induced by light in the wild type, but not in mutants of the "white collar" gene wcoA. Targeted ΔcryD mutants show light-dependent phenotypic alterations, including changes in morphology and pigmentation, which disappear upon reintroduction of a wild-type cryD allele. In addition to microconidia, the colonies of the ΔcryD mutants produced under illumination and nitrogen starvation large septated spores called macroconidia, absent in wild-type colonies. The ΔcryD mutants accumulated similar amounts of carotenoids to the control strain under constant illumination, but produced much larger amounts of bikaverin under nitrogen starvation, indicating a repressing role for CryD in this biosynthetic pathway. Additionally, a moderate photoinduction of gibberellin production was exhibited by the wild type but not by the ΔcryD mutants. The phenotypic alterations of the ΔcryD mutants were only noticeable in the light, as expected from the low expression of cryD in the dark, but did not correlate with mRNA levels for structural genes of the bikaverin or gibberellin biosynthetic pathways, suggesting the participation of CryD in posttranscriptional regulatory mechanisms. This is the first report on the participation of a cry-DASH protein in the regulation of fungal secondary metabolism.
Collapse
|
50
|
Schumacher J, Gautier A, Morgant G, Studt L, Ducrot PH, Le Pêcheur P, Azeddine S, Fillinger S, Leroux P, Tudzynski B, Viaud M. A functional bikaverin biosynthesis gene cluster in rare strains of Botrytis cinerea is positively controlled by VELVET. PLoS One 2013; 8:e53729. [PMID: 23308280 PMCID: PMC3538735 DOI: 10.1371/journal.pone.0053729] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 12/04/2012] [Indexed: 01/17/2023] Open
Abstract
The gene cluster responsible for the biosynthesis of the red polyketidic pigment bikaverin has only been characterized in Fusarium ssp. so far. Recently, a highly homologous but incomplete and nonfunctional bikaverin cluster has been found in the genome of the unrelated phytopathogenic fungus Botrytis cinerea. In this study, we provided evidence that rare B. cinerea strains such as 1750 have a complete and functional cluster comprising the six genes orthologous to Fusarium fujikuroi ffbik1-ffbik6 and do produce bikaverin. Phylogenetic analysis confirmed that the whole cluster was acquired from Fusarium through a horizontal gene transfer (HGT). In the bikaverin-nonproducing strain B05.10, the genes encoding bikaverin biosynthesis enzymes are nonfunctional due to deleterious mutations (bcbik2-3) or missing (bcbik1) but interestingly, the genes encoding the regulatory proteins BcBIK4 and BcBIK5 do not harbor deleterious mutations which suggests that they may still be functional. Heterologous complementation of the F. fujikuroi Δffbik4 mutant confirmed that bcbik4 of strain B05.10 is indeed fully functional. Deletion of bcvel1 in the pink strain 1750 resulted in loss of bikaverin and overproduction of melanin indicating that the VELVET protein BcVEL1 regulates the biosynthesis of the two pigments in an opposite manner. Although strain 1750 itself expresses a truncated BcVEL1 protein (100 instead of 575 aa) that is nonfunctional with regard to sclerotia formation, virulence and oxalic acid formation, it is sufficient to regulate pigment biosynthesis (bikaverin and melanin) and fenhexamid HydR2 type of resistance. Finally, a genetic cross between strain 1750 and a bikaverin-nonproducing strain sensitive to fenhexamid revealed that the functional bikaverin cluster is genetically linked to the HydR2 locus.
Collapse
Affiliation(s)
- Julia Schumacher
- Institute for Biology and Biotechnology of Plants, Westfälische Wilhelms-University, Münster, Germany
| | | | | | - Lena Studt
- Institute for Biology and Biotechnology of Plants, Westfälische Wilhelms-University, Münster, Germany
- Institute of Food Chemistry, Westfälische Wilhelms-University, Münster, Germany
| | | | | | | | | | | | - Bettina Tudzynski
- Institute for Biology and Biotechnology of Plants, Westfälische Wilhelms-University, Münster, Germany
- * E-mail: (BT); (MV)
| | - Muriel Viaud
- INRA, UR BIOGER-CPP, Thiverval-Grignon, France
- * E-mail: (BT); (MV)
| |
Collapse
|