1
|
Sato T, Masuda K, Sano C, Matsumoto K, Numata H, Munetoh S, Kasama T, Miyake R. Democratizing Microreactor Technology for Accelerated Discoveries in Chemistry and Materials Research. MICROMACHINES 2024; 15:1064. [PMID: 39337724 PMCID: PMC11434323 DOI: 10.3390/mi15091064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/30/2024]
Abstract
Microreactor technologies have emerged as versatile platforms with the potential to revolutionize chemistry and materials research, offering sustainable solutions to global challenges in environmental and health domains. This survey paper provides an in-depth review of recent advancements in microreactor technologies, focusing on their role in facilitating accelerated discoveries in chemistry and materials. Specifically, we examine the convergence of microfluidics with machine intelligence and automation, enabling the exploitation of the cyber-physical environment as a highly integrated experimentation platform for rapid scientific discovery and process development. We investigate the applicability and limitations of microreactor-enabled discovery accelerators in various chemistry and materials contexts. Despite their tremendous potential, the integration of machine intelligence and automation into microreactor-based experiments presents challenges in establishing fully integrated, automated, and intelligent systems. These challenges can hinder the broader adoption of microreactor technologies within the research community. To address this, we review emerging technologies that can help lower barriers and facilitate the implementation of microreactor-enabled discovery accelerators. Lastly, we provide our perspective on future research directions for democratizing microreactor technologies, with the aim of accelerating scientific discoveries and promoting widespread adoption of these transformative platforms.
Collapse
Affiliation(s)
- Tomomi Sato
- Graduate School of Engineering, The University of Tokyo, Kawasaki 212-0032, Japan; (T.K.); (R.M.)
| | - Koji Masuda
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, UK;
| | - Chikako Sano
- IBM Semiconductors, IBM Research–Tokyo, Kawasaki 212-0032, Japan; (C.S.); (K.M.); (H.N.); (S.M.)
| | - Keiji Matsumoto
- IBM Semiconductors, IBM Research–Tokyo, Kawasaki 212-0032, Japan; (C.S.); (K.M.); (H.N.); (S.M.)
| | - Hidetoshi Numata
- IBM Semiconductors, IBM Research–Tokyo, Kawasaki 212-0032, Japan; (C.S.); (K.M.); (H.N.); (S.M.)
| | - Seiji Munetoh
- IBM Semiconductors, IBM Research–Tokyo, Kawasaki 212-0032, Japan; (C.S.); (K.M.); (H.N.); (S.M.)
| | - Toshihiro Kasama
- Graduate School of Engineering, The University of Tokyo, Kawasaki 212-0032, Japan; (T.K.); (R.M.)
| | - Ryo Miyake
- Graduate School of Engineering, The University of Tokyo, Kawasaki 212-0032, Japan; (T.K.); (R.M.)
| |
Collapse
|
2
|
Tritrakarn T, Takahashi M, Okamura T. Optimization of RF coil geometry for NMR/MRI applications using a genetic algorithm. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 362:107685. [PMID: 38636265 DOI: 10.1016/j.jmr.2024.107685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
A simulation method that employs a genetic algorithm (GA) for optimizing radio frequency (RF) coil geometry is developed to maximize signal intensity in nuclear magnetic resonance (NMR)/magnetic resonance imaging (MRI) applications. NMR/MRI has a wide range of applications, including medical imaging, and chemical and biological analysis to investigate the structure, dynamics, and interactions of molecules. However, NMR suffers from inherently low signal intensity, which depends on factors related to RF coil geometry. The investigation of coil geometry is crucial for improving signal intensity, leading to a reduction in the number of scans and a shorter total scan time. We have explored a better optimization method by modifying RF coil geometry to maximize signal intensity. The RF coil geometry comprises wire elements, each of which is a small vector representing the current flow, and GA chooses some of the prepared wire elements for optimization. The optimization of a substrate coil with a surface perpendicular to a static field was demonstrated for single-sided NMR system applications while considering various cylindrical sample diameters. A non-optimized and a GA-optimized substrate coil were compared through simulation and experiment to confirm the performance of the GA simulation. The maximum error between simulation and experiment was below 5%, with an average of less than 3%, confirming simulation reliability. The results indicated that the GA improved signal intensity by approximately 10% and reduced the necessary total scan time by around 20%. Finally, we explain the limitations and explore other potential applications of this GA-based simulation method.
Collapse
Affiliation(s)
- Techit Tritrakarn
- School of Engineering, Department of Mechanical Engineering, Tokyo Institute of Technology, 4259 Nagatusta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan.
| | - Masato Takahashi
- Laboratory for Advanced NMR Application and Development, RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Tetsuji Okamura
- School of Engineering, Department of Mechanical Engineering, Tokyo Institute of Technology, 4259 Nagatusta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
| |
Collapse
|
3
|
Liang J, Davoodi H, Wadhwa S, Badilita V, Korvink JG. Broadband stripline Lenz lens achieves 11 × NMR signal enhancement. Sci Rep 2024; 14:1645. [PMID: 38238376 PMCID: PMC10796323 DOI: 10.1038/s41598-023-50616-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/22/2023] [Indexed: 01/22/2024] Open
Abstract
A Lenz lens is an electrically passive conductive element that, when placed in a time-varying magnetic field, acts as a magnetic flux concentrator or a magnetic lens. In the realm of nuclear magnetic resonance (NMR), Lenz lenses have been exploited as electrically passive metallic radiofrequency interposers placed between a sample and a tuned or untuned NMR detector in order to focus the [Formula: see text]-field of the detector onto a smaller sample space. Here we explore a novel embodiment of the Lenz lens, which acts as a non-resonant stripline interposer, i.e., the [Formula: see text]-field acts along the longitudinal volume of a sample container, such as a capillary or other microfluidic channel that is coincident with the axis of the stripline. The almost vanishing self-resonance of the stripline Lenz lens, at frequencies relevant for NMR, leads to a desirable [Formula: see text]-field amplitude that is nearly perfectly uniform across the sample and hence lacking a characteristic sinusoidal modal shape. The action of Lenz' law ensures that no stray [Formula: see text]-field is found outside of the stripline's active volume. Because the stripline Lenz lens does not rely on its own geometry to achieve resonance, its frequency response is thus widely broadband for field enhancements up to a factor of 11, with only the external driving resonator properties governing the overall resonant behaviour. We explore the use of the stripline Lenz lens with a sub-nanolitre sample volume, readily detecting 4 isotopes with resonances ranging from 125.76 to 500 MHz. The concept holds potential for the NMR study of thin films, small biological samples, as well as the in situ study of battery materials.
Collapse
Affiliation(s)
- Jianyi Liang
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | | | | | - Vlad Badilita
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany.
| | - Jan G Korvink
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
4
|
Moxley-Paquette V, Lane D, Steiner K, Downey K, Costa PM, Lysak DH, Ronda K, Soong R, Zverev D, De Castro P, Frei T, Stuessi J, Al Adwan-Stojilkovic D, Graf S, Gloor S, Schmidig D, Kuemmerle R, Kuehn T, Busse F, Utz M, Lacerda A, Nashman B, Albert L, Anders J, Simpson AJ. Development of Low-Magnetic Susceptibility Microcoils via 5-Axis Machining for Analysis of Biological and Environmental Samples. Anal Chem 2023; 95:13932-13940. [PMID: 37676066 DOI: 10.1021/acs.analchem.3c02437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
In environmental research, it is critical to understand how toxins impact invertebrate eggs and egg banks, which, due to their tiny size, are very challenging to study by conventional nuclear magnetic resonance (NMR) spectroscopy. Microcoil technology has been extensively utilized to enhance the mass-sensitivity of NMR. In a previous study, 5-axis computer numerical control (CNC) micromilling (shown to be a viable alternative to traditional microcoil production methods) was used to create a prototype copper slotted-tube resonator (STR). Despite the excellent limit of detection (LOD) of the resonator, the quality of the line shape was very poor due to the magnetic susceptibility of the copper resonator itself. This is best solved using magnetic susceptibility-matched materials. In this study, approaches are investigated that improve the susceptibility while retaining the versatility of coil milling. One method involves machining STRs from various copper/aluminum alloys, while the other involves machining ones from an aluminum 2011 alloy and electroplating them with copper. In all cases, combining copper and aluminum to produce resonators resulted in improved line shape and SNR compared to pure copper resonators due to their reduced magnetic susceptibility. However, the copper-plated aluminum resonators showed optimal performance from the devices tested. The enhanced LOD of these STRs allowed for the first 1H-13C heteronuclear multiple quantum coherence (HMQC) of a single intact 13C-labeled Daphnia magna egg (∼4 μg total biomass). This is a key step toward future screening programs that aim to elucidate the toxic processes in aquatic eggs.
Collapse
Affiliation(s)
- Vincent Moxley-Paquette
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Daniel Lane
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Katrina Steiner
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Katelyn Downey
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Peter M Costa
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Daniel H Lysak
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Kiera Ronda
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Ronald Soong
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Dimitri Zverev
- NSCNC Manufacturing LTD, 1515 Broadway Street Unit 607, Port Coquitlam, British Columbia V3C 6M2, Canada
| | - Peter De Castro
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Thomas Frei
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Juerg Stuessi
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | | | - Stephan Graf
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Simon Gloor
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Daniel Schmidig
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Rainer Kuemmerle
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Till Kuehn
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Falko Busse
- Bruker Biospin GmbH, Silberstreifen 4, 76287 Rheinstetten, Germany
| | - Marcel Utz
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | - Andressa Lacerda
- Synex Medical, 2 Bloor Street E, Suite 310, Toronto, Ontario M4W 1A8Canada
| | - Ben Nashman
- Synex Medical, 2 Bloor Street E, Suite 310, Toronto, Ontario M4W 1A8Canada
| | - Larry Albert
- ACI Alloys, Inc, 1458 Seareel Place, San Jose, California 95131, United States
| | - Jens Anders
- Institute of Smart Sensors,University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
| | - André J Simpson
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| |
Collapse
|
5
|
Gomez MV, Baas S, Velders AH. Multinuclear 1D and 2D NMR with 19F-Photo-CIDNP hyperpolarization in a microfluidic chip with untuned microcoil. Nat Commun 2023; 14:3885. [PMID: 37391397 PMCID: PMC10313780 DOI: 10.1038/s41467-023-39537-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 06/14/2023] [Indexed: 07/02/2023] Open
Abstract
Nuclear Magnetic Resonance (NMR) spectroscopy is a most powerful molecular characterization and quantification technique, yet two major persistent factors limit its more wide-spread applications: poor sensitivity, and intricate complex and expensive hardware required for sophisticated experiments. Here we show NMR with a single planar-spiral microcoil in an untuned circuit with hyperpolarization option and capability to execute complex experiments addressing simultaneously up to three different nuclides. A microfluidic NMR-chip in which the 25 nL detection volume can be efficiently illuminated with laser-diode light enhances the sensitivity by orders of magnitude via photochemically induced dynamic nuclear polarization (photo-CIDNP), allowing rapid detection of samples in the lower picomole range (normalized limit of detection at 600 MHz, nLODf,600, of 0.01 nmol Hz1/2). The chip is equipped with a single planar microcoil operating in an untuned circuit that allows different Larmor frequencies to be addressed simultaneously, permitting advanced hetero-, di- and trinuclear, 1D and 2D NMR experiments. Here we show NMR chips with photo-CIDNP and broadband capabilities addressing two of the major limiting factors of NMR, by enhancing sensitivity as well as reducing cost and hardware complexity; the performance is compared to state-of-the-art instruments.
Collapse
Affiliation(s)
- M Victoria Gomez
- IRICA, Department of Inorganic, Organic and Biochemistry, Faculty of Chemical Sciences and Technologies, Universidad de Castilla-La Mancha (UCLM), Av. Camilo José Cela 10, 13071, Ciudad Real, Spain.
| | - Sander Baas
- Laboratory of BioNanoTechnology, Wageningen University, 6700 EK, Wageningen, The Netherlands
| | - Aldrik H Velders
- IRICA, Department of Inorganic, Organic and Biochemistry, Faculty of Chemical Sciences and Technologies, Universidad de Castilla-La Mancha (UCLM), Av. Camilo José Cela 10, 13071, Ciudad Real, Spain.
- Laboratory of BioNanoTechnology, Wageningen University, 6700 EK, Wageningen, The Netherlands.
| |
Collapse
|
6
|
Jenne A, von der Ecken S, Moxley-Paquette V, Soong R, Swyer I, Bastawrous M, Busse F, Bermel W, Schmidig D, Kuehn T, Kuemmerle R, Al Adwan-Stojilkovic D, Graf S, Frei T, Monette M, Wheeler AR, Simpson AJ. Integrated Digital Microfluidics NMR Spectroscopy: A Key Step toward Automated In Vivo Metabolomics. Anal Chem 2023; 95:5858-5866. [PMID: 36996326 DOI: 10.1021/acs.analchem.2c04201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
Toxicity testing is currently undergoing a paradigm shift from examining apical end points such as death, to monitoring sub-lethal toxicity in vivo. In vivo nuclear magnetic resonance (NMR) spectroscopy is a key platform in this endeavor. A proof-of-principle study is presented which directly interfaces NMR with digital microfluidics (DMF). DMF is a "lab on a chip" method allowing for the movement, mixing, splitting, and dispensing of μL-sized droplets. The goal is for DMF to supply oxygenated water to keep the organisms alive while NMR detects metabolomic changes. Here, both vertical and horizontal NMR coil configurations are compared. While a horizontal configuration is ideal for DMF, NMR performance was found to be sub-par and instead, a vertical-optimized single-sided stripline showed most promise. In this configuration, three organisms were monitored in vivo using 1H-13C 2D NMR. Without support from DMF droplet exchange, the organisms quickly showed signs of anoxic stress; however, with droplet exchange, this was completely suppressed. The results demonstrate that DMF can be used to maintain living organisms and holds potential for automated exposures in future. However, due to numerous limitations of vertically orientated DMF, along with space limitations in standard bore NMR spectrometers, we recommend future development be performed using a horizontal (MRI style) magnet which would eliminate practically all the drawbacks identified here.
Collapse
Affiliation(s)
- Amy Jenne
- Department of Chemistry, University of Toronto, 80. St. George Street, Toronto, Ontario M5S 3H6, Canada
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario M1C 1A4, Canada
| | - Sebastian von der Ecken
- Department of Chemistry, University of Toronto, 80. St. George Street, Toronto, Ontario M5S 3H6, Canada
- Nicoya, B-29 King Street East, Kitchener, Ontario N2G 2K4, Canada
| | - Vincent Moxley-Paquette
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario M1C 1A4, Canada
| | - Ronald Soong
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario M1C 1A4, Canada
| | - Ian Swyer
- Department of Chemistry, University of Toronto, 80. St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Monica Bastawrous
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario M1C 1A4, Canada
| | - Falko Busse
- Bruker BioSpin GmbH, Rudolf-Plank-Str. 23, 76275 Ettlingen, Germany
| | - Wolfgang Bermel
- Bruker BioSpin GmbH, Rudolf-Plank-Str. 23, 76275 Ettlingen, Germany
| | - Daniel Schmidig
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Till Kuehn
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Rainer Kuemmerle
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | | | - Stephan Graf
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Thomas Frei
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Martine Monette
- Bruker Canada Ltd., 2800 High Point Drive, Milton, Ontario L9T 6P4, Canada
| | - Aaron R Wheeler
- Department of Chemistry, University of Toronto, 80. St. George Street, Toronto, Ontario M5S 3H6, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
- Institute for Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Andre J Simpson
- Department of Chemistry, University of Toronto, 80. St. George Street, Toronto, Ontario M5S 3H6, Canada
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario M1C 1A4, Canada
| |
Collapse
|
7
|
Li Z, Bao Q, Liu C, Li Y, Yang Y, Liu M. Recent advances in microfluidics-based bioNMR analysis. LAB ON A CHIP 2023; 23:1213-1225. [PMID: 36651305 DOI: 10.1039/d2lc00876a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nuclear magnetic resonance (NMR) has been used in a variety of fields due to its powerful analytical capability. To facilitate biochemical NMR (bioNMR) analysis for samples with a limited mass, a number of integrated systems have been developed by coupling microfluidics and NMR. However, there are few review papers that summarize the recent advances in the development of microfluidics-based NMR (μNMR) systems. Herein, we review the advancements in μNMR systems built on high-field commercial instruments and low-field compact platforms. Specifically, μNMR platforms with three types of typical microcoils settled in the high-field NMR instruments will be discussed, followed by summarizing compact NMR systems and their applications in biomedical point-of-care testing. Finally, a conclusion and future prospects in the field of μNMR were given.
Collapse
Affiliation(s)
- Zheyu Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Qingjia Bao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Chaoyang Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Ying Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Yunhuang Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 10049, China
| |
Collapse
|
8
|
Bastawrous M, Gruschke O, Soong R, Jenne A, Gross D, Busse F, Nashman B, Lacerda A, Simpson AJ. Comparing the Potential of Helmholtz and Planar NMR Microcoils for Analysis of Intact Biological Samples. Anal Chem 2022; 94:8523-8532. [DOI: 10.1021/acs.analchem.2c01560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Monica Bastawrous
- Environmental NMR Center, Department of Physical and Environmental Science, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Oliver Gruschke
- Bruker BioSpin GmbH, Rudolf-Plank-Str. 23, 76275 Ettlingen, Germany
| | - Ronald Soong
- Environmental NMR Center, Department of Physical and Environmental Science, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Amy Jenne
- Environmental NMR Center, Department of Physical and Environmental Science, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Dieter Gross
- Bruker BioSpin GmbH, Rudolf-Plank-Str. 23, 76275 Ettlingen, Germany
| | - Falko Busse
- Bruker BioSpin GmbH, Rudolf-Plank-Str. 23, 76275 Ettlingen, Germany
| | - Ben Nashman
- Synex Medical, 2 Bloor Street E, Suite 310, Toronto, Ontario M4W 1A8, Canada
| | - Andressa Lacerda
- Synex Medical, 2 Bloor Street E, Suite 310, Toronto, Ontario M4W 1A8, Canada
| | - Andre J. Simpson
- Environmental NMR Center, Department of Physical and Environmental Science, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| |
Collapse
|
9
|
Moxley-Paquette V, Wu B, Lane D, Bastawrous M, Ning P, Soong R, De Castro P, Kovacevic I, Frei T, Stuessi J, Al Adwan-Stojilkovic D, Graf S, Vincent F, Schmidig D, Kuehn T, Kuemmerle R, Beck A, Fey M, Bermel W, Busse F, Gundy M, Boenisch H, Heumann H, Nashman B, Dutta Majumdar R, Lacerda A, Simpson AJ. Evaluation of double-tuned single-sided planar microcoils for the analysis of small 13 C enriched biological samples using 1 H- 13 C 2D heteronuclear correlation NMR spectroscopy. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2022; 60:386-397. [PMID: 34647646 DOI: 10.1002/mrc.5227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Microcoils provide a cost-effective approach to improve detection limits for mass-limited samples. Single-sided planar microcoils are advantageous in comparison to volume coils, in that the sample can simply be placed on top. However, the considerable drawback is that the RF field that is produced by the coil decreases with distance from the coil surface, which potentially limits more complex multi-pulse NMR pulse sequences. Unfortunately, 1 H NMR alone is not very informative for intact biological samples due to line broadening caused by magnetic susceptibility distortions, and 1 H-13 C 2D NMR correlations are required to provide the additional spectral dispersion for metabolic assignments in vivo or in situ. To our knowledge, double-tuned single-sided microcoils have not been applied for the 2D 1 H-13 C analysis of intact 13 C enriched biological samples. Questions include the following: Can 1 H-13 C 2D NMR be performed on single-sided planar microcoils? If so, do they still hold sensitivity advantages over conventional 5 mm NMR technology for mass limited samples? Here, 2D 1 H-13 C HSQC, HMQC, and HETCOR variants were compared and then applied to 13 C enriched broccoli seeds and Daphnia magna (water fleas). Compared to 5 mm NMR probes, the microcoils showed a sixfold improvement in mass sensitivity (albeit only for a small localized region) and allowed for the identification of metabolites in a single intact D. magna for the first time. Single-sided planar microcoils show practical benefit for 1 H-13 C NMR of intact biological samples, if localized information within ~0.7 mm of the 1 mm I.D. planar microcoil surface is of specific interest.
Collapse
Affiliation(s)
| | - Bing Wu
- Environmental NMR Center, University of Toronto, Toronto, Ontario, Canada
| | - Daniel Lane
- Environmental NMR Center, University of Toronto, Toronto, Ontario, Canada
| | - Monica Bastawrous
- Environmental NMR Center, University of Toronto, Toronto, Ontario, Canada
| | - Paris Ning
- Environmental NMR Center, University of Toronto, Toronto, Ontario, Canada
| | - Ronald Soong
- Environmental NMR Center, University of Toronto, Toronto, Ontario, Canada
| | - Peter De Castro
- Magnetic Resonance Spectroscopy Division, Bruker BioSpin AG, Fällanden, Switzerland
| | - Ivan Kovacevic
- Magnetic Resonance Spectroscopy Division, Bruker BioSpin AG, Fällanden, Switzerland
| | - Thomas Frei
- Magnetic Resonance Spectroscopy Division, Bruker BioSpin AG, Fällanden, Switzerland
| | - Juerg Stuessi
- Magnetic Resonance Spectroscopy Division, Bruker BioSpin AG, Fällanden, Switzerland
| | | | - Stephan Graf
- Magnetic Resonance Spectroscopy Division, Bruker BioSpin AG, Fällanden, Switzerland
| | - Franck Vincent
- Magnetic Resonance Spectroscopy Division, Bruker BioSpin AG, Fällanden, Switzerland
| | - Daniel Schmidig
- Magnetic Resonance Spectroscopy Division, Bruker BioSpin AG, Fällanden, Switzerland
| | - Till Kuehn
- Magnetic Resonance Spectroscopy Division, Bruker BioSpin AG, Fällanden, Switzerland
| | - Rainer Kuemmerle
- Magnetic Resonance Spectroscopy Division, Bruker BioSpin AG, Fällanden, Switzerland
| | - Armin Beck
- Magnetic Resonance Spectroscopy Division, Bruker BioSpin AG, Fällanden, Switzerland
| | - Michael Fey
- Magnetic Resonance Spectroscopy Division, Bruker Corporation, Billerica, MA, USA
| | - Wolfgang Bermel
- Magnetic Resonance Spectroscopy Division, Bruker Biospin GmbH, Rheinstetten, Germany
| | - Falko Busse
- Magnetic Resonance Spectroscopy Division, Bruker Biospin GmbH, Rheinstetten, Germany
| | - Marcel Gundy
- Research and Development, Silantes GmbH, Munich, Germany
| | | | | | - Ben Nashman
- Research and Development, Synex Medical, Toronto, Ontario, Canada
| | | | - Andressa Lacerda
- Research and Development, Synex Medical, Toronto, Ontario, Canada
| | - André J Simpson
- Environmental NMR Center, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Lepucki P, Dioguardi AP, Karnaushenko D, Schmidt OG, Grafe HJ. The normalized limit of detection in NMR spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 332:107077. [PMID: 34634649 DOI: 10.1016/j.jmr.2021.107077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
We derive the normalized limit of detection for frequency space (nLODf) as a parameter to measure the sensitivity of an NMR spectroscopy setup. nLODf is independent of measurement settings such as bandwidth or number of measurement points, and allows to compare performances of different setups. We demonstrate the usefulness of the new nLODf by comparing the sensitivity of NMR setups from various publications, which all use microcoils. Finally, we want to propose a standard measurement and report format for the sensitivity of new NMR setups.
Collapse
Affiliation(s)
- Piotr Lepucki
- IFW Dresden, Institut für Festkörperforschung, Helmholtzstraße 20, 01069 Dresden, Germany.
| | - Adam P Dioguardi
- IFW Dresden, Institut für Festkörperforschung, Helmholtzstraße 20, 01069 Dresden, Germany.
| | - Daniil Karnaushenko
- IFW Dresden, Institut für Integrative Nanowissenschaften, Helmholtzstraße 20, 01069 Dresden, Germany.
| | - Oliver G Schmidt
- IFW Dresden, Institut für Integrative Nanowissenschaften, Helmholtzstraße 20, 01069 Dresden, Germany; TU Dresden, Nanophysik, Häckelstraße 3, 01069 Dresden, Germany; TU Chemnitz, Material Systems for Nanoelectronics, Straße der Nationen 62, 09111 Chemnitz, Germany.
| | - Hans-Joachim Grafe
- IFW Dresden, Institut für Festkörperforschung, Helmholtzstraße 20, 01069 Dresden, Germany.
| |
Collapse
|
11
|
Untuned broadband spiral micro-coils achieve sensitive multi-nuclear NMR TX/RX from microfluidic samples. Sci Rep 2021; 11:7798. [PMID: 33833324 PMCID: PMC8032710 DOI: 10.1038/s41598-021-87247-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/22/2021] [Indexed: 11/17/2022] Open
Abstract
The low frequency plateau in the frequency response of an untuned micro-resonator permits broadband radio-frequency reception, albeit at the expense of optimal signal-to-noise ratio for a particular nucleus. In this contribution we determine useful figures of merit for broadband micro-coils, and thereby explore the parametric design space towards acceptable simultaneous excitation and reception of a microfluidic sample over a wide frequency band ranging from 13C to 1H, i.e., 125–500 MHz in an 11.74 T magnet. The detector achieves 37% of the performance of a comparably sized, tuned and matched resonator, and a linewidth of 17 ppb using standard magnet shims. The use of broadband detectors circumvents numerous difficulties introduced by multi-resonant RF detector circuits, including sample loading effects on matching, channel isolation, and field distortion.
Collapse
|
12
|
Chen J, You X, Sun H, Tian J, Fang H, Xie J, Huang Y, Chen Z. Optimization of twin parallel microstrips based nuclear magnetic resonance probe for measuring the kinetics in molecular assembly in ultra-small samples. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:033106. [PMID: 33820024 DOI: 10.1063/5.0030452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
We present the design, fabrication, characterization, and optimization of a TPM (twin parallel microstrip)-based nuclear magnetic resonance (NMR) probe, produced by using a low-loss Teflon PTFE F4B high frequency circuit board. We use finite element analysis to optimize the radio frequency (RF) homogeneity and sensitivity of the TPM probe jointly for various sample volumes. The RF homogeneity of this TPM planar probe is superior to that of only a single microstrip probe. The optimized TPM probe properties such as RF homogeneity and field strength are characterized experimentally and discussed in detail. By combining this TPM based NMR probe with microfluidic technology, the sample amount required for kinetic study using NMR spectroscopy was minimized. This is important for studying costly samples. The TPM NMR probes provide high sensitivity to analysis of 5 µl samples with 2 mM concentrations within 10 min. The miniaturized microfluidic NMR probe plays an important role in realizing down to seconds timescale for kinetic monitoring.
Collapse
Affiliation(s)
- Jiahe Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, People's Republic of China
| | - Xueqiu You
- School of Information Engineering, Jimei University, Xiamen 361021, People's Republic of China
| | - Huijun Sun
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, People's Republic of China
| | - Jiaqin Tian
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, People's Republic of China
| | - Hongxun Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Junyao Xie
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yuqing Huang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, People's Republic of China
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
13
|
Abstract
Nuclear magnetic resonance at low field strength is an insensitive spectroscopic technique, precluding portable applications with small sample volumes, such as needed for biomarker detection in body fluids. Here we report a compact double resonant chip stack system that implements in situ dynamic nuclear polarisation of a 130 nL sample volume, achieving signal enhancements of up to - 60 w.r.t. the thermal equilibrium level at a microwave power level of 0.5 W. This work overcomes instrumental barriers to the use of NMR detection for point-of-care applications.
Collapse
|
14
|
Time-resolved non-invasive metabolomic monitoring of a single cancer spheroid by microfluidic NMR. Sci Rep 2021; 11:53. [PMID: 33420162 PMCID: PMC7794408 DOI: 10.1038/s41598-020-79693-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
We present a quantitative study of the metabolic activity of a single spheroid culture of human cancer cells. NMR (nuclear magnetic resonance) spectroscopy is an ideal tool for observation of live systems due to its non-invasive nature. However, limited sensitivity has so far hindered its application in microfluidic culture systems. We have used an optimised micro-NMR platform to observe metabolic changes from a single spheroid. NMR spectra were obtained by directly inserting microfluidic devices containing spheroids ranging from 150 [Formula: see text]m to 300 [Formula: see text]m in diameter in 2.5 [Formula: see text]L of culture medium into a dedicated NMR probe. Metabolite concentrations were found to change linearly with time, with rates approximately proportional to the number of cells in the spheroid. The results demonstrate that quantitative monitoring of a single spheroid with [Formula: see text] 2500 cells is possible. A change in spheroid size by 600 cells leads to a clearly detectable change in the L-Lactic acid production rate ([Formula: see text]). The consumption of D-Glucose and production of L-Lactic acid were approximately 2.5 times slower in spheroids compared to monolayer culture of the same number of cells. Moreover, while cells in monolayer culture were found to produce L-Alanine and L-Glutamine, spheroids showed slight consumption in both cases.
Collapse
|
15
|
Design of High Performance Scroll Microcoils for Nuclear Magnetic Resonance Spectroscopy of Nanoliter and Subnanoliter Samples. SENSORS 2020; 21:s21010170. [PMID: 33383815 PMCID: PMC7795071 DOI: 10.3390/s21010170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 01/05/2023]
Abstract
The electromagnetic properties of scroll microcoils are investigated with finite element modelling (FEM) and the design of experiment (DOE) approach. The design of scroll microcoils was optimized for nuclear magnetic resonance (NMR) spectroscopy of nanoliter and subnanoliter sample volumes. The unusual proximity effect favours optimised scroll microcoils with a large number of turns rolled up in close proximity. Scroll microcoils have many advantages over microsolenoids: such as ease of fabrication and better B1-homogeneity for comparable intrinsic signal-to-noise ratio (SNR). Scroll coils are suitable for broadband multinuclei NMR spectroscopy of subnanoliter sample.
Collapse
|
16
|
Moxley-Paquette V, Lane D, Soong R, Ning P, Bastawrous M, Wu B, Pedram MZ, Haque Talukder MA, Ghafar-Zadeh E, Zverev D, Martin R, Macpherson B, Vargas M, Schmidig D, Graf S, Frei T, Al Adwan-Stojilkovic D, De Castro P, Busse F, Bermel W, Kuehn T, Kuemmerle R, Fey M, Decker F, Stronks H, Sullan RMA, Utz M, Simpson AJ. 5-Axis CNC Micromilling for Rapid, Cheap, and Background-Free NMR Microcoils. Anal Chem 2020; 92:15454-15462. [PMID: 33170641 DOI: 10.1021/acs.analchem.0c03126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The superior mass sensitivity of microcoil technology in nuclear magnetic resonance (NMR) spectroscopy provides potential for the analysis of extremely small-mass-limited samples such as eggs, cells, and tiny organisms. For optimal performance and efficiency, the size of the microcoil should be tailored to the size of the mass-limited sample of interest, which can be costly as mass-limited samples come in many shapes and sizes. Therefore, rapid and economic microcoil production methods are needed. One method with great potential is 5-axis computer numerical control (CNC) micromilling, commonly used in the jewelry industry. Most CNC milling machines are designed to process larger objects and commonly have a precision of >25 μm (making the machining of common spiral microcoils, for example, impossible). Here, a 5-axis MiRA6 CNC milling machine, specifically designed for the jewelry industry, with a 0.3 μm precision was used to produce working planar microcoils, microstrips, and novel microsensor designs, with some tested on the NMR in less than 24 h after the start of the design process. Sample wells could be built into the microsensor and could be machined at the same time as the sensors themselves, in some cases leaving a sheet of Teflon as thin as 10 μm between the sample and the sensor. This provides the freedom to produce a wide array of designs and demonstrates 5-axis CNC micromilling as a versatile tool for the rapid prototyping of NMR microsensors. This approach allowed the experimental optimization of a prototype microstrip for the analysis of two intact adult Daphnia magna organisms. In addition, a 3D volume slotted-tube resonator was produced that allowed for 2D 1H-13C NMR of D. magna neonates and exhibited 1H sensitivity (nLODω600 = 1.49 nmol s1/2) close to that of double strip lines, which themselves offer the best compromise between concentration and mass sensitivity published to date.
Collapse
Affiliation(s)
- Vincent Moxley-Paquette
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - Daniel Lane
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - Ronald Soong
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - Paris Ning
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - Monica Bastawrous
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - Bing Wu
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - Maysam Zamani Pedram
- Lassonde School of Engineering, York University, 4700 Keele Street, North York, Ontario, M3J 1P3, Canada.,Faculty of Medicine, Department of Radiology, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Md Aminul Haque Talukder
- Lassonde School of Engineering, York University, 4700 Keele Street, North York, Ontario, M3J 1P3, Canada
| | - Ebrahim Ghafar-Zadeh
- Lassonde School of Engineering, York University, 4700 Keele Street, North York, Ontario, M3J 1P3, Canada
| | - Dimitri Zverev
- NSCNC Manufacturing Ltd., 1515 Broadway Street Unit 607, Port Coquitlam, British Columbia, V3C 6M2, Canada
| | - Richard Martin
- IMicrosolder, 57 Marshall Street West, Meaford, Ontario, N4L 1E4, Canada
| | - Bob Macpherson
- Apogee Steel Fabrication Inc., 3600 Erindale Station Road, Mississauga, Ontario, L5C 2T1, Canada
| | - Mike Vargas
- Apogee Steel Fabrication Inc., 3600 Erindale Station Road, Mississauga, Ontario, L5C 2T1, Canada
| | - Daniel Schmidig
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Stephan Graf
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Thomas Frei
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | | | - Peter De Castro
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Falko Busse
- Bruker Biospin GmbH, Silberstreifen 4, 76287 Rheinstetten, Germany
| | - Wolfgang Bermel
- Bruker Biospin GmbH, Silberstreifen 4, 76287 Rheinstetten, Germany
| | - Till Kuehn
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Rainer Kuemmerle
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Michael Fey
- Bruker Corporation, 15 Fortune Drive, Billerica, Massachusetts 01821-3991, United States
| | - Frank Decker
- Bruker Biospin GmbH, Silberstreifen 4, 76287 Rheinstetten, Germany
| | - Henry Stronks
- Bruker Canada Ltd., 2800 High Point Drive, Milton, Ontario L9T 6P4, Canada
| | - Ruby May A Sullan
- Department of Physical and Environmental Science, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - Marcel Utz
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | - André J Simpson
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada.,Department of Physical and Environmental Science, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| |
Collapse
|
17
|
Herb K, Zopes J, Cujia KS, Degen CL. Broadband radio-frequency transmitter for fast nuclear spin control. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:113106. [PMID: 33261455 DOI: 10.1063/5.0013776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/01/2020] [Indexed: 06/12/2023]
Abstract
The active manipulation of nuclear spins with radio-frequency (RF) coils is at the heart of nuclear magnetic resonance (NMR) spectroscopy and spin-based quantum devices. Here, we present a miniature RF transmitter designed to generate strong RF pulses over a broad bandwidth, allowing for fast spin rotations on arbitrary nuclear species. Our design incorporates (i) a planar multilayer geometry that generates a large field of 4.35 mT per unit current, (ii) a 50 Ω transmission circuit with a broad excitation bandwidth of ∼20 MHz, and (iii) an optimized thermal management leading to minimal heating at the sample location. Using individual 13C nuclear spins in the vicinity of a diamond nitrogen-vacancy center as a test system, we demonstrate Rabi frequencies exceeding 70 kHz and nuclear π/2 rotations within 3.4 μs. The extrapolated values for 1H spins are about 240 kHz and 1 μs, respectively. Beyond enabling fast nuclear spin manipulations, our transmitter system is ideally suited for the incorporation of advanced pulse sequences into micro- and nanoscale NMR detectors operating at a low (<1 T) magnetic field.
Collapse
Affiliation(s)
- K Herb
- Department of Physics, ETH Zurich, Otto Stern Weg 1, 8093 Zurich, Switzerland
| | - J Zopes
- Department of Physics, ETH Zurich, Otto Stern Weg 1, 8093 Zurich, Switzerland
| | - K S Cujia
- Department of Physics, ETH Zurich, Otto Stern Weg 1, 8093 Zurich, Switzerland
| | - C L Degen
- Department of Physics, ETH Zurich, Otto Stern Weg 1, 8093 Zurich, Switzerland
| |
Collapse
|
18
|
van Meerten S, van Zelst F, Tijssen K, Kentgens A. An Optimized NMR Stripline for Sensitive Supercritical Fluid Chromatography-Nuclear Magnetic Resonance of Microliter Sample Volumes. Anal Chem 2020; 92:13010-13016. [PMID: 32865394 PMCID: PMC7547862 DOI: 10.1021/acs.analchem.0c01827] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
To
optimize sensitivity, there has been an increasing interest
in the miniaturization of NMR detectors. In our lab, a stripline NMR
detector has been developed, which provides high resolution and is
scalable to a large range of sample volumes. These features make it
an ideal detector for hyphenated techniques. In this manuscript, we
demonstrate a stripline probe, which is designed for combining supercritical
fluid chromatography (SFC) experiments with NMR. It features a novel
stripline chip, designed to reduce the signal from the contact pads,
which results in an improved lineshape. An external lock circuit provides
stability over time to perform signal averaging or multidimensional
experiments. As proof of concept, we demonstrate the SFC-NMR technique
with this stripline probe using a mixture of cholesterol and cholestanol,
which is relevant for studying cerebrotendinous xanthomatosis. Additionally,
this probe makes it possible to record high-resolution spectra of
samples with a high spin density. This means that it is possible to
directly observe shifts due to the nuclear demagnetizing field in
the “homomolecular” case, which is challenging using
conventional probes due to broadening effects from radiation damping.
Collapse
Affiliation(s)
- Sebastiaan van Meerten
- Magnetic Resonance Research Center, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Fleur van Zelst
- Magnetic Resonance Research Center, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Koen Tijssen
- Magnetic Resonance Research Center, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Arno Kentgens
- Magnetic Resonance Research Center, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| |
Collapse
|
19
|
Sahin Solmaz N, Grisi M, Matheoud AV, Gualco G, Boero G. Single-Chip Dynamic Nuclear Polarization Microsystem. Anal Chem 2020; 92:9782-9789. [PMID: 32530638 PMCID: PMC9559634 DOI: 10.1021/acs.analchem.0c01221] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
Integration
of the sensitivity-relevant electronics of nuclear
magnetic resonance (NMR) and electron spin resonance (ESR) spectrometers
on a single chip is a promising approach to improve the limit of detection,
especially for samples in the nanoliter and subnanoliter range. Here,
we demonstrate the cointegration on a single silicon chip of the front-end
electronics of NMR and ESR detectors. The excitation/detection planar
spiral microcoils of the NMR and ESR detectors are concentric and
interrogate the same sample volume. This combination of sensors allows
one to perform dynamic nuclear polarization (DNP) experiments using
a single-chip-integrated microsystem having an area of about 2 mm2. In particular, we report 1H DNP-enhanced NMR
experiments on liquid samples having a volume of about 1 nL performed
at 10.7 GHz(ESR)/16 MHz(NMR). NMR enhancements as large as 50 are
achieved on TEMPOL/H2O solutions at room temperature. The
use of state-of-the-art submicrometer integrated circuit technologies
should allow the future extension of the single-chip DNP microsystem
approach proposed here up the THz(ESR)/GHz(NMR) region, corresponding
to the strongest static magnetic fields currently available. Particularly
interesting is the possibility to create arrays of such sensors for
parallel DNP-enhanced NMR spectroscopy of nanoliter and subnanoliter
samples.
Collapse
Affiliation(s)
- Nergiz Sahin Solmaz
- School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Marco Grisi
- School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Alessandro V. Matheoud
- School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Gabriele Gualco
- School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Giovanni Boero
- School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
20
|
van Zelst FHM, van Meerten SGJ, Kentgens APM. Characterising polar compounds using supercritical fluid chromatography-nuclear magnetic resonance spectroscopy (SFC-NMR). Faraday Discuss 2020; 218:219-232. [PMID: 31120051 DOI: 10.1039/c8fd00237a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
To detect and characterise compounds in complex matrices, it is often necessary to separate the compound of interest from the matrix before analysis. In our previous work, we have developed the coupling of supercritical fluid chromatography (SFC) with nuclear magnetic resonance (NMR) spectroscopy for the analysis of nonpolar samples [Van Zelst et al., Anal. Chem., 2018, 90, 10457]. In this work, the SFC-NMR setup was successfully adapted to analyse polar samples in complex matrices. In-line SFC-NMR analysis of two N-acetylhexosamine stereoisomers was demonstrated, namely N-acetyl-mannosamine (ManNAc) and N-acetyl-glucosamine (GlcNAc). ManNAc is a metabolite that is present at elevated concentrations in patients suffering from NANS-mediated disease. With our SFC-NMR setup it was possible to distinguish between the polar stereoisomers. Until now, this was not possible with the standard mass-based analysis techniques. The concentrations that are needed in the SFC-NMR setup are currently too high to be able to detect ManNAc in patient samples (1.7 mM vs. 0.7 mM). However, several adaptations to the current setup will make this possible in the future.
Collapse
Affiliation(s)
- F H M van Zelst
- TI-COAST, Science Park 904, 1098 XH Amsterdam, The Netherlands and Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - S G J van Meerten
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - A P M Kentgens
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| |
Collapse
|
21
|
Handwerker J, Pérez-Rodas M, Beyerlein M, Vincent F, Beck A, Freytag N, Yu X, Pohmann R, Anders J, Scheffler K. A CMOS NMR needle for probing brain physiology with high spatial and temporal resolution. Nat Methods 2019; 17:64-67. [PMID: 31768059 DOI: 10.1038/s41592-019-0640-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 10/07/2019] [Indexed: 02/06/2023]
Abstract
Magnetic resonance imaging and spectroscopy are versatile methods for probing brain physiology, but their intrinsically low sensitivity limits the achievable spatial and temporal resolution. Here, we introduce a monolithically integrated NMR-on-a-chip needle that combines an ultra-sensitive 300 µm NMR coil with a complete NMR transceiver, enabling in vivo measurements of blood oxygenation and flow in nanoliter volumes at a sampling rate of 200 Hz.
Collapse
Affiliation(s)
- Jonas Handwerker
- Institute of Smart Sensors, University of Stuttgart, Stuttgart, Germany. .,Institute of Microelectronics, University of Ulm, Ulm, Germany.
| | - Marlon Pérez-Rodas
- Department for High-field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Graduate Training Centre of Neuroscience, IMPRS for Cognitive and Systems Neuroscience, University of Tübingen, Tübingen, Germany
| | - Michael Beyerlein
- Department for Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | | | - Armin Beck
- Bruker BioSpin AG, Fällanden, Switzerland
| | | | - Xin Yu
- Department for High-field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Rolf Pohmann
- Department for High-field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Jens Anders
- Institute of Smart Sensors, University of Stuttgart, Stuttgart, Germany. .,Institute of Microelectronics, University of Ulm, Ulm, Germany. .,Center for Integrated Quantum Science and Technology, Stuttgart, Germany.
| | - Klaus Scheffler
- Department for High-field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany. .,Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
22
|
Wu B, Ecken S, Swyer I, Li C, Jenne A, Vincent F, Schmidig D, Kuehn T, Beck A, Busse F, Stronks H, Soong R, Wheeler AR, Simpson A. Rapid Chemical Reaction Monitoring by Digital Microfluidics‐NMR: Proof of Principle Towards an Automated Synthetic Discovery Platform. Angew Chem Int Ed Engl 2019; 58:15372-15376. [DOI: 10.1002/anie.201910052] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Bing Wu
- Department of ChemistryUniversity of Toronto Scarborough 1265 Military Trail Toronto ON M1C 1A4 Canada
| | - Sebastian Ecken
- Department of ChemistryUniversity of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Ian Swyer
- Department of ChemistryUniversity of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Chunliang Li
- Laboratory of Physical ChemistryEindhoven University of Technology P.O. Box 513, 5600 MB Eindhoven The Netherlands
| | - Amy Jenne
- Department of ChemistryUniversity of Toronto Scarborough 1265 Military Trail Toronto ON M1C 1A4 Canada
| | - Franck Vincent
- Bruker BioSpin AG Industriestrasse 26 8117 Fällanden Switzerland
| | - Daniel Schmidig
- Bruker BioSpin AG Industriestrasse 26 8117 Fällanden Switzerland
| | - Till Kuehn
- Bruker BioSpin AG Industriestrasse 26 8117 Fällanden Switzerland
| | - Armin Beck
- Bruker BioSpin AG Industriestrasse 26 8117 Fällanden Switzerland
| | - Falko Busse
- Bruker BioSpin GmbH Silberstreifen 4 76287 Rheinstetten Germany
| | - Henry Stronks
- Bruker Canada Ltd. 2800 High Point Drive Milton Ontario L9T 6P4 Canada
| | - Ronald Soong
- Department of ChemistryUniversity of Toronto Scarborough 1265 Military Trail Toronto ON M1C 1A4 Canada
| | - Aaron R. Wheeler
- Department of ChemistryUniversity of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| | - André Simpson
- Department of ChemistryUniversity of Toronto Scarborough 1265 Military Trail Toronto ON M1C 1A4 Canada
| |
Collapse
|
23
|
Wu B, Ecken S, Swyer I, Li C, Jenne A, Vincent F, Schmidig D, Kuehn T, Beck A, Busse F, Stronks H, Soong R, Wheeler AR, Simpson A. Rapid Chemical Reaction Monitoring by Digital Microfluidics‐NMR: Proof of Principle Towards an Automated Synthetic Discovery Platform. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Bing Wu
- Department of Chemistry University of Toronto Scarborough 1265 Military Trail Toronto ON M1C 1A4 Canada
| | - Sebastian Ecken
- Department of Chemistry University of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Ian Swyer
- Department of Chemistry University of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Chunliang Li
- Laboratory of Physical Chemistry Eindhoven University of Technology P.O. Box 513, 5600 MB Eindhoven The Netherlands
| | - Amy Jenne
- Department of Chemistry University of Toronto Scarborough 1265 Military Trail Toronto ON M1C 1A4 Canada
| | - Franck Vincent
- Bruker BioSpin AG Industriestrasse 26 8117 Fällanden Switzerland
| | - Daniel Schmidig
- Bruker BioSpin AG Industriestrasse 26 8117 Fällanden Switzerland
| | - Till Kuehn
- Bruker BioSpin AG Industriestrasse 26 8117 Fällanden Switzerland
| | - Armin Beck
- Bruker BioSpin AG Industriestrasse 26 8117 Fällanden Switzerland
| | - Falko Busse
- Bruker BioSpin GmbH Silberstreifen 4 76287 Rheinstetten Germany
| | - Henry Stronks
- Bruker Canada Ltd. 2800 High Point Drive Milton Ontario L9T 6P4 Canada
| | - Ronald Soong
- Department of Chemistry University of Toronto Scarborough 1265 Military Trail Toronto ON M1C 1A4 Canada
| | - Aaron R. Wheeler
- Department of Chemistry University of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| | - André Simpson
- Department of Chemistry University of Toronto Scarborough 1265 Military Trail Toronto ON M1C 1A4 Canada
| |
Collapse
|
24
|
Sharma M, Utz M. Modular transmission line probes for microfluidic nuclear magnetic resonance spectroscopy and imaging. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 303:75-81. [PMID: 31026668 DOI: 10.1016/j.jmr.2019.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 03/30/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
Microfluidic NMR spectroscopy can probe chemical and bio-chemical processes non-invasively in a tightly controlled environment. We present a dual-channel modular probe assembly for high efficiency microfluidic NMR spectroscopy and imaging. It is compatible with a wide range of microfluidic devices, without constraining the fluidic design. It collects NMR signals from a designated sample volume on the device with high sensitivity and resolution. Modular design allows adapting the detector geometry to different experimental conditions with minimal cost, by using the same probe base. The complete probe can be built from easily available parts. The probe body mainly consists of prefabricated aluminium profiles, while the probe circuit and detector are made from printed circuit boards. We demonstrate a double resonance HX probe with a limit of detection of 1.4 nmol s-1/2 for protons at 600 MHz, resolution of 3.35 Hz, and excellent B1 homogeneity. We have successfully acquired 1H-13C and 1H-15N heteronuclear correlation spectra (HSQC), including a 1H-15N HSQC spectrum of 1 mM 15N labeled ubiquitin in 2.5 μl of sample volume.
Collapse
Affiliation(s)
- Manvendra Sharma
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Marcel Utz
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
25
|
van Zelst FHM, van Meerten SGJ, van Bentum PJM, Kentgens APM. Hyphenation of Supercritical Fluid Chromatography and NMR with In-Line Sample Concentration. Anal Chem 2018; 90:10457-10464. [PMID: 30080387 PMCID: PMC6127797 DOI: 10.1021/acs.analchem.8b02357] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
![]()
By
coupling supercritical fluid chromatography (SFC) and nuclear
magnetic resonance (NMR) in-line, a powerful analytical method arises
that enables chemically specific analysis of a broad range of complex
mixtures. However, during chromatography, the compounds are diluted
in the mobile phase, in this case supercritical CO2 (scCO2), often resulting in concentrations that are too low to be
detected by NMR spectroscopy or at least requiring excessive signal
averaging. We present a hyphenated SFC-NMR setup with an integrated
approach for concentrating samples in-line, which are diluted in scCO2 during chromatography. This in-line concentration is achieved
by controlled in-line expansion of the scCO2. As a proof
of concept four isomers of vitamin E (tocopherol) were isolated by
SFC, concentrated in-line by expanding CO2 from 120 to
50 bar, and finally shuttled to the NMR spectrometer fitted with a
dedicated probehead for spectroscopic characterization of microfluidic
samples. The abundant isomers were readily detected, supporting the
viability of SFC-NMR as a powerful analytical tool.
Collapse
Affiliation(s)
- F H M van Zelst
- Institute for Molecules and Materials (IMM) , Radboud University , Nijmegen 6525 AJ , The Netherlands.,TA-COAST , Science Park 904 , Amsterdam 1098 XH , The Netherlands
| | - S G J van Meerten
- Institute for Molecules and Materials (IMM) , Radboud University , Nijmegen 6525 AJ , The Netherlands.,TA-COAST , Science Park 904 , Amsterdam 1098 XH , The Netherlands
| | - P J M van Bentum
- Institute for Molecules and Materials (IMM) , Radboud University , Nijmegen 6525 AJ , The Netherlands
| | - A P M Kentgens
- Institute for Molecules and Materials (IMM) , Radboud University , Nijmegen 6525 AJ , The Netherlands
| |
Collapse
|
26
|
Montinaro E, Grisi M, Letizia MC, Pethö L, Gijs MAM, Guidetti R, Michler J, Brugger J, Boero G. 3D printed microchannels for sub-nL NMR spectroscopy. PLoS One 2018; 13:e0192780. [PMID: 29742104 PMCID: PMC5942786 DOI: 10.1371/journal.pone.0192780] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/30/2018] [Indexed: 11/19/2022] Open
Abstract
Nuclear magnetic resonance (NMR) experiments on subnanoliter (sub-nL) volumes are hindered by the limited sensitivity of the detector and the difficulties in positioning and holding such small samples in proximity of the detector. In this work, we report on NMR experiments on liquid and biological entities immersed in liquids having volumes down to 100 pL. These measurements are enabled by the fabrication of high spatial resolution 3D printed microfluidic structures, specifically conceived to guide and confine sub-nL samples in the sub-nL most sensitive volume of a single-chip integrated NMR probe. The microfluidic structures are fabricated using a two-photon polymerization 3D printing technique having a resolution better than 1 μm3. The high spatial resolution 3D printing approach adopted here allows to rapidly fabricate complex microfluidic structures tailored to position, hold, and feed biological samples, with a design that maximizes the NMR signals amplitude and minimizes the static magnetic field inhomogeneities. The layer separating the sample from the microcoil, crucial to exploit the volume of maximum sensitivity of the detector, has a thickness of 10 μm. To demonstrate the potential of this approach, we report NMR experiments on sub-nL intact biological entities in liquid media, specifically ova of the tardigrade Richtersius coronifer and sections of Caenorhabditis elegans nematodes. We show a sensitivity of 2.5x1013 spins/Hz1/2 on 1H nuclei at 7 T, sufficient to detect 6 pmol of 1H nuclei of endogenous compounds in active volumes down to 100 pL and in a measurement time of 3 hours. Spectral resolutions of 0.01 ppm in liquid samples and of 0.1 ppm in the investigated biological entities are also demonstrated. The obtained results may indicate a route for NMR studies at the single unit level of important biological entities having sub-nL volumes, such as living microscopic organisms and eggs of several mammalians, humans included.
Collapse
Affiliation(s)
- E. Montinaro
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory for Microsystems, Lausanne, Switzerland
| | - M. Grisi
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory for Microsystems, Lausanne, Switzerland
| | - M. C. Letizia
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory for Microsystems, Lausanne, Switzerland
| | - L. Pethö
- Swiss Federal Laboratories for Materials Science and Technology (EMPA), Laboratory for Mechanics of Materials and Nanostructures, Thun, Switzerland
| | - M. A. M. Gijs
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory for Microsystems, Lausanne, Switzerland
| | - R. Guidetti
- University of Modena and Reggio Emilia, Department of Life Sciences, Modena, Italy
| | - J. Michler
- Swiss Federal Laboratories for Materials Science and Technology (EMPA), Laboratory for Mechanics of Materials and Nanostructures, Thun, Switzerland
| | - J. Brugger
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory for Microsystems, Lausanne, Switzerland
| | - G. Boero
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory for Microsystems, Lausanne, Switzerland
| |
Collapse
|
27
|
Chen Y, Mehta HS, Butler MC, Walter ED, Reardon PN, Renslow RS, Mueller KT, Washton NM. High-resolution microstrip NMR detectors for subnanoliter samples. Phys Chem Chem Phys 2018; 19:28163-28174. [PMID: 29022609 DOI: 10.1039/c7cp03933f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We present the numerical optimization and experimental characterization of two microstrip-based nuclear magnetic resonance (NMR) detectors. The first detector, introduced in our previous work, was a flat wire detector with a strip resting on a substrate, and the second detector was created by adding a ground plane on top of the strip conductor, separated by a sample-carrying capillary and a thin layer of insulator. The dimensional parameters of the detectors were optimized using numerical simulations with regards to radio frequency (RF) sensitivity and homogeneity, with particular attention given to the effect of the ground plane. The influence of copper surface finish and substrate surface on the spectral resolution was investigated, and a resolution of 0.8-1.5 Hz was obtained on 1 nL deionized water depending on sample positioning. For 0.13 nmol sucrose (0.2 M in 0.63 nL H2O) encapsulated between two Fluorinert plugs, high RF homogeneity (A810°/A90° = 70-80%) and high sensitivity (expressed in the limit of detection nLODm = 0.73-1.21 nmol s1/2) were achieved, allowing for high-performance 2D NMR spectroscopy of subnanoliter samples.
Collapse
Affiliation(s)
- Ying Chen
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Mompeán M, Sánchez-Donoso RM, de la Hoz A, Saggiomo V, Velders AH, Gomez MV. Pushing nuclear magnetic resonance sensitivity limits with microfluidics and photo-chemically induced dynamic nuclear polarization. Nat Commun 2018; 9:108. [PMID: 29317665 PMCID: PMC5760532 DOI: 10.1038/s41467-017-02575-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/11/2017] [Indexed: 12/03/2022] Open
Abstract
Among the methods to enhance the sensitivity of nuclear magnetic resonance (NMR) spectroscopy, small-diameter NMR coils (microcoils) are promising tools to tackle the study of mass-limited samples. Alternatively, hyperpolarization schemes based on dynamic nuclear polarization techniques provide strong signal enhancements of the NMR target samples. Here we present a method to effortlessly perform photo-chemically induced dynamic nuclear polarization in microcoil setups to boost NMR signal detection down to sub-picomole detection limits in a 9.4T system (400 MHz 1H Larmor frequency). This setup is unaffected by current major drawbacks such as the use of high-power light sources to attempt uniform irradiation of the sample, and accumulation of degraded photosensitizer in the detection region. The latter is overcome with flow conditions, which in turn open avenues for complex applications requiring rapid and efficient mixing that are not easily achievable on an NMR tube without resorting to complex hardware. Nuclear magnetic resonance (NMR) spectroscopy is a powerful technique with an inherently low sensitivity. Here, the authors present a combination of microcoils with photo-chemically induced dynamic nuclear polarization to boost NMR sensitivity down to sub-picomole detection limits.
Collapse
Affiliation(s)
- Miguel Mompeán
- Instituto Regional de Investigación Científica Aplicada (UCLM), Avda Camilo José Cela s/n, 13071, Ciudad Real, Spain
| | - Rosa M Sánchez-Donoso
- Instituto Regional de Investigación Científica Aplicada (UCLM), Avda Camilo José Cela s/n, 13071, Ciudad Real, Spain.,Laboratory of BioNanoTechnology, Wageningen University, PO Box 8038, 6700, EK Wageningen, The Netherlands
| | - Antonio de la Hoz
- Instituto Regional de Investigación Científica Aplicada (UCLM), Avda Camilo José Cela s/n, 13071, Ciudad Real, Spain
| | - Vittorio Saggiomo
- Laboratory of BioNanoTechnology, Wageningen University, PO Box 8038, 6700, EK Wageningen, The Netherlands
| | - Aldrik H Velders
- Instituto Regional de Investigación Científica Aplicada (UCLM), Avda Camilo José Cela s/n, 13071, Ciudad Real, Spain. .,Laboratory of BioNanoTechnology, Wageningen University, PO Box 8038, 6700, EK Wageningen, The Netherlands. .,MAGNEtic resonance research FacilitY-MAGNEFY, Wageningen University & Research, PO Box 8038, 6700, EK Wageningen, The Netherlands.
| | - M Victoria Gomez
- Instituto Regional de Investigación Científica Aplicada (UCLM), Avda Camilo José Cela s/n, 13071, Ciudad Real, Spain
| |
Collapse
|
29
|
Gomez MV, de la Hoz A. NMR reaction monitoring in flow synthesis. Beilstein J Org Chem 2017; 13:285-300. [PMID: 28326137 PMCID: PMC5331343 DOI: 10.3762/bjoc.13.31] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/03/2017] [Indexed: 01/06/2023] Open
Abstract
Recent advances in the use of flow chemistry with in-line and on-line analysis by NMR are presented. The use of macro- and microreactors, coupled with standard and custom made NMR probes involving microcoils, incorporated into high resolution and benchtop NMR instruments is reviewed. Some recent selected applications have been collected, including synthetic applications, the determination of the kinetic and thermodynamic parameters and reaction optimization, even in single experiments and on the μL scale. Finally, software that allows automatic reaction monitoring and optimization is discussed.
Collapse
Affiliation(s)
- M Victoria Gomez
- Área Química Orgánica, Facultad de Químicas, Universidad de Castilla-La Mancha, Avda. Camilo José Cela nº 10, E-13071 Ciudad Real, Spain and Instituto Regional de Investigación Científica Aplicada (IRICA), Avda. Camilo José Cela s/n, E-13071 Ciudad Real, Spain
| | - Antonio de la Hoz
- Área Química Orgánica, Facultad de Químicas, Universidad de Castilla-La Mancha, Avda. Camilo José Cela nº 10, E-13071 Ciudad Real, Spain and Instituto Regional de Investigación Científica Aplicada (IRICA), Avda. Camilo José Cela s/n, E-13071 Ciudad Real, Spain
| |
Collapse
|
30
|
Renslow RS, Marshall MJ, Tucker AE, Chrisler WB, Yu XY. In situ nuclear magnetic resonance microimaging of live biofilms in a microchannel. Analyst 2017; 142:2363-2371. [DOI: 10.1039/c7an00078b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The firstin situnuclear magnetic resonance microimaging of live biofilms in a transferrable microfluidic platform.
Collapse
Affiliation(s)
- R. S. Renslow
- Earth and Biological Sciences Directorate
- Pacific Northwest National Laboratory
- Richland
- USA
| | - M. J. Marshall
- Earth and Biological Sciences Directorate
- Pacific Northwest National Laboratory
- Richland
- USA
| | - A. E. Tucker
- Earth and Biological Sciences Directorate
- Pacific Northwest National Laboratory
- Richland
- USA
| | - W. B. Chrisler
- Earth and Biological Sciences Directorate
- Pacific Northwest National Laboratory
- Richland
- USA
| | - X.-Y. Yu
- Earth and Biological Sciences Directorate
- Pacific Northwest National Laboratory
- Richland
- USA
| |
Collapse
|
31
|
Fugariu I, Soong R, Lane D, Fey M, Maas W, Vincent F, Beck A, Schmidig D, Treanor B, Simpson AJ. Towards single egg toxicity screening using microcoil NMR. Analyst 2017; 142:4812-4824. [DOI: 10.1039/c7an01339f] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Planar NMR microcoils are evaluated, their application to single eggs is demonstrated, and their potential for studying smaller single cells is discussed.
Collapse
Affiliation(s)
- I. Fugariu
- Dept. of Chemistry and Dept. Phys. Env. Sci
- University of Toronto at Scarborough
- Scarborough
- Canada
| | - R. Soong
- Dept. of Chemistry and Dept. Phys. Env. Sci
- University of Toronto at Scarborough
- Scarborough
- Canada
| | - D. Lane
- Dept. of Chemistry and Dept. Phys. Env. Sci
- University of Toronto at Scarborough
- Scarborough
- Canada
| | - M. Fey
- Bruker Biospin
- Billerica
- USA
| | | | | | - A. Beck
- Bruker Biospin
- 8117 Fällanden
- Switzerland
| | | | - B. Treanor
- Dept. of Biological Science
- University of Toronto at Scarborough
- Scarborough
- Canada
| | - A. J. Simpson
- Dept. of Chemistry and Dept. Phys. Env. Sci
- University of Toronto at Scarborough
- Scarborough
- Canada
| |
Collapse
|
32
|
Swyer I, Soong R, Dryden MDM, Fey M, Maas WE, Simpson A, Wheeler AR. Interfacing digital microfluidics with high-field nuclear magnetic resonance spectroscopy. LAB ON A CHIP 2016; 16:4424-4435. [PMID: 27757467 DOI: 10.1039/c6lc01073c] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is extremely powerful for chemical analysis but it suffers from lower mass sensitivity compared to many other analytical detection methods. NMR microcoils have been developed in response to this limitation, but interfacing these coils with small sample volumes is a challenge. We introduce here the first digital microfluidic system capable of interfacing droplets of analyte with microcoils in a high-field NMR spectrometer. A finite element simulation was performed to assist in determining appropriate system parameters. After optimization, droplets inside the spectrometer could be controlled remotely, permitting the observation of processes such as xylose-borate complexation and glucose oxidase catalysis. We propose that the combination of DMF and NMR will be a useful new tool for a wide range of applications in chemical analysis.
Collapse
Affiliation(s)
- Ian Swyer
- Department of Chemistry, University of Toronto, 80 St. George St, Toronto, ON M5S 3H6, Canada.
| | - Ronald Soong
- Department of Chemistry, University of Toronto Scarborough, 1256 Military Trail, Toronto, ON M1C 1A4, Canada.
| | - Michael D M Dryden
- Department of Chemistry, University of Toronto, 80 St. George St, Toronto, ON M5S 3H6, Canada.
| | - Michael Fey
- Bruker BioSpin Corp, 15 Fortune Drive, Billerica, Massachusetts 01821-3991, USA
| | - Werner E Maas
- Bruker BioSpin Corp, 15 Fortune Drive, Billerica, Massachusetts 01821-3991, USA
| | - André Simpson
- Department of Chemistry, University of Toronto Scarborough, 1256 Military Trail, Toronto, ON M1C 1A4, Canada.
| | - Aaron R Wheeler
- Department of Chemistry, University of Toronto, 80 St. George St, Toronto, ON M5S 3H6, Canada. and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada and Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College St, Toronto, ON M5S 3G9, Canada
| |
Collapse
|
33
|
A Multidisciplinary Approach to High Throughput Nuclear Magnetic Resonance Spectroscopy. SENSORS 2016; 16:s16060850. [PMID: 27294925 PMCID: PMC4934276 DOI: 10.3390/s16060850] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 05/30/2016] [Accepted: 06/02/2016] [Indexed: 02/03/2023]
Abstract
Nuclear Magnetic Resonance (NMR) is a non-contact, powerful structure-elucidation technique for biochemical analysis. NMR spectroscopy is used extensively in a variety of life science applications including drug discovery. However, existing NMR technology is limited in that it cannot run a large number of experiments simultaneously in one unit. Recent advances in micro-fabrication technologies have attracted the attention of researchers to overcome these limitations and significantly accelerate the drug discovery process by developing the next generation of high-throughput NMR spectrometers using Complementary Metal Oxide Semiconductor (CMOS). In this paper, we examine this paradigm shift and explore new design strategies for the development of the next generation of high-throughput NMR spectrometers using CMOS technology. A CMOS NMR system consists of an array of high sensitivity micro-coils integrated with interfacing radio-frequency circuits on the same chip. Herein, we first discuss the key challenges and recent advances in the field of CMOS NMR technology, and then a new design strategy is put forward for the design and implementation of highly sensitive and high-throughput CMOS NMR spectrometers. We thereafter discuss the functionality and applicability of the proposed techniques by demonstrating the results. For microelectronic researchers starting to work in the field of CMOS NMR technology, this paper serves as a tutorial with comprehensive review of state-of-the-art technologies and their performance levels. Based on these levels, the CMOS NMR approach offers unique advantages for high resolution, time-sensitive and high-throughput bimolecular analysis required in a variety of life science applications including drug discovery.
Collapse
|
34
|
A Micro Saddle Coil with Switchable Sensitivity for Local High-Resolution Imaging of Luminal Tissue. MICROMACHINES 2016; 7:mi7040067. [PMID: 30407445 PMCID: PMC6190024 DOI: 10.3390/mi7040067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/31/2016] [Accepted: 04/11/2016] [Indexed: 11/20/2022]
Abstract
This paper reports on a micro saddle coil for local high-resolution magnetic resonance imaging (MRI) fabricated by embedding a flexible coil pattern into a polydimethyilsiloxane (PDMS) tube. We can change the sensitivity of the micro coil by deforming the shape of the coil from a saddle-shaped mode to a planar-shaped mode. The inductance, the resistance, and the Q-factor of the coil in the saddle-shaped mode were 2.45 μH, 3.31 Ω, and 39.9, respectively. Those of the planar-shaped mode were 3.07 μH, 3.92 Ω, and 42.9, respectively. In MRI acquired in saddle-shaped mode, a large visible area existed around the coil. Although the sensitive area was considerably reduced in the planar-shaped mode, clear MRI images were obtained. The signal-to-noise ratios (SNR) of the saddle-shaped and planar-shaped modes were 194.9 and 505.9, respectively, at voxel size of 2.0 × 2.0 × 2.0 mm3 and 11.7 and 37.4, respectively, at voxel size of 0.5 × 0.5 × 1.0 mm3. The sensitivity of the saddle-shaped and the planar-shaped modes were about 3 times and 10 times higher, respectively, than those of the medical head coil at both voxel sizes. Thus, the micro saddle coil enabled large-area imaging and highly sensitive imaging by switching the shape of the coil.
Collapse
|
35
|
Lei KM, Mak PI, Law MK, Martins RP. A palm-size μNMR relaxometer using a digital microfluidic device and a semiconductor transceiver for chemical/biological diagnosis. Analyst 2016; 140:5129-37. [PMID: 26034784 DOI: 10.1039/c5an00500k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we describe a micro-nuclear magnetic resonance (μNMR) relaxometer miniaturized to palm-size and electronically automated for multi-step and multi-sample chemical/biological diagnosis. The co-integration of microfluidic and microelectronic technologies enables an association between the droplet managements and μNMR assays inside a portable sub-Tesla magnet (1.2 kg, 0.46 Tesla). Targets in unprocessed biological samples, captured by specific probe-decorated magnetic nanoparticles (NPs), can be sequentially quantified by their spin-spin relaxation time (T2) via multiplexed μNMR screening. Distinct droplet samples are operated by a digital microfluidic device that electronically manages the electrowetting-on-dielectric effects over an electrode array. Each electrode (3.5 × 3.5 mm(2)) is scanned with capacitive sensing to locate the distinct droplet samples in real time. A cross-domain-optimized butterfly-coil-input semiconductor transceiver transduces between magnetic and electrical signals to/from a sub-10 μL droplet sample for high-sensitivity μNMR screening. A temperature logger senses the ambient temperature (0 to 40 °C) and a backend processor calibrates the working frequency for the transmitter to precisely excite the protons. In our experiments, the μNMR relaxometer quantifies avidin using biotinylated Iron NPs (Φ: 30 nm, [Fe]: 0.5 mM) with a sensitivity of 0.2 μM. Auto-handling and identification of two targets (avidin and water) are demonstrated and completed within 2.2 min. This μNMR relaxometer holds promise for combinatorial chemical/biological diagnostic protocols using closed-loop electronic automation.
Collapse
Affiliation(s)
- Ka-Meng Lei
- State-Key Laboratory of Analog and Mixed-Signal VLSI, University of Macau, China.
| | | | | | | |
Collapse
|
36
|
Affiliation(s)
| | - Tae-Hyun Shin
- Department of Chemistry, Yonsei University , Seoul, 120-749, Korea
| | - Jinwoo Cheon
- Department of Chemistry, Yonsei University , Seoul, 120-749, Korea
| | | |
Collapse
|
37
|
OLED Hybrid Integrated Polymer Microfluidic Biosensing for Point of Care Testing. MICROMACHINES 2015. [DOI: 10.3390/mi6091406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Han SH, Cho H, Paulsen JL. Optimal sampling with prior information of the image geometry in microfluidic MRI. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 252:78-86. [PMID: 25676820 DOI: 10.1016/j.jmr.2014.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 12/24/2014] [Accepted: 12/27/2014] [Indexed: 06/04/2023]
Abstract
Recent advances in MRI acquisition for microscopic flows enable unprecedented sensitivity and speed in a portable NMR/MRI microfluidic analysis platform. However, the application of MRI to microfluidics usually suffers from prolonged acquisition times owing to the combination of the required high resolution and wide field of view necessary to resolve details within microfluidic channels. When prior knowledge of the image geometry is available as a binarized image, such as for microfluidic MRI, it is possible to reduce sampling requirements by incorporating this information into the reconstruction algorithm. The current approach to the design of the partial weighted random sampling schemes is to bias toward the high signal energy portions of the binarized image geometry after Fourier transformation (i.e. in its k-space representation). Although this sampling prescription is frequently effective, it can be far from optimal in certain limiting cases, such as for a 1D channel, or more generally yield inefficient sampling schemes at low degrees of sub-sampling. This work explores the tradeoff between signal acquisition and incoherent sampling on image reconstruction quality given prior knowledge of the image geometry for weighted random sampling schemes, finding that optimal distribution is not robustly determined by maximizing the acquired signal but from interpreting its marginal change with respect to the sub-sampling rate. We develop a corresponding sampling design methodology that deterministically yields a near optimal sampling distribution for image reconstructions incorporating knowledge of the image geometry. The technique robustly identifies optimal weighted random sampling schemes and provides improved reconstruction fidelity for multiple 1D and 2D images, when compared to prior techniques for sampling optimization given knowledge of the image geometry.
Collapse
Affiliation(s)
- S H Han
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - H Cho
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea.
| | - J L Paulsen
- Schulumberger Doll Research, Cambridge, MA 02139, USA.
| |
Collapse
|
39
|
Göbel K, Gruschke OG, Leupold J, Kern JS, Has C, Bruckner-Tuderman L, Hennig J, von Elverfeldt D, Baxan N, Korvink JG. Phased-array of microcoils allows MR microscopy ofex vivohuman skin samples at 9.4 T. Skin Res Technol 2014; 21:61-8. [DOI: 10.1111/srt.12157] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2014] [Indexed: 11/28/2022]
Affiliation(s)
- K. Göbel
- Department of Radiology; Medical Physics; University Medical Center Freiburg; Freiburg Germany
| | - O. G. Gruschke
- Laboratory of Simulation; IMTEK; University of Freiburg; Freiburg Germany
| | - J. Leupold
- Department of Radiology; Medical Physics; University Medical Center Freiburg; Freiburg Germany
| | - J. S. Kern
- Department of Dermatology; University Medical Center Freiburg; Freiburg Germany
| | - C. Has
- Department of Dermatology; University Medical Center Freiburg; Freiburg Germany
| | | | - J. Hennig
- Department of Radiology; Medical Physics; University Medical Center Freiburg; Freiburg Germany
| | - D. von Elverfeldt
- Department of Radiology; Medical Physics; University Medical Center Freiburg; Freiburg Germany
| | - N. Baxan
- Bruker BioSpin MRI GmbH; Ettlingen Germany
| | - J. G. Korvink
- Laboratory of Simulation; IMTEK; University of Freiburg; Freiburg Germany
| |
Collapse
|
40
|
Issadore D, Park YI, Shao H, Min C, Lee K, Liong M, Weissleder R, Lee H. Magnetic sensing technology for molecular analyses. LAB ON A CHIP 2014; 14:2385-97. [PMID: 24887807 PMCID: PMC4098149 DOI: 10.1039/c4lc00314d] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Magnetic biosensors, based on nanomaterials and miniature electronics, have emerged as a powerful diagnostic platform. Benefiting from the inherently negligible magnetic background of biological objects, magnetic detection is highly selective even in complex biological media. The sensing thus requires minimal sample purification and yet achieves a high signal-to-background contrast. Moreover, magnetic sensors are also well-suited for miniaturization to match the size of biological targets, which enables sensitive detection of rare cells and small amounts of molecular markers. We herein summarize recent advances in magnetic sensing technologies, with an emphasis on clinical applications in point-of-care settings. Key components of sensors, including magnetic nanomaterials, labeling strategies and magnetometry, are reviewed.
Collapse
Affiliation(s)
- D. Issadore
- School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104
| | - Y. I. Park
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - H. Shao
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - C. Min
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - K. Lee
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - M. Liong
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - R. Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Department of Systems Biology, Harvard Medical School, Boston, MA 02114
| | - H. Lee
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| |
Collapse
|
41
|
Ryan H, Smith A, Utz M. Structural shimming for high-resolution nuclear magnetic resonance spectroscopy in lab-on-a-chip devices. LAB ON A CHIP 2014; 14:1678-1685. [PMID: 24658666 DOI: 10.1039/c3lc51431e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
High-resolution proton NMR spectroscopy is well-established as a tool for metabolomic analysis of biological fluids at the macro scale. Its full potential has, however, not been realised yet in the context of microfluidic devices. While microfabricated NMR detectors offer substantial gains in sensitivity, limited spectral resolution resulting from mismatches in the magnetic susceptibility of the sample fluid and the chip material remains a major hurdle. In this contribution, we show that susceptibility broadening can be avoided even in the presence of substantial mismatch by including suitably shaped compensation structures into the chip design. An efficient algorithm for the calculation of field maps from arbitrary chip layouts based on Gaussian quadrature is used to optimise the shape of the compensation structure to ensure a flat field distribution inside the sample area. Previously, the complexity of microfluidic NMR systems has been restricted to simple capillaries to avoid susceptibility broadening. The structural shimming approach introduced here can be adapted to virtually any shape of sample chamber and surrounding fluidic network, thereby greatly expanding the design space and enabling true lab-on-a-chip systems suitable for high-resolution NMR detection.
Collapse
Affiliation(s)
- Herbert Ryan
- School of Chemistry, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK.
| | | | | |
Collapse
|
42
|
Zalesskiy SS, Danieli E, Blümich B, Ananikov VP. Miniaturization of NMR systems: desktop spectrometers, microcoil spectroscopy, and "NMR on a chip" for chemistry, biochemistry, and industry. Chem Rev 2014; 114:5641-94. [PMID: 24779750 DOI: 10.1021/cr400063g] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sergey S Zalesskiy
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences , Moscow, 119991, Russia
| | | | | | | |
Collapse
|
43
|
Multinuclear nanoliter one-dimensional and two-dimensional NMR spectroscopy with a single non-resonant microcoil. Nat Commun 2014; 5:3025. [DOI: 10.1038/ncomms4025] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 11/26/2013] [Indexed: 11/08/2022] Open
|
44
|
Chiwan Koo, Godley RF, McDougall MP, Wright SM, Han A. A microfluidically cryocooled spiral microcoil with inductive coupling for MR microscopy. IEEE Trans Biomed Eng 2014; 61:76-84. [PMID: 23955689 DOI: 10.1109/tbme.2013.2276770] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Magnetic resonance (MR) microscopy typically employs microcoils for enhanced local signal-to-noise ratio (SNR). Planar (surface) microcoils, in particular, offer the potential to be configured into array elements as well as to enable the imaging of extremely small samples because of the uniformity and precision provided by microfabrication techniques. Microcoils, in general, however, are copper-loss dominant, and cryocooling methods have been successfully used to improve the SNR. Cryocooling of the matching network elements, in addition to the coil itself, has shown to provide the most improvement, but can be challenging with respect to cryostat requirements, cabling, and tuning. Here we present the development of a microfluidically cryocooled spiral microcoil with integrated microfabricated parallel plate capacitors, allowing for localized cryocooling of both the microcoil and the on-chip resonating capacitor to increase the SNR while keeping the sample-to-coil distance within the most sensitive imaging range of the microcoil. Inductive coupling was used instead of a direct transmission line connection to eliminate the physical connection between the microcoil and the tuning network so that a single cryocooling microfluidic channel could enclose both the microcoil and the on-chip capacitor with minimum loss in cooling capacity. Comparisons between the cooled and uncooled cases were made via Q-factor measurements and agreed well with the theoretically achievable improvement: the cooled integrated capacitor coil with inductive coupling achieved a factor of 2.6 improvement in Q-factor over a reference coil conventionally matched and tuned with high- Q varactors and capacitively connected to the transmission line.
Collapse
|
45
|
Lei KM, Mak PI, Law MK, Martins RP. NMR–DMF: a modular nuclear magnetic resonance–digital microfluidics system for biological assays. Analyst 2014; 139:6204-13. [DOI: 10.1039/c4an01285b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a modular nuclear magnetic resonance–digital microfluidics (NMR–DMF) system as a portable diagnostic platform for miniaturized biological assays.
Collapse
Affiliation(s)
- Ka-Meng Lei
- State-Key Laboratory of Analog and Mixed-Signal VLSI and FST-ECE
- University of Macau
- China
| | - Pui-In Mak
- State-Key Laboratory of Analog and Mixed-Signal VLSI and FST-ECE
- University of Macau
- China
| | - Man-Kay Law
- State-Key Laboratory of Analog and Mixed-Signal VLSI and FST-ECE
- University of Macau
- China
| | - Rui P. Martins
- State-Key Laboratory of Analog and Mixed-Signal VLSI and FST-ECE
- University of Macau
- China
- Instituto Superior Técnico
- University of Lisbon
| |
Collapse
|
46
|
Yap YS, Yamamoto H, Tabuchi Y, Negoro M, Kagawa A, Kitagawa M. Strongly driven electron spins using a K(u) band stripline electron paramagnetic resonance resonator. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 232:62-67. [PMID: 23703225 DOI: 10.1016/j.jmr.2013.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/23/2013] [Accepted: 04/26/2013] [Indexed: 06/02/2023]
Abstract
This article details our work to obtain strong excitation for electron paramagnetic resonance (EPR) experiments by improving the resonator's efficiency. The advantages and application of strong excitation are discussed. Two 17 GHz transmission-type, stripline resonators were designed, simulated and fabricated. Scattering parameter measurements were carried out and quality factor were measured to be around 160 and 85. Simulation results of the microwave's magnetic field distribution are also presented. To determine the excitation field at the sample, nutation experiments were carried out and power dependence were measured using two organic samples at room temperature. The highest recorded Rabi frequency was rated at 210 MHz with an input power of about 1 W, which corresponds to a π/2 pulse of about 1.2 ns.
Collapse
Affiliation(s)
- Yung Szen Yap
- Graduate School of Engineering Science, Osaka University, Japan.
| | | | | | | | | | | |
Collapse
|
47
|
Watzlaw J, Glöggler S, Blümich B, Mokwa W, Schnakenberg U. Stacked planar micro coils for single-sided NMR applications. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 230:176-185. [PMID: 23545292 DOI: 10.1016/j.jmr.2013.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 01/31/2013] [Accepted: 02/22/2013] [Indexed: 06/02/2023]
Abstract
This paper describes planar micro structured coils fabricated in a novel multilayer assembly for single-sided NMR experiments. By arranging the coil's turns in both lateral and vertical directions, all relevant coil parameters can be tailored to a specific application. To this end, we implemented an optimization algorithm based on simulations applying finite element methods (FEMs), which maximizes the coil's sensitivity and thus signal-to-noise ratio (SNR) while incorporating boundary conditions such as the coil's electrical properties and a localized sensitivity needed for single-sided applications. Utilizing thin-film technology and microstructuring techniques, the planar character is kept by a sub-millimeter overall thickness. The coils are adapted to the Profile NMR-MOUSE® magnet with a homogeneous slice of about 200 μm in height and a uniform depth gradient of about 20T/m. The final design of a coil with 20 turns, separated in four layers with five turns each, and an outer dimension of 4×4 mm(2) is able to measure a sample volume almost five times smaller than that of a state-of-the-art 14×16 mm(2) Profile NMR-MOUSE® coil with the same SNR. This allows for volume-limited measurements with high SNR and enables different future developments. The minimal dead time of 4 μs facilitates further improvements of the SNR by echo adding techniques and the characterization of samples with short T2 relaxation times. Measurements on solid polymers like polyethylene (PE) and polypropylene (PP) with T2 components as short as 200 μs approve the overall beneficial coil properties. Furthermore the ability to perform depth profiling with microscopic resolution is demonstrated.
Collapse
Affiliation(s)
- Jan Watzlaw
- Institut für Werkstoffe der Elektrotechnik (IWE), Chair 1, RWTH Aachen University, Sommerfeldstraße 24, 52074 Aachen, Germany.
| | | | | | | | | |
Collapse
|
48
|
Zhivonitko VV, Telkki VV, Leppäniemi J, Scotti G, Franssila S, Koptyug IV. Remote detection NMR imaging of gas phase hydrogenation in microfluidic chips. LAB ON A CHIP 2013; 13:1554-1561. [PMID: 23435499 DOI: 10.1039/c3lc41309h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The heterogeneous hydrogenation reaction of propene into propane in microreactors is studied by remote detection (RD) nuclear magnetic resonance (NMR). The reactors consist of 36 parallel microchannels (50 × 50 μm(2) cross sections) coated with a platinum catalyst. We show that RD NMR is capable of monitoring reactions with sub-millimeter spatial resolution over a field-of-view of 30 × 8 mm(2) with a steady-state time-of-flight time resolution in the tens of milliseconds range. The method enables the visualization of active zones in the reactors, and time-of-flight is used to image the flow velocity variations inside the reactor. The overall reaction yields determined by NMR varied from 10% to 50%, depending on the flow rate, temperature and length of the reaction channels. The reaction yield was highest for the channels with the lowest flow velocity. Propane T1 relaxation time in the channels, estimated by means of RD NMR images, was 270 ± 18 ms. No parahydrogen-induced polarization (PHIP) was observed in experiments carried out using parahydrogen-enriched H2, indicating fast spreading of the hydrogen atoms on the sputtered Pt surface. In spite of the low concentration of gases, RD NMR made imaging of gas phase hydrogenation of propene in microreactors feasible, and it is a highly versatile method for characterizing on-chip chemical reactions.
Collapse
Affiliation(s)
- Vladimir V Zhivonitko
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia.
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
Usage of planar microcoils in nuclear magnetic resonance (NMR) analysis of volume-limited chemical and biological samples has been widespread over the decades, since these microcoils obtain high sensitivity and resolution in localized units of volume. On the other hand, low-temperature co-fired ceramic (LTCC) materials exhibit highly reliable and advantageous properties in the radio frequency (RF) working area. In this work, author tries to incorporate this prosperous material technology in to design of high quality NMR microcoils, which were so far fabricated on the glass or polymer substrates. Set of few ceramic substrate microcoils is fabricated and characterized with detailed description of fabrication process in this paper.
Collapse
|
50
|
Rushworth CM, Davies J, Cabral JT, Dolan PR, Smith JM, Vallance C. Cavity-enhanced optical methods for online microfluidic analysis. Chem Phys Lett 2012. [DOI: 10.1016/j.cplett.2012.10.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|